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ABSTRACT
We propose the molecular omics network (MOOMIN) a multimodal

graph neural network used by AstraZeneca oncologists to pre-

dict the synergy of drug combinations for cancer treatment. Our

model learns drug representations at multiple scales based on a

drug-protein interaction network and metadata. Structural prop-

erties of compounds and proteins are encoded to create vertex

features for a message-passing scheme that operates on the bipar-

tite interaction graph. Propagated messages form multi-resolution

drug representations which we utilized to create drug pair descrip-

tors. By conditioning the drug combination representations on the

cancer cell type we define a synergy scoring function that can

inductively score unseen pairs of drugs. Experimental results on

the synergy scoring task demonstrate that MOOMIN outperforms

state-of-the-art graph fingerprinting, proximity preserving node

embedding, and existing deep learning approaches. Further results

establish that the predictive performance of our model is robust to

hyperparameter changes. We demonstrate that the model makes

high-quality predictions over a wide range of cancer cell line tissues,

out-of-sample predictions can be validated with external synergy

databases, and that the proposed model is data efficient at learning.
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1 INTRODUCTION
A large number of human diseases are treated more effectively

by the concurrent use of multiple drugs together in combination
therapy [18, 58]. It is a particularly powerful approach in combating

cancer, bacterial and viral infections [25, 47, 66] which can develop

resistance when treated by monotherapy – using a single drug. The

application of monotherapy in oncology has several downsides in
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addition to the development of resistance: high toxic dosages of

the drug [23], long-term side effects and poorly targeted treatment

which destroys healthy cells [63]. In contrast, combination ther-

apy requires lower dosages [4], the drugs can have synergies at

combating cancer [8] and the intelligent targeting of multiple bio-

logical pathways can lead to increased efficacy and reduced toxicity

[98]. Hence, finding synergistic drug combinations in oncology is a

highly relevant healthcare problem.

Figure 1: Given two drugs (red and blue nodes)MOOMIN rep-
resents drugs using protein and compound structures that
appear in the neighbourhood of the pair in an interaction
graph. Using the representations its head predicts synergis-
tic pairs which are effective at combating cancer.

The manual design of effective combination therapy regimes

for cancer therapy is a non-trivial task. Even on a single targeted

cancer cell type, the number of potential drug pairings (the simplest

type of combinations) is quadratic in the number of compounds.

This means that only a limited number of potential candidate pairs

can be tested by in-vitro and in-vivo experiments. In addition, the

experimental evaluation of combinations is hindered by drug and

cell line availability [44], conflicting experimental results [56] and

the fact that certain outcomes (e.g. polypharmacy side effect) are not

the primary interest of experiments [103]. Moreover, the synergistic

effect of drug pairs depends on the context in which they are applied

– the biological pathways the drugs interact with and the cancer

cells being targeted [55]. Finally, drug combination experiments

are done in a sparse and skewed manner: a limited number of drug

pairs are tested on a few cells out of the combinatorial range of
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possibilities [55, 56]. A machine learning-based approach that pre-

screens drug combinations would be valuable, shortening the time

required to find therapeutic combinations to use in the clinic.

Present work. In this paper we introduce the molecular omics

network (MOOMIN), a semi-supervised graph neural network for

predicting the synergistic nature of drug pairings for combating

cancer cells. We design a custom-tailored multi-resolution multi-

modal feature extraction model which contextualizes drugs based

onmolecular features and structural properties of proteins that they

interact with in a bipartite graph. Contextualization happens by

traversing a drug-protein interaction graph at multiple scales with

truncated random walks [35]. Using the extracted multi-resolution

representations we define a scoring layer that can output synergy

scores for pairs of drugs and a targeted cancer cell line. The com-

ponents of the model are trained end-to-end by maximizing the

likelihood of correct synergy predictions.

Our main contribution is the definition of multi-scale multimodal

drug representations. These learned features integrate molecular

information about a given drug and about the drugs and proteins

that are in the neighborhood of the source drug at multiple proxim-

ity scales in a drug-protein interaction graph. By using a bipartite

interaction graph for modeling, the information about drugs and

proteins at multiple scales is distilled by separate blocks of features.

Therefore, the synergy scoring performance lift gained by the inclu-

sion of multimodal drug-protein information is quantifiable with

our model. We also propose an algorithm to approximately contex-

tualize the drugs. This allows scalable model training and efficient

synergy scoring inference when a dimension of the dataset such as

the number of drugs considered is large.

The empirical evaluation of our model focuses on the synergy

scoring task: given a pair of drugs and a cancer cell line the models

have to predict whether the drug combination is synergistic. We

compare the predictive performance of MOOMIN with state-of-the-

art graph fingerprinting, node embedding, tensor factorization, and

deep learning techniques. Using a real-world drug pair synergy

database [56] we show thatMOOMIN outperforms competingmeth-

ods by as much as 7.2% and 2.5% in terms of F1 and PR AUC scores

on the test set. The predictive performance of MOOMIN is robust

across cancer cells conditioned on source tissues and competitive

with other methods with a fraction of training data. Out-of-sample

predictions made by AstraZeneca scientists on standard drug com-

bination databases demonstrate that MOOMIN can identify novel

synergistic drug combinations of approved drugs.

Our contributions.Overall the main contributions of our paper

can be summarized as the following:

• We propose MOOMIN an empirically motivated multimodal

graph neural network that can predict synergistic drug pairs

using protein and molecule features.

• We design an efficient mini-batch training algorithm to scale

the training and inference of MOOMIN to large-scale drug

synergy prediction problems.

• We support evidence using real-world data that MOOMIN

can effectively find synergistic drug pairings.

The remainder of this paper has the following structure. We

overview the related work about network representation learning

and machine-aided combination therapy in Section 2. We define

relevant theoretical concepts, introduce the datasets used in the

experiment and show the empirical regularities motivating our

model design in Section 3. The details of the model are discussed

in Section 4. We experimentally evaluate the model in Section 5

on synergy prediction tasks. The paper concludes with Section 6

where we summarize our main findings and point out directions

for future research.

2 RELATEDWORK
Our work touches on machine learning approaches to identify com-

bination therapies as well as various existing graph representation

learning techniques at the node and graph levels. We are going to

discuss these methods and contrast MOOMIN based on various

desired characteristics of the models.

2.1 Machine learning for combination therapy
The application of machine learning to combination therapy is

commonly done by solving a scoring problem: given a pair of drugs

(combination) we want to predict the probability that the pair has a

property. The predicted property can be a certain side-effect caused

by the combination [94, 103], an interaction of drugs [1, 95] or the

synergistic behavior of the pair [53, 69]. We summarized recent

algorithmic developments on these tasks in Table 1.

Existing models are differentiated by the task solved and whether

predictions can be made about drugs that are not present at training

time (induction). Another differentiating factor is the type of input

data ingested by the models. Most models exploit heterogeneous

graphs with various node types (e.g. drugs, proteins) and struc-

tural features of drugs and proteins. On the synergy scoring task

MOOMIN is the first one to fuse drug-protein interaction informa-

tion with actual structural properties of drugs and proteins.

Table 1: A machine learning task, induction and input data
type based comparison of MOOMIN and existing deep learn-
ing models that solve combination therapy problems.

Node Types Node Features
Method Task Inductive Drug Protein Drug Protein

SkipGNN [43] Side Effect •
DECAGON [103] Side Effect • •

ESP [11] Side Effect • •
TIP [94] Side Effect • •

DeepDDI [77] Side Effect • •
SumGNN [101] Side Effect • • •
DeepCCI [1] Interaction • •
MR-GNN [95] Interaction • •
DrugCell [53] Synergy • • •

DeepSynergy [69] Synergy • •
MOOMIN (ours) Synergy • • • • •

2.2 Node and graph representation learning
The architecture proposed in our work distills representations from

graphs both at the node and graph level (interactome andmolecules).

To position our work we give a general overview of machine learn-

ing techniques that can learn these representations.

2.2.1 Proximity preserving node representation learning. Node em-

bedding techniques in this general category map nodes of a graph
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into a Euclidean embedding space where pairwise proximity be-

tween nodes is approximately preserved [83]. Models are differenti-

ated from each other by the notion of proximity such as truncated

random walk transition probabilities [35, 67, 70, 75], neighbour-

hood overlap [3, 79] or personalized PageRank [62]. Importantly

encoding nodes in this embedding space does not optimize for the

preservation of structural properties directly [39, 40, 71, 72], but

this information can be correlated with the location in the em-

bedding space. Using the node embeddings as input features for

a downstream model allows various supervised machine learning

tasks such as node classification.

2.2.2 Graph fingerprints. These statistical fingerprinting techniques
create embeddings of whole graphs which preserve pairwise struc-
tural similarities. Graph fingerprints are commonly created by the

factorization of graph-structural feature matrices [17, 60], scatter-

ing transforms [29, 88], spectral feature extraction [28, 82, 84] and

structural property summarization [12, 76]. The fingerprints cre-

ated are fed to a downstream model which ingests these features

to predict graph level properties.

2.2.3 Inductive node representation learning. In contrast with proximity-

based node embedding techniques these methods map nodes into

an embedding space based on the similar distribution of vertex

attributes in neighborhoods [36, 38]. Inductive node representation

learning techniques can be seen as methods that perform neural
message passing [7, 33]. In this paradigm nodes in the graph gener-

ate hidden representations with a parametric trainable function and

the messages are aggregated in neighborhoods using a weighting

scheme and an update function. Models are differentiated from

each other based on the message generating function and the mes-

sage aggregation scheme applied. Messages can be generated by

linear models [91], single hidden layer [22, 49] or deep neural net-

works [9, 51]. Aggregation weights can be defined based on exact

[19, 49, 91] or sampled adjacency relations [37, 99], personalized

PageRank [9, 51] or neural network parametrization [73, 87].

2.2.4 Pooling for graph representations. Node level representations
outputted by graph neural networks can be pooled by permutation

invariant functions to generate whole graph representations. This

permutation invariant function can be a neural network itself which

can perform node sorting [102], top-k node retrieval [13, 30, 52] or

calculate a weighted average of representations using an attention

mechanism [52, 54, 100] to generate the graph level representations.

3 PRELIMINARIES
Our work considers contextualizing drugs at multiple scales by

structural and molecular properties of compounds and proteins to

predict synergetic pairings of drugs. The introduction of a machine

learning model which can achieve this requires an appropriate nota-

tion of related concepts and a discussion of the datasets integrated.

3.1 Formal definitions
The architecture design description extensively uses the definition

of drug set D = {𝑑1, . . . , 𝑑𝑛}, cancer cell line set C = {𝑐1, . . . , 𝑐𝑘 }
and protein set P = {𝑝1, . . . , 𝑝𝑚}. Introducing the sets of drugs that
can be used to combat cancer cells, proteins that interact with these

drugs, and cancer cell lines allows us to formulate the definition of

a drug pair synergy set which is our primary interest.

Definition 1. Drug pair synergy set. A drug pair synergy
set defined on D and C is the set S containing tuples of the form
(𝑑, 𝑑 ′, 𝑐, 𝑦) where 𝑑,𝑑 ′ ∈ D, 𝑐 ∈ C and 𝑦 ∈ {0, 1} is the synergy label
of the drug pairing.

The entries in the drug pair synergy set are pairs of drugs which

are known to be synergistic or antagonistic at combating certain

cancer cells. A positive label means that the pair of drugs are more

effective together at fighting the cancer cell, while a zero label

shows a lack of synergy.

Definition 2. Drug pair synergy predictor. A drug pair syn-
ergy predictor defined on D and C is the function 𝑦 = ℎ(𝑑, 𝑑 ′, 𝑐)
where 𝑑,𝑑 ′ ∈ D, 𝑐 ∈ C and 0 ≤ 𝑦 ≤ 1 is the predicted synergy score
of the drug pair.

A drug pair synergy predictor is a function that predicts the

probability of the pair being synergistic at combating a cancer cell.

Definition 3. Drug-protein interaction graph. The interac-
tion graph defined on D and P is the bipartite graph G = (V, E) =
(D ∪ P, E) whereV and E are the vertex and edge sets respectively.

Our definition of the drug-protein interaction graph does not

allow the existence of edges within the drug and protein sets. This

hedges against potential data leakage on drug-drug interactions.

3.2 Dataset
The dataset [32] which we used to evaluate MOOMIN was created

by the fusion of multiple data sources which we discuss in detail.

3.2.1 Synergy database. The database which we used comes from

DrugCombDB which is a public dataset [56]. After the data fusion,

our drug pair synergy set contained 10,911 pairings, 987 unique

drugs, and 110 cell lines coming from 14 source tissues. Drug pairs

have a positive label when the pair slowed the growth of cancer

cells more than what would be expected, based on the effect of

the compounds when used alone (synergy), while a zero label is

associated with increased cell growth when combined (antagonism).

3.2.2 Drug-protein interaction graph. The drug and protein inter-

action network was composed of several sources and has 1,160

drugs and 17,582 human proteins with 232,524 edges between ver-

tices. Drug-protein relations were mainly taken from three public

sources: (i) ChEMBL [31], which included both the verified targets

against which the compound was developed as well as interactions

discovered experimentally, (ii) CTD [21], which aggregates informa-

tion from research publications, and (iii) Hetionet [41], which itself

accumulates a small set of sources to cover all the most relevant do-

main concepts. These public reference datasets were extended with

internal as well as proprietary data from two drug development

database products: MetaBase [10] and Pharmaprojects [80].

3.2.3 Molecular descriptors. The drug molecules in DrugCombDB

are represented as SMILES strings [90], a common notation for de-

scribing molecular graphs in string form. From the SMILES strings,

we extracted the molecular structure of the drugs (connectivity

graph and atoms). The structure was extracted using PaDELPy [46],

a Python wrapper of the PaDEL-Descriptor [97] package.
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3.2.4 Protein features. Protein sequence information can be repre-

sented by various classes of numeric descriptors. In this study, we

used amino acid composition descriptors (dipeptide composition),

alongwith pseudo-amino acid composition descriptors (amphiphilic

pseudo-amino acid composition). Amino acid composition descrip-

tors reflect the frequency of dipeptide combinations of amino acids

in a protein sequence. Pseudo-amino acid composition descriptors

in addition incorporate local properties of protein sequences such

as the correlation between residues or a certain distance between

groups of residues [20]. All descriptors were computed on a full set

of human proteins using the protr package [92].

3.3 Exploratory observations and motivation
The effects of drug-drug combinations are widely studied experi-

mentally, the number of parameter combinations to test makes such

validation very time-consuming and expensive [56]. Thus, available

experimental data on synergistic and antagonistic effects are neces-

sarily sparse. Moreover, it is hard to extrapolate from existing pairs

to new pairs of drugs or new types of cells due to several factors.
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Figure 2: Drug combination pairs are frequently (A) tested
on popular cell lines and (B) include popular drugs.

3.3.1 Popular cell lines and drugs. Experiments are often performed

only with popular drugs on popular cell lines, while effects in some

tissues are rarely studied. This also makes it difficult to train sepa-

rate predictive models for different cell lines and drugs. Looking at

Figure 2 it can be seen that 63% of experiments in DrugCombDB

are done on the 5 most popular cell lines and 18% of synergy tests

are carried out with the top 5 drugs.
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Figure 3: Drug combination pairs often produce opposite ef-
fects on different cell lines (synergy vs antagonism). The
share of such pairs (A) grows with the number of tested cell
lines and (B) varies greatly depending on the tissue.

3.3.2 Opposing effects. In DrugCombDB third of drug pairs that

have been tested on different cell lines have shown a synergistic

effect on one cell line, but antagonistic on another. As seen in

Figure 3, as the same pair of drugs are tested against multiple

cell lines, the chance of discovering opposite effects grows: i.e., to

predict all effects of applying drugs in combination it is important

to take into account the whole range of potentially affected cells

and tissues. This problem is made even more complex by the fact

that the same pair of drugs often exhibit opposite effects within the

same tissue: e.g., this was the case for 67% of drug pairs tested on

ovary cell lines, but only less than 4% for bone.

4 THE FRAMEWORK DESIGN
The design ofMOOMINwas influenced by the empirical regularities

which we discussed in the preliminaries: dataset imbalance, sparsity

of the synergy database, and cell line conditional synergistic and

antagonistic behavior of drug pairs.

4.1 Encoders
The decision about a pair of drugs being synergistic at effectively

shrinking a cancer cell line depends on information about the pair

of drugs, protein-drug interactions, and the targeted cell line.

4.1.1 Drug encoder. Learning non-contextualized representations

of an individual drug 𝑑 ∈ D is handled by the drug encoder 𝑓Θ𝐷
(·)

which is parametrized by Θ𝐷 , uses the molecular structureM𝑑 to

generate h𝑑 a vector representation of drugs – see Equation (1).

h𝑑 = 𝑓Θ𝐷
(M𝑑 ), ∀𝑑 ∈ D (1)

A drug encoder, for example, could use a graph neural network to

learn node embeddings of the atoms in the molecule, pool these

atom-level representations, and concatenate the pooled representa-

tions to create a hidden representation learned from the molecule

structure and atom-level features. Our implementation ofMOOMIN

used APPNP [9, 51] for learning the atom embeddings. Atom rep-

resentations were fed to a fully connected feed-forward neural

network with two hidden layers and concatenated together after

pooling with mean, maximum, and minimum functions to generate

molecular descriptors.

4.1.2 Protein encoder. Creating representations of proteins in the

interaction graph is done by the encoder 𝑓Θ𝑃
(·)which is parametrized

by Θ𝑃 and uses structural information x𝑝 to generate h𝑝 a vector

representation of the protein 𝑝 ∈ P – see Equation (2).

h𝑝 = 𝑓Θ𝑃
(x𝑝 ), ∀𝑝 ∈ P (2)

Protein encoders in MOOMIN are feedforward neural networks

with a single hidden layer and take structural feature vectors of

proteins as input.

4.1.3 Cell line encoder. The cancer cell lines on which the drugs

are tested also need representations which are generated by the

cell encoder 𝑓Θ𝐶
(·), parametrized by Θ𝐶 which uses cancer cell

features as input in Equation (3).

h𝑐 = 𝑓Θ𝐶
(x𝑐 ), ∀𝑐 ∈ C (3)

The cell line encoders were conceptualized as trainable para-

metric vector embeddings of cancer cells in our implementation

of MOOMIN. This way induction concerning new cell lines is not

possible. However, by choosing an encoder that uses exogenous

cell features this limitation can be lifted.

4.2 Multimodal drug representation
The representations of drugs in combinations are learned from mul-

timodal data and the drug-protein graph. Individual representations
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Figure 4: In this example the drug 𝑑3 has a representation formed by concatenating aggregated drug and protein represen-
tations. These representation blocks at even scales 𝑙 = 0, 2, 4 are learned by aggregating the representations output by the
drug-encoder using geometric properties of the compounds in the sets {𝑑1} , {𝑑1;𝑑3} and {𝑑1;𝑑2;𝑑3}. The odd scale representa-
tions at 𝑙 = 1, 3 are learned by combining the protein representations generated by the protein encoder using the structural
properties of the proteins in the sets {𝑝1} and {𝑝1; 𝑝2;𝑝3}.

of the compounds are contextualized by those protein and drug

representations which can be reached at various proximity scale

𝑙 ∈ {0, . . . , 𝑟 } by truncated random walks. In practice this design

choice allows the model to learn difference operators [2] at various
scales. This idea is described with a toy example in Figure 4.

4.2.1 Contextualization by neighbors at jumps. The multi-scale

representation for drug𝑑 ∈ D is the vectorm𝑑 defined by Equation

(4) – where ∥ is the column-wise concatenation operator.

m𝑑 =







𝑙 ∈{0,...,𝑟 }

∑︁
𝑤∈𝑉

𝑃 (𝑣 𝑗+𝑙 = 𝑤 |𝑣 𝑗 = 𝑑) · h𝑤 , ∀𝑑 ∈ D (4)

In Equation (4) the probability 𝑃 (𝑣 𝑗+𝑙 = 𝑤 |𝑣 𝑗 = 𝑑) describes
the probability that a truncated discrete random walk on G which

started at drug 𝑑 after 𝑙 steps terminates at node 𝑤 . The vector

h𝑤 is a learned representation of𝑤 ∈ 𝑉 outputted by respectively

the drug or protein encoders described by Equations (1) and (2).

Because G is bipartite, when the scale is even the walker terminates

at drugs, and at an odd scale, it terminates at proteins. In simple

terms,m𝑑 is formed by concatenating together proximity-weighted

drug and protein representations in an alternating fashion.

The probability scores in Equation (4) can be expressed alge-

braically. Let us denote the row normalized adjacency matrix of G
as Â and we can reformulate the multi-scale representation defini-

tion of drugs as Equation (5).

m𝑑 =







𝑙 ∈{0,...,𝑟 }

∑︁
𝑤∈𝑉

Â
𝑙

𝑑,𝑤 · h𝑤 , ∀𝑑 ∈ D (5)

The exact calculation of the multi-scale multimodal drug rep-

resentations described by Equation (5) is not always feasible in

practical settings. One limiting condition is an indirect result of

the low effective diameter phenomenon – as the length of the trun-

cated random walks being considered is increased the normalized

adjacency matrix powers lose sparsity [16]. In practice this means

O(|𝑉 |3) time and O(|𝑉 |2) space requirement for calculating and

storing Â
𝑙
when 𝑙 is large. Another considerable issue is the space

requirement needed for all of the protein and drug representations

when the drug-protein graph is large.

Data: G – Bipartite drug – protein interaction graph.

𝑑 – Source drug of interest.

𝑠 – Sample size.

Result: m𝑑 – Sampled multi-scale representation of drug d.
1 m̃0

𝑑 ← 𝑓Θ𝐷
(M𝑑 )

2 m𝑑 ← 0
3 for 𝑖 ∈ {1, . . . , 𝑠 } do
4 𝑑 ← 𝑑

5 m̃𝑑 ← m̃0

𝑑

6 for 𝑙 ∈ {1, . . . , 𝑟 } do
7 if 𝑙 mod 2 = 1 then
8 𝑝 ← Random neighbor(G, 𝑑)
9 m̃𝑙

𝑑 ← 𝑓Θ𝑝 (x𝑝 )
10 m̃𝑑 ← [m̃𝑑 ∥m̃𝑙

𝑑 ]
11 else
12 𝑑 ← Random neighbor(G, 𝑝)
13 m̃𝑙

𝑑
← 𝑓Θ𝐷

(M𝑑 )
14 m̃𝑑 ← [m̃𝑑 ∥m̃𝑙

𝑑 ]
15 end
16 end
17 m𝑑 ← m𝑑 + m̃𝑑

18 end
19 m𝑑 ← m𝑑/𝑠
Algorithm 1:Approximate truncated randomwalk sampled

multi-scale drug representation forward pass with MOOMIN.

4.2.2 A sampling-based representation approach. The computa-

tional constraints discussed earlier can be resolved by approximat-

ing the multi-scale multimodal drug representations with a uniform

truncated random walk-based sampling approach. This representa-

tion sampling technique is described by Algorithm 1. The algorithm

uses the bipartite graph G and the starting drug 𝑑 as input and out-

putsm𝑑 an approximation ofm𝑑 . Before sampling starts we create

m̃0

𝑑
the self representation of the drug 𝑑 using the drug encoder

𝑓Θ𝐷
(·) (line 1) and m𝑑 the vector to store the sum of the sampled

multi-scale multimodal drug representations (line 2).



Conference’17, July 2017, Washington, DC, USA Benedek Rozemberczki, Anna Gogleva, Sebastian Nilsson, Gavin Edwards, Andriy Nikolov, and Eliseo Papa

We start 𝑠 truncated random walks on G starting from the drug

𝑑 (lines 3-4). A sampled drug representation m̃𝑑 is formed by first

taking the self representation m̃0

𝑑
. At each scale, the random walker

takes a step on the bipartite graph. If the step is at an odd scale the

walker samples the protein 𝑝 , a representation is created for the

protein with the protein encoder 𝑓Θ𝑃
(·) and𝑚𝑙

𝑑
is concatenated

to the sampled multi-scale multimodal representation (lines 7-10).

When the step is at an even scale the walker samples a drug 𝑑 , a

representation is distilled with the drug encoder 𝑓Θ𝐷
(·) and it is

concatenated to the sample vector (lines 12-14).

After the random walk is terminated, the sampled vector m̃𝑑 is

added to the running sum of vectors (line 17). Finally, when all of

the truncated random walks have terminated m𝑑 which stores the

sum of the sampled multi-scale multimodal drug representations is

normalized by the sample size (line 19).

Data: B – Batch of (drug A, drug B, cell line, label) tuples.

G – Graph of interest.

𝑠 – Sample size for multi-scale approximation.

Result: L – Average loss on batch B.
1 L ← 0

2 for (𝑑,𝑑′, 𝑐, 𝑦) ∈ B do
3 m𝑑 ← Sample Representation(G, 𝑑, 𝑠)
4 m𝑑′ ← Sample Representation(G, 𝑑′, 𝑠)
5 h(𝑑,𝑑′,𝑐 ) ← [m𝑑 ∥m𝑑′ ∥h𝑐 ]
6 𝑦̂ (𝑑,𝑑′,𝑐 ) ← 𝑓Θ𝐻

(h(𝑑,𝑑′,𝑐 ) )
7 L ← L + ℓ (𝑦; 𝑦̂ (𝑑,𝑑′,𝑐 ) )/ |B |
8 end

Algorithm 2:Mini-batch based forward pass of MOOMIN-A

with approximate multi-scale multimodal representations.

4.3 Synergy scoring layer and training
The primary purpose of MOOMIN is to predict the synergistic

nature of drug pairings conditioned on the targeted cancer cell

lines. We achieve this with 𝑓𝜃𝐻 (·) the synergy scoring layer of

our model defined by Equation (7) which depends on the drug

pair-cell representation h(𝑑,𝑑′,𝑐) defined by Equation (6). The layer

outputs 𝑦𝑑,𝑑′,𝑐 the probability that the drug pair 𝑑, 𝑑 ′ is effective at
killing the cancer cell 𝑐 . In practice, the synergy scoring layer is a

feedforward neural network parametrized by Θ𝐻 . It has a single

hidden layer and a final neuron with a sigmoid activation function.

h(𝑑,𝑑′,𝑐) = [m𝑑 ∥m𝑑′ ∥h𝑐 ] (6)

𝑦 (𝑑,𝑑′,𝑐) = 𝑓Θ𝐻
(h(𝑑,𝑑′,𝑐) ) (7)

Using the synergy probability outputted by the synergy scoring

layer we compute the loss for a single entry in the drug synergy

database based on the binary cross-entropy in Equation (8).

ℓ (𝑦;𝑦) = − [𝑦 · log(𝑦) + (1 − 𝑦) · log(1 − 𝑦)] (8)

These losses can be averaged out over the synergy database and

used to calculate the mean binary cross-entropy on the synergy

database S defined by Equation (9).

L =
∑︁

(𝑑,𝑑′,𝑐,𝑦) ∈S
ℓ (𝑦𝑑,𝑑′,𝑐 ;𝑦𝑑,𝑑′,𝑐 )/|S| (9)

The model which calculates the transition probabilities in Equation

(4) and the average loss in Equation (9) exactly is referenced as

MOOMIN-E. By minimizing this average loss, Θ𝐷 ,Θ𝑃 ,Θ𝐶 and Θ𝐻

the parameters of the encoders and the synergy scoring layer can

be learned jointly. We also propose an efficient mini-batching-based

approximate model called MOOMIN-A which uses the approxima-

tion technique described by Algorithm 1 for creating multi-scale

representations and batching procedure of Algorithm 2.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the predictive performance of MOOMIN

under various training and testing regimes. Furthermore, we pro-

vide results about the efficiency of learning, stability of the approx-

imate inference, validate model predictions on external datasets,

and analyze the hidden representations visually.

5.1 Predictive performance
The drug synergy scoring problem can be solved by a range of exist-

ing machine learning techniques. Our goal is to have an extensive

predictive performance comparison with the existing set of tools.

5.1.1 Baselines. The benchmark methods cover a range of graph

and node level representation learning algorithms. Unsupervised

methods use a two-stage pipeline; (i) drug embedding generation

and pairwise representation concatenation (ii) gradient boosted

machine training and scoring with scikit-learn [65]. Specifically,

the baseline techniques are:

• Molecule statistical descriptors.We calculate graph descrip-

tors for each drug molecule using the default settings of the

Karate Club [74] library.
• Node embeddings.We create higher order proximity-preserving

node embeddings from the drug-protein interaction graph

with the baseline hyperparameters of Karate Club [74].
• Tensor factorization. We factorize the heterogeneous interac-

tion graph with PyKeen [5] and use the drug node represen-

tations as features with the default settings.

• Graph neural networks. Using the molecular structure ex-

tracted from the SMILES strings we train pooled graph neu-

ral networks with PyTorch Geometric [26].

5.1.2 Experimental settings. Weused default hyperparameters from

[49] and [51] in order to ensure fair and comparable evaluation.

The APPNP drug encoders in MOOMIN uses 10 approximate Per-

sonalized PageRrank [9, 51] iterations with a return probability

of 0.2 and has two hidden layers with 32 neurons separated by

ReLU [59] activations. Atom representations are pooled by mean,

max and min pooling functions, and the graph representations are

concatenated together. Protein encoders in MOOMIN had a single

hidden layer with 32 neurons and the same activation functions.

Cancer cell line encoders are 16 dimensional embeddings initialized
with the GloRot method [34]. The synergy prediction layer uses 16
hidden layer neurons, ReLU activations and applies a dropout of

0.5 during training time [78]. We consider truncated random walks

at scales 𝑟 = {0, 1, 2} to assess the utility of multiple modalities and

higher-order information.

The exact and approximate MOOMIN variants are optimized

using the Adam optimizer [48] and use a learning rate of 5 · 10−3
with a weight decay of 5 · 10−5. The number of samples used by

MOOMIN-A is 2
7
and the batch size is set to be 2

5
. BothMOOMIN-E



MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination Therapy Conference’17, July 2017, Washington, DC, USA

and MOOMIN-A are implemented with the PyTorch and PyTorch

Geometric Temporal automatic differentiation libraries [26, 64]. All

of the baseline models and MOOMIN variants are trained with 80%

of the drug synergy database and evaluated on the remaining 20%

of entries. We performed 5-fold cross-validation within the training

set to find the optimal number of epochs based on early stopping.

The mean synergy scoring performance of models calculated from

10 train/test splits is in Table 2 with standard errors.

Table 2: The synergy scoring performance of MOOMIN, sta-
tistical fingerprinting, node embedding and deep learning
approaches. We report mean performance and the standard
error around the mean calculated from 10 splits. Bold num-
bers denote the best performing model on a metric.

ROC AUC PR AUC F1 Score
Graph2Vec [60] .745 ± .002 .632 ± .004 .563 ± .002
NetLSD [82, 84] .723 ± .003 .604 ± .004 .490 ± .005
FEATHER [76] .732 ± .003 .610 ± .005 .520 ± .004
GeoScattering [29] .726 ± .004 .612 ± .004 .499 ± .004

NetMF [70] .751 ± .001 .678 ± .006 .553 ± .004
GraRep [14] .760 ± .001 .684 ± .006 .595 ± .003
Walklets [68] .762 ± .002 .689 ± .001 .581 ± .002
LINE [79] .760 ± .002 .686 ± .005 .576 ± .003
HOPE [62] .757 ± .003 .679 ± .006 .578 ± .005
DeepWalk[67] .761 ± .002 .686 ± .003 .595 ± .004
GCN [50] .714 ± .005 .613 ± .009 .534 ± .053
GAT [87] .700 ± .006 .593 ± .005 .563 ± .021
MixHop [2] .731 ± .002 .633 ± .004 .537 ± .066
ComplEx [81] .764 ± .003 .691 ± .002 .581 ± .003
RESCAL [61] .762 ± .002 .684 ± .004 .577 ± .003
TuckER [6] .748 ± .003 .664 ± .004 .521 ± .003
ComboFM [45] .760 ± .002 .681 ± .005 .563 ± .018
DualE [15] .758 ± .003 .683 ± .004 .576 ± .002
SEEK [96] .755 ± .002 .676. ± .003 .548. ± .004
ReinceptionE [93] .758 ± .002 .685 ± .003 .553 ± .003
CompGCN [86] .764 ± .003 .688 ± .002 .584 ± .0.06
MOOMIN-E 𝑟 = 0 .705 ± .003 .639 ± .004 .533 ± .002
MOOMIN-E 𝑟 = 1 .777±.002 .702 ± .002 .632 ± .003
MOOMIN-E 𝑟 = 2 .770 ± .003 .708±.002 .656±.003
MOOMIN-A 𝑟 = 0 .718 ± .003 .656 ± .005 .545 ± .006
MOOMIN-A 𝑟 = 1 .775 ± .004 .699 ± .005 .588 ± .005
MOOMIN-A 𝑟 = 2 .753 ± .003 .674 ± .006 .568 ± .008

5.1.3 Hyperparameters for fair evaluation. The baselines’ hyperpa-
rameters ensure a fair evaluation with respect to expressive power

(number of free parameters) and the optimizer settings because:

(1) Tensor factorization, node embedding, and graph fingerprint-

ing techniques have the same embedding dimensions.

(2) Drug pair classifier graph neural network models are trained

with the same optimizer settings as MOOMIN.

(3) It holds at 𝑟 < 3 that MOOMIN has fewer embedding dimen-

sions and free trainable parameters than the node embedding,

graph fingerprinting, and tensor factorization techniques.

(4) When 𝑟 = 0 the drug pair classifier graph neural networks

andMOOMIN have the same number of trainable parameters

and the optimizer settings are the same.

5.1.4 Experimental findings. Our results in Table 2 demonstrate

that the MOOMIN models can significantly outperform a range

of strong baselines on all evaluation metrics. In terms of 𝐹1 score

this advantage can be as big as 7.5%, while the gain with respect to

AUC score is only 1.7%. Our results show that incorporating protein

features at the 1
𝑠𝑡

scale is a universally beneficial choice regardless

of the metric used for evaluation. Higher than 1
𝑠𝑡

order informa-

tion only improves the performance of MOOMIN-E when PR AUC

and F1 scores are utilized. Our results also validate the efficacy of

MOOMIN-A in the low-order proximity regime. In fact, for 𝑟 = 1

based on the mean performance of MOOMIN-E and MOOMIN-A

measured by ROC AUC and PR AUC is not significantly different.

5.2 Tissue conditional performance
Cancer cell lines on which the drug pairs are tested all have a source

tissue fromwhich they were originally extracted.We specifically an-

alyze whether the predictive performance of MOOMIN-E depends

on the source tissue of cancer cells.

5.2.1 Experimental settings. We utilize the hyperparameters from

Subsection 5.1. Using 10 experimental runs we calculate mean pre-

dictive performance metrics with standard errors around the mean

on the test set conditioned on the most common cell line tissues. We

plotted the average PR AUC and F1 scores with the standard error

bars on subplots of Figure 5 for the proximity scales 𝑟 ∈ {0, 1, 2}.
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Figure 5: The synergy scoring performance ofMOOMIN con-
ditioned on cell line tissue. The bars are mean performance
metrics with standard deviations around the mean calcu-
lated from 10 experimental repetitions .

5.2.2 Experimental findings. The bar charts on Figure 5 show that

predictive performance is cell line tissue dependent: the model

performs remarkably well on lung and ovary cells and relatively

poorly on blood and colon cells. Including structural information

about the interacting proteins can increase the test set F1 scores

on blood and colon cells by as much as 10% which is a remarkable

predictive performance difference. The same performance gain

pattern holds for the PR AUC based performance on the blood and

colon tissue-specific cancer cell lines.

5.3 Data efficiency
The design of MOOMIN allows for semi-supervised learning; the

characteristics of drugs that are not in the training database can be

exploited to contextualize pairs of drugs used for training better.
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We hypothesize that because of this MOOMIN has a reasonable

predictive performance in the low training data ratio regime.

5.3.1 Experimental settings. We train MOOMIN-E with the hyper-

parameter settings detailed in Subsection 5.1. For each training data

ratio, we do 10 splits and calculate the average predictive perfor-

mance on the test set. These mean performance scores are plotted

on subplots of Figure 6 as a function of training data ratio for the

proximity scales 𝑟 ∈ {0, 1, 2, 3}.
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Figure 6: The mean synergy scoring performance of
MOOMIN-E conditioned on the ratio of training data calcu-
lated from 10 experimental runs.

5.3.2 Experimental findings. The line charts in Figure 6 demon-

strate that MOOMIN is efficient at utilizing the training data as the

average test set performance increases steadily. In terms of PR AUC

and F1 scores, the higher order models can outperform baselines

by using half of the training data when Table 2 and Figure 6 are

cross-referenced. It is also evident that the purely molecular feature

based 0
𝑡ℎ

scale model has moderate gains with additional training

data compared to true multimodal models.

Table 3: The molecule and window size conditional test set
performance of MOOMIN-E. We report average predictive
performances calculated from 10 experimental runs with
standard errors around the mean.

Molecule Pair Window ROC AUC PR AUC F1 Score
0 .724 ± .007 .767 ± .007 .676 ± .022

Large - Large 1 .785 ± .007 .808 ± .008 .733 ± .010
2 .763 ± .013 .803 ± .008 .745 ± .006
0 .713 ± .005 .656 ± .008 .543 ± .022

Large - Small 1 .778 ± .005 .713 ± .008 .656 ± .012
2 .768 ± .006 .717 ± .012 .678 ± .007
0 .614 ± .008 .447 ± .011 .312 ± .016

Small - Small 1 .715 ± .006 .554 ± .010 .477 ± .016
2 .716 ± .007 .563 ± .010 .516 ± .013

5.4 Molecule size conditional performance
The drugs in DrugCombDB are heterogeneous concerning the num-

ber of atoms they contain and the pairings sometimes have drugs

that are considerably different concerning size.

5.4.1 Experimental settings. Using the MOOMIN-E test set syn-

ergy scores obtained in Subsection 5.1 we calculate molecule size

conditional performance metrics for various window sizes. We used

the following definitions to categorize the drug pairs based on the

molecule sizes for calculating the conditional performance metrics:

(i) Large - Large: If both molecules have 50 or more non-hydrogen

atoms; (ii) Large - Small: If only one of the molecules has 50 or more

non-hydrogen atoms; (iii) Small - Small: If both molecules have less

than 50 non-hydrogen atoms.

5.4.2 Experimental findings. Our results show that pairs with two

small molecules gain the most in relative terms by adding the pro-

tein feature-based context. These pairs have gains even when the

maximal window size is increased to 2. This heterogeneity of per-

formances concerning the molecule size and maximal scale being

considered implies that molecule sizes specific models should be

trained. For example, small molecule pairs should be scored with a

MOOMIN model with a large maximal scale.

5.5 Inference stability
The MOOMIN-A variant uses sampled truncated random walks to

approximate the transition probabilities between the vertices in the

interaction graph. Inference also uses a sampling-based approach –

the variance of the test set performance is affected by sample size.
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Figure 7: The stability of predictive performance under sam-
pling based approximate inference with MOOMIN-A. Each
boxplot represents the distribution of predictive perfor-
mance scores calculated from 100 inference runs.

5.5.1 Experimental settings. We trained MOOMIN-A with the hy-

perparameter settings detailed in Subsection 5.1 at proximity scales

𝑟 ∈ {1, 2}. Using the trained model we make a 100 sampling-based

predictions on the test set with 𝑠 ∈ {21, 23, 25, 27}. For each predic-

tion, we calculate PR AUC scores and visualized the distribution of

predictive performance metrics on subplots of Figure 7 conditioned

on the sample size.

5.5.2 Experimental findings. Looking at Figure 7 we can conclude

that increasing the number of truncated random walk samples

increases the average predictive performance and reduces the vari-

ance of performance. The marginal average performance gains are

decreasing with the sample size, but the order of decline depends

on the resolution considered. Our results also support that the

second-scale model could benefit from increasing the sample size

at training and inference time.

5.6 Out of sample model validation
Data sparsity is one of themainmotivations for designingMOOMIN,

so it can predict new synergy scores. Using out-of-sample combi-

nations and the NCI Synergy Score Almanach [42] AstraZeneca

oncologists validated a handful of pairings with the cancer drug

Vemurafenib [27].

5.6.1 Experimental settings. We use a MOOMIN-E model with

𝑟 = 1 and the hyperparameter settings from Subsection 5.1 and

train the model on the whole drug synergy database. We scored
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all of the triples which involved the drug Vemurafenib [27] – the

predictions were sorted by the synergy scores and the 20 highest

and lowest scoring triples were selected. Out of these combinations

and cell targets, we listed seven in Table 4 which are present in the

NCI Almanach [42] but are not included in the training database.

Table 4: Out of sample drug combination predictions on (Ve-
murafenib, Drug, Cell line) triples that can be externally val-
idated in the NCI Almanach [42].

Drug A Drug B Cell line Tissue Score Label

Vemurafenib

Cabazitaxel MDA-MB-435 breast .831 synergy

Pazopanib NCI-H522 lung .803 synergy

Crizotinib UO-31 kidney .807 synergy

Raloxifene SNB-75 brain .860 synergy

Axitnib MDA-MB-231 breast .043 antagonism

Carboplatin LOX IMVI skin .158 antagonism

Chlorambucil SR blood .022 antagonism

5.6.2 Experimental findings. Out of sample predictions in Table 4

whichweremanually validated come from a diverse set of drugs and

cell lines that are derived from multiple source tissues (e.g kidney

and brain). This shows that MOOMIN can identify new synergistic

drug combinations without doing the actual experiments.

5.7 Runtime
The whole dataset used for training the MOOMIN variants is fairly

small in terms of drug combinations. Training and scoring the exact

or approximate model end-to-end on a Tesla V-100 GPU using all

of the drug pairings takes less than 2 seconds. We investigate the

relative runtime required by MOOMIN-A to make a weight update

step using a single data batch. The average relative runtime for

scales 𝑟 ∈ {1, 2} calculated from 100 repetitions is visualized on the

subplots of Figure 8. When the batch size and sampling count values

are small MOOMIN-A has a material advantage over MOOMIN-E,

the runtime values converge for larger batch and sample sizes.
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Figure 8: The relative runtime of a forward and backpropa-
gation pass with MOOMIN-A compared to MOOMIN-E.

5.8 Visualizing representations
The architecture of MOOMIN consists of separate encoders and a

downstream synergy scoring head layer which are trained jointly

for solving the scoring task optimally.

5.8.1 Experimental settings. Using a fully trainedMOOMIN-Emodel

we extract the drug pair-cell and scoring head layer internal repre-

sentations on the test set. We learn two-dimensional embeddings

with the scikit-learn implementation [65] of t-SNE [85, 89] and

visualized the location of drug pairs on Figure 9 and colored the

points by class membership – synergistic and antagonistic pairings.

5.8.2 Experimental findings. The results in Figure 9 demonstrate

that the separation of synergistic and antagonistic drug pairs starts

before representations are passed through the scoring layer. Em-

beddings based on the synergy scoring layer show a clean class

conditional separation of pairs. These findings suggest that multi-

scale representations created with MOOMIN could allow transfer

learning to other tasks e.g. polypharmacy side effect prediction.
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Figure 9: Test set drug pair-cell and scoring head representa-
tions embedded by t-SNE and colored by class membership.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we proposed themolecular omics network (MOOMIN),

amulti-modal heterogeneous graph neural network custom-tailored

to predict the synergistic and antagonistic nature of drug combi-

nations in oncology. The model consists of protein feature and

molecular structure encoders which contextualize drugs at multiple

scales using a bipartite drug-protein interactions graph. Using the

multi-scale representations and learned cancer cell embeddings a

head layer outputs synergy scores for drug pairs conditioned on

the cancer cell lines. The encoders, cancer cell embeddings, and

the scoring head layer were trained jointly by minimizing a binary

cross-entropy-based custom loss designed for the synergy scor-

ing task. We introduced an approximation algorithm that makes

memory-efficient model training/inference possible.

Our empirical evaluation of MOOMIN which used a publicly

available drug combination synergy database had shown that the

predictive performance of our framework outperforms state-of-the-

art proximity-based node embedding, tensor factorization, statis-

tical fingerprinting, and deep learning methods on the synergy

scoring task. We also supported evidence that learning multi-modal

representations that can distill information from molecular and

protein structures improves predictive performance. Our results

demonstrated that this gain holds even when the performance is

conditioned on the tissue of the cell lines or the amount of training

data is reduced by magnitudes. Further experiments characterized

approximate inference and internal representations.

We are excited about the potential future developments of our

work. The enrichment of the multi-modal data is one possibility.

One avenue is considering other heterogeneous biological graphs

which include other node types such as biological pathways that

could generate better quality multi-scale representations. Another

direction is the incorporation of advanced chemical and biological

features such as molecular fingerprints [24] or information about

the secondary and tertiary structure of proteins [57].
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