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Figure 1: DeepSeer is an interactive tool for supporting RNN model understanding and debugging via state abstraction.

DeepSeer helps programmers by providing Global Explanations and Local Explanations as a synergistic loop for an RNN

model. Programmers can use DeepSeer to quickly understand and identify potential bugs by exploring Global Explanations,
then zoom into Local Explanations to contextualize global explanations. Programmers can also debug on a specific instance

according to Local Explanations, then validate their debugging hypothesizes by zooming out to compare with Global Explana-
tions.

ABSTRACT

Recurrent Neural Networks (RNNs) have been widely used in Natu-
ral Language Processing (NLP) tasks given its superior performance
on processing sequential data. However, it is challenging to inter-
pret and debug RNNs due to the inherent complexity and the lack
of transparency of RNNs. While many explainable AI (XAI) tech-
niques have been proposed for RNNs, most of them only support
local explanations rather than global explanations. In this paper,
we present DeepSeer, an interactive system that provides both
global and local explanations of RNN behavior in multiple tightly-
coordinated views for model understanding and debugging. The
core of DeepSeer is a state abstraction method that bundles se-
mantically similar hidden states in an RNN model and abstracts the
model as a finite state machine. Users can explore the global model
behavior by inspecting text patterns associated with each state and
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the transitions between states. Users can also dive into individual
predictions by inspecting the state trace and intermediate predic-
tion results of a given input. A between-subjects user study with 28
participants shows that, compared with a popular XAI technique,
LIME, participants using DeepSeer made a deeper and more com-
prehensive assessment of RNN model behavior, identified the root
causes of incorrect predictions more accurately, and came up with
more actionable plans to improve the model performance.
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WARNING: The toxicity detection example in the usage scenario
contains some content that might be distracting.

1 INTRODUCTION

Deep neural networks (DNNs) have been increasingly adopted in
practice due to their superior performance on real-world challeng-
ing tasks, e.g., self-driving [49], virtual assistant [9], and disease
diagnosis [34]. The rapid development of deep learning systems
brings opportunities, but also challenges and concerns. One of the
major concerns arises from the interpretability of DNNs [36]. Unlike
traditional software whose decision logic is manually programmed
in the form of source code, a DNN model includes a large number
of neurons connected by non-linear functions, whose weights are
automatically learned from training data. The internal states of
traditional software can be easily inspected and analyzed by setting
breakpoints and checking runtime values. However, the internal
states of a DNN model are high-dimensional vectors rather than
symbolic values. It is hard to tell what kinds of patterns a DNN
model has learned by inspecting these vectors or why the model
makes a specific prediction. Therefore, this internal complexity and
inscrutability of DNNs lead to significant debugging challenges, as
well as concerns about the trustworthiness and reliability of DNNs.

Although there is a recently growing interest in improving the
interpretability of DNNs in the ML, HCI, and Visualization commu-
nities, many existing techniques treat a DNN model as a black
box and generate model-agnostic explanations such as feature
importance, without revealing the inner workings of the DNN
model [32, 39, 53, 54]. While there are some techniques for visual-
izing the hidden states in a DNN model, many of them focus on
convolutional neural networks (CNNs) [8, 48, 57]. In this work, we
are particularly interested in recurrent neural networks (RNNs).
Compared with other kinds of DNNs, recurrent neural networks
(RNNs) are capable of processing sequential data with variable
lengths, such as text and audio. The recurrent architecture affords
an internal memory in RNNs, which is proven effective for learning
temporal patterns in sequential data. Yet this architecture also poses
challenges in visualizing the internal states of RNNs. Unlike CNNs
which have a fixed number of layers and neurons in each layer,
RNNs are unbounded. Furthermore, instead of treating each layer
separately, which is a common practice in CNN visualization, it is
important to visualize the dynamics of RNN units, i.e., the temporal
patterns embedded in a sequence of hidden states.

In this paper, we present DeepSeer, an interactive system that
allows model developers to understand and debug RNN models.
Our key insight is to treat an RNN model as a stateful system. By
clustering and abstracting semantic similar hidden states, an RNN
model can be represented as a finite-state machine (FSM), which is
much smaller and more navigable compared with the original RNN
model. Furthermore, instead of directly visualizing the values of
hidden states as in prior work [59],DeepSeer projects hidden states
to a more interpretable representation—the common words and
phrases associated with these states. By inspecting the transitions
among states, users can quickly identify the temporal patterns
learned by the model.

To assess the overall usefulness of DeepSeer, we conducted a
between-subjects user study with 28 programmers of various lev-
els of expertise in ML and RNNs. Given a pre-trained RNN model,
participants were asked to complete a model understanding task
followed by a debugging task using either DeepSeer or a popular
XAI tool, LIME [53]. We found that in the model understanding
task, participants usingDeepSeer providedmore insightful answers
about the model behavior, pinpointed model limitations more pre-
cisely, and gave more useful and diverse suggestions about how to
improve the assigned model. Furthermore, in the model debugging
task, participants using DeepSeer identified the reasons for the
misclassifications more correctly than participants using LIME.

In summary, this work makes the following contributions:

• System.We design and develop an interactive system for under-
standing and debugging the internal behavior of RNNs. We first
leverage the state abstraction method to abstract an RNN model
as a finite state machine through bundling semantically simi-
lar hidden states. Then we design and implement three tightly-
coordinated views: state diagram view, pattern summary view,
and instance view to visualize and interpret the internal behavior
of an RNN model from different perspectives. We have open-
sourced our system on GitHub 1.
• Visualizations and interactions. We propose a set of visual-
ization and interaction designs to facilitate the interpretation
and debugging of RNNs at different granularities. Specifically, we
combined state diagrams, responsive tooltips, state traces, color
highlighting, filtering, instancematching, and pattern summariza-
tion to simultaneously show the global model behavior, instance-
level explanations, critical patterns, and similar instances.
• Evaluation. A between-subjects user study demonstrates the
usefulness of DeepSeer to ML developers when understanding
the overall behavior of a model and debugging misclassifications.

2 BACKGROUND: RECURRENT NEURAL

NETWORKS

Recurrent Neural Networks (RNNs) are a type of deep neural net-
work that is specifically designed for processing sequential input,
e.g., text data. In this section, we briefly introduce the basics of it.

As shown in Fig. 2, an RNN model takes sequential inputs
{𝑥1, 𝑥2, . . . , 𝑥𝑇 }. The RNN model first initializes its hidden state
vector ℎ0 ∈ R𝑁 , where 𝑁 is the dimension of this hidden state vec-
tor. At a time step 𝑡 , the RNNmodel takes an input 𝑥𝑡 (1 ≤ 𝑡 ≤ 𝑇 ) to
update its internal hidden state from the last time step ℎ𝑡−1 to the
new hidden state ℎ𝑡 . This process can also be seen as maintaining
and updating the “hidden memory” of an RNN model. Therefore,
to understand an RNN model, it is important to interpret such
“memory” maintained in different hidden states [43, 59].

To make a prediction at time step 𝑡 , an RNN model transforms
the hidden state ℎ𝑡 into the desired output format 𝑦𝑡 . For instance,
to perform a classification task, the hidden state ℎ𝑡 is usually fed
into an MLP (multilayer perceptron) network to project ℎ𝑡 into
𝑢𝑡 ∈ R𝐾 , where 𝐾 is the number of classes. Then a probability
distribution 𝑝𝑡 is computed through a “softmax” function:

1https://github.com/momentum-lab-workspace/DeepSeer

https://github.com/momentum-lab-workspace/DeepSeer
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Figure 2: The workflow of a basic recurrent neural network

(RNN). At each time step 𝑡 , RNN takes an input 𝑥𝑡 to update

its hidden state ℎ𝑡 . The prediction result at time step 𝑡 (𝑦𝑡 ) is

obtained by processing the hidden state ℎ𝑡 .

𝑝𝑡 = softmax(𝑢𝑡 )

𝑝𝑖𝑡 =
𝑒𝑢

𝑖
𝑡∑𝐾

𝑗=1 𝑒
𝑢
𝑗
𝑡

for 𝑖 = 1, . . . , 𝐾 (1)

The prediction result at time step 𝑡 is further computed by finding
a label 𝑘 which produces the maximum probability 𝑝𝑘𝑡 .

Note that the process of updating the hidden state ℎ𝑡 can be
achieved by different types of RNN units, such as the Elman RNN
cell [18], long short-term memory (LSTM) [23], and gated recurrent
unit (GRU) [12]. In our user study sessions, we use GRU, which
shows better efficiency compared with other variants. Note that
our proposed system only requires access to the hidden states and
does not require access to the updating process inside an RNN unit.
Therefore, it can be generalized to different types of RNN units.

3 RELATEDWORK

3.1 Explainable AI

Our work is most related to Explainable AI (XAI), since it promotes
model interpretability by abstracting a DNN model as a finite state
machine (i.e., a global explanation) and by rendering the state trace
of a given instance (i.e., a local explanation). Previous studies have
shown that supporting model interpretability can increase user
acceptance and trust of the system [17, 22, 30, 55], improve fair-
ness [14], and improve human-AI team performance [11]. A good
interpretation should be in an interpretable domain [45], i.e., map-
ping any of abstract concepts (e.g., numeric vectors) into a domain
(e.g., images, texts) that the human can understand. Our work is
inspired by this principle—instead of visualizing hidden state values
as in some prior work [59], we map hidden states back to linguistic
patterns in the text corpus. In this way, users can easily recognize
what patterns an RNN model has learned from the training data.

Existing XAI methods can be roughly grouped into two cate-
gories: model-agnostic methods and model-aware methods. Model-
agnostic methods [39, 53, 54] treat the model to be explained as a
black box. LIME [53] is a well-known technique in this category.
Given an input instance, it learns a simpler and interpretable model
(also known as a surrogate model), such as a linear regression
model, to approximate a complex model using the training data
near the given instance. By rendering the feature’s importance in
the surrogate model, LIME generates a local explanation for the

prediction of the given instance. However, these model-agnostic
methods usually ignore the internal behavior of a model when gen-
erating explanations. Specifically, given an RNN model, they do not
take the transitions between different hidden states into account.
On one side, this may lead to low-fidelity explanations [52]. On the
other hand, advanced user groups such as model developers may
find it insufficient to debug model behavior [59]. To address this
challenge,DeepSeer is designed to investigate the internal behavior
of an RNN model via a novel finite state machine abstraction.

Unlike model-agnostic methods, model-aware methods try to
open up the black box of a DNN. Among different model-aware
methods, our work is most related to attribution-based methods and
influence function methods. Attribution-based methods [56, 58, 64]
often use activation or gradient information in a DNN model to
compute the importance score for input features, e.g., pixels in
an image, tokens in a sentence. For example, Karpathy et.al. [27]
presents a visualization that maps neurons’ activation to individual
characters in a sentence. This visualization is only applicable to
individual sentences (i.e., local explanations), which becomes hard
to interpret with a large number of sentences. Our work differs in
a way that we aggregate words and phrases with similar hidden
states from many sentences in a finite state diagram while also
providing a way to delve into the state trace of individual sentences.
Influence function methods [7, 31, 32] compute the influence of an
individual training instance based on gradients and identify a set of
instances that have a big impact on model predictions. Our design
of influential patterns and possible buggy patterns draws inspirations
from these methods. Specifically, DeepSeer summarizes short text
patterns which usually significantly affect model predictions or
have led to possible bugs by analyzing the hidden states of training
data.

We further refer readers to existing surveys and literature re-
views [2, 6, 44] for more details about different XAI methods.

3.2 DNN Debugging, Testing, and Repairing

Several explainable AI techniques have been used to understand and
debug model errors [3, 29, 32, 53]. For example, Ribeiro et.al. con-
ducted a user study with 27 participants and showed that the ex-
planations generated by LIME could be used to detect spurious
correlations learned by a model. Koh et.al. [32] have shown that
influence functions can be used to debug domain mismatch. How-
ever, Adebayo et.al. [3] found that post-hoc model explanations,
especially attribution-based methods, are sometimes ineffective
for detecting certain kinds of bugs such as label error and out-of-
distribution error.

In parallel, the Software Engineering (SE) community has de-
veloped several techniques by adapting traditional SE techniques
to debug, test, and repair DNN models [40, 41, 62, 63]. DeepRe-
pair [63] uses a style-transfer-based data augmentation method to
repair DNN models. RNNRepair [62] identifies influential instances
for retraining and remediates two types of incorrect predictions at
the sample and segment levels. MODE [41] presents a debugging
workflow by first conducting model state differential analysis and
then selecting training instances for retraining. LAMP [40] provides
data provenance information by computing the importance of input
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through automated differentiation. These techniques focus on au-
tomating the debugging and retraining pipeline and do not involve
humans in the loop. Our work differs from these techniques in two
ways. First, DeepSeer aims to provide a comprehensive understand-
ing of model behavior by abstracting RNNs as a state diagram and
identifying influential patterns, going beyond diagnosing model
prediction errors. Second, to enable model developers to diagnose
model errors, DeepSeer renders the intermediate prediction results
of input and provides affordances for investigating how individ-
ual words and phrases influence the prediction result, rather than
automatically localizing the root cause of a model error.

3.3 RNN Visualization

Many DNN visualization techniques have been proposed to help
users understand and analyze the inner workings of DNN models.
The most related visualization techniques to us are those specifi-
cally designed for RNNs [27, 43, 59]. Karpathy et.al. [27] visualizes
which characters in an input sentence the RNN attends to based on
the activation function output. Li et.al. [33] use a gradient-based
salience score, rather than neuron activation, to measure the im-
portance of each word in an input sentence. The salience scores are
then visualized in a heatmap. Both visualizations are static and can
only visualize the hidden states of a single input at a time. Strobelt
et.al. [59] extend them by building an interactive visualization ap-
proach called LSTMVis. LSTMVis renders individual hidden states
in a parallel coordinates plot. It allows users to interactively select
specific segments of an input sentence and search for other inputs
with similar hidden states. However, given that RNNs typically
have hundreds or even thousands of hidden states, visualizing in-
dividual hidden states can lead to significant cognitive overhead
for users. To address this issue, DeepSeer clusters similar hidden
states to an abstract state and represents an RNN model as a fi-
nite state machine. This significantly reduces the number of states
users need to keep track of and also allows DeepSeer to directly
visualize the finite state machine to provide a global view of the
entire model rather than individual hidden states. Our work is also
related to RNNVis [43]. RNNVis clusters similar hidden states as
memory chips and renders text inputs associated with each cluster
as word clouds. However, unlike a finite state machine, this design
does not capture the transition between hidden states or render
longer linguistic patterns beyond common words. Furthermore,
DeepSeer provides additional features to facilitate model inspec-
tion and debugging, e.g., rendering intermediate prediction results,
summarizing influential patterns and buggy patterns, etc.

4 DESIGN GOALS AND SYSTEM OVERVIEW

In this section, we first summarize the design goals of our system
based on a literature review. Then, we present a system overview
to discuss how our system design supports each design goal.

4.1 User Needs and Design Goals

To understand the needs of RNN developers, we perform a literature
review of previous papers that have done a formative study of
interpreting DL models, have done a user study of existing tools, or
have discussed the challenges and opportunities of explaining and

debuggingDLmodels. Based on the literature review, we summarize
the following design goals for DeepSeer:
G1. Help users understand the overall behavior of an RNN

model. Previous studies have shown that model developers prefer
to have a high-level understanding of what has been learned by
the model [13, 35, 43]. For instance, Kaur et al. surveyed 197 ML
developers about the interpretability tool’s capabilities, and 61% of
responses mentioned the importance of global explanations [28].
Specifically, Ming et al. highlighted the importance of rendering
the semantic information captured by the hidden states of an RNN
model [43]. Thus, DeepSeer should help model developers under-
stand the overall behavior of an RNNmodel, especially the semantic
information learned by its hidden states.
G2. Help users understand the model decision-making pro-

cess on a specific input of interest.When inspecting individual
prediction results, especially incorrect ones, model developers wish
to understand why the model makes such a prediction on the partic-
ular input [5, 24, 35]. For instance, through a formative study with
nine ML developers, Hohman et al. [24] found that users wanted
to see how different features contributed to the model’s decision.
Furthermore, Kahng et al. interviewed fifteen Facebook developers
and found that a natural way for them to understand complex mod-
els was to inspect the model behavior on individual examples [26].
The importance of local explanation is also confirmed by the large-
scale survey [28]—65% of respondents considered local explanations
important.
G3. Help and assist users in searching for similar data.

Through a user-centered design process with two NLP developers,
Liu et al. found that NLP developers typically follow an “exploration-
centric” approach to discover and debug errors in anNLPmodel [38].
That is, developers prefer to inspect and compare predictions among
similar input examples to get insights. Therefore, traceability should
also be provided to help users easily explore similar examples when
debugging a model prediction [24]. Specifically, Strobelt et al. high-
lighted that matching similar examples for RNN could help devel-
opers validate an interpretation hypothesis [59].
G4. Help users summarize the common characteristics of in-

put data. Inspecting individual data points can be tedious and
time-consuming, hindering insight discovery. Kahng et al. found
that model developers at Facebook often curated subsets of data
with common characteristics to understand how a model behaves
at high-level categorization [26]. Furthermore, helping users iden-
tify common input characteristics is particularly useful for error
analysis. Jin et al. found that ML developers usually needed to
examine the characteristics shared by a set of wrong predictions
and verify whether error patterns formed by these characteristics
make sense [25]. However, this is often manually done by users
based on their domain knowledge. Therefore, DeepSeer should
support users in identifying and examining common characteristics
of inputs, especially mispredicted inputs.

4.2 System Overview

To support users gaining a high-level understanding of what has
been learned by an RNN model (G1), we choose to render an RNN
model as a state diagram in which each node is a group of similar
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B
D

Figure 3: DeepSeer, an interactive system for visualizing, understanding, and debugging RNNmodels. (A) The State Diagram
View displays the abstracted states and transitions of an RNN model. (B) The Pattern Summary View displays common text

patterns learned by an RNNmodel. (C) The Instance View displays the raw data as an interactive data grid for users to explore

data used to train or test an RNN model. (D) Intermediate Prediction Results are rendered when users input a new sentence.

hidden states from the RNNmodel, as shown Figure 3 A○. Compared
with the original RNN model, which has hundreds or thousands of
hidden states, the state diagram is much smaller after state cluster-
ing and thus more navigable. Furthermore, DeepSeer binds each
node with the text patterns memorized by the corresponding hidden
states to help users interpret the semantic meaning of the hidden
states. Compared with an alternative design of directly visualizing
the hidden states values [27, 59], which are high-dimensional arrays
and hard to interpret, the state diagram is easier to navigate and
inspect.

To help users understand the model decision-making process on
specific inputs (G2), DeepSeer visualizes the intermediate model
prediction result after an RNN model reads each word in an input
sentence (Figure 3 D○). In this way, users can easily see which word
sways the decision of the model and contributes more to the final
result. To support G3, DeepSeer allows users to search input sen-
tences with similar text patterns (i.e., have the same keyword or

follow the same regular expression) or with similar model behavior
pattern (i.e., have the same state or follow the same state trace) in
an instance view (Figure 3 C○). To help users find common patterns
(G4), DeepSeer proactively identifies frequent text patterns that
have a high influence on model prediction results, as well as pat-
terns that are shared among incorrect predictions (Fig. 3 B○). Such
common patterns can also serve as a complementary global expla-
nation method (G1), since it provides more straightforward starting
points for investigation if users find a state diagram overwhelming.

5 DESIGN AND IMPLEMENTATION

5.1 State Abstraction

To generate a state diagram from an RNN model, we develop a
method that clusters semantically related hidden states of the RNN
model into an abstract state. Our work is inspired by the model-
based analysis of stateful RNNs [15, 16, 47, 51, 61]. These works
apply various techniques to extract interpretable state transition
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A

B

A State Tooltip
Hovering on State 39 displays data distribution over it.

B Information Card
Click on State 39 to see its associated word(s).

Figure 4: Interacting with the State Diagram View to understand the abstracted states of an RNN model.

models (e.g., discrete-time Markov chain, automata) from stateful
RNNs. By turning complex RNNs into interpretable state transition
models, black boxes are turned into more transparent models and
thus improve the model interpretability, which also provides the
possibility for further analysis. We choose to build on top of a state-
of-the-art method, DeepStellar [16], since it is demonstrated to be
effective in various tasks, including adversarial detection [16], DNN
testing [16], and DNN repair [62]. Previous work has also shown
that abstracted states can make the same prediction as the original
RNN model in 97% of test data [62].

To obtain the FSM representation for a trained RNN, we abstract
over both the states and the transitions. Appendix A presents the
algorithm for state abstraction. Here we briefly summarize how
it works. For each instance in the training data, our method first
records the intermediate hidden vectors {ℎ1, ℎ2, . . . , ℎ𝑙 } during in-
ference, where ℎ𝑖 (1 ≤ 𝑖 ≤ 𝑙) is a concrete hidden state of an RNN
model. 𝑙 denotes the number of tokens in a sentence. Our method
then applies Principle Component Analysis (PCA) for dimension
reduction on all concrete states collected from training data be-
fore abstraction. Different from DeepStellar [16], which uses an
interval-based method for states abstraction, our method applies
Gaussian Mixture Model (GMM) [42] to cluster similar concrete
states. GMM addresses two key limitations in the interval-based
method: 1) newly generated hidden vectors can fall outside the
interval at test time, resulting in unknown states; 2) the number of
states grows exponentially with 𝑘 dimension and𝑚 intervals (𝑚𝑘 ),
and too many states can be hard to visualize. With state abstraction,
the model prediction process on a given input can be modeled as a
sequence of abstract states. We call this state sequence the trace of
model prediction.

We conducted a quantitative analysis of the faithfulness of state
abstraction. We measured the prediction consistency between the
abstracted and original models in the three different NLP tasks from
the usage scenario (Section 6) and the user study (Section 7.2). The

prediction consistency on the test data is 99%, 97%, and 85%, respec-
tively. This implies that abstracted models can faithfully represent
the behavior of RNNs. Appendix B includes the experiment details.

Different from the previous work focusing on state abstraction
technique itself or using the technique for model testing and repair-
ing, our work is the first to extend this technique for interactive
model explanation and debugging with a more accessible user in-
terface. Our work integrates state abstraction into a “human-in-the-
loop” approach for the first time to support users in understanding
and debugging an RNN model with rich interaction mechanisms. In
the following subsections, we will introduce the interactive features
of DeepSeer built on top of state abstraction.

5.2 State Diagram View

The State Diagram View visualizes the finite state machine that is
abstracted from the given RNN in the previous step. It provides an
overview of the model behavior and helps users understand the
semantic meanings of its hidden states. Users can navigate through
different state nodes to explore what prediction result a state often
leads to and how many times this state has been visited. Specifi-
cally, each state is color-coded based on how frequently the input
instances going through this state have a specific prediction result.
The size of a state node is determined by howmany input sentences
have visited this node during the training time. For example, in
Fig. 4 A○, since the RNN model makes two possible predictions—
positive comment or negative comment, all nodes are assigned to
two distinct colors—blue for positive comments and red for nega-
tive comments. Since there are fewer red nodes and the red nodes
have a much smaller size than blue nodes, one can interpret that
the training dataset has more positive comments than negative
comments and the RNN model is more likely to make a positive
prediction. The width of an edge between two states indicates how
frequently this transition has occurred during the training time.
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Influential Pattern
Click on hypocrisy to see other frequent text patterns.

Possible Buggy Pattern
Click to see patterns usually mislead model.

A

A

B

B

Figure 5: Interacting with the Pattern Summary View in DeepSeer to inspect the text patterns learned by an RNN model.

The RNN model moves from one state to another state when it
reads more words from a given input sentence.

When a user hovers the mouse over a state, a tooltip is rendered
to provide more details about this state, e.g., the number of training
instances that go over this state and is eventually predicted to a
specific result (Fig. 4 A○). When users click on a state, an informa-
tion card (Fig. 4 B○) popped up showing the phrases and words
that are frequently associated with this state in the training data.
This feature allows users to interpret the semantic information
memorized by hidden states. Clicking on a state also updates the
instance view to filter out the input instances that do not visit this
state during model prediction.

5.3 Pattern Summary View

The Pattern Summary View renders common patterns based on
frequent state transitions during the training time. Basically, a
frequent subsequence of states is viewed as a pattern, which can be
further converted into a sequence of words based on the words or
phrases associated with each state. DeepSeer identifies two kinds
of patterns: Influential Patterns and Possible Buggy Patterns.

Influential Patterns are patterns that change the model’s inter-
mediate predictions, e.g., changing from a positive comment to a
negative comment after reading certain words in the middle of a
given input sentence. To identify influential patterns learned from
the training data, DeepSeer first identifies the pivoting points (i.e.,
the point where the intermediate prediction changes) in the state
trace of each training instance. Then DeepSeer splits each state

trace into subsequences based on the pivoting points. These sub-
sequences are sorted based on their frequency and rendered in a
descending order in the pattern summary view.

Possible Buggy Patterns are mined only from incorrectly pre-
dicted instances from the training data. These patterns indicate the
cases where the RNN model does not learn well and thus makes a
misprediction. To identify buggy patterns, DeepSeer first divides
the training data 𝑆 into two subsets according to the correctness of
their prediction results. Let’s denote the subset only include correct
predictions as 𝑆𝑐 and the subset only include false predictions as
𝑆𝑓 , respectively. Then we use TKS [19] (Top-K Sequential pattern
mining) to mine frequent subsequence patterns from each subset. A
subsequence pattern is considered possibly buggy if it only occurs
in the misclassified inputs (𝑆𝑓 ), not in the correctly classified inputs
(𝑆𝑐 ). These buggy patterns are sorted based on their frequency and
rendered in a descending order in the pattern summary view.

Users can click on a specific pattern to see the top frequent
phrases associated with this pattern (Fig. 5 A○). This pattern sum-
mary view allows users to know what patterns the model has
learned, and how these patterns would affect the model’s predic-
tions. Furthermore, Possible Buggy Patterns allows users to recog-
nize potential prediction risks of an RNN model. Clicking on a
pattern will update the instance view to filter out data instances
that do not follow the selected pattern.

5.4 Instance View

The Instance View (Fig. 6) is a scrollable data grid of the raw data
used to train or test the model. The rows of the data grid are in-
dividual data instances, and the columns are: Index, State Trace,
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Figure 6: Interacting with the Instance View in DeepSeer to explore the data used to train/test an RNN model.

Text, Prediction, Human Label, and Correctness of the data instance.
Users can sort and filter the data instances by each column (Fig. 6
A○). Users can use the TRAIN/TEST tab to switch between training
and test instances. The distributions of human labels and model
prediction results are summarized and rendered on top of this view
(Fig. 6 B○). As users filter the data instances, these distributions
are also updated accordingly. Users can also search for specific
input data based on keywords or regular expressions (Fig. 6 C○).
The matched results will be highlighted for better visualization. For
each instance, its words and states are colored based on the inter-
mediate prediction results. Clicking on a row in the instance view
will update the state diagram view to render the state transitions
of the selected data instance.

5.5 Intermediate Prediction Results

The previous sections describe how users can use different views to
achieve an overall understanding of the model behavior. Previous
studies have shown that it is also important to allow users to inspect
and debug model predictions on individual instances [39, 53, 56]. To
support instance-level inspection and debugging, DeepSeer allows
users to enter an input sentence in the text box in Fig. 7. After
clicking on the magnifier button, DeepSeer renders the state trace
of the model prediction on the given input. Furthermore, each word
in the input sentence is colored based on the intermediate prediction
result. For example, in Fig. 7 B○, “red” and “blue” indicate negative
comments and positive comments respectively. RNN typically uses
the final hidden state after reading the entire sentence to compute
the class probabilities. In DeepSeer, the hidden state after reading
each word in a sentence is fed into the output layer to generate
intermediate predictions. Through these intermediate predictions,
users can inspect how the prediction result has changed over time
as the RNN model reads more words in the input sentence. The
pattern summary view is also updated with only influential patterns

and possible buggy patterns related to the given input sentence.
With these supports, users can quickly find suspicious words or
phrases when debugging an incorrect model prediction.

6 USAGE SCENARIO

Suppose Alice is a model developer, and she trains a toxicity de-
tection RNN model using the Toxic dataset 2. This model predicts
whether a sentence has a positive tone or negative tone. Her model
achieves 95% accuracy on the training data but only 89% on the
test data. Alice uses DeepSeer to figure out why there is such a
performance drift.

6.1 Visualizing and Understanding an RNN

Model

Alice first attends to the state diagram view, which gives her an
overview of the trained RNN model as a finite state machine (Fig-
ure 3 A○). In this state diagram, each node represents a group of
similar hidden states in the RNN model. A blue node indicates that
the model is more likely to give a Positive intermediate prediction
after visiting this state, while a red node indicates that the model is
more likely to give a Negative intermediate prediction. Alice hovers
her mouse over a red node named State 39. As shown in Figure 4,
a tooltip then pops up showing that the model makes a negative
intermediate prediction 39, 948 times while only 5, 046 times for
positive ones, after visiting this state. When Alice clicks on the
node of State 39, an information card is displayed on the right (Fig-
ure 4 A○), showing common words and phrases associated with
the state, such as “stupid”, “idiot”, and “stupid and”. Alice glances
over several sentences with these words in the instance view below
(Figure 3 C○) to check whether they are hate comments. In this way,

2https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
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Figure 7: Intermediate prediction results help users interpret model’s prediction when debugging.

Alice confirms that her RNN model indeed learns some meaningful
patterns from the training data.

While inspecting text patterns associated with each state is help-
ful, Alice finds it cumbersome to check all states in the state diagram.
So she switches to the pattern summary view (Fig. 3 B○) to under-
stand the model from another perspective. This view shows text
patterns that have a significant impact on the model prediction (i.e.,
influential patterns). Alice finds some interesting patterns such as
“more fake news” and “stupid enough to”. When Alice clicks on one
of the patterns, “hypocrisy” (Fig. 5 A○), it is expanded to show a
list of other frequent patterns that are associated with the same
state sequence, 13○→ 9○→ 9○, sorted by frequency.3 For example,
this state sequence also memorizes “suck it up” (12 sentences), “ig-
norant of” (6 sentences), and “suck and blow” (4 sentences) in the
training data. As Alice clicks on each pattern, the instance view is
also updated to filter training and test data that does not follow the
clicked pattern. Alice is also curious about which text patterns may
cause incorrect model predictions. So she switches to the list of pos-
sible buggy patterns. These buggy patterns are summarized from
misclassified sentences only, rather than the entire training dataset.
Alice sees some patterns such as “...”, “!!!”, and “???” (Fig. 5 B○). It
seems that her model learns some spurious correlations between
punctuation and prediction results, which may have contributed to
many errors. To prevent the model from learning these spurious

3 This single word, “hypocrisy”, is associated with a sequence of three states, since it
is tokenized into three tokens (hypo-, -cri-, -sy) in the training set, each of which is
bound to one state. Such a tokenization mechanism is widely used in NLP to address
out-of-vocabulary issues.

correlations, Alice plans to remove this punctuation to clean the
training data, which may lead to better model performance.

6.2 Debugging an RNN Model

Now Alice wants to dig into the data and investigates why some
sentences are misclassified after having a high-level understanding
of the model behavior. So she turns to the instance view (Figure 3
C○), which shows all training and test data in a paginated table.
Alice first notices that the training data is not balanced. There

are significantly more positive sentences (92062) than negative ones
(7938). Alice then switches to the test data and finds misclassified
sentences using the filtering feature on the Correctness column
(Figure 6 A○). She copied a misclassified sentence to the text box
and run the instance-level model explanation feature on it (Figure 7).
Each word in the sentence is colored based on the intermediate
prediction result. A state trace is also rendered below.

Alice quickly notices a few words that her RNN model considers
negative during the prediction, such as “ugly head.” Even though
such insulting words have been recognized by the model, this sen-
tence is eventually predicted positive. It seems the model quickly
forgets these insulting words after seeing the subsequent words in
the sentence. For example, after seeing “quarters”, the intermediate
prediction changes from negative to positive.

To verify this hypothesis, Alice searches sentences that contain
“quarters” in the training set using the keyword search feature in
the instance view. Alice finds 27 positive sentences and only 1 neg-
ative one that contains “quarters” in the training set (Fig. 8). Since
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Figure 8: Alice search for “quarters” in the training data.

many sentences with “quarters” are positive, the model may have
learnt a spurious correlation between “quarters” and the positive
sentiment. Alice further confirms her hypothesis by looking at the
corresponding state, State 22, associated with the word “quarters”.
Alice finds that State 22 is a positive state. Therefore, Alice con-
cludes that one reason for this misclassification is data imbalance,
where most sentences with “quarters” are labelled as positive. To
address this, Alice believes that one possible solution is to collect
more data with this keyword to balance her training set and then
re-train her model. Furthermore, given that the model quickly for-
gets an insulting word, Alice also plans to experiment with the long
short-memory (LSTM) architecture with the attention mechanism,
which can handle information in the memory for a longer time
compared with a vanilla RNN.

7 USER STUDY

We conducted a between-subjects study with 28 participants to
evaluate the effectiveness and usability of DeepSeer. We used
LIME [53], a well-known tool for interpreting and debugging ma-
chine learning models, as a comparison baseline. Though LIME is
not specialized for RNNs, it is a widely-used tool to understand
and debug models. It has 10.3K stars and 1.7K forks on GitHub 4,
and its Python package has been downloaded 16M times on PyPI 5.
Therefore we choose it as a more realistic baseline. Given a model
prediction, LIME can generate an explanation with importance
scores for elements in the input data (e.g., words in an input sen-
tence). To enable a fair comparison, we built an interface for LIME
similar to DeepSeer. The interface includes the existing visual-
izations provided by LIME and also includes the Instance View
as in DeepSeer. It does not include the state diagram view and
the pattern summary view, which are the novel contributions of
DeepSeer. We investigated the following research questions to
assess the overall usefulness of DeepSeer compared with LIME:
• RQ1: To what extent does DeepSeer enhance users’ understand-
ing of an RNN model compared with a commonly used model
explanation and debugging tool?
• RQ2: To what extent does DeepSeer improve the accuracy of
identifying the root cause of a misprediction of an RNN model
compared with a commonly used model explanation and debug-
ging tool?

7.1 Participants

We recruited 28 participants (5 female and 23 male) through several
graduate student mailing lists of the CS department and the ECE
department at the University of Alberta.6 All participants had at
least basic machine learning background. 15 participants were Ph.D.
students, and the rest were Master’s students. 23 participants had
4https://github.com/marcotcr/lime
5https://pepy.tech/project/lime
6This human-participated study is approved by the university’s research ethics office.

2-5 years of machine learning experience, 3 participants had more
than 5 years, and 2 participants had about 1 year. Regarding their
RNN experience, 9 participants had more than 2 years of experience,
7 participants had 1 year, and 12 participants had less than 1 year.
Participants also self-reported their familiarity with developing
RNN models in a 7-point Likert scale question. The median is 5,
with 1 referring to “I have only heard about RNNs but never used
it” and 7 referring to “I’m able to build an RNN model by myself.”
25 participants said they had not used any debugging tools for
DL, while 3 participants said they have used Tensorboard [1]. The
studies were conducted on Zoom. Both DeepSeer and LIME were
deployed as web applications that participants could access from
their personal computers.

7.2 RNN Models

Since DeepSeer is designed for visualizing and debugging RNN
models, we trained two RNN models for two popular ML tasks. For
each RNN model, the dimension of a hidden state vector is 256. The
first ML task is to predict whether a question asked on Quora is
sincere or insincere. It is originally from a featured competition
from Kaggle, a popular online machine learning and data science
community [50]. In this task, our RNN model is trained on 100,000
Quora questions, each of which is labeled as sincere or insincere.
The training accuracy of this RNN model is 93.93%, and the test
accuracy is 89.07%. The second ML task is to predict the topic of a
news article from a news corpus called AG’s News [20]. This task
is a well-known benchmark for topic classification research [65]. In
this task, our RNN model is trained on 109,886 news articles labeled
into four news topics, including “Sports”, “Business”, “World”, and
“Science and Technology.” The training accuracy of this RNN model
is 91.57%, and the test accuracy is 87.68%. DeepSeer abstracts each
RNN model into 40 states. This number is decided empirically to
achieve a good balance between accuracy and the cognitive effort
of inspecting a state diagram. We further provide a faithfulness
analysis of the abstracted model in Appendix C. During a user study
session, we randomly assigned one of the two RNN models to a
participant to finish the model understanding and debugging tasks.
Interface of DeepSeer for each task can be found in Appendix D.

7.3 Protocol

We design a between-subjects user study where users experience
one condition and one RNNmodel in each study session. We choose
a between-subjects design rather than a within-subjects design
since experiencing one condition takes around 60 minutes. Experi-
encing two conditions in a within-subjects design would require
120 minutes, which is too long and can lead to significant fatigue
and frustration. At the beginning of each session, we asked the
participants for their permission for recording. Given that this was
a between-subjects study, each participant was assigned to only
one RNN model in one condition. In each session, participants were
only allowed to use the given tool: DeepSeer in the experiment
condition or LIME [53] in the control condition. The assigned RNN
models and conditions were counterbalanced across participants.
At the beginning of each study session, participants were asked
to first watch a 5-min tutorial video of the assigned tool, and then
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spend 5 minutes familiarizing themselves with the tool. Then, par-
ticipants were given 30 minutes to use the assigned tool to explore
an assigned RNNmodel and share their understanding of the model
behavior through a questionnaire. The questionnaire included three
main questions: (1) What insights have you got about the model’s
performance and behavior? (2) Did you find any bugs or limitations
of the RNN model? If yes, what kind of bugs have you found? (3)
How will you further improve the model? After filling out the model
understanding questionnaire, participants were given 10 minutes
to debug 5 incorrect model predictions using the assigned tool. For
each incorrect prediction, they were asked to write down why the
input data was misclassified and submit their answers through a
questionnaire. At the end of the study session, participants were
asked to fill out a survey to share their experiences. In particular,
the post-study survey included the NASA Task Load Index (TLX)
questions [21] to measure the cognitive load of the study. Each
participant received a $25 Amazon gift card as compensation for
their time.

8 USER STUDY RESULTS

This section describes the results of the between-subjects user study.
We first present and analyze participants’ performance differences
onmodel understanding and debugging tasks when usingDeepSeer
and LIME. Then we present participants’ perception on DeepSeer’s
tool features as well as cognitive load. For brevity, we use P1-P14
to denote the participants using DeepSeer, and P15-P28 to denote
the participants using LIME [53].

8.1 RQ1: User Performance on Model

Understanding

To evaluate user performance on model understanding, two authors
manually assessed and coded participants’ responses and counted

the number of correct insights about model behavior shared by par-
ticipants. Specifically, these two authors had 4 meetings to develop
a codebook and resolve labeling inconsistencies. Eventually, 651
codes were generated and categorized into 32 themes. The final
Cohen’s Kappa score is 0.9061. Note that one insight is considered
correct only if both two authors agree.

Overall, participants using DeepSeer provided more insights (53
vs. 21) than participants using LIME. Themean difference of insights
provided per participant (2.3) is statistically significant (Welch’s
t-test: 𝑝 = 0.0003). Fig. 9 provides a breakdown of different kinds
of insights shared by participants. Participants using DeepSeer
shared much more insights about global model behavior, model
performance, and buggy behavior. For instance, P12 said, “It looks
like the model is placing a lot of weight in the latter half of an input
sentence.” P9 wrote, “this model is often confused by the Business and
Science categories.” Furthermore, participants using DeepSeer often
referred to text patterns and states when describing model behavior,
while participants using LIME mostly referred to specific keywords.
P25 said, “it is not easy to summarize patterns [with LIME] when
the size of dataset is large and there are many classes.” Since LIME
is designed for local explanations, it is not surprising that only 2
participants using LIME were able to derive global explanations for
an assigned RNN model.

Participants using DeepSeer also provided more useful and di-
verse suggestions about model improvement compared with LIME
users (Fig. 9 (C)). Note that a suggestion is considered useful if
it is related to the root causes of observed model misprediction
and is accepted as an effective model improvement mechanism in
the ML community. In particular, 5 participants using DeepSeer
noticed the error pattern of forgetting previous tokens after read-
ing more tokens and suggested adding an attention layer, while
only 2 participants using LIME noticed this. P10 wrote, “For many
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Table 1: The average of responses shared by participants in the model debugging task.

Quora AGNews Overall
DeepSeer LIME DeepSeer LIME DeepSeer LIME

Reasonable explanations provided per participant 4.3 2.7 4.3 1.1 4.3 1.9
Fault-inducing keywords mentioned per participant 5.3 2.7 4.6 1.4 4.9 2.1
Non-fault-inducing keywords mentioned per participant 0.8 3.7 1.0 3.3 0.9 3.5

false predictions, the model is likely to give the right prediction at the
beginning, but then turns to the wrong direction. Probably we could
reduce the length of temporal dependencies with something like the
attention mechanism.” Finally, participants using DeepSeer spent
27 min 53 s (𝜎 = 2 min 44 s) on average, while participants using
LIME spent 28 min 19 s (𝜎 = 3 min 15 s). We do not observe a
significant difference in task completion time.

8.2 RQ2: User Performance on Model

Debugging

To evaluate user performance on the model debugging task, we
counted the number of reasonable explanations provided by partic-
ipants over five misclassified sentences. To assess the correctness
of participants’ answers, two authors first manually inspected the
hidden states of the RNN and also the training data to diagnose the
five misclassifications. Their investigation results were used as the
ground-truth misclassification explanations. Then, they checked
whether the participants’ explanations were consistent with the
ground truth.

As shown in Table 1, participants usingDeepSeer provided more
reasonable explanations for misclassification. Participants using
DeepSeer provided 4.3 reasonable explanations for 5 misclassified
sentences on average, while participants using LIME only provided
1.9 reasonable explanations. The mean difference of 2.4 is statisti-
cally significant (Welch’s t-test, 𝑝 < 0.0001).

Furthermore, we counted the number of correct fault-inducing
keywords mentioned by participants. Participants using DeepSeer
identified more correct fault-inducing keywords than those using
LIME (mean: 4.9 vs. 2.1). The mean difference of 2.8 is statistically
significant (Welch’s t-test, 𝑝 < 0.0001). In addition, participants
using LIME misrecognized more keywords (mean: 3.5 vs. 0.9) as
fault-inducing keywords (Welch’s t-test, 𝑝 < 0.0001). This is be-
cause LIME first learns a surrogate sparse linear model to simulate
the RNN model and then computes word importance based on the
linear model. This sometimes leads to unreliable explanations. Some
participants also noticed this during the study. P22 commented, “in
some cases, I found that the tool [LIME] did not generate a reliable
explanation.”

One interesting observation is that participants using DeepSeer
were capable of identifying more complex error patterns beyond
word patterns. For example, P9 answered, “At the very beginning,
‘football’ indicates the model to predict sports, which is exactly what
the model does. But when ‘UK’ appears, the state transits to ‘world’
[related state] and got stuck there.” None of the LIME users provided
such insights, since LIME treats individual words separately and
cannot capture the dynamics of the model’s decision process.

Finally, participants using DeepSeer completed this task in an
average of 9 min 9 s (𝜎 = 1 min 21 s), while participants using

LIME took an average of 9 min 25 s (𝜎 = 0 min 11 s). There is no
significant difference in task completion time.

8.3 User Perception and Cognitive Load

Our post-study survey solicited participants’ feedback on all key
features of DeepSeer. Overall, participants considered DeepSeer’s
visual encoding and interface intuitive, helpful, and clear. Among
14 participants, 13 of them self-reported that they would like to
use DeepSeer when developing and debugging RNN models in
the future, while 1 participant stayed neutral. The median is 6.5
on a 7-point Likert scale (1—I don’t want to use it at all, 7—I will
definitely use it if available). We report participants’ qualitative
feedback on the key features of DeepSeer from both post-study
survey and user study recordings below.
Intermediate Prediction Results. All 14 participants using
DeepSeer found the on-demand intermediate prediction results
provided by DeepSeer useful. The median rating is 7 out of 7. P9
mentioned, “stepping through intermediate predictions help me un-
derstand whymodel makes a wrong prediction. For example, the text is
apparently about sports. However, the model goes into state 20 which
is not quite related to sports.” Moreover, participants also liked the
color-coding of intermediate prediction results.
State Diagram. Among 14 participants, 11 of them considered
the state diagram in DeepSeer useful. The median rating is 6. P12
commented, “extracting an RNN model as a state diagram is nice,
and I think it will also be helpful when interpreting [RNN models]
with more complex data such as medical data.” While the majority of
participants did not find the state diagram overwhelming, 3 found it
slightly overwhelming and 1 found it very overwhelming. 7 out of
14 participants found it useful to interact with the state diagram, e.g.,
seeing statistical distribution over states and keywords associated
with each state.
Pattern Summaries. 9 out of 14 participants found that seeing the
patterns in the pattern summary view and filtering the dataset based
on a specific pattern are useful (median rating: 6). P2 mentioned, “it
is good for us to see inside of the model and find the bug with possibly
buggy patterns.” In particular, participants also mentioned that the
pattern summary view is helpful for debugging. P8 said, “I can click
the buggy patterns to check related sentences. This helps me identify
why model usually mis-classify [sentences] with these patterns.”
Searching and Filtering Instances.Most participants agreed that
it is useful to interact with each data instance in the instance view
(median rating: 7) and search for similar instances (median rating:
7). P4 mentioned, “I like the colors associated with each label, I feel
this helped a lot with looking at examples. I also liked how it clearly
showed examples with their true class and prediction. Also, the ability
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Figure 10: Participants’ ratings about DeepSeer’s tool features (1 is “strongly disagree” and 7 is “strongly agree”)

to also filter examples by correctness, prediction, and the true label
was very helpful for me.”
Limitations and Suggestions. 5 out of 14 participants pointed
out that it would be better if DeepSeer could provide additional
statistical information about model accuracy, e.g., confusion matrix.
1 participant suggested that adding the confidence score for the
explanation could help them make more informed decisions. 1
participant found the state diagram mentally demanding. P6 said,
“state diagram seemed a bit hard to interpret by just looking at it and
probably wouldn’t be immediately intuitive to a user opening this
application up initially.”
Cognitive Overhead. In the post-study survey, participants rated
the cognitive load of the study via the NASATLX questionnaire [21].
Fig. 11 shows their ratings for the five NASA TLX questions. We
found that there was no significant difference when usingDeepSeer
vs. LIME in terms of hurry, performance, effort, and frustration
(Welch’s t-test: 𝑝 = 0.7731, 𝑝 = 0.7244, 𝑝 = 0.6916, and 𝑝 = 0.5620).
Since DeepSeer renders much more information about model be-
havior (e.g., a state diagram, a pattern view, on-demand interme-
diate prediction results), participants using DeepSeer felt more
mental demand (median value: 5 vs. 4, Welch’s t-test: 𝑝 = 0.0011).

9 DISCUSSION

9.1 Design Implications

The user study results suggest that DeepSeer helps users achieve
a more comprehensive understanding of the assigned model, and
perform better on model debugging compared with the baseline
tool, LIME [53]. We believe this is largely attributed to DeepSeer’s
interactive support for explaining the model’s global and local
behavior. While a few studies have discussed about the importance
of global and local explanations [24, 45], our work provides specific
insights on how to support global and local explanations in a unified
interface for RNN models.

In DeepSeer, global explanations are mainly rendered in the
State Diagram View and the Pattern Summary View. The abstracted
state diagram helps users interpret the hidden states and complex
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Figure 11: Participants’ ratings about cognitive load (1

means “strongly disagree” and 7 means“strongly agree”, *

means the mean difference is statistically significant.)

transitions among these states, while the summarized text patterns
help users quickly identify either influential or buggy patterns
learned by the model. These global explanations boost users’ under-
standing and debugging process. Despite all the benefits of global
explanations, we found it still necessary for participants to have the
instance-level explanation to contextualize their understanding of
model behavior. In particular, given a specific state or text pattern,
user study participants often got curious about how it sounds in
different texts. In the post-study survey, they highly appreciated the
Intermediate Prediction Results feature. DeepSeer allows users to
zoom into local explanations by actively filtering instances based on
selected states or patterns, as well as zooming back to the model’s
global behavior by tracing back to the state diagram. Through these
ways, global and local explanations are served as a synergistic loop
for model understanding and debugging.

Furthermore, we find that users cared about how the given ex-
planations are derived from the internal decision-making process
of an RNN model. When using LIME [53], 4 out of 14 participants
using LIME questioned the explanations (highlighted keywords)
given by LIME. For instance, P24 commented in the post-study
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Figure 12: DeepSeer users’ performance on model debug-

ging with various levels of RNN expertise.

survey, "I hope LIME can provide a reason why some words have a
high sincere or insincere score." As a more tangible and actionable
solution,DeepSeer not only communicates the correlation between
specific features in an input to a prediction result, but also commu-
nicates the internal decision-making process of a model. DeepSeer
renders model’s decision-making process in two ways. First, it ren-
ders the transition between different internal states of the model
in the state diagram view. Second, for an individual prediction, it
renders the intermediate prediction results as well as their corre-
spondence to the internal states of a model. By inspecting such
a decision-making process, users can better understand how the
model arrives at a specific prediction and gain more trust from the
generated explanations.

As an interactive XAI tool, it is also important to provide users
with interpretable explanations, especially for RNN models. Note
that a few prior techniques have tried to visualize the decision
process of RNN [27, 59]. However, they usually only directly visu-
alize the value of each hidden state. For instance, LSTMVis [59]
visualizes the change of hidden state values in parallel coordinates.
Given that hidden state values are essentially numerical values in a
high-dimensional space, it is challenging to interpret their seman-
tic meanings. To address this challenge, DeepSeer bundles hidden
states with associated words and phrases in a text corpus and visu-
alizes the transition between them as a state diagram. In this way,
the internal decision-making process becomes more interpretable
to non-experts.

9.2 Target Users and User Expertise

DeepSeer is designed for any developers who needs to train and
debug an RNN model by themselves. They can be experienced ML
developers, regular software developers who just started learning
RNNs, or students who use RNN in a course project. In the user
study, we recruited participants with diverse expertise in RNN, in-
cluding 4 participants with less than 1 year of RNN experience, 5
with 1 year, 3 with 2—5 years, and 2 with more than 5 years. Our
further analysis shows that, while participants with more RNN
experience performed slightly better, the difference was not signif-
icant (Fig. 12). This implies the effectiveness of fDeepSeer is not
strongly correlated to their expertise.

9.3 Generalization to Different ML Tasks and

Models

Though our work has only evaluated DeepSeer on sentiment analy-
sis and topic modeling tasks, we believeDeepSeer can generalize to
different NLP Tasks as well. To reuse DeepSeer for other tasks, one
may consider adapting the color mapping mechanism for abstract
states. For example, for machine translation tasks, one can color
each state according to the part-of-speech tag. By inspecting each
state’s color and associated words, users could interpret if an RNN
model is translating a sentence correctly.

In this work, we focused on RNNs, which is a representative
model architecture for processing sequential data. In addition to
RNNs, it may be possible to useDeepSeer to interpret RNN variants
such as Bidirectional-LSTM [37] or Transformers [60]. While the
principle of Bidirectional-LSTM is similar to a naive RNN, some
adaptions to the state abstraction method are required. For instance,
one should consider collecting the model’s hidden states when pro-
cessing the input text in both two directions. Since transformers are
permutation-invariant, they process all words in an input sentence
at the same time, not sequentially. Therefore, we can no longer bun-
dle a word with a hidden state. However, one can treat the output
of each hidden layer as a concrete state. Then the transition can
be built among different hidden layers instead of among different
words.

9.4 Limitations and Future Work

One limitation of our user study design is that the comparison
baseline, LIME [53], is designed for generating local explanations
instead of global explanations. Thus, we cannot directly compare
the global explanation effectiveness of DeepSeer to LIME. Besides,
LIME is not specialized for RNN. While there are RNN-specific
tools, such as LSTMVis [59] and RNNVis [43], we failed to run
them on our RNN models after several attempts due to version
compatibility issues. Both LSTMVis and RNNVis were built years
ago on out-of-dated DL frameworks (TensorFlow r0.12 and Torch 7),
which can no longer be used to analyze DL models built by later
framework versions. Significant efforts are needed to re-implement
them. Therefore, we consider such re-implementation out of the
scope of this work. An alternative solution can be creating variants
of DeepSeer by disabling some key features as baselines, which
can help us better attribute the success of DeepSeer to individual
features. This is worth investigating in future work.

As we are researchers from an R1 university, we do not have
access to professional developers and data scientists who build RNN
models in their work. Instead, we recruited graduate students who
have experience in building RNN models. ML practitioners may
share more interesting insights compared with graduate students.

Additionally, our user study has only evaluated DeepSeer on
RNNs for sentiment analysis and topic classification. To compre-
hensively investigate the usefulness of DeepSeer, one can consider
leveraging DeepSeer to understand and debug RNN models for
other tasks, beyond text classification, e.g., machine translation.

Furthermore, our current design only supports visualizing and
analyzing one RNN model. Once the bugs are identified with the
help of DeepSeer, re-training the RNN model is needed. Therefore,
a possible future direction is to develop tool support for comparing
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two or more versions of an RNN model [46]. Besides, one can also
improveDeepSeer by designing tool support for model tracking [4]
and model selection [10].

10 CONCLUSION

In this paper, we present a novel system called DeepSeer to help
ML developers understand and debug recurrent neural networks.
DeepSeer makes use of a state abstraction method that bundles
semantically similar hidden states of an RNN model and abstracts
it to a finite state machine. Through DeepSeer, users can explore
both the model’s global and local behavior, and also debug incorrect
predictions. We demonstrate DeepSeer’s usefulness and usability
through a between-subjects user study with 28 model developers
on two different RNN models. The results show that DeepSeer’s
tightly-coordinated views brought developers a deeper understand-
ing of an RNN model compared with a popular XAI technique,
LIME. Furthermore, participants using DeepSeer were able to iden-
tify the root causes of more incorrect predictions and provide more
actionable plans to improve the RNN model. In the end, we dis-
cuss the design implications from DeepSeer, and propose several
promising future work directions.
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A STATE ABSTRACTION

In this section, we present the technical details of state abstraction
for an RNN model. The core idea is to extract all possible hidden
states of an RNN model using training data and then group similar
hidden states to build a finite state machine (FSM). Algorithm A1
shows the procedure of state abstraction of an RNN model.

Algorithm A1: State abstraction of an RNN model.
Input: a trained RNN model 𝑅, training data X𝑡𝑟𝑎𝑖𝑛 , PCA

dimension 𝑘 , number of states 𝑛
Output: PCA model 𝑃 , GMM model 𝐺 , an abstraction

model 𝐴 = {𝑃,𝐺}
1 H ← {};
2 for 𝑥 in X𝑡𝑟𝑎𝑖𝑛 do

3 𝐻 ← record_hidden_states(𝑅, 𝑥);
4 H .append(𝐻 );
5 end

6 𝑃 = PCA(H , 𝑘);
7 𝐺 = GMM(𝑃 (H), 𝑛);
8 return 𝐴;

Algorithm A1 takes two inputs: a trained RNN model 𝑅 and
training data 𝑋𝑡𝑟𝑎𝑖𝑛 , as well as two parameters: PCA (principal
component analysis) dimension 𝑝 and number of abstracted states
𝑛. Given a trained RNN model, we first iterate through all the
training data X𝑡𝑟𝑎𝑖𝑛 to collect all possible hidden statesH from the
RNN model (Line 1:5). Line 3 records all the hidden states 𝐻 in an
RNN model when processing a specific input instance 𝑥 . Suppose
an input instance 𝑥 has 𝑙 words, then 𝑙 different hidden states will be
producedwhen the RNNmodel processes these 𝑙 words sequentially.
For example, given the sentence “I loveMachine Learning”, the RNN
model will process four words: “I”, “love”, “machine”, and “learning”
sequentially. Therefore, four different hidden state vectors will
be produced and recorded when the RNN model processes this
sentence.

After recording all the hidden states using the training data, we
create a PCA model 𝑘 to reduce the dimension of these hidden
states into 𝑝 (Line 6). Meanwhile, we also obtain a PCA model 𝑃 .
Now we abstract |𝑃 (H)| dimension reduced hidden states into 𝑛
abstracted states. Different from the prior work [16], which uses a
grid-based method, we adopt a GMM (Gaussian mixture model [42])
𝐺 to cluster these dimension-reduced hidden states (Line 7). After
executing Line 7, we obtain a GMMmodel𝐺 . Our abstracted model
𝐴𝑠 has now been built, which consists of a PCA model 𝑃 and a
GMM model 𝐺 . Note that both PCA and GMM are implemented
with scikit-learn with default parameters except “n_components”.

In our usage scenario and user study, we set the PCA dimension
𝑘 as 20 and the number of states 𝑛 as 40. We further show that
the abstraction model using this setting can provide consistent
predictions compared with the original RNN model in Appendix B.

B FAITHFULNESS OF STATE ABSTRACTION

In this section, we show that the abstracted model (i.e., the finite
state machine) can make consistent predictions as the original
RNN model in three different tasks, one from the usage scenario

(Section 6) and the other two from the user study (Section 7.2). We
measure the prediction consistency between the finite statemachine
and the original RNN. Suppose the dataset is 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁 },
the abstracted model is F , and the RNN model is R. The prediction
consistency can be calculated through Eq. 2.

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =

∑𝑁
𝑖=1 F (𝑥𝑖 ) == 𝑅(𝑥𝑖 )

𝑁
(2)

Table B1 shows the prediction consistency of the two models in
each task on the training and test data separately.We can see that for
the binary classification models (Toxic and Quora), the abstraction
models can provide highly consistent predictions (consistency is
99% and 97%) compared with the original RNN models on both
training and test data. For the multi-classification model (AGNews),
the abstraction model can still provide very consistent predictions
(consistency is 86%). These results demonstrate the faithfulness of
our state abstraction technique.

C NUMBER OF ABSTRACTED STATES

During our user study, we set the number of abstracted states to
40. This number is empirically decided to achieve a good balance
between the prediction consistency to the original RNN and the
cognitive effort of inspecting a state diagram. To further show
that this setting will not affect the abstraction model’s faithfulness,
we report the abstracted models’ prediction consistency w.r.t. the
number of states of all three models in Fig. C1.

As we can see, a lower number of states will lead to a lower
prediction consistency. However, when the number of states is
larger than 40, the prediction consistency stays largely the same.
Therefore, we choose this number of states, 40, throughout our
motivating example and user study.

D ML TASKS

D.1 ML Task 1: Sentimental Analysis (Quora

dataset)

Task Description:

In this task, participants were given an RNN model trained on
the Quora dataset.

Quora dataset is collected from quora.com, where each text in the
dataset is labeled as “Sincere” or “Insincere”. An insincere question
is defined as a question intended to make a statement rather than
look for helpful answers.

Participants first used the tool to understand the model. They
were asked to use the tool to explore the model’s behaviours and
performance on training data and test data. After exploring, par-
ticipants were asked to share their findings, e.g., Did they find any
insights? Did they find any bugs? How would they improve this
model?

Then participants were given 5 misclassified sentences. Partici-
pants had 10 minutes in total to finish the following task: for each
sentence, participants needed to find out why this sentence is mis-
classified with the help of DeepSeer.

D.2 ML Task 2: Topic Classification (AGNews

dataset)

Task Description:
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Table B1: Quantitative comparison between the abstraction model predictions to the original RNN’s predictions.

Prediction consistency on training set Prediction consistency on test set
Toxic 99.88% 99.88%
Quora 97.30% 97.04%

AGNews 86.28% 85.59%
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(a) Prediction consistency between the original RNNmodel

and the abstracted model on Toxic dataset.
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(b) Prediction consistency between the original RNNmodel

and the abstracted model on Quora dataset.
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(c) Prediction consistency between the original RNNmodel

and the abstracted model on AGNews dataset.

Figure C1: Prediction consistencyw.r.t. the number of states

of all three RNN models’ abstracted models.

In this task, participants were given an RNN model trained on
the AGNews dataset.

AGNews dataset is a collection of news articles. This RNN model
classifies each text into different topics, including World, Sports,
Business, and Sci/Tech.

Participants first used the tool to understand the model. They
were asked to use the tool to explore the model’s behaviours, and
performance on training data and test data. After exploring, par-
ticipants were asked to share their findings, e.g., Did they find any
insights? Did they find any bugs? How would they improve this
model?

Then participants were given 5 misclassified sentences. Partici-
pants had 10 minutes in total to finish the following task: for each
sentence, participants needed to find out why this sentence is mis-
classified with the help of DeepSeer.
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Figure D2: The interface of DeepSeer used for ML task 1 (Quora dataset).
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Figure D3: The interface of DeepSeer used for ML task 2 (AGNews dataset).
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