
Efficient Bi-Level Optimization for Recommendation Denoising
Zongwei Wang

zongwei@cqu.edu.cn
Chongqing University

China

Min Gao∗
gaomin@cqu.edu.cn
Chongqing University

China

Wentao Li*
wentaoli@hkust-gz.edu.cn

The Hong Kong University of Science
and Technology (Guangzhou)

China

Junliang Yu
jl.yu@uq.edu.au

The University of Queensland
Australia

Linxin Guo
guolinxin@cqu.edu.cn
Chongqing University

China

Hongzhi Yin
h.yin1@uq.edu.au

The University of Queensland
Australia

ABSTRACT
The acquisition of explicit user feedback (e.g., ratings) in real-world
recommender systems is often hindered by the need for active user
involvement. To mitigate this issue, implicit feedback (e.g., clicks)
generated during user browsing is exploited as a viable substitute.
However, implicit feedback possesses a high degree of noise, which
significantly undermines recommendation quality. While many
methods have been proposed to address this issue by assigning
varying weights to implicit feedback, two shortcomings persist: (1)
the weight calculation in these methods is iteration-independent,
without considering the influence of weights in previous iterations,
and (2) the weight calculation often relies on prior knowledge,
which may not always be readily available or universally applicable.

To overcome these two limitations, we model recommendation
denoising as a bi-level optimization problem. The inner optimiza-
tion aims to derive an effective model for the recommendation,
as well as guiding the weight determination, thereby eliminating
the need for prior knowledge. The outer optimization leverages
gradients of the inner optimization and adjusts the weights in a
manner considering the impact of previous weights. To efficiently
solve this bi-level optimization problem, we employ a weight gen-
erator to avoid the storage of weights and a one-step gradient-
matching-based loss to significantly reduce computational time.
The experimental results on three benchmark datasets demonstrate
that our proposed approach outperforms both state-of-the-art gen-
eral and denoising recommendation models. The code is available
at https://github.com/CoderWZW/BOD.

CCS CONCEPTS
• Information systems→ Recommender systems; Collabora-
tive filtering.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599324

KEYWORDS
recommendation, denoising, bi-level optimization, implicit feedback

ACM Reference Format:
ZongweiWang, Min Gao, Wentao Li*, Junliang Yu, Linxin Guo, and Hongzhi
Yin. 2023. Efficient Bi-Level Optimization for Recommendation Denoising.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3580305.3599324

1 INTRODUCTION
Recommender systems [9, 20, 28, 38], which leverage historical
behavioral data of users to discover their latent interests, have been
highly successful in domains such as E-commerce [40], for improv-
ing user experience and driving incremental revenue. While the
explicit user feedback (e.g., ratings) is the best fuel for recommender
systems, its acquisition is often impeded by the need for active user
participation. Hence, implicit feedback (e.g., clicks) generated dur-
ing user browsing is exploited as a viable substitute [7, 27]. For
implicit feedback, an observed user-item interaction is generally
regarded as a positive sample, while an unobserved interaction is
deemed as a negative sample [39]. However, implicit feedback is
plagued by a significant level of noise [3, 33, 35] as evidenced by
the following factors: (1) users may inadvertently interact with
certain items, giving rise to false positive samples [1, 22] due to
curiosity or misclicks; (2) users may encounter situations where
they lack exposure to an item, leading to false negative samples [7],
despite having a positive preference for it. The presence of such
noise exacerbates the overestimation and underestimation of some
certain user preferences. Hence, it is imperative to mitigate this
noise in order to enhance the accuracy of recommendations [33].

A prevalent approach tomitigating the impact of noise in implicit
feedback involves utilizing auxiliary information such as attribute
features [46] and external data (e.g., social networks) [40]. However,
the acquisition of such information may be hindered by privacy
concerns [30]. In the absence of auxiliary information, current
denoising methods often employ a weighting strategy in which the
samples are assigned varying weights iteratively [30]. Specifically,
this is achieved through the repetitive execution of two phases:
first training the recommendation model using the initial weight
assignments, and then recomputing the sample weights based on
the output of the recommendation model. The weights reflect the
level of noise in each sample, as well as their contribution to the
recommendation [7], thus enabling effective denoising.

ar
X

iv
:2

21
0.

10
32

1v
2

 [
cs

.I
R

]
 1

 J
un

 2
02

3

https://orcid.org/0000-0002-9774-4596
https://doi.org/10.1145/3580305.3599324
https://doi.org/10.1145/3580305.3599324

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zongwei Wang, Min Gao, Wentao Li*, Junliang Yu, Linxin Guo, and Hongzhi Yin

Despite the demonstrated efficacy, current research still faces
two limitations: (1) the weight assignment strategy is performed in
an iteration-independent manner [30], leading to the random re-
initialization of weights. This implies that the previously computed
weights, which possess the ability to express the confidence level
regarding the presence of noise in the samples, are disregarded
during the calculation of sample weights in the current iteration.
As a result, the initialization weights in every iteration is mere
blind guesses, while the valuable information generated during
previous iterations is not utilized to its full potential; (2) existing
methods often resort to prior knowledge for determining sample
weights. For example, Wang et al. [30] claim that a sample with
high loss is more likely to be noisy, whereas [32] argues that a
noisy sample varies greatly in loss across multiple recommendation
models. Nevertheless, prior knowledge may not be readily available,
and its applicability may vary in different situations.

To address the limitations inherent in current methods, wemodel
recommendation denoising as a bi-level optimization problem,
which consists of two interdependent optimization sub-tasks: an
inner optimization for deriving an effective recommendation model
and an outer optimization for learning the weights while consider-
ing the impact of previous weights. The logic behind the bi-level
optimization can be succinctly explained by two considerations.
Firstly, by retaining the weights learned by the outer optimization
as global variables, previous adjustments to the weights can be
persistent, enabling the sharing of weight information throughout
model training. Secondly, it inherently unveils the fundamental
goal of recommendation denoising: augmenting recommendation
accuracy to guide the denoising procedure. The inner optimization
phase primarily focuses on enhancing the accuracy of the recom-
mendation model, while the outer optimization phase completes the
denoising process guided by the accuracy of the inner recommen-
dation model. Consequently, this approach primarily emphasizes
the improvement of accuracy and thus releases the dependence on
prior knowledge.

While the bi-level optimization approach to denoising has shown
promise in addressing the limitations of existing methods, it has in-
troduced new challenges as well. (1) It is storage-intensive because
the size of the weights equals to the product of the user number and
the item number in recommender systems if all samples are consid-
ered. As recommender systems expand, the number of users/items
can become substantial, leading to a requirement for a large amount
of memory to store the weights. (2) It is time-consuming to solve
the bi-level optimization problem as conventional solutions require
full training of the inner optimization to produce suitable gradients
for the outer optimization. To tackle these challenges, we provide
an efficient bi-level optimization framework for denoising (BOD).
For alleviating the storage demand, BOD employs the autoencoder
network [18] based generator to generate the weights on the fly.
This approach helps circumvent the high memory cost by storing
the generator, which possesses fewer parameters in comparison to
the weight variables. For reducing the computational time, BOD
adopts a one-step update strategy to optimize the outer task instead
of accumulating gradients from the inner optimization. Particularly,
we employ the gradient matching technique [16] to stabilize the
training and ensure the validity of the gradient information in the
one-step update.

Our contributions are summarized as follows.
• Wepropose a bi-level optimization framework to tackle the noise
in implicit feedback, which is prior knowledge-free and fully
utilizes the varying sample weights throughout model training.
• We provide an efficient solution for the proposed bi-level opti-
mization framework, which significantly reduces the storage
demand and computational time.
• The experimental results on three benchmark datasets demon-
strate that our proposed approach outperforms both state-of-
the-art general and denoising recommendation models.
The rest of this paper is structured as follows. Section 2 provides

the background on the relevant preliminaries. Section 3 presents
the bi-level optimization framework for recommendation denoising.
Section 4 provides the efficient solution to the proposed bi-level
optimization problem. The experimental results and analysis are
presented in Section 5. Section 6 reviews the related work for rec-
ommendation denoising. The paper is concluded in Section 7.

2 PRELIMINARY
2.1 Implicit Feedback Based Recommendation
Given a user-item interaction data D = {𝑢, 𝑖, 𝑟𝑢,𝑖 |𝑢 ∈ U, 𝑖 ∈ I},
whereU ∈ R |U | denotes the set of users, I ∈ R | I | denotes the set
of items, and 𝑟𝑢,𝑖 = {0, 1} indicates whether user 𝑢 has interacted
with item 𝑖 . In general, recommendation methods based on implicit
feedback are trained on interaction data D, to learn user represen-
tations ZU ∈ R |U |×𝑑 (𝑑 is the dimension of representations), item
representations ZI ∈ R | I |×𝑑 and a model 𝑓 with parameters 𝜃 𝑓 to
make predictions.

The training of recommendation model is formulated as follows:
𝜃∗
𝑓
= argmin

𝜃 𝑓

L𝑟𝑒𝑐 (D), (1)
whereL𝑟𝑒𝑐 is the recommendation loss, such as BPR loss [22, 23, 48]
and AU loss [26], and 𝜃∗

𝑓
is the optimal parameters of 𝑓 . Here, we

use the BPR loss as an instantiation of 𝐿𝑟𝑒𝑐 :

L𝑟𝑒𝑐 = E
(𝑢,𝑖, 𝑗)∼𝑃D

𝑙𝑜𝑔(𝜎 (𝑓 (z𝑢)𝑇 𝑓 (z𝑖)) − 𝑓 (z𝑢)𝑇 𝑓 (z𝑗)))), (2)

where 𝑃D (·) refers to the distribution defined on the interaction
data, the tuple (𝑢, 𝑖, 𝑗) denotes user 𝑢, a positive sample item 𝑖

with observed interactions, and a negative sample item 𝑗 without
observed interactions with 𝑢. This triple is obtained through the
pairwise sampling of positive and negative samples of 𝑢 ∈ U
following 𝑃D (·), and 𝜎 is the sigmoid function.

2.2 Recommendation Denoising
Implicit feedback possesses a high degree of noise. The common
way to denoise implicit feedback is to search a weight setW =

{𝑢, 𝑖, 𝑤𝑢,𝑖 |𝑢 ∈ U, 𝑖 ∈ I}, where 0 ≤ 𝑤𝑢,𝑖 ≤ 1 indicates the weight
for a sample (corresponds to the interaction between a user 𝑢 and
an item 𝑖), which can reflect the probability of a sample being truly
positive. If the weights are known, the recommendation model
is trained by considering the weights on the samples. Taking the
weighted BRP loss as an instance:

L𝑟𝑒𝑐 = E
(𝑢,𝑖, 𝑗)∼𝑃D

𝑙𝑜𝑔(𝜎 (𝑤𝑢,𝑖 𝑓 (z𝑢)𝑇 𝑓 (z𝑖))

−𝑤𝑢,𝑗 𝑓 (z𝑢)𝑇 𝑓 (z𝑗)))).
(3)

Efficient Bi-Level Optimization for Recommendation Denoising KDD ’23, August 6–10, 2023, Long Beach, CA, USA

011
100
010

Implicit Feedback

(a) Normal Training

011
100
010

(b) Denoising with prior knowledge

011
100
010

(c) Bi-level optimization for denoising

𝐖𝐞𝐢𝐠𝐡𝐭𝐬

RecModel RecModel RecModel

0.20.20.7

0.30.50.6

0.80.30.7

Prior
Knowledge

Gradient

𝐖𝐞𝐢𝐠𝐡𝐭𝐬

Optimization

Implicit Feedback Implicit Feedback

Figure 1: The comparison among (a) Normal recommendation model training without denoising, (b) Denoising training using
prior knowledge, and (c) Bi-level optimization for denoising. (b) and (c) are for recommendation denoising without extra
information, where the weights in (b) are initialized for recommendation model training in each iteration, but the weights in
(c) are stored as a global variable set.

Existing denoising methods typically follow an iterative process of
training a recommendation model with current weights and Equa-
tion 3, followed by weight updates based on the recommendation
model’s loss. As discussed in Section 1, this process has two limita-
tions: the neglect of previous weight information and the reliance
on prior knowledge to identify potential noisy samples. To address
these limitations, we introduce a novel denoising method based on
bi-level optimization.

3 BI-LEVEL OPTIMIZATION FOR DENOISING
Under the bi-level optimization setting, the inner optimization is to
derive the recommendation model 𝑓 , and the outer optimization is
to refine the sample weight variableW. The bi-level optimization
is formulated as follows:

min
W
LW (𝑓𝜃 ∗

𝑓
), 𝑠 .𝑡 ., 𝜃∗

𝑓
= argmin

𝜃 𝑓

L𝑟𝑒𝑐 (W,D), (4)

where LW is a defined loss for optimizingW, and L𝑟𝑒𝑐 is a rec-
ommendation loss over interaction dataD with weightsW. When
optimizingW with LW , we fix the recommendation model’s cur-
rent parameters 𝜃 𝑓 . Analogously, we fix the current weights when
optimizing the recommendation model 𝑓 with L𝑟𝑒𝑐 . In this frame-
work, the weight setW is a learnable global variable. Therefore, the
adjustments ofW in previous iterations affect the computation of
the currentW, which avoids the limitation that existing methods
cannot share weight information throughout model training. In
addition, the inner optimization guides the outer optimization for
learning appropriate weight variableW, eliminating the need for
prior knowledge.

Despite the benefits of bi-level optimization, it also comes with
new challenges. As stated in Section 1, in our setting it is infeasible
to storeW due to its sheer size, which is equal to |U| × |I| when
all possible interactions are considered. Our empirical findings
indicate that explicitly storingW for even moderate-sized datasets
can cause out-of-memory issues. Besides, an intuitive approach to
solving the bi-level optimization is to use the gradient information
generated in the inner optimization to guide the learning ofW

in the outer optimization [49], which requires the full training of
the inner optimization to obtain suitable gradients for the outer
optimization, leading to a significant time cost.

4 SOLVING BI-LEVEL OPTIMIZATION
In this section, we provide an efficient solution to the bi-level opti-
mization problem in Section 3.

4.1 Generator-Based Parameter Generation
To reduce the storage demand ofW, we apply a generative

network to generate each entry𝑤𝑢,𝑖 inW. Equation 5 shows the
generator as follows:

𝑤𝑢,𝑖 = 𝑔(𝑓𝜃 ∗
𝑓
(z𝑢), 𝑓𝜃 ∗

𝑓
(z𝑖)), (5)

where 𝑔 is the function of the generator whose parameters are 𝜃𝑔 .
The input of 𝑔 is the user embedding z𝑢 and the item embedding z𝑖
(transformed by the recommendation model 𝑓𝜃 ∗

𝑓
), and the output

of 𝑔 is the corresponding𝑤𝑢,𝑖 .
The network architecture of 𝑔 is a simplified version of the AE

(AutoEncoder) network [24]. As per the conventional AE network,
it comprises two essential components, namely the encoder layer
and the decoder layer. The formulation of 𝑔 is outlined as follows:

z = 𝑔𝑒 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑓𝜃 ∗
𝑓
(z𝑢), 𝑓𝜃 ∗

𝑓
(z𝑖))), (6)

𝑤𝑢,𝑖 = 𝑔𝑑 (z), (7)

where 𝑔𝑒 and 𝑔𝑑 refer to the fully connected layers of the encoder
and decoder, respectively. In an effort to reduce the number of
network parameters, we exclusively employ 1-lay fully connected
layer as the encoder and decoder layers.

As demonstrated by Equation 5, the weight 𝑤𝑢,𝑖 is not solely
dependent on an update to the generator 𝑔, but is contingent upon
the interplay between the generator 𝑔, the optimized recommen-
dation model 𝑓𝜃 ∗

𝑓
, the user representation z𝑢 , and the item repre-

sentation z𝑖 . This design is efficient because of two reasons: (1)
Great scalability and flexibility. The generator unifies all 𝑤𝑢,𝑖 in

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zongwei Wang, Min Gao, Wentao Li*, Junliang Yu, Linxin Guo, and Hongzhi Yin

W. The input z𝑢 and z𝑖 encoded by 𝑓𝜃 ∗
𝑓
can guarantee that𝑤𝑢,𝑖 be-

comes close if two user-item pairs are similar in the latent space, and
the generator 𝑔 provides 𝑤𝑢,𝑖 more variation. (2) Low space cost.
Despite the additional training time of the generator, this design
can avoid a significant space cost. More analysis of the model size
and time complexity can be seen in Section 4.4.

After using the generator, the update ofW in outer optimization
changes to the training of generator 𝑔, and the bi-level optimization
changes as follows:

min
𝜃𝑔
LW (𝑓𝜃 ∗

𝑓
), 𝑠 .𝑡 ., 𝜃∗

𝑓
= argmin

𝜃 𝑓

L𝑟𝑒𝑐 (8)

4.2 One-Step Gradient-Matching-Based Solving
To reduce the high time cost, in this part, we propose a one-step
gradient matching scheme. Specifically, we perform only a single
update to the recommendation model within the inner optimization.
To ensure that the gradient information from a single update can
effectively contribute to the outer optimization, we introduce a
gradient-matching mechanism that matches the gradient informa-
tion of the two models during the inner optimization.

This idea builds upon a prior work [49] that addresses the bi-
level optimization using gradient information from multiple up-
dates. During the inner optimization, the recommendation model is
optimized using gradient descent with a learning rate 𝜂, shown as:

𝜃 𝑓𝑡+1 ← 𝜃 𝑓𝑡 − 𝜂∇𝜃 𝑓𝑡 L𝑟𝑒𝑐 , (9)

where ∇𝜃 𝑓𝑡 L𝑟𝑒𝑐 represents the 𝑡-step gradient of recommendation
model 𝑓 with regard to L𝑟𝑒𝑐 , and multiple updates are allowed. In
the outer optimization, it is required to unroll the whole training
trajectory of the inner problem, which is computationally chal-
lenging and hinders scalability, leading us to develop an efficient
optimization technique.

With the aim to reduce the high time cost associated with the
optimization process, it is logical to think about updating the param-
eters in the inner optimization only once: in Equation 9, only one
gradient ∇𝜃 𝑓 L𝑟𝑒𝑐 is generated, and the parameter 𝜃 𝑓 is updated
immediately. We thus remove the step notation 𝑡 from Equation 9
since we only perform the one-step calculation. After obtaining the
(one-step) gradient ∇𝜃 𝑓 L𝑟𝑒𝑐 and update 𝜃 𝑓 , we proceed to update
𝜃𝑔 based on gradient ∇𝜃 𝑓 L𝑟𝑒𝑐 . This leads to an efficient optimiza-
tion, as it avoids the need for multiple updates w.r.t parameters in
the inner optimization, as required by the outer optimization.

However, while the one-step gradient leading training accel-
erates the computational process, it may negatively impact the
training of the generator 𝑔, as it reduces the amount of gradient
information available. Multiple gradients contain more valuable
information, such as the dynamic trend of the gradient, which is
necessary for guiding the training of 𝑔 in the correct direction. To
tackle this issue, we propose to use additional recommendation
losses to train recommendation model simultaneously, which pro-
vide more gradient information. It is important to note that blindly
incorporating all gradient information into the training of 𝑔 would
not result in a positive change. Instead, an elegant combination of
the gradient information is necessary to effectively train 𝑔.

Motivated by [15, 16, 21, 47], we adopt the gradient matching
scheme to guide the optimization of the generator 𝑔. Specifically,

gradient matching involves defining two types of losses and op-
timizing the model by minimizing the difference between them,
i.e., the models trained on these two losses converge to similar
parameters. With the gradient matching scheme, the ultimate form
of the bi-level optimization is as follows:

min
𝜃𝑔

𝐷 (∇𝜃 𝑓 𝑡L𝑟𝑒𝑐1,∇𝜃 𝑓 𝑡L𝑟𝑒𝑐2),

𝑠 .𝑡 ., 𝜃∗
𝑓
= argmin

𝜃 𝑓

(L𝑟𝑒𝑐1 (W,D) + 𝛼L𝑟𝑒𝑐2 (W,D)), (10)

where weight 𝛼 control the balance of two recommendation loss,
and L𝑟𝑒𝑐1 and L𝑟𝑒𝑐2 can be any two common recommendation
loss functions. ∇𝜃 𝑓 𝑡L𝑟𝑒𝑐1 and ∇𝜃 𝑓 𝑡L𝑟𝑒𝑐2 are gradients of L𝑟𝑒𝑐1
and L𝑟𝑒𝑐2 respectively. In the gradient matching, our purpose is
to optimize 𝑔 such that two different one-step gradients are pulled
closer, and the 𝐷 (·) is the distance function [16], which is shown
as follows:

𝐷 (𝐺1,𝐺2) =
𝑑2∑︁
𝑐=1
(1 − 𝐺1

𝑐 ·𝐺2
𝑐

∥𝐺1
𝑐 ∥∥𝐺2

𝑐 ∥
), (11)

where 𝐺1 ∈ R𝑑1×𝑑2 and 𝐺2 ∈ R𝑑1×𝑑2 are gradients at a specific
layer, 𝑑1, 𝑑2 are the number of rows and columns of the gradient
matrices, and 𝐺1

𝑐 ∈ R𝑑1 and 𝐺2
𝑐 ∈ R𝑑1 refer to the 𝑐-th column

vectors of the gradient matrices.
The advantages of using the gradient matching scheme include:

(1) Diverse perspectives. Gradient matching entails utilizing two
distinct gradients, enabling the model to update and explore the
data from various angles, thereby enhancing its performance. (2)
Improved stability. By aligning or matching the different gradients,
the model’s training process can potentially remain stable. This
alignment ensures reasonable exploitation of the data. In clean
samples, the gradients corresponding to the two losses exhibit
minimal differences and remain stable. Conversely, noisy samples
may result in substantial differences between the gradients. By
aligning the two gradients, the scheme effectively emphasizes the
differences between clean and noisy samples, further highlighting
the disparity between them. (3) Efficiency in computational cost.
The use of one-step gradient information during the optimization
of the generator 𝑔 reduces the computational overhead as it is
generated during the training of the recommendation model;

Note that, since ∇𝜃 𝑓 𝑡L𝑟𝑒𝑐1 and ∇𝜃 𝑓 𝑡L𝑟𝑒𝑐2 are unstable in the ini-
tial stage of recommendation model training, the one-step gradient
matching might fail if directly using to train generator 𝑔 because
of the large difference between ∇𝜃 𝑓 𝑡L𝑟𝑒𝑐1 and ∇𝜃 𝑓 𝑡L𝑟𝑒𝑐2. To get a
relatively suitable ∇𝜃 𝑓 𝑡L𝑟𝑒𝑐1 and ∇𝜃 𝑓 𝑡L𝑟𝑒𝑐2, we will pre-train the
recommendation model 𝑓 to a stable state, i.e., the warm-up stage,
and then use one-step gradient matching to train 𝑔.

4.3 The Framework BOD
By incorporating the concept of generator-based parameter gen-
eration and one-step gradient matching scheme, we effectively
minimize the computational demands of bi-level optimization for
denoising. The resulting framework, referred to asBOD (as depicted
in Fig. 2), serves as a general solution for recommendation denois-
ing. Algorithm 1 shows the learning process of BOD. It is described
as follows: (1) Towards inner optimization solving (Line 3-6): the
inner optimization is to train the recommendation model over

Efficient Bi-Level Optimization for Recommendation Denoising KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Outer
Optimization

Inner
Optimization

1 1 0
0 0 1
0 1 0

Implicit Feedback

RecModel

0.7 0.2 0.2

0.6 0.5 0.3

0.7 0.3 0.8

∇1

∇2

One-step
Gradient
Matching

��

Weights

Figure 2: The framework BOD.

implicit feedback data with weights. Using two losses, we can
generate corresponding one-step gradients ∇𝜃𝑟𝑒𝑐1

𝑓 𝑡
and ∇𝜃𝑟𝑒𝑐2

𝑓 𝑡
. (2)

Towards outer optimization solving (Line 7-8): the outer optimiza-
tion uses gradient matching to guide the generator training, which
can generate weights for the next step of bi-level optimization.

Algorithm 1: The proposed BOD framework
Input: interactions data D, recommendation model 𝑓 ,

generator 𝑔
Output: recommendation model with optimal para. 𝑓𝜃 ∗

𝑓

1 warm-up the recommendation model 𝑓 and randomly
initialize parameters of 𝑔;

2 while not converged do
// inner optimization: fix 𝑔’s parameters 𝜃𝑔

3 sample a batch tuple (𝑢, 𝑖, 𝑗), and generate
corresponding𝑤𝑢,𝑖 and𝑤𝑢,𝑗 by 𝑔;

4 calculate L𝑟𝑒𝑐1 and L𝑟𝑒𝑐2;
5 one update 𝑓𝜃 𝑓 to 𝑓𝜃 ∗

𝑓
based on L𝑟𝑒𝑐1+𝛼L𝑟𝑒𝑐2;

6 record ∇𝜃𝑟𝑒𝑐1
𝑓 𝑡

and ∇𝜃𝑟𝑒𝑐2
𝑓 𝑡

;

// outer optimization:fix 𝑓 ’s optimal

parameters 𝜃∗
𝑓

7 calculate matching distance loss 𝐷 (∇𝜃𝑟𝑒𝑐1
𝑓 𝑡

,∇𝜃𝑟𝑒𝑐2
𝑓 𝑡

);

8 optimize 𝜃𝑔 based on 𝐷 (∇𝜃𝑟𝑒𝑐1
𝑓 𝑡

,∇𝜃𝑟𝑒𝑐2
𝑓 𝑡
);

The framework BOD is characterized by its generality, as demon-
strated in Equation 10, where the specific recommendation model is
not specified. To apply the framework to a specific recommendation
model 𝑓 , the two recommendation losses for gradient matching
must be specified, as described in Algorithm 1. The choice of the
recommendation losses is flexible and not subject to any constraints.
As a demonstration, we choose the BRP loss [22, 23, 48], which is a
classical method used in recommendation denoising (referred to
in Section 2), and the AU loss [26] (presented in Appendix A.1),
which is a recent development. Through this example, the denoising
method for the specific recommendation model 𝑓 can be generated
based on the BOD framework and the two loss functions specified.
Our contribution to the field is not the specific choice of recom-
mendation losses, but rather the design of a general denoising

framework BOD that can incorporate any two recommendation
losses for recommendation denoising.

4.4 Complexity Analysis
We summarize the complexity of the base model, existing denoising
methods, BOD without the generator, and BOD in Table 1.

Model Size. The parameters of BOD come from two parts: (1)
the parameters of recommendation models, which we assume is
𝑀 ; and (2) the parameters of the generator. For the generator, we
need additional parameters for the encoder layer 𝐸𝑁 ∈ R2𝑑×𝑑𝑔 ,
and the decoder layer 𝐷𝐸 ∈ R𝑑𝑔×1, where 𝑑 is the embedding
size of user and item in recommendation model, and 𝑑𝑔 is the
hidden layer size of the generator. Overall, the space cost of BOD
is 𝑀 + 𝐸𝑁 + 𝐷𝐸, which is negligible compared with full weights
matrix W ∈ R |U |× |I | . This shows that the space cost can be
greatly reduced by using the generator.

Time Complexity. The complexity of BOD consists of two parts.
(1) Inner optimization: the update of recommendation model pa-
rameters, which we assume is O(𝑀); and (2) Outer optimization:
the update of the generator, which generates weights. The time
complexity of the generator includes encoder layer O(𝑑 (𝑑𝑔)) and
the decoder layer O(𝑑𝑔), respectively. It is obvious that our scheme
can save a lot of time costs because O(𝑀 |U||I|) appears in other
denoising methods are much larger.

Table 1: Model complexity comparison.
Model Model Size Time Complexity

Base Model 𝑀 O(𝑀)
Denoising methods 𝑀 + |U | |I | O (𝑀 |U | |I |)

BOD 𝑤/𝑜 𝑔𝑒𝑛 𝑀 + |U | |I | O (𝑀 + |U | |I |)
BOD 𝑀 + 𝐸𝑁 +𝐷𝐸 O(𝑀 + 𝑑 (𝑑𝑔) + (𝑑𝑔))

5 EXPERIMENTS
This section tests the effectiveness of our proposed BOD. Specifi-
cally, we aim to answer the following questions.(RQ1): How does
the performance and robustness of BOD against cutting-edge de-
noising methods? (RQ2): What is the running time of BOD? (RQ3):
How does the inner optimization affect BOD? (RQ4): How does the
generator affect BOD? (RQ5): What is the stability of BOD? (RQ6):
How about the generalizability of BOD?

Table 2: Statistics of datasets.

Dataset #Users #Items #Interactions Density

Beauty 22,363 12,099 198,503 0.073%
iFashion 300,000 81,614 1,607,813 0.006%
Yelp2018 31,668 38,048 1,561,406 0.130%

5.1 Performance and Robustness (RQ1)
5.2 Experimental Settings
Datasets.Three commonly used public benchmark datasets: Beauty
[26], iFashion [36], and Yelp2018 [11], are used in our experiments.
The dataset statistics are shown in Table 2.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zongwei Wang, Min Gao, Wentao Li*, Junliang Yu, Linxin Guo, and Hongzhi Yin

Table 3: Performance comparison of different denoising methods on the robust recommendation. The highest scores are in
bold, and the second best are with underlines. R and N refer to Recall and NDCG, respectively.

Dataset Beauty iFashion Yelp2018

Base Model Method R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

GMF

Normal 0.0639 0.0922 0.0429 0.0518 0.0286 0.0462 0.0157 0.0205 0.0290 0.0500 0.0331 0.0411
WBPR 0.0640 0.0919 0.0430 0.0516 0.0284 0.0461 0.0158 0.0205 0.0289 0.0498 0.0330 0.0409
WRMF 0.0714 0.1039 0.0480 0.0582 0.0397 0.0589 0.0211 0.0265 0.0304 0.0539 0.0338 0.0422
T-CE 0.0785 0.1085 0.0532 0.0654 0.0385 0.0583 0.0193 0.0256 0.0302 0.0538 0.0335 0.0421
DeCA 0.0767 0.1081 0.0535 0.0669 0.0426 0.0626 0.0234 0.0297 0.0298 0.0532 0.0336 0.0415
SGDL 0.0804 0.1092 0.0546 0.0675 0.0435 0.0646 0.0226 0.0289 0.0305 0.0541 0.0351 0.0436

BOD 0.0843 0.1193 0.0579 0.0688 0.0596 0.0860 0.0355 0.0426 0.0357 0.0621 0.0408 0.0513

NCF

Normal 0.0738 0.1075 0.0488 0.0593 0.0404 0.0632 0.0227 0.0288 0.0281 0.0493 0.0324 0.0406
WBPR 0.0741 0.1082 0.0494 0.0600 0.0410 0.0638 0.0231 0.0292 0.0288 0.0499 0.0331 0.0410
WRMF 0.0745 0.1097 0.0498 0.0611 0.0455 0.0667 0.0247 0.0306 0.0292 0.0503 0.0335 0.0413
T-CE 0.0798 0.1123 0.0506 0.0632 0.0546 0.0684 0.0268 0.0368 0.0301 0.0521 0.0335 0.0415
DeCA 0.0886 0.1265 0.0588 0.0646 0.0547 0.0756 0.0315 0.0421 0.0297 0.0535 0.0351 0.0459
SGDL 0.0864 0.1235 0.0610 0.0698 0.0588 0.0846 0.0311 0.0329 0.0325 0.0598 0.0388 0.0465

BOD 0.0959 0.1352 0.0652 0.0774 0.0624 0.0909 0.0366 0.0442 0.0370 0.0633 0.0434 0.0531

NGCF

Normal 0.0726 0.1080 0.0465 0.0575 0.0351 0.0579 0.0188 0.0250 0.0231 0.0418 0.0263 0.0336
WBPR 0.0731 0.1092 0.0476 0.0589 0.0364 0.0598 0.0197 0.0266 0.0240 0.0422 0.0271 0.0343
DeCA 0.0834 0.1275 0.0587 0.0665 0.0587 0.0855 0.0247 0.0356 0.0287 0.0486 0.0299 0.0435
SGDL 0.0935 0.1389 0.0635 0.0758 0.0566 0.0848 0.0225 0.0345 0.0297 0.0503 0.0348 0.0445

BOD 0.1015 0.1415 0.0702 0.0827 0.0716 0.1053 0.0390 0.0480 0.0331 0.0565 0.0377 0.0466

LightGCN

Normal 0.0855 0.1221 0.0561 0.0675 0.0429 0.0661 0.0247 0.0310 0.0308 0.0532 0.0361 0.0445
WBPR 0.0864 0.1261 0.0588 0.0685 0.0431 0.0662 0.0253 0.0316 0.0317 0.0529 0.0365 0.0448
DeCA 0.0967 0.1345 0.0665 0.0754 0.0540 0.0865 0.0354 0.0435 0.0337 0.0511 0.0432 0.0524
SGDL 0.0946 0.1365 0.0677 0.0769 0.0591 0.0908 0.0342 0.0415 0.0339 0.0541 0.0441 0.0575

SGL 0.1005 0.1422 0.0692 0.0821 0.0665 0.0973 0.0392 0.0475 0.0374 0.0639 0.0436 0.0534
SimGCL 0.0960 0.1316 0.0671 0.0781 0.0738 0.1070 0.0434 0.0523 0.0414 0.0711 0.0485 0.0593

BOD 0.1095 0.1548 0.0755 0.0895 0.0811 0.1180 0.0477 0.0576 0.0416 0.0700 0.0490 0.0588

EvaluationMetrics.We split the datasets into three parts (training
set, validation set, and test set) with a ratio of 7:1:2. Two common
evaluation metrics are used, Recall@𝐾 and NDCG@𝐾 . We set𝐾=10
and 𝐾=20. Each metric is conducted 10 times, and then we report
the average results.

Baselines. The main objective of this paper is to denoise the feed-
back to improve the performance of recommender systems. For
this purpose, four commonly used (implicit feedback-based) recom-
mendation models are chosen as base models for recommendation
denoising:
• GMF [10] is a generalized version of matrix factorization based
recommendation model.
• NCF [13] generalizes collaborative filtering with a Multi-Layer
Perceptron.
• NGCF [31] applies graph convolution network (GCN) to encode
user-item bipartite graph.
• LightGCN [11] is a state-of-the-art graph model, which discards
the nonlinear feature transformations to simplify the design of
GCN for the recommendation.

To compare the denoising effect, we first choose four existing
denoising methods for the above recommendation models:
• WBPR [6] considers popular but uninteracted items as true
negative samples. We take the number of interactions of items
as the popularity.

• WRMF [14] uses weighted matrix factorization whose weights
are fixed to denoise recommendation.
• T-CE [30] is the denoising method, which uses the binary cross-
entropy (BCE) loss [19, 44] to assign weights to large loss sam-
ples with a dynamic threshold. Because the BCE loss only applies
to some recommendation models, we can only get (and thus
report) the results of T-CE in GMF and NCF, but not in the other
two base models.
• DeCA [32] combines predictions of two different models to
consider the disagreement of noisy samples.
• SGDL [7] is the state-of-the-art denoising model, which collects
clean interactions in the initial training stages, and uses them
to distinguish noisy samples based on the similarity of collected
clean samples.

To further confirm the effectiveness of our model, we also com-
pare BOD with the state-of-the-art robust recommendation models
SGL and SimGCL:
• SGL [36] applies edge dropout to modify discrete graph struc-
ture randomly and trains different graphs based on contrastive
learning to enhance the representation of nodes.
• SimGCL [41] simplifies the contrastive loss and optimizes rep-
resentations’ uniformity.

Efficient Bi-Level Optimization for Recommendation Denoising KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Since SGL and SimGCL use LightGCN as the base model in their
work, so we only compare them when LightGCN is used and ignore
the results on the other base models.

Our Method BOD. If not stressed, the two loss functions of BOD
are BPR and AU losses, respectively.

Parameter Settings.We implementBOD in Pytorch. If not stressed,
we use recommended parameter settings for all models, in which
batch size, learning rate, embedding size, and the number of Light-
GCN layers are 128, 0.001, 64, and 2, respectively. For SGL, the
edge dropout rate is set to 0.1. We optimize them with Adam [17]
optimizer and use the Xavier initializer [8] to initialize the model
parameters.

Performance Comparison. We first compare BOD with exist-
ing denoising methods and robust recommendation methods on
three different datasets. Table 3 shows the results, where figures in
bold represent the best performing indices, and the runner-ups are
presented with underlines. According to Table 3, we can draw the
following observations and conclusions:
• The proposed BOD can effectively improve the performance of
four base models and show the best/second performance in all
cases. We attribute these improvements to the storage and uti-
lization of weights. In the bi-level process, BOD dynamically up-
dates and stores the weights for all samples, including observed
and unobserved samples. While other baselines (e.g., DeCA and
SGDL) are insufficient to provide dynamically updated weights.
• All denoising approaches have better results than normal train-
ing, which indicates the validity of denoising in recommenda-
tions. The results are consistent with prior studies [7, 32].
• The improvement on Yelp2018 dataset is less significant than
that on other datasets. One possible reason is that Yelp2018
dataset has a higher density than the others. Thus there are
enough pure informative interactions for identifying user be-
havior, compensating for the effect of noisy negative samples.

Robustness Comparison. We also conduct experiments to check
BOD’s robustness. Following previous work [36], we add a certain
proportion of adversarial examples (i.e., 5%, 10%, 15%, 20% negative
user-item interactions) into the training set, while keeping the
testing set unchanged. Figure. 3 shows the experimental results on
Beauty dataset. We can see the results of BOD maintain the best
in all cases, despite performances reduced as noise data adding.
Besides, the trend of BOD’s drop percent curve keeps the minor
change, which illustrates that BOD is the least affected by noise.
This suggests that the denoising process of BOD can better figure
out useful patterns under noisy conditions.

5.3 Time Complexity Analysis (RQ2)
In this part, we set LightGCN as the base model and report the real
running time of compared methods for one epoch. The results in
Table 4 are collected on an Intel(R) Core(TM) i9-10900X CPU and
a GeForce RTX 3090Ti GPU. As shown in Table 4, we can see the
running time increases with the volume of the datasets. Besides,
the running speed of BOD is much quicker than denoising methods
(T-CE, DeCA, and SGDL), even though they only deal with positive
samples. Furthermore, SGL and SimGCL do not need additional
time on denoising training, but the time cost of BOD is still less

0 0.05 0.1 0.15 0.2
Ratio (Beuaty)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

R
ec

al
l@

20

DeCA
SimGCL
SGL
SimGCL
BOD

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
ro

p
Pe

rc
en

t

DeCA
SGDL
SGL
SimGCL
BOD

Figure 3: Model performance w.r.t. noise ratio.

than those of SGL and SimGCL, which proves that the generator-
based one-step gradient matching scheme can save much time from
the computation.

5.4 The Effect of Inner Optimization on BOD
(RQ3)

In Equation 10 of Section 4.2, we design the objective function of the
inner optimization using the weighted sum of the two recommen-
dation losses. However, in order to solve for the outer optimization,
we only need the inner optimization to provide (two gradients). It
may appear that solving the inner optimization with the weighted
sum of losses is unnecessary. Yet, our analysis demonstrates the
importance of including both losses. For this purpose, we discuss
the following three cases:
• BODBPR: We calculate BPR and AU loss both to get correspond-
ing gradients, but only use the BPR’s gradient to optimize the
recommendation model in the inner optimization.
• BODAU: Similar to the previous case, the difference is that we
use the gradient generated from AU loss to optimize the recom-
mendation model.
• BODBPR+AU: In this (default) case, we use BPR’s gradient and
AU’s gradients with the weight 𝛼 to control the balance, to
optimize recommendation model.
It is worth reminding that we hardly execute BOD without the

generator due to the expensive space cost ("out of memory" will be
displayed). As Table 5 shows, we find that if we only use one loss to
optimize the recommendation model in the inner optimization, its
performance is not as good as the case when two losses are used.

Table 4: Running time in seconds per epoch.

method Beauty iFashion Yelp2018

Normal 3.47(+0.08) 89.22(+3.86) 63.39(+3.23)

T-CE 41.5(+2.06) 765.64(+26.87) 631.45(+21.33)
DeCA 25.10(+1.28) 556.50(+18.78) 478.68(+19.01)
SGDL 32.12(+1.82) 688.21(+20.43) 564.46(+16.92)
SGL 8.12(+0.58) 302.32(+12.26) 270.17(+11.81)

SimGCL 7.26(+0.40) 273.66(+11.31) 159.24(+8.01)

BOD 6.82(+0.16) 97.38(+4.11) 75.98(+3.44)

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zongwei Wang, Min Gao, Wentao Li*, Junliang Yu, Linxin Guo, and Hongzhi Yin

Table 5: The Effect of Inner optimization on BOD.

Dataset Beauty iFashion Yelp2018

Base Model Component R@20 N@20 R@20 N@20 R@20 N@20

GMF
BODBPR 0.1029 0.0599 0.0664 0.0306 0.0531 0.0422
BODAU 0.1133 0.0659 0.0705 0.0313 0.0547 0.0461

BODBPR+AU 0.1193 0.0688 0.0860 0.0426 0.0621 0.0513

NCF
BODBPR 0.1208 0.0683 0.0806 0.0385 0.0564 0.0432
BODAU 0.1289 0.0739 0.0824 0.0386 0.0511 0.0411

BODBPR+AU 0.1352 0.0774 0.0909 0.0442 0.0633 0.0531

NGCF
BODBPR 0.1295 0.0715 0.0976 0.0354 0.0476 0.0406
BODAU 0.1297 0.0717 0.0983 0.0385 0.0545 0.0454
BODAU 0.1415 0.0827 0.1053 0.0480 0.0565 0.0466

LightGCN
BODBPR 0.1386 0.0868 0.0984 0.0415 0.0598 0.0523
BODAU 0.1400 0.0876 0.1054 0.0443 0.0625 0.0546

BODBPR+AU 0.1548 0.0895 0.1180 0.0576 0.7000 0.0588

5.5 The Effect of Generator on BOD (RQ4)
We delve deeper into the impact of generator design on perfor-
mance. For this reason, we compare the applied AE method (using
2-layer Multi-Layer Perceptron, denoted as 2-MLP) with the classi-
cal variational autoencoder method (denoted as VAE) [18]. We also
change the number of MLP layers to 1 and 3 (denoted as 1-MLP and
3-MLP) to further illustrate the difference. We perform experiments
on the Beauty dataset and use LightGCN as the recommendation
encoder. The experimental in Table 6 outcomes demonstrate that
employing the 2-MLP method as a generator can yield improve-
ments to a certain extent compared to the classical VAE method. In
addition, the 2-MLP increases with the number of MLP layers and
reaches stability at 2 layers. Therefore, we used the 2-layer MLP
based AE method in the paper.

Table 6: The Effect of Generator on BOD.

Method Recall@10 Recall@20 NDCG@10 NDCG@20

1-MLP 0.1011 0.1498 0.0718 0.0855
3-MLP 0.1095 0.1548 0.0755 0.0894
VAE 0.1074 0.1532 0.0731 0.0888

2-MLP (ours) 0.1095 0.1548 0.0755 0.0895

5.6 Parameters Sensitivity Analysis (RQ5)
We investigate the model’s sensitivity to the hyperparameters 𝛼
in Equation 10 and 𝛾 in Equation 12 (see Appendix). We fix 𝛼 as 1
and try different values of 𝛾 with the set [0.2, 0.5, 1, 2, 5, 10], then
we fix 𝛾 as 1 and try different values of 𝛼 with the set [0.2, 0.5, 1, 2,
5, 10]. As shown in Fig. 4, we can observe the performance keep
stable as 𝛼 changes. Besides, a similar trend in the performance of 𝛾
increases first and then decreases on all the datasets. BOD reaches
its best performance when 𝛾 is in [0.5, 1, 2], which suggests that
the weights of alignment and uniformity should be balanced at the
same level.

5.7 Generalizability Analysis (RQ6)
We emphasize that our framework BOD is generic, which means
that it can apply to any recommendation model in a plug-and-play
fashion. One thing of interest is whether we can further improve

0.2 0.5 1 2 5 10
0.06

0.08

0.10

0.12

0.14

0.16 0.1549

0.0893

Beauty

Recall@20
NDCG@20

0.2 0.5 1 2 5 10

0.04

0.06

0.08

0.10

0.12 0.118

0.0577

Alibaba-iFashion

Recall@20
NDCG@20

0.2 0.5 1 2 5 10
0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.07

0.0588

Yelp2018

Recall@20
NDCG@20

0.2 0.5 1 2 5 10

0.06

0.08

0.10

0.12

0.14

0.16 0.1552

0.0895

Recall@20
NDCG@20

0.2 0.5 1 2 5 10

0.04

0.06

0.08

0.10

0.12 0.1173

0.0571

Recall@20
NDCG@20

0.2 0.5 1 2 5 10

0.04

0.05

0.06

0.07

0.08

0.0703

0.0591

Recall@20
NDCG@20

Figure 4: Parameter sensitivity with regard to 𝛼 and 𝛾 .

the performance of the latest robust recommendation models SGL
and SimGCL. To this end, we use SGL and SimGCL as base models
for BOD, and the results are shown in Fig. 5. From the experimental
results, we conclude that BOD does further improve the perfor-
mance of these two methods. This confirms the generalizability of
our method.

Beauty Alibaba-iFashion Yelp2018
0.00

0.05

0.10

0.15

0.20

0.25

R
ec

al
l@

20

SGL
BOD-SGL
SimGCL
BOD-SimGCL

Beauty Alibaba-iFashion Yelp2018
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
D

C
G

@
20

SGL
BOD-SGL
SimGCL
BOD-SimGCL

Figure 5: The generalizability of BOD to SGL and SimGCL.

6 RELATEDWORK
Our study endeavors to denoise recommendations by employing a
bi-level optimization framework. To begin with, we present various
bi-level optimization methods applied in recommendation. Concur-
rently, researchers attempt to denoise implicit feedback through
many avenues, and we mainly focus on denoising methods without
extra information in this paper.

Bi-level Optimization in Recommendation. Bi-level optimiza-
tion techniques have been extensively utilized in the domain of
recommender systems [2, 5, 12]. For instance, APR introduces ad-
versarial perturbations to model parameters as a means to improve
recommendations through adversarial training. IRGAN employs
a game-theoretical minimax game to iteratively optimize both a
generative model and a discriminative model, ultimately generat-
ing refined recommendation results. Adv-MultVAE incorporates
adversarial training into MultVAE architecture to eliminate implicit
information pertaining to protected attributes while preserving
recommendation performance. These approaches showcase the ef-
fectiveness of bi-level optimization in enhancing recommendation

Efficient Bi-Level Optimization for Recommendation Denoising KDD ’23, August 6–10, 2023, Long Beach, CA, USA

performance, yet there is currently a dearth of research addressing
denoising within this context.

Denoising Methods. A straightforward way approach [6, 34] to
denoising implicit feedback is to select clean and informative sam-
ples and use them to train a recommendation model. For example,
WBPR [6] notices that popular items are more likely real negative
instances if they have missing actions, and then samples popular
items with higher probabilities. IR [34] produces synthetic labels for
user preferences depending on the distinction between labels and
predictions, to uncover false-positive and false-negative samples.
However, the variability of their performance is wide due to their
reliance on the sampling distribution [43]. Thus, some methods
[7, 30, 32] provide contribution weight for each sample during rec-
ommendation model training. T-CE [30] proposes to assign lower
weights to large loss samples with a dynamic threshold because they
find that a sample with high loss is more likely to be noisy. DeCA
[32] assumes that different models make relatively similar predic-
tions on clean examples, so it incorporates the training process
of two recommendation models and distinguishes clean examples
from positive samples based on two different predictions. SGDL [7]
claims that models tend to dig out clean samples in the initial train-
ing stages, and then adaptively assign weights for samples based
on the similarity of collected clean samples. We can notice that
existing methods often resort to prior knowledge for determining
weights, but prior knowledge has its own scope of application since
we cannot be sure of the validity of prior knowledge itself.

Other Directions. There are also some robust recommendation
methods [42] that do not belong to the above methods. For exam-
ple, SGL [36] creates two additional views of graphs by adding
and dropping edges and leverages contrastive learning to distin-
guish hard noisy samples. Recently, several works have considered
augmentation from the perspective of embeddings. For example,
SimGCL [41] considers embeddings distribution, and thus trains
models to force the distribution of embeddings to fit uniformity.

It should be noted that previous research often uses additional
information (attribute features [46], social information [40], etc.) to
process weights. This paper discusses denoising tasks in extreme
situations where only implicit feedback information can be ob-
tained, so we do not introduce some denoising methods with extra
information [4, 19, 25, 37, 45].

7 CONCLUSION
In this paper, we model recommendation denoising as bi-level op-
timization and propose an efficient solution for the proposed bi-
level optimization framework, called BOD. In BOD, a generator-
based parameter generation technique to save space, and a gradient-
matching-based parameter-solving technique to save time. Exten-
sive experiments on three real-world datasets demonstrate the
superiority of BOD. Moving forward, our future research will focus
on investigating more efficient approaches within the bi-level opti-
mization framework to address specific challenges associated with
recommendation denoising. One existing challenge pertains to the
presence of noisy data in the test sets, which cannot be effectively
identified during the bi-level optimization process.

ACKNOWLEDGMENTS
This work is partially supported by the National Natural Science
Foundation of China (62176028), Australian Research Council Fu-
ture Fellowship (Grant No. FT210100624) and Discovery Project
(Grant No. DP190101985).

REFERENCES
[1] Zhi Bian, Shaojun Zhou, Hao Fu, Qihong Yang, Zhenqi Sun, Junjie Tang, Guiquan

Liu, Kaikui Liu, and Xiaolong Li. 2021. Denoising user-aware memory network
for recommendation. In Proceedings of ACM Conference on Recommender Systems
2021. 400–410.

[2] Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jung-Tae Lee. 2018. Cfgan:
A generic collaborative filtering framework based on generative adversarial
networks. In Proceedings of the 27th ACM international conference on information
and knowledge management. 137–146.

[3] Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli
Lin, and Keping Yang. 2021. AutoDebias: Learning to debias for recommenda-
tion. In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval 2021. 21–30.

[4] Jingtao Ding, Guanghui Yu, Xiangnan He, Fuli Feng, Yong Li, and Depeng Jin.
2019. Sampler design for bayesian personalized ranking by leveraging view data.
IEEE Transactions on Knowledge and Data Engineering 33, 2 (2019), 667–681.

[5] Christian Ganhör, David Penz, Navid Rekabsaz, Oleg Lesota, and Markus Schedl.
2022. Unlearning Protected User Attributes in Recommendations with Adversar-
ial Training. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2142–2147.

[6] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, and Lars Schmidt-
Thieme. 2012. Personalized ranking for non-uniformly sampled items. In Pro-
ceedings of KDD Cup 2011. PMLR, 231–247.

[7] Yunjun Gao, Yuntao Du, Yujia Hu, Lu Chen, Xinjun Zhu, Ziquan Fang, and
Baihua Zheng. 2022. Self-Guided Learning to Denoise for Robust Recommenda-
tion. In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval 2022. ACM, 1412–1422.

[8] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics 2010. JMLR, 249–256.

[9] Lei Guo, Hongzhi Yin, Qinyong Wang, Tong Chen, Alexander Zhou, and Nguyen
Quoc Viet Hung. 2019. Streaming session-based recommendation. In Proceedings
of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2019.
1569–1577.

[10] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval 2017. 355–364.

[11] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval 2020. 639–648.

[12] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial
personalized ranking for recommendation. In The 41st International ACM SIGIR
conference on research & development in information retrieval. 355–364.

[13] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[14] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In IEEE International Conference on Data Mining 2008.
263–272.

[15] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang,
and Bing Yin. 2022. Condensing graphs via one-step gradient matching. In
Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining 2022. 720–730.

[16] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah.
2021. Graph Condensation for Graph Neural Networks. In International Confer-
ence on Learning Representations 2021.

[17] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[18] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[19] Defu Lian, Yongji Wu, Yong Ge, Xing Xie, and Enhong Chen. 2020. Geography-
aware sequential location recommendation. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining 2020. 2009–2019.

[20] Hongyu Lu, Min Zhang, and Shaoping Ma. 2018. Between clicks and satisfaction:
Study on multi-phase user preferences and satisfaction for online news read-
ing. In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval 2018. 435–444.

[21] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. 2021. Dataset
distillation with infinitely wide convolutional networks. Advances in Neural
Information Processing Systems 34 (2021), 5186–5198.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Zongwei Wang, Min Gao, Wentao Li*, Junliang Yu, Linxin Guo, and Hongzhi Yin

[22] Weike Pan and Li Chen. 2013. Gbpr: Group preference based bayesian personal-
ized ranking for one-class collaborative filtering. In Proceedings of International
Joint Conference on Artificial Intelligence 2013.

[23] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars BPR Schmidt-
Thieme. 2014. Bayesian personalized ranking from implicit feedback. In Proc. of
Uncertainty in Artificial Intelligence 2014. 452–461.

[24] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.
2011. Contractive auto-encoders: Explicit invariance during feature extraction.
In Proceedings of the 28th international conference on international conference on
machine learning 2011. 833–840.

[25] Jiliang Tang, Xia Hu, Huiji Gao, and Huan Liu. 2013. Exploiting local and global
social context for recommendation.. In Proceedings of International Joint Confer-
ence on Artificial Intelligence 2013, Vol. 13. 2712–2718.

[26] Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu,
and Shaoping Ma. 2022. Towards Representation Alignment and Uniformity
in Collaborative Filtering. In Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining 2022. 1816–1825.

[27] J Wang, L Yu, W Zhang, Y Gong, Y Xu, B Wang, P Zhang, and D Zhang. 2018. A
minimax game for unifying generative and discriminative information retrieval
models. Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval 2018 (2018).

[28] QinyongWang, Hongzhi Yin, HaoWang, Quoc Viet Hung Nguyen, Zi Huang, and
Lizhen Cui. 2019. Enhancing collaborative filtering with generative augmentation.
In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining 2019. 548–556.

[29] TongzhouWang and Phillip Isola. 2020. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In Proceedings
of International Conference on Machine Learning 2020. PMLR, 9929–9939.

[30] Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2021.
Denoising implicit feedback for recommendation. In Proceedings of the ACM
International Conference on Web Search and Data Mining 2021. 373–381.

[31] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[32] Yu Wang, Xin Xin, Zaiqiao Meng, Joemon M Jose, Fuli Feng, and Xiangnan He.
2022. Learning Robust Recommenders through Cross-Model Agreement. In
Proceedings of the ACM Web Conference 2022. 2015–2025.

[33] Zitai Wang, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming Huang.
2021. Implicit Feedbacks are Not Always Favorable: Iterative Relabeled One-Class
Collaborative Filtering against Noisy Interactions. In Proceedings of the 29th ACM
International Conference on Multimedia 2021. 3070–3078.

[34] Zitai Wang, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming Huang.
2021. Implicit Feedbacks are Not Always Favorable: Iterative Relabeled One-Class
Collaborative Filtering against Noisy Interactions. In Proceedings of the 29th ACM
International Conference on Multimedia. 3070–3078.

[35] Fan Wu, Min Gao, Junliang Yu, Zongwei Wang, Kecheng Liu, and Xu Wang. 2021.
Ready for emerging threats to recommender systems? A graph convolution-based
generative shilling attack. Information Sciences 2021 578 (2021), 683–701.

[36] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,
and Xing Xie. 2021. Self-supervised graph learning for recommendation. In Pro-
ceedings of the International ACM SIGIR Conference on Research and Development

in Information Retrieval 2021. 726–735.
[37] Hongzhi Yin, Bin Cui, Zi Huang, Weiqing Wang, Xian Wu, and Xiaofang Zhou.

2015. Joint modeling of users’ interests and mobility patterns for point-of-interest
recommendation. In Proceedings of the 23rd ACM International Conference on
Multimedia. 819–822.

[38] Hongzhi Yin, Qinyong Wang, Kai Zheng, Zhixu Li, Jiali Yang, and Xiaofang
Zhou. 2019. Social influence-based group representation learning for group
recommendation. In IEEE 35th International Conference on Data Engineering 2019.
566–577.

[39] Junliang Yu, Hongzhi Yin, Min Gao, Xin Xia, Xiangliang Zhang, and Nguyen Quoc
Viet Hung. 2021. Socially-aware self-supervised tri-training for recommendation.
In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data
Mining 2021. 2084–2092.

[40] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung,
and Xiangliang Zhang. 2021. Self-supervised multi-channel hypergraph convolu-
tional network for social recommendation. In Proceedings of the Web Conference
2021. 413–424.

[41] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung
Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive
learning for recommendation. In Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval 2022. 1294–
1303.

[42] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang. 2022.
Self-supervised learning for recommender systems: A survey. arXiv preprint
arXiv:2203.15876 (2022).

[43] Fajie Yuan, Xin Xin, Xiangnan He, Guibing Guo, Weinan Zhang, Chua Tat-Seng,
and Joemon M Jose. 2018. fBGD: Learning embeddings from positive unlabeled
data with BGD. (2018).

[44] Junwei Zhang, Min Gao, Junliang Yu, Lei Guo, Jundong Li, and Hongzhi Yin. 2021.
Double-scale self-supervised hypergraph learning for group recommendation.
In Proceedings of the ACM International Conference on Information & Knowledge
Management 2021. 2557–2567.

[45] Junwei Zhang, Min Gao, Junliang Yu, Xinyi Wang, Yuqi Song, and Qingyu Xiong.
2019. Nonlinear Transformation for Multiple Auxiliary Information in Music
Recommendation. In Proceedings of International Joint Conference on Neural
Networks 2019. IEEE, 1–8.

[46] Wei Zhang, Junbing Yan, ZhuoWang, and JianyongWang. 2022. Neuro-Symbolic
Interpretable Collaborative Filtering for Attribute-based Recommendation. In
Proceedings of the ACM Web Conference 2022. 3229–3238.

[47] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2021. Dataset Condensation
with Gradient Matching. Proceedings of International Conference on Learning
Representations 2021 1, 2 (2021), 3.

[48] Tong Zhao, Julian McAuley, and Irwin King. 2014. Leveraging social connections
to improve personalized ranking for collaborative filtering. In Proceedings of
the ACM international conference on conference on information and knowledge
management 2014. 261–270.

[49] Daniel Zügner and Stephan Günnemann. 2018. Adversarial Attacks on Graph
Neural Networks via Meta Learning. In Proceedings of International Conference
on Learning Representations 2018.

Efficient Bi-Level Optimization for Recommendation Denoising KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A APPENDIX
A.1 AU Loss
Recent studies [29] have proved alignment and uniformity of repre-
sentations are related to prediction performance in representation
learning, which is also applicable to the recommendation model
[26, 41]. The alignment is defined as the expected distance between
normalized embeddings of positive pairs, and on the other hand,
uniformity is defined as the logarithm of the average pairwise
Gaussian potential. AU (Alignment and Uniformity) loss [26] quan-
tified alignment and uniformity in recommendation as follows:

𝐿𝑟𝑒𝑐 = 𝐿𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 + 𝛾𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦, (12)

𝐿𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = E
(𝑢,𝑖, 𝑗)∼𝑃D

| |𝑓 (𝑧𝑢) − 𝑓 (𝑧𝑖) | |2, (13)

𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦 = (𝑙𝑜𝑔 E
(𝑢,𝑢′)∼𝑃𝑈

𝑒
−2 | | 𝑓 (𝑧𝑢)−𝑓 (𝑧𝑢′) | |

2

+𝑙𝑜𝑔 E
(𝑖,𝑖′)∼𝑃𝐼

𝑒
−2 | | 𝑓 (𝑧𝑖)−𝑓 (𝑧𝑖′) | |

2
)/2,

(14)

where 𝑃𝑈 (·) and 𝑃𝐼 (·) are the distributions of the user set and
item set, respectively. | | · | | is the 𝑙1 distance, and 𝑓 (·) indicates the
𝑙2 normalized representations of 𝑓 (·). The weight 𝛾 controls the
desired degree of uniformity.

	Abstract
	1 INTRODUCTION
	2 Preliminary
	2.1 Implicit Feedback Based Recommendation
	2.2 Recommendation Denoising

	3 Bi-Level Optimization for Denoising
	4 Solving Bi-Level Optimization
	4.1 Generator-Based Parameter Generation
	4.2 One-Step Gradient-Matching-Based Solving
	4.3 The Framework BOD
	4.4 Complexity Analysis

	5 Experiments
	5.1 Performance and Robustness (RQ1)
	5.2 Experimental Settings
	5.3 Time Complexity Analysis (RQ2)
	5.4 The Effect of Inner Optimization on BOD (RQ3)
	5.5 The Effect of Generator on BOD (RQ4)
	5.6 Parameters Sensitivity Analysis (RQ5)
	5.7 Generalizability Analysis (RQ6)

	6 RELATED WORK
	7 CONCLUSION
	Acknowledgments
	References
	A APPENDIX
	A.1 AU Loss

