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ABSTRACT

In this paper, we investigate and present how to generate applica-
tion traces of IoT (Internet of Things) Applications in an automated,
repeatable and reproducible manner. By using the FIT IoT-Lab large
scale testbed and relying on state-of-the-art software engineering
techniques, we are able to produce, collect and share artifacts and
datasets in an automated way. This makes it easy to track the im-
pact of software updates or changes in the radio environment both
on a small scale, e.g. during a single day, and on a large scale, e.g.
during several weeks. By providing both the source code for the
trace generation as well as the resulting datasets, we hope to reduce
the learning curve to develop such applications and encourage re-
usability as well as pave the way for the replication of our results.
While we focus in this work on IoT networks, we believe such an
approach could be of used in many other networking domains.
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1 INTRODUCTION

Data is now at the heart of many research.With the recent growth of
machine learning, in particular deep learning, it is now a critical task
to find exhaustive and quality data sets to produce pertinent and
realistic models. It is even more the case in the IoT, where network
traffic data is essential to understand the network characteristics,
model them and their patterns. Researches use this kind of data for
training models to identify and classify the different IoT devices
present in the network. It helps administrators manage the mass
of devices in the network and detect malicious devices [25, 29].
It is even more important to train models on traffic data because
the IoT devices identification is complicated and relies on easily
changeable static information and not on their less changeable
activity. Network data sets are also useful to detect anomalous
activity or signature behavior of already known attacks by training
machine learning [18, 32] or deep learning [12] models. Finally,
network IoT data alleviates forecasting networks congestion [30] or
the traffic load [23] to tackle allocation and management decisions.

Because various types of bias may be present in data [24], and
such bias may in turn lead to algorithmic unfairness or other un-
wanted behaviours, it is important to take great care when design-
ing and creating datasets. Although replicability1 appears as the
best way to increase confidence of results building on such ex-
perimental artifacts, intermediate steps such as repeatability and
reproducibility may also promote the integrity of such results. Re-
peatability for the creation of datasets is especially important for
the IoT and wireless networking domains, as the radio spectrum,
the communication technologies or the operating systems power-
ing such networks undergo constant changes, rendering datasets
obsolete, or worse, damaging.

In this work, we use the FIT IoT-LAB testbed. FIT IoT-LAB is
an open large-scale testbed with wireless sensor nodes and mobile
robots [1]. Each node is openly programmable and it comes with
convenient tools to gather the experiments’ results, making it ideal
to generate datasets. We show how we generated different types
of network traffic data with the FIT IoT-LAB testbed thanks to
our Sisyphe tool. In addition, we provide our results, methods and

1We use the terminology of the Artifact Review and Badging Version 1.1 from the
ACM.
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tools to be entirely reusable and reproducible and share them. Our
contributions are threefold :

• We present the architecture of Sisyphe and illustrate its use
by generating two datasets using the FIT IoT-Lab testbed.

• For each dataset, we discuss the experiment setup and present
the results obtained. These results are available to be directly
usable.

• We make available all the source code and tools used for
each dataset on a public repository.

The remainder of this paper is organized as follows. Section 2
presents the architecture of Sisyphe . Section 3 introduces the two
different considered scenarios and their peculiarities. The scenar-
ios are then covered in details in 3.1 and 3.2. Section 4 provides
some usage examples of these datasets. Finally, Section 5 positions
Sisyphe and these contributions with regards to literature before
Section 6 concludes this paper by discussing future work.

2 SISYPHE DESIGN PRINCIPLES AND

ARCHITECTURE

The main goal of Sisyphe is to provide a way to generate artifacts in
an autonomous, repeatable and reproducible manner2. To achieve
this goal, Sisyphe relies on multiple techniques or design principles
that we present in this section. We then present its architecture.

2.1 Design principles

It is notoriously hard to reproduce or let alone repeat computer
systems research. In [9], the authors measure the two most "basic"
requirements for reproduction (different teams, same experimental
setup), namely, being able to access to the source code and being able
to build this source code, for a set of 601 papers from various ACM
conference and journals. Out of the 402 papers not excluded from
consideration for hardware availability constraints, or excluded
because their results were not backed by code, only 54.0% fulfill
the two basic requirements of source code availability and build
success. While hopefully the situation is far less dire in 2021 than in
2015, the first step to guaranty reproducibility and repeatability is to
ensure the availability of the source code involved in the processing,
analysis, presentation steps of the creation of scientific works, but
also and most importantly of the experimental code.

Source code archiving. To tackle the source code availability prob-
lematic, the source code of the Sisyphe platform as well as the
source code of the experiments run on the platform are distributed
under open-source licences. Yet, distributing the source code, for
example by hosting an archive on some institutional or personal
web-page is not enough. Indeed, they may disappear on the occa-
sion of a website redesign or a change of affiliation. Thus, source
code sharing platforms such as Github or Gitlab represent a more
promising avenue. However, recent history [5, 7, 19] has shown
they are not perfect because they can also close. To ensure source
code availability, we therefore rely on software archiving made
possible by Software Heritage [10]. It is a non-profit organization
backed by Inria and the UNESCO, whose goal is to establish a
long-term software and source code archive. In particular, unique

2Sisyphe is the french name of the Greek mythology character Sisyphus, punished for
cheating death by being forced to repeat an action for eternity.

and stable identifiers called SWHID are attributed to the different
software components of Sisyphe ensuring an easy access to those
components source code.

For example, the identifier of the Sisyphe source code, available
at https://github.com/sisyphe-re/infrastructure-ng is
swh:1:dir:6b23bcefe73bbaea308b6ea99d7e75cd37ded16fe

and allows the exploration of a project’s source code in a similar way
to the Github web interface. In addition to preserving the source
code of the platform, Software Heritage is also used to archive the
source code of the experiments every time they are run in an au-
tomated manner. In particular, we ensure that the source code is
present in the Software Heritage archive before running the exper-
iments, preventing mismatch between the ongoing experiment and
what is archived in a long-term manner.

Reproducible Builds. Any researcher that already tried to run old
code they wrote for a scientific contribution knows how hard this
can be. Having access to the source code is only one part from the
broader "reproducibility challenge", as underlined by the results
from the "Ten Years Reproducibility Challenge" presented in [27] :
lacking documentation or access to obsolete computing environ-
ments can also represent hard obstacles to overcome. In Sisyphe ,
we use the Nix package manager [14] and the NixOS [15] Linux dis-
tribution to provide reproducible development and computing envi-
ronments. Nix uses a functional approach to package management
by linking software and their dependencies using cryptographic
hashes. It so allow us to provide an easy way for third-party to
re-use our code, without impacting the rest of their system. For
example, it is possible to build the RIOT-OS based firmwares from
Section 3.2, without having to deal with the so-called "dependency
hell", and as long as the Nix package manager is available, by using
a single command, namely ‘nix build‘, as shown on 1.

Listing 1: Firmware Compilation using Nix

$ g i t c l one g i t@gi thub . com : s i syphe − r e / f i rmwares
$ cd f i rmwares /
$ n ix b u i l d [1 b u i l t ]
$ l s r e s u l t /
g n r c _ bo r d e r _ r ou t e r . e l f gnrc_ne twork ing . e l f

The more global architecture of Sisyphe is itself written in Nix
and based on the NixOS Operating System and thus adopt the
"Infrastructure As Code" paradigm. Nix and NixOS try to be re-
producible down to the bit level, they so detect quickly existing
projects that exhibit non-deterministic patterns in their builds. We
discovered an example of such behaviour in the RIOT operating
system’s code during the development of Sisyphe 3.

Testbeds. As mentioned in [9, 27], hardware access may also hin-
der reproducibility, especially when it involves exotic hardware.
Providing remote access to standard x86_64 machines might not
be useful for reproducibility of system research, as it is easy to
gain access to such machines (at least in 2021), but networks and
especially IoT networks are a different matter. The fast pace of
evolution of such networks means some hardware can be sunset in
just a few years time. Moreover, their diversity means reproducing
some experiment might come at a high cost, in terms of hardware
roll-out or time. We ease the reproduction process in Sisyphe by
3https://github.com/RIOT-OS/RIOT/pull/16511/

https://github.com/sisyphe-re/infrastructure-ng


using testbeds, instead of relying on local deployments. By doing
so, anybody with an access to the testbed can reproduce the results
at a lower cost. In addition, testbeds promote a greater access to
science by leveraging more resources for more people, in particular
in IoT networks that demand large deployments. In this work, we
use the FIT IoT-Lab testbed, which allows full control of several
hundred nodes using a set of APIs and SSH access across five ge-
ographical deployments in France. One of the downside of such
remote-accessible testbeds, as noted by [4] is that they offer rigid
operating conditions and might not provide meaningful results
because of their peculiar deployments that may be considered as
artificial. To this end, Sisyphe is testbed agnostic and does not try
to enforce the use of any specific testbed, as long as experiments
can be run in an automated manner, which brings the next main
design paradigm of Sisyphe .

Continuous Integration and Automation. The radio environment
evolves quickly with the evolution of radio spectrum allocation,
changes in the users habits, changes in the communication technol-
ogy, changes in the applications, operating systems. Thus, Sisyphe
adopts a continuous integration and full automation approach for
the creation of datasets. Such automation allow identification of
IoT networks’ global trends, for example about the performance
of this or that algorithm implemented in some operating system.
Thus, it gain insight into the development of real networks. Most
importantly, full automation decouples the experiment from the
experimenter and highlight implicit dependencies that may other-
wise be hidden. Indeed, the initial work put into automation effort
is a form of documentation. It allows observability of the whole
experimental process and thus reduce the risk of corporate amnesia
and favor easier audits.

2.2 Architecture

The global architecture of Sisyphe is presented in Figure 1. The
processing pipeline is divided in two main steps, each with different
level of reproducibility. The first one is the automated build step,
which uses experiment blueprints ,from source code repositories,
to create artifacts. These artifacts are then used during the second
step, which is the automated evaluation step.

Sisyphe built blueprints with Nix flakes, which are experimental
features for easy containerization and composability of Nix-based
projects [13]. This assumes that the blueprints are already nix and
flakes ready, like in Section 3.2. In the case they are not, a bit of work
might be needed as shown in Section 3.1 and some intermediate
adapter code is needed. Sisyphe assumes that calling "nix build"
will build the artifacts and expose a "run" executable for launching
the experiment. The build results are published online in a binary
cache in which they are identified by their hashes, which allows to
fetch part of the artifacts without having to rebuild them locally.

The automated evaluation step is in general less reproducible
than the automated build step. Indeed, for the evaluation of ex-
periment we have to make API calls and interact with real-world
resources, which is not as simple as running a sequence of programs
in a controlled environment. This evaluation step is executed auto-
matically on Sisyphe at regular intervals, e.g. daily, and the result

are also made available on the web4. We may need secrets to con-
nect to platforms such as Fit IoT-LAB, for example ssh private keys
to copy artifacts on Sisyphe server for their availability, or API keys.
Those are passed as environment variables. Containers are used
to separate each experiment’s evaluation, but we plan to switch to
virtual machines in the near future to increase security.

3 USAGE EXAMPLE : IOT ARTIFACTS

GENERATION

In this section, we present how we have produced two IoT artifacts
with Sisyphe on the FIT IoT-Lab platform. The two artifacts are
created using scenarios related to smart buildings [26, 31], covering
(i) HVAC systems (heating, ventilation and air conditioning), ii)
Smart lighting, iii) Emergency system, iv) Surveillance cameras,
v) Virtual or augmented reality rooms and vi) Voice over Internet
(VoIP). Each sub-scenario is characterised by the frequency of the
exchanged messages, the number of nodes participating in the
network, as well as the payload size. With these scenarios, we aim
to model the exchange of different types of data, whether textual,
audio, or visual data.

The first artifact uses the Contiki [16] IOTOperating System, and
is rather loosely interfaced with Sisyphe . Indeed, while the compi-
lation environment is set up using Nix in Sisyphe , Nix is not used
directly to build the firmwares. The source code is fetched on-the-fly
in a non-reproducible manner over the internet, that is to say using
Git. Any change in the source code repository will not be detected
by the system: this first evaluation scenario is used to present how
an existing code could be used in Sisyphe with minimal changes.
The duration of the experiments are limited to at most 90 minutes.
The second artifact uses the RIOT IOT Operating System [2], and
is Sisyphe -ready, as it already uses Nix to build the firmwares and
the different scripts used for the experiment execution. This second
artifact is used to present how a more tailored experiment code can
be used with Sisyphe . The duration of the experiments are longer,
as each scenario runs for one week. Both methods rely on sensors
writing statistics on their serial output to gather data, serial output
which is connected to the FIT IoT-Lab monitoring infrastructure
and gathered with the so-called "serial-aggregator" of the testbed,
and on the use of the 802.15.4 radio technology.

3.1 Simple traces for link evaluation

Based on the needs and requirements from a specific usage, we may
need to use simple data about node communication in a peer to peer
approach. It may for example be useful to train machine learning
models to get an estimation of the communication delay. In this
section, we first present the experimental setup and tools we used
to configure and launch experiments on the FIT IoT-LAB test-bed.
Then we introduce the tools we used to retrieve the experimental
results and parse the files to get data about specific metrics we
needed. The methodology presented can be applied to any other
metric that can be extracted from a set of nodes communicating in
broadcast manner.

3.1.1 Experiment setup. FIT IoT-LAB offers several tools to launch,
control and retrieve results from the experiments. The nodes’ firmware

4The web interface for Sisyphe is available at https://sisyphe.grunblatt.org/
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Figure 1: Overview of the architecture of Sisyphe . Bold elements are used in one of the two example presented in this work.

can be fully modified, and several examples are available to learn.
Different operating systems can be used, such as Contiki [16], which
is a lightweight system for wireless sensor networks. To generate
simple traces for link evaluation, we based our firmware on a pub-
licly available example based on Contiki 5 which sends broadcast
messages on a regular basis. We made small modifications to adjust
the behavior to our needs. To easily and quickly run experiments,
we wrote a simple script which takes the following experimental pa-
rameters as input: the experiment duration, the sending frequency,
the packets’ payload size and the list of nodes used in the experi-
ment. We have defined these parameters according to the charac-
terization of the scenario done previously. They are summarized in
Table 1. To get information about the nodes operations, they are
configured to output data on their serial links as soon as they send
or receive packets. For the hardware side, we chose to use the open
nodes M3 6. Those are based on STM32 micro-controllers and an
ARM Cortex M3 processor. They offer power and flexibility, and
thus are the ones that meets the largest number of applications.
Our script execute the following operations. The firmware code
is modified, based on the experimental parameters that are given.
Then the firmware is compiled, and the nodes that takes part in the
experiment are booked using the IoT-LAB tools. The serial aggre-
gator from the toolset is started to log the serial output of every
node from the experiment. For every line of log, a timestamp is
registered along the source node’s name. Once the experiment is
ready to begin, the firmware is uploaded on the nodes. After the
given duration of the experiment, the results are retrieved from the
remote IoT-LAB server and a copy is stored on the local computer.
The script and every software we used are freely available and
usable with the obtained data.

3.1.2 Results. Thanks to the serial output generated by the nodes,
we can extract simple experiments’ results. A single text file con-
tains output from every nodes. Each of that file’s line contains
information about which nodes sent messages, and which nodes
received it. A line of log contains a timestamp, the identifier of
the node which wrote the line, if it has sent or received a mes-
sage, and the associated message identifier. As the log structure
is very simple, the file’s parsing is easy. We divide the log file in
two : one contains the log about messages sent and the other log
5Available here: https://github.com/iot-lab/contiki/tree/master/examples/ipv6/simple-
udp-rpl
6More information: https://github.com/iot-lab/iot-lab/wiki/Hardware-M3-node

about messages received. In the first file, about messages sent, we
compute and add the number of nodes that have received each
message next to the log line of its transmission. In the second file
about receptions, based on the timestamps of each log, we compute
and add the transmission delay in milliseconds associated with
each reception. With that, we obtain a simple yet complete dataset
about one hop communications. That dataset can then be used to
train automatic learning models which needs realistic information
and metrics about specific applications and experimental settings.
In our work, we use the dataset to predict the communication’s
delay, based on the network’s state and use case. To that end, we
wrote scripts to automatically extract, compute, and graph different
metrics about the dataset. Those scripts are made with Python, and
freely available in open access on our Gitlab repository7. Based on
the needs, metrics can be simply extracted and graphed with quick
modifications of the available scripts. Our scripts are intended to
be reusable to extract other metrics, such as the message window,
or other data with the same format.

3.2 Traces for network evaluation

In this section, we focus on creating a more realistic dataset for
network evaluation. This type of dataset is useful to understand
applications traffic profiles. We first describe the experiment archi-
tecture and setup. We also introduce how we generate the traffic
and the experiment parameters. Then, we present the results we
obtained and how to exploit them.

3.2.1 Experiment description. We reuse the scenarios of the Sec-
tion 3 but enhance them by considering different type of packet
generation. As we focus on network evaluation, we present a more
advanced architecture, illustrated in Figure 2. Each experiment, cor-
responding to a scenario, involves three types of entities (nodes):
Server: the server is a node which hosts a UDP server, receiving
packets and collecting information about those packets. It is reach-
able through the Internet through an IPv6 connection. In all the
experiments, there is only one server.
Border Routers : border routers are nodes which connect the sen-
sors to the internet. They are equipped with two interfaces, one
connected to the internet and the other one connected to the sen-
sors network, using the 802.15.4 technology and the RPL routing
protocol. In the RPL protocol, they are the root of the RPL DODAGs.

7https://gitlab.irisa.fr/0000H82G/traces



Table 1: Experiments parameters for simple link evaluation

Scenario Nodes number Message
exchange frequency

Payload
size
(byte)

Duration
(minutes)

HVAC systems 100 1 packet/4 minutes 60 60
Smart lighting 100 1 packet/8 minutes 30 90

Emergency response 40 1 packet/30 seconds 127 10
Surveillance 30 99 packets/seconds 127 10

Virtual or augmented reality 10 197 packets/seconds 127 10
VoIP 10 16 packets/seconds 127 10

They are at the edge of the sensor network, bridging two networks.
During the experiments, the number of border routers is kept con-
stant but may vary between experiments, as shown in Table 2.
Sensors : The sensors are the core of the network. They generate
data according to a specified random distribution and transmission
parameters, and send them to the server. They are connected to-
gether using the 802.15.4 technology and the RPL routing protocol,
which means each sensor may also be used to relay packets or
frames to border routers, if it is on the shortest path between a sen-
sor and the DODAG root. Each sensor may have different parents
in the DODAG, allowing packets to flow in a path or another.

We introduce a new type of packet generationwhich goes beyond
regular and periodic packet generation, and allows to better model
real world scenarios. Indeed, in the HVAC scenario for example,
sensors might send information in a periodic manner in order to
control the system, but in the emergency response scenario for
example, sensors will also react when they detect a possible danger,
which cannot be captured by simple periodic traffic generation.
Thus, beyond the previously used periodic generation where the
packet are sent at a fixed interval of time (denoted as "Periodic"),
we also use a packet generation method based on an exponential
distribution of rate parameter 𝜆 (denoted as "Exponential"). This
distribution is generated by using the inverse transform sampling
method directly on the sensor node, using the floating point random
number generation from the RIOT Operating System. As the FIT
IoT-Lab m3 nodes are based on the STM32 CPUs, which feature
a hardware random number generator, we believe the generated
distribution is of sufficient quality for our usecases.We also consider
an Hybrid traffic generation method, which is the simultaneous
generation of data according to the Periodic and the Exponential
method at the same time. All parameters are summarized in Table 2.

3.2.2 Results. The results are gathered either from the server or
from the sensors by a script running on the FIT IoT-Lab frontend
servers. In particular, the border routers are not gathering any sta-
tistics to avoid such data collection to interfere with the experiment,
as their serial link is already for the ethernet-over-serial (ethos) con-
nection. The results for each scenario are streamed and compressed
using the ZSTD compression algorithm8 directly to Sisyphe server
where they can be post-processed after the end of the experiment, in
particular to format them. Originally formatted as text, the results

8https://github.com/facebook/zstd

are transformed into SQLite3 databases to allow for easy manipula-
tion and querying. For the moment, we kept the database format
simple, in particular by using no relationship between the tables,
using SQLite3 as a poor man’s binary file format. Such databases
are also compressed using ZSTD, as their uncompressed size can
reach 100GB for an experiment of one week.

The databases comprise tables with different level of information,
from high level layer 3 statistics to low level phy information, e.g.
average reception power of the frames of this or that neighbor in the
RPL DODAG. While we will not go into the details of the database
schema, which is documented in the campaign repository 9, we
present in Listing 2 an example of operation on the data. Theses
operations give us the transmission timestamp, the sensor ID and
reception timestamp for the first 5 received packets of the dataset.

Listing 2: Example of simple data manipulation of the gen-

erated data

$ s q l i t e 3 hvac_263685 . db3
SQLi t e v e r s i o n 3 . 3 5 . 2 2021 −03 −17 1 9 : 0 7 : 2 1
En te r " . he lp " f o r usage h i n t s .
s q l i t e > SELECT udp . Timestamp , udp . Node , s e r v e r . Timestamp FROM s e r v e r

. . . > INNER JOIN udp ON s e r v e r . pay load=udp . pay load LIMIT 5 ;
2021 −05 −06 1 6 : 3 4 : 2 2 . 1 4 5 9 0 9 0 7 0 |m3−377 |2021 −05 −06 1 6 : 3 4 : 2 2 . 1 7 0 1 9 8
2021 −05 −06 1 7 : 0 9 : 0 2 . 2 8 8 0 1 9 8 9 5 |m3−367 |2021 −05 −06 1 7 : 0 9 : 0 2 . 3 0 8 1 0 1
2021 −05 −06 1 7 : 2 2 : 0 2 . 2 5 8 3 5 1 0 8 7 |m3−379 |2021 −05 −06 1 7 : 2 2 : 0 2 . 2 9 6 7 4 6
2021 −05 −06 1 8 : 3 1 : 2 2 . 4 4 8 1 1 8 9 2 5 |m3−42 |2021 −05 −06 1 8 : 3 1 : 2 2 . 4 6 1 1 0 7
2021 −05 −06 1 8 : 5 7 : 2 2 . 2 9 8 3 2 2 9 1 6 |m3−362 |2021 −05 −06 1 8 : 5 7 : 2 2 . 3 2 4 6 9 0

Such data can for example be presented as in Figure 3, where
we plot the latency of every received frame in the HVAC systems
scenario for each received frame at the server side. Out of the 128
627 received frames, 115 have a negative latency (and are not rep-
resented on the graph), i.e. they appear as if they were received
before being sent. We believe this may be due to the FIT IoT-Lab se-
rial_aggregator behaviour which is used to time the received serial
messages from the sensors, or due to some latency introduced by
the RIOT threading mechanism, both of which may introduce some
latency before recording that a packet has been sent. We can observe
that as expected, the DODAG roots, whose transmitted packets are
represented in yellow, have an overall lower latency as they are
closer to the server. We present in Figure 4 the packet delivery
ratio over the whole duration of the HVAC systems experiment for
each node (with each point representing a single node). We can
observe that out of the 100 sensors, 34 have a PDR of less than 1.2%,
including 15 nodes never having a single packet received by the

9https://github.com/sisyphe-re/riot_rpl_udp_scenarios



Figure 2: Experiment architecture for network evaluation

server. We attribute this behaviour to the physical topology of the
Grenoble FIT IoT-Lab testbed where M3 nodes may be too far to
communicate even if their IDs are continuous. A smarter selection
of the nodes should therefore be considered for future experiments.

4 POSSIBLE USAGES

Traces of IoT applications are valuable information for wireless
networks architectures, like edge computing. We can use datasets
to train and evaluate resource allocation and task offloading mech-
anisms. Edge computing is characterized by a highly dynamic en-
vironment and heterogeneity of applications and resources. Thus,
data driven modeling is a prominent solution for this type of net-
work. Real time schedulers can recognise trace patterns and allocate
resources such as memory, bandwidth and CPU, among users to
optimize the network efficiency and reduce costs. Scheduling al-
gorithms [8] decide the amount of resources allocated and the
duration of each allocation into two different layers. In the first
layer, resources from servers are distributed among several virtual
machines. In the second, a virtual machine can run several appli-
cations concurrently. The complexity of edge computing systems,
the fluctuation of the workload, the constraints of the Service Level
Agreements (SLA), the interaction with application’s users and the
dynamic environment make us move towards intelligent solutions
that learn from historical data.

Resource management ensure the smooth operation of the IoT
applications and the edge infrastructure. We can train resource
management policies with IoT application traces. We can design an
admission control to prevent the processing nodes from accepting
workload that will cause QoS degradation, such as an increase in
response time or a decrease in throughput. An efficient resource
allocation mechanism increase the computational efficiency of the

infrastructure. It consider the amount of resources required for
the timely completion of the workload, the vicinity between the
workload producers to the processing nodes [33] and the type of
workload [3]. For instance, an intelligent resource allocation mech-
anism can offload to GPUs the workload produced by augmented
reality IoT applications because this type of workload includes
intensive matrix multiplications. Last but not least, a load balanc-
ing mechanism avoids the situation in which some nodes become
overloaded while the others have little work to do. The workload
balancing mechanism can redistribute the workload evenly among
processing edge nodes, trying to ensure the allocation principles of
efficiency, fairness and starvation-free of the nodes.

A more challenging task is the workload modeling. Workload
is characterized by self-similarity with multivariate dependencies,
strong auto-correlation values and seasonality [6]. With a time
series analysis of IoT application traces, we can detect changes in
the evolution of the workload, find relationships between different
steps in time and forecast future values. We can analyze histori-
cal data sequences to estimate the correlations between different
edge nodes and predict bottlenecks in the network. The workload
modeling may include two components. The first one build IoT
applications profiles based on : the message exchange frequency,
payload, transmission time, packet delivery rate, resource usage.
These applications profiles will summarise how an application be-
haves in different circumstances. The second component associate
application profiles with resource requirements or QoS metrics. The
workload modeling will help the application owners and the edge
infrastructure providers to understand what are the main charac-
teristics of the application, how the applications interact with the
infrastructure and which nodes are identified as hubs or bridges.

The extensive use of IoT devices and edge infrastructures leads to
service reliability and availability issues. These issues are intrinsic
to edge computing because of its highly distributed nature. Several
types of failures may occur such as hardware, virtual machines, ap-
plication and network. It may cause full or partial breakdowns and
shutdowns. Edge computing should be resilient to these failures.
Conventional replication techniques may not be feasible because
on the edge resources are not highly available. Analysing IoT appli-
cations traces can help us to detect and handle the various faults
with two fault tolerance approaches: proactive and reactive [17].
In proactive fault-tolerance, the data traces can be used to predict
potential faults and substitute the suspected node by some replicant
node. In the reactive fault tolerance, we use data traces to detect the
fault and take actions in order to decrease the influence of failure to
improve the recovery time and the maintainability of the system.

We require an advanced analysis to get meaningful insights of
IoT QoS applications’ behavior from generated time series datasets.
QoS requirements, such as throughput, delay, and Packet Loss Ratio
(PLR), associated with each IoT application helps us understand
the main characteristics of these applications. Furthermore, there
is a large number of IoT devices generating huge amounts of data
within each application. Thus, if we predict the time varying char-
acteristics of the device’s traffic, we can guarantee a specific level
of Quality of Service (QoS). These QoS can be quantitative or ratio
data type, representing the application datasets. The prediction
of such metrics, by resorting to machine learning approaches, be-
comes of utmost importance. The machine learning architectures



Table 2: Experiments parameters for network evaluation

Scenario Sensor number Border routers
number Payload size (bytes) Packet

generation type lambda Period (s)

HVAC systems 100 5 60 Periodic - 260.0
Smart lighting 100 5 30 Exponential 0.00208 -

Emergency response 40 5 127 Hybrid 0.0333 30.0
Virtual or augmented reality 10 3 127 Exponential 196.74 -

VoIP 10 3 127 Hybrid 15.74 .063532

Figure 3: Evolution of the latency for the network evaluationHVAC scenario as a function of time. Each dot represents a single

received packet, and colors represent the Rank in the RPL protocol, with red being 256, green being 512, blue being 1024 and

yellow above.
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Figure 4: Packet DeliveryRatio (PDR) for the 100 nodes from

the network evaluation HVAC scenario over the whole ex-

periment duration. The colors represent the mode of the

RPL Rank using the same color code from Figure 3.

efficiently extract useful features and suppress irrelevant variations
in datasets [22]. It has an ability to approximate the complex func-
tions in order to build the prediction models for learning tasks and
desired accuracy. Thus, machine learning constructs a powerful
tool for QoS prediction problems by leveraging generated IoT ap-
plication traces. We can predict the QoS metrics with historical
datasets with various learning models, such as Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM). In a super-
vised learning setting, the relation between a set of input variables
and one or more output variables is determined using a finite set
of observations. Once the machine learning model is trained then
the prediction is done. For example, statistical based features (i.e.
packet inter-arrival time, burstiness rate, etc.) and network based
features (i.e. IP addresses, port numbers, packet sizes, etc.) can be
employed to predict the individual’s IoT device traffic profile [?
]. Finally prediction of the IoT traffic generated is done to better
understand services’ requirements.

5 RELATEDWORKS

Pflanzner et al. [28] provide an indexing service to retrieve open
traces of applications available on the internet. [21] presents a



dataset from a test bench of solar-powered weather sensors. The
data contains the power consumption and production of the appli-
cation to help research in self-powered IoT applications. Xiao and
al. [34] introduce a ready-to-use on-board unit solution to collect
vehicle trajectory data. Their solution contains a deep learning
algorithm to fill gaps in data collection, such as GPS failures. [20]
provides a dataset from the FlockLab platform. Data collection is
performed over a long period of time to capture long-term periodic
patterns that affect the quality of wireless links. Software Heritage
is at the heart of the source code archiving part of Sisyphe [11],
but is not aimed at archiving experiment results or binary artifacts
(such as firmwares) nor providing the automation for experiments,
from the build to the results recovery, unlike Sisyphe .

6 CONCLUSION

In this work, we introduce Sisyphe for an automated generation of
artifacts. Its architecture automates the build of the various tools
needed for experimental evaluation on platforms such as FIT IoT-
Lab as well as the artifacts generation, resulting in an entirely
repeatable and reproducible process. Experimenters using Sisyphe
can easily repeat their experiments according to custom schedules,
allowing to account for example for the time variability of environ-
mental factors such as network traffic. Results obtained through
Sisyphe can be easily promoted as they are more easily verifiable
by their peers. We then illustrate the use of Sisyphe by generating
two IoT data sets using the FIT-IoT Lab platform. The presented
artifacts are from IoT applications, but we emphasize that Sisyphe
can generate artifacts for other type of networks, depending on
the chosen build process and evaluation platforms in the Sisyphe
pipeline. Finally, we provide an extensive review of the possible use
of this type of data. All code source and tools are at the disposition
of the community. We hope with this work to make traces gener-
ation accessible along with promoting open science and research
reproducibility.
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