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ABSTRACT
In recent years, many deep learning-based methods have been pro-
posed to tackle the problem of optical flow estimation and achieved
promising results. However, they hardly consider that most videos
are compressed and thus ignore the pre-computed information in
compressed video streams. Motion vectors, one of the compression
information, record the motion of the video frames. They can be
directly extracted from the compression code stream without com-
putational cost and serve as a solid prior for optical flow estimation.
Therefore, we propose an optical flow model, MVFlow, which uses
motion vectors to improve the speed and accuracy of optical flow
estimation for compressed videos. In detail, MVFlow includes a key
Motion-Vector Converting Module, which ensures that the motion
vectors can be transformed into the same domain of optical flow
and then be utilized fully by the flow estimation module. Mean-
while, we construct four optical flow datasets for compressed videos
containing frames and motion vectors in pairs. The experimental
results demonstrate the superiority of our proposedMVFlow, which
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can reduce the AEPE by 1.09 compared to existing models or save
52% time to achieve similar accuracy to existing models.
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1 INTRODUCTION
Optical flow refers to the motion field between two frames, which
is an important tool in computer vision and video processing. It
has a wide range of application scenarios, including video super-
resolution [4], video frame interpolation [12], video inpainting
[37], object detection [17] and tracking [31], etc. In recent years,
with the development of deep learning and neural networks, many
high-performance deep learning optical flow estimation models
have emerged. These models learn discriminative features and then
utilize the feature correlation between two frames to estimate ac-
curate optical flow. Although leaps and bounds have been made,
the current optical flow estimation methods generally have a blind
spot: they assume that the inputs are uncompressed high-quality
frames, which is inconsistent with the practical situation. In fact,
due to the huge amount of information, almost all videos are stored
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RAFT (AEPE=0.47)

GMA (AEPE=0.66)

CRAFT (AEPE=0.66)

Ours (AEPE=0.39)

Anchor Frame Ground Truth

Figure 1: An example to show the superiority of our method.
The estimated optical flow and the error map of different
methods are visualized. Our method estimates less error and
shows clear contours in the optical flow map.

in a compressed format, which causes distortion and hinders the
performance of existing optical flow models.

In order to find a solution, we need to look at the principles
of video compression. The process of video compression can be
divided into encoding and decoding. The basic idea of encoding is
to dynamically divide the image into blocks and quantify them to
discard the secondary information, thereby reducing the number of
bits to store the video. Specifically, the compression algorithm also
takes advantage of the video’s temporal continuity by matching
the blocks of adjacent frames and sharing the information between
frames to reduce redundancy further. The matching offsets are
called motion vectors and are stored together in the compressed
video. When decoding, the algorithm reads the encoded blocks with
the motion vectors to reconstruct the image for each frame.

The motion vectors have a close definition to optical flow and
can be regarded as a rough block-level optical flow. Importantly, it
is already pre-computed and can be extracted from the compression
code stream without additional computational cost. A simple way
to use motion vectors is to use them directly as the initial solution
for iterative optical flow models such as RAFT [30]. However, we
find that such an implementation fails to improve the accuracy

of optical flow estimation. The main reason is that the existing
deep optical flow models are better at handling smooth optical
flow maps, while the sparse and block-level motion vectors do not
fit this pattern and cannot be effectively utilized by those models.
To exploit the motion vector prior, we propose our MVFlow with
a Motion-Vector Converting Module (MVCM). The module can
initially convert the domain of the motion vector map through the
contextual correlation of the image, so that the motion information
contained in motion vectors can be incorporated into the process
of optical flow estimation. As shown in Figure 1, our MVFlow
demonstrates excellent performance and estimates accurate motion
for the arm and body in the area marked by the boxes.

Besides, we construct the training and evaluation datasets for
optical flow estimation of compressed videos to conduct our experi-
ments. We compress the videos of four typical optical flow datasets
(FlyingThings 3D [23], MPI Sintel[3] and KITTI 2012/2015 [8, 24])
and extract the motion vectors from decoding.

In total, our contributions are:

• We propose a novel optical flow estimation framework that
exploits video motion vectors as prior information for accu-
rate and fast motion estimation for compressed videos. To
the best of our knowledge, this is the first attempt that uses
motion vectors to assist deep optical flow estimation.

• To address the domain gap between motion vectors and
optical flow, we propose aMotion-Vector ConvertingModule
that utilizes the correlation of video content and motion to
regulate motion vectors.

• Experiments prove the superiority of MVFlow in terms of
performance and efficiency. Compared to RAFT, MVFlow
can reduce AEPE by 1.09 with the same iteration steps, or
save 52% computation time to reach similar accuracy.

• For the first time, we construct four datasets containing opti-
cal flow, compressed frames and motion vectors of different
compression qualities. We believe they can facilitate the re-
search on optical flow estimation of compressed videos.

2 RELATEDWORKS
2.1 Optical Flow
Optical flow has been studied for a long time as a fundamental
technology. Early on, according to the mathematical definition of
optical flow, researchers design some traditional optical flow algo-
rithms, such as Horn–Schunck [9] and Lucas-Kanade [21]. These
methods can effectively estimate the optical flow of simple cases,
but their accuracy is generally not good.

With the advent of deep learning, researchers have also begun to
use deep neural networks for optical flow estimation. FlowNet [7]
and FlowNet2.0 [15] are the first attempt that proves the feasibility
of deep learning in optical flow estimation. After that, the multi-
scale models [13, 14, 27, 42] emerge. Next, RAFT [30] proposes
an iterative method, which calculates global all-pair correlation
and reuses it in every iteration. It has become the new baseline
for subsequent researches. For example, various attention blocks
[11, 22, 25, 43] and big-kernel convolution layers [28] are added
to the components of RAFT to provide stronger representation
and estimation capabilities. Meanwhile, global motion aggregation
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Figure 2: The architecture of our proposed MVFlow. (a) Decoding videos to get frames and the corresponding motion vectors.
(b) The main framework of our MVFlow. (c) The structure of our Motion-Vector Converting Module.

[16] and global matching [34, 43] are also proposed to break the
over-dependence on local cues of models.

Recently, some works have also begun to study optical flow esti-
mation under different degradation conditions. For example, Zhang
et al. [41] gives a solution to estimate optical flow in the dark, and
Argaw et al. [1] tries to estimate optical flow from a single motion-
blurred image. For compressed video, Young et al. [40] introduces
compression prior information into traditional variational optimiza-
tion for optical flow estimation. However, it is not comparable to
deep learning methods in terms of accuracy and speed. To the best
of our knowledge, we are the first to exploit compressed priors in
deep optical flow estimation.

2.2 Video Compression
Video compression has become an indispensable part of video pro-
cessing, which can effectively save storage and transmission band-
width. In recent years, some deep learning-based video compression
algorithms [10, 18, 20, 39] have been proposed with the expectation
of achieving better compression performance. However, they are
not currently available for practical applications due to the huge
computational cost. Currently, commercial compression algorithms
are still dominated by traditional methods[2, 26, 32].

Inter-frame predictive coding is an important part of traditional
video compression algorithms. It calculates the motion vectors
to measure the motion information between frames and removes
temporal redundancy based on them. Note that motion vectors
can be extracted from the compressed video stream without ad-
ditional computational cost at the receiver end. Recently, some
works attempt to utilize motion vectors to assist various vision

tasks [5, 6, 29, 33, 35, 36]. Chen et al. [5] first explore the compressed
video super-resolution task, and improve the model performance
by leveraging the interactivity between decoding prior and deep
prior. Specifically, they align the features of different frames based
on motion vectors. Similarly, Xu et al. [35] uses motion vectors to
propagate segmentation masks from keyframes to other frames,
which can improve the efficiency and performance of video ob-
ject segmentation. Considering that the motion vectors represent
the primary motion of the videos, we use them to improve the
performance of optical flow estimation in our work.

3 PROPOSED METHOD
In this section, we first analyze our motivations and then provide
an overview of our optical flow estimation framework with motion
vector prior. Next, the structure of our proposedMVCM is described
in detail. Finally, we extend our MVCM to incorporate the common
warm-start strategy.

3.1 Motivation
Almost all videos exposed to non-professional users are stored in
a compressed format. The mainstream video compression frame-
works perform motion compensation between frames, so the com-
pressed video stores a set of offsets to represent the motion between
frames. Such offsets are called motion vectors, which can be ob-
tained without extra computational cost.

Motion vectors and optical flow are both representations of mo-
tion between frames, but there are two differences. Firstly, motion
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Figure 3: (a) Process of multi-frame sequence with warm-
start strategy. For the heading frame, we use our ordinary
MVCM, while for subsequent frames, we use warm-start
MVCM, which can utilize the estimation of the previous
frame. (b) Projection of flow from the previous frame to
the current frame. (c) The modified aggregation process in
warm-start MVCM.

vectors are block-level, while optical flow records pixel-level mo-
tion. Second, motion vectors are calculated locally during encoding.
It differs from the estimated optical flow, which needs to find mo-
tion field from the context of the entire frame. Therefore, using
the motion vectors as an additional input can help optical flow
estimation from two perspectives: 1) The optical flow model can
conduct iterative updates based on the rough solution given by
motion vectors, making converging faster. 2) Due to the distortion
caused by compression, the inter-frame correspondence for some
regions is disrupted, so the optical flow models rely more on the
learned global prior like smoothness and ignores some small ob-
jects that move independently. In contrast, motion vectors store
the best matches found for each block individually, which can play
an important complementary role in estimating optical flow of
compressed video.

3.2 Overview
As shown in Figure 2(a), we first decode the video to obtain con-
secutive frames and the corresponding motion vectors. We denote
the first frame of the two frames as 𝐼1, the second frame as 𝐼2, and
the motion vectors from the previous to the next frame as𝑀𝑉 . The
initial representation of 𝑀𝑉 is a group of vectors, each of which
records a compressed block’s position, size, and motion offset. We
convert the𝑀𝑉 into a dense flow map denoted as 𝐹𝑀𝑉 by filling
the pixels in each block with the same motion offset. Subsequently,
we estimate the optical flow with 𝐹𝑀𝑉 as additional input in our
framework shown in Figure 2(b). Our model is a variant based on
RAFT [30], called MVFlow. The estimation process of MVFlow con-
tains three stages, of which the first two stages can be parallelized.
In the first stage, we adopt our Motion-Vector Converting Module
to convert 𝐹𝑀𝑉 into a smoother coarse flow map according to the
contextual information of 𝐼1. In the second stage, we extract the
features of 𝐼1 and 𝐼2 and calculate the correlation. In the last stage,
we take the converted coarse flow as the initial value and refer to
the correlation information to perform an iterative optimization
process.

3.3 Motion-Vector Converting Module
The 𝐹𝑀𝑉 obtained directly from the motion vectors has a large do-
main gap with the optical flow, which can not be utilized effectively
by existing deep learning-based optical flow estimation architec-
tures, as proved in our experiment (Section 4.4). Thus, we design a
Motion-Vector Converting Module (MVCM) to convert 𝐹𝑀𝑉 into
the same domain of optical flow. Our inspiration consists of two
parts. First, the 𝐹𝑀𝑉 is sparse, and there are some regions without
MV offsets, so we need to complement them with other regions. A
good idea is to use the spatial correlation of 𝐼1 to accomplish the
filling process. Second, 𝐹𝑀𝑉 also has some regions with inaccurate
motion, which is caused by either the coarse block division or the
matches not in line with actual motion. These wrong areas need to
be figured out and corrected. We use the context information of 𝐼1
to solve it. As a combination of the above two points, the specific
design of our module is shown in Figure 2(c), which follows the
attention mechanism. As Equation 1, 𝐼1 is first fed into two different
encoders to obtain Q and K maps, while 𝐹𝑀𝑉 is directly taken as
the V map, denoted as

𝑄 = 𝐸𝐴 (𝐼1), 𝐾 = 𝐸𝐵 (𝐼1), 𝑉 = 𝐹𝑀𝑉 (1)

𝐸𝐴 and 𝐸𝐵 are two encoder blocks, each consisting of six convo-
lution and corresponding activation layers. Then, in order to find
the areas that need to be corrected, we use a Credibility Estimation
Block to estimate the credibility of the motion prior for each pixel.
This can be expressed as

𝐶𝑀𝑉 = 𝐶𝐸𝐵(𝐼1, 𝑀𝑀𝑉 ) (2)

where𝑀𝑀𝑉 refers to a mask indicating which regions have motion
vectors,𝐶𝑀𝑉 is a weight map in the range (0, 1), and𝐶𝐸𝐵 is a CNN
block, which contains six convolution layers, six dilation convolu-
tion layers and their corresponding activation layers. The dilation
convolution layers can extract broader contextual information to
utilize spatial information comprehensively. The last activation
function is sigmoid for limiting the range of 𝐶𝑀𝑉 . We perform
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Frame 1 Frame 2 Motion Vectors Ground Truth

RAFT GMA CRAFT Ours

Figure 4: Qualitative comparison of our method and the state-of-the-art methods on Compressed Sintel. The displayed example
is in QP of 37.

the correlation computation in local sliding windows instead of all
pixels to avoid introducing too much extra computation. First, the
correlation between the center pixel of the local window and other
pixels is calculated:

𝑆𝑖, 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝑖, 𝑗 · 𝐾𝑖+𝑘,𝑗+𝑙 ), (3)

where 𝑘, 𝑙 ∈ [−𝑑, 𝑑]. The · mark refers to the vector dot product
operator, so the computed correlation weight 𝑆𝑖, 𝑗 is a tensor of
shape (2𝑑 + 1)2. Then the credibility of the pixels is combined with
the correlation to get the final weights, donated as:

𝑊𝑀𝑉
𝑖,𝑗 = 𝑆𝑖, 𝑗 ⊙ 𝐶𝑀𝑉

𝑖,𝑗 (4)

The 𝐶𝑀𝑉
𝑖,𝑗

is a (2d+1)×(2d+1) window extracted from 𝐶𝑀𝑉 around
pixel (𝑖, 𝑗). The ⊙ mark refers to the element-wise product operator.
At last, we aggregate motions in local windows with the calculated
weights:

𝐹𝑖, 𝑗 =

∑
𝑘,𝑙𝑊

𝑀𝑉
𝑖,𝑗,𝑘,𝑙

𝑉𝑖+𝑘,𝑗+𝑙∑
𝑘,𝑙𝑊

𝑀𝑉
𝑖,𝑗,𝑘,𝑙

(5)

3.4 Combination with Warm-Start Strategy
In the practical setting for iterative optical flow estimation, a well-
known strategy called warm-start uses the optical flow predicted
for the previous frame as initialization, shown in Figure 3(a). Our
method also provides an initialization from motion vectors. There-
fore, to simultaneously utilize these two different sources of optical
flow initialization, we design a warm-start MVCM module to fuse
them. First, as shown in Figure 3(b), we need to project the flow of
the previous frame to the current frame:

𝐹𝑃𝑟 𝑗 = 𝐹𝑊 (𝐹𝑃𝑟𝑒 , 𝐹𝑃𝑟𝑒 ), 𝑀𝑃𝑟 𝑗 = 𝐹𝑊 (𝑂, 𝐹𝑃𝑟𝑒 ) (6)

𝐹𝑃𝑟𝑒 is the flow estimation of the previous frame, and 𝐹𝑃𝑟 𝑗 is the
projected flow. 𝐹𝑊 refers to forward warping, which will cause
holes and overlaps. Thus, we calculate the valid mask𝑀𝑃𝑟 𝑗 of 𝐹𝑃𝑟 𝑗
by forward warp an all-one matrix 𝑂 .

Then, we send𝑀𝑃𝑟 𝑗 ,𝑀𝑀𝑉 and 𝐼1 to a modified Credibility Esti-
mation Block denoted as 𝐶𝐸𝐵

′
, and get two credibility maps 𝐶𝑃𝑟 𝑗

and𝐶𝑀𝑉 , corresponding to 𝐹𝑃𝑟 𝑗 and 𝐹𝑀𝑉 respectively, denoted as

𝐶𝑃𝑟 𝑗 ,𝐶𝑀𝑉 = 𝐶𝐸𝐵
′
(𝐼1, 𝑀𝑀𝑉 , 𝑀𝑃𝑟 𝑗 ) (7)

Next, as shown in Figure 3(c), we calculate the weights of projected
flow as Equation 4 and 8.

𝑊
𝑃𝑟 𝑗
𝑖, 𝑗

= 𝑆𝑖, 𝑗 ⊙ 𝐶𝑃𝑟 𝑗
𝑖, 𝑗

(8)

Finally, we replace Equation 5 with Equation 9, which means a
fusion of the two different sources of initialization.

𝐹𝑖, 𝑗 =

∑
𝑘,𝑙𝑊

𝑀𝑉
𝑖,𝑗,𝑘,𝑙

𝑉𝑀𝑉
𝑖+𝑘,𝑗+𝑙 +𝑊

𝑃𝑟 𝑗

𝑖, 𝑗,𝑘,𝑙
𝑉
𝑃𝑟 𝑗

𝑖+𝑘,𝑗+𝑙∑
𝑘,𝑙𝑊

𝑀𝑉
𝑖,𝑗,𝑘,𝑙

+𝑊 𝑃𝑟 𝑗

𝑖, 𝑗,𝑘,𝑙

, (9)

where 𝑉𝑀𝑉 and 𝑉 𝑃𝑟 𝑗 correspond to 𝐹𝑀𝑉 and 𝐹𝑃𝑟 𝑗 respectively.

4 EXPERIMENTS
4.1 Dataset Construction
We make our compressed video optical flow dataset based on four
existing datasets. They are: FlyingThings3D[23], MPI Sintel(train)
[3], KITTI 2012(train) [8] and KITTI 2015(train) [24]. In our ex-
periments, we use the H264 codec to compress the video because
H264 is currently the most mature and widely used encoding tool.
We first encode each sequence in the dataset with four different
quantization parameters, 22, 27, 32, and 37. In order to maintain the
consistency of the direction of motion vectors and optical flow, the
videos are compressed in reverse order. Then, each frame and the
corresponding motion vectors are decoded from the compressed
videos. In the experiment, we use the Compressed FlyingThings3D
as the training set, and the rest datasets are set as the evaluation
benchmark. All the generated datasets will be uploaded to the public
platform to facilitate future research.
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Table 1: Comparison of our method and three well-known optical flow methods. We adopt AEPE and F1 as the metrics for all
datasets, and both are lower when the results are more accurate. For each QP setting, we color the best value for each column in
red.

QP Method
MPI Sintel KITTI 2012 KITTI 2015

clean pass final pass NOC ALL NOC ALL

AEPE F1 AEPE F1 AEPE F1 AEPE F1 AEPE F1 AEPE F1

22

RAFT 1.90 6.09% 3.48 11.58% 1.34 7.01% 2.78 13.50% 3.13 12.96% 6.54 21.19%
GMA 2.07 6.11% 4.43 13.37% 1.45 7.85% 2.68 14.09% 3.45 14.30% 6.74 21.92%
CRAFT 1.95 7.41% 3.95 13.32% 1.50 8.27% 2.79 14.67% 3.60 14.94% 6.59 22.66%
GMFlow 1.66 5.75% 3.86 12.59% 1.79 9.29% 3.47 15.81% 3.31 15.68% 6.91 23.19%
GMFlowNet 2.13 8.29% 4.22 14.71% 1.34 6.69% 2.68 12.57% 2.85 11.68% 5.97 19.26%
Ours 1.85 5.56% 3.43 10.27% 1.29 6.58% 2.59 12.60% 3.13 12.80% 6.07 20.64%

27

RAFT 2.16 6.87% 3.79 12.75% 1.51 8.62% 3.03 15.27% 3.43 14.59% 7.00 22.79%
GMA 2.16 6.83% 3.25 9.95% 1.76 9.80% 3.12 16.05% 3.89 15.87% 7.41 23.40%
CRAFT 2.07 8.06% 4.20 14.40% 1.73 10.24% 3.15 16.60% 3.84 16.64% 7.29 24.36%
GMFlow 1.89 6.48% 4.09 13.92% 2.03 11.01% 3.84 17.71% 3.77 17.54% 7.66 24.91%
GMFlowNet 2.48 9.43% 4.46 16.15% 1.59 8.49% 3.11 14.54% 3.34 13.37% 6.79 20.84%
Ours 2.01 6.20% 3.70 11.28% 1.41 7.97% 2.83 14.20% 3.17 13.98% 6.25 21.82%

32

RAFT 2.54 8.27% 4.06 14.74% 2.14 12.77% 3.94 19.64% 4.69 18.81% 8.89 26.60%
GMA 2.45 8.49% 4.53 16.95% 2.16 13.13% 3.68 19.63% 4.83 19.99% 8.88 27.21%
CRAFT 2.48 9.83% 4.46 16.66% 2.16 13.86% 3.79 20.57% 4.63 20.73% 8.61 28.27%
GMFlow 2.12 8.29% 4.42 16.07% 2.50 14.46% 4.57 21.35% 4.70 21.55% 9.13 28.75%
GMFlowNet 2.91 11.45% 4.90 18.63% 2.28 12.80% 4.07 19.18% 4.46 17.73% 8.59 25.14%
Ours 2.24 7.47% 4.01 13.22% 1.88 11.58% 3.48 18.19% 4.09 17.62% 7.66 25.30%

37

RAFT 3.09 15.14% 4.95 18.35% 3.06 19.46% 5.31 26.37% 6.29 24.85% 11.33 32.12%
GMA 3.18 11.93% 4.80 19.38% 2.91 18.85% 4.76 25.35% 6.63 25.62% 11.61 32.36%
CRAFT 3.16 13.39% 5.27 20.40% 3.10 20.77% 5.13 27.37% 6.41 26.94% 11.30 34.08%
GMFlow 2.77 11.79% 4.96 18.78% 3.37 20.42% 5.91 27.49% 6.04 26.89% 11.22 33.74%
GMFlowNet 3.61 14.83% 5.51 21.92% 3.20 19.21% 5.34 25.72% 6.23 24.57% 11.01 31.37%
Ours 2.87 10.57% 4.80 17.06% 2.86 18.74% 4.92 25.14% 5.19 23.28% 9.43 30.52%

4.2 Settings
We implement our model based on the code of RAFT[30]. The
loss functions are added to all the intermediate flow estimations
(including the output of MVCM) and trained the model for 120k
steps on the aforementioned Compressed FlyingThings dataset.
We use only four iterations in each step to speed up the training.
We use AdamW [19] optimizer and set weight_decay=5e-5 and
eps=1e-8. The learning rate is set to 1e-4 and decays linearly to
8.5e-5 during training. The batch_size is set to 4. Our training
device is a single Nvidia RTX 3090. For data augmentation, we
randomly crop 800×512 patches of the input frames for training.
For better convergence, we use the original RAFT parameters on
FlyingThings as the initialization parameters of those unmodified
layers. At the same time, in order to train our model with the warm-
start strategy, we fine-tune our model for an additional 30k steps,
and the original MVCM parameters are fixed during fine-tuning.
Other models for comparison that emerged in the experiments
follow the same training process. Unless otherwise stated, all models
are evaluated with 16 iterations.

4.3 Comparison with the State-of-the-Art
Methods

We first compare our MVFlow with five well-known optical flow
methods. They are RAFT[30], GMA[16], CRAFT[25], GMFlow[34]
(GMF) and GMFlowNet[43] (GMFNet). Because off-the-shelf optical
flow models do not perform well on compressed video (as shown in
Supplementary Materials), all models are retrained with the same
settings as ours. AEPE (Average Endpoint Error) and F1 (percentage
of outliers) are chosen as metrics in our experiment. The results are
shown in Tab 1. As we can see, in the vast majority of comparisons,
our method shows clear superiority.

An interesting pattern is that although the performance of RAFT,
GMA, and CRAFT is progressively improved on the uncompressed
optical flow test set, CRAFT and GMA do not outperform RAFT in
compressed videos. This may be due to the lack of flexibility caused
by the large amount of attention computation introduced by GMA
and CRAFT.

We can also find that our method leads by a more significant
margin at a higher QP. The reason is that higher QP introduces more
compression noise, making motion estimation more challenging.
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Table 2: Ablation Study of fourmodels, including the baseline
model, the retrained model, the retrained model with MV
inputs and our final model with MVCM. We also provide
results on Compressed MPI Sintel and Compressed KITTI
2012 in the supplementary material.

QP Method
Compressed KITTI 2015

NOC ALL

AEPE F1 AEPE F1

22

Baseline 4.34 16.72% 10.07 25.58%
↑ + Retrain 3.13 12.96% 6.54 21.19%
↑ + MV 3.48 13.39% 6.98 21.61%
↑ + MVCM 3.13 12.80% 6.07 20.64%

27

Baseline 5.22 19.79% 11.53 28.34%
↑ + Retrain 3.43 14.59% 7.00 22.79%
↑ + MV 3.63 14.93% 7.36 23.07%
↑ + MVCM 3.17 13.98% 6.25 21.82%

32

Baseline 7.36 27.13% 14.53 34.74%
↑ + Retrain 4.69 18.81% 8.89 26.60%
↑ + MV 4.90 19.27% 9.27 27.02%
↑ + MVCM 4.09 17.62% 7.66 25.30%

37

Baseline 9.67 35.58% 17.52 42.11%
↑ + Retrain 6.29 24.85% 11.33 32.12%
↑ + MV 6.55 25.38% 11.80 32.57%
↑ + MVCM 5.19 23.28% 9.43 30.52%

Despite retraining on Compressed FlyingThings, RAFT, GMA and
CRAFT still fail to find correct motion from the compressed videos.
Unlike them, our method can handle this situation by exploiting
the motion vectors.

We also give an example for qualitative comparison in Figure 4,
which are from Compressed Sintel dataset. The methods without
utilizing motion vectors fail to estimate the flow of the human in
the first example and the window in the second example. With
motion vectors as additional hints, our method generates finer ini-
tializations, thus better handling these complex cases. The example
from KITTI 2015 dataset can be found in the appendix.

4.4 Ablation Study
We design a set of ablation experiments to probe the effect of each
of our modifications. A total of four models are compared in the
experiment, and the results can be found in Table 6. The first model
is the baseline, which directly uses the pre-trained parameters of
RAFT (raft-things.pth). The second model is retrained on our Com-
pressed FlyingThings and is thus more robust to compression noise.
The third model simply adds motion vectors for initialization based
on the second model. Experiments show that this naive scheme
brings negative lift. The last model, our full MVFlow, adds MVCM
as a preprocessing module, which converts the motion vectors to
the same domain of optical flow. We can see in the table that MVCM
brings a significant improvement. To show the effectiveness and ro-
bustness of our proposed method, we give qualitative comparisons
on different QP settings in Figure 5.

Anchor Frame Ground Truth

Retrained RAFT Ours Full Model
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Figure 5: The comparison of our MVFlow and the retrained
RAFT on a group of frameswith different QP. RAFT produces
variouswrong estimates due to information loss during video
compression, while our model, while our model shows ro-
bustness on different QP.

Table 3: Comparison of different initialization strategies.

QP Method
Compressed MPI Sintel

clean pass final pass

AEPE F1 AEPE F1

22

Zero 1.90 6.09% 3.48 11.58%
Warm-Start 1.83 6.12% 3.46 11.37%
MVCM 1.85 5.56% 3.43 10.27%
MVCM +Warm-Start 1.71 5.71% 3.28 10.64%

27

Zero 2.16 6.87% 3.79 12.75%
Warm-Start 2.01 6.86% 3.58 12.58%
MVCM 2.01 6.20% 3.70 11.28%
MVCM +Warm-Start 1.80 6.40% 3.50 11.74%

32

Zero 2.54 8.27% 4.06 14.74%
Warm-Start 2.33 8.30% 4.05 14.78%
MVCM 2.24 7.47% 4.01 13.22%
MVCM +Warm-Start 2.11 7.74% 3.94 13.88%

37

Zero 3.09 15.14% 4.95 18.35%
Warm-Start 3.17 11.67% 4.91 18.46%
MVCM 2.87 10.57% 4.80 17.06%
MVCM +Warm-Start 2.86 10.71% 4.43 17.39%



MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Shili Zhou, Xuhao Jiang, Weimin Tan, Ruian He, and Bo Yan
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Figure 6: A group of qualitative examples of different initialization methods.
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Figure 7: Efficiency comparison of four methods on Com-
pressed KITTI 2015 dataset. The red dashed line highlights
the performance of our method with four iterations

4.5 Discussion
Warm-Start Strategy As mentioned in Section 3.4, warm-start is a
common strategy used in iterative optical flow estimation methods
for videos. It has a commonality with our method, that is, both of
them give an initialized flow estimation for iteration. We evaluate
four settings on CompressedMPI Sintel dataset to compare different
initialization methods. They are the model with zero initialization,
the model with warm-start initialization, the model with our MV
initialization, and the model with combined strategy introduced in
Section 3.4. The results are shown in Table 3, from where we can
find that our combined strategy gets the best AEPE score, and our
initialization gets the best F1 score. This means that the combined
strategy brings an overall improvement compared to only using
motion vectors, but the robustness to some problematic areas is
reduced. Overall, both of our initialization strategies outperform
the simple warm-start strategy. Figure 6 gives qualitative examples
of different initialization methods. The motion vectors provide clear

Table 4: Running time required to achieve similar accuracy.
Meanwhile, the performance under the same iterations is
shown in the last column.

RAFT GMA CRAFT GMF GMFNet Ours (Ours)

Iterations 16 16 16 - 16 4 16
Runtime 91ms 119ms 362ms 125ms 174ms 44ms 99ms
Δ Runtime -0% +31% +298% +37% +91% -52% +9%
AEPE 8.44 8.66 8.45 8.73 8.09 8.30 7.35
Δ AEPE -0.00 +0.22 +0.01 +0.29 -0.35 -0.14 -1.09

guidelines for the movement of the character’s leg, thus enabling
fine-grained optical flow estimation.

Computational Efficiency We compare the accuracy of dif-
ferent models with different iteration steps and give the result in
Figure 7 and Table 4. It can be clearly seen that our model only
needs four iterations to outperform the results of other models
with 16 iterations. This means that our model has a vast efficiency
advantage under the requirement of achieving the same accuracy.
Specifically, on an Nvidia RTX 3090, RAFT takes an average of 91ms
to perform 16 iterations. In comparison, our method only needs
four iterations that take 44ms to achieve comparable results, saving
52% of computation time, which brings many benefits for practical
use. On the other hand, our method outperforms RAFT by 1.09 of
AEPE under the same iteration steps with only a slight increase in
runtime.

5 CONCLUSION
Optical flow estimation is an essential technique in the field of com-
puter vision and video processing. However, almost all the videos
are compressed. Existing methods ignore the powerful compression
prior, thus fail to handle frames with compression noise. In this
paper, we introduce the motion vectors in the compressed video
stream to optical flow estimation. Our proposed MVFlow contains a
Motion-Vector Converting Module to convert the motion vectors to
the same domain of optical flow to better estimate the optical flow.
We also construct four optical flow datasets for compressed videos.
The experiments show that our proposed method is superior in
effectiveness and efficiency.
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A QUALITATIVE COMPARISON ON KITTI
2015

We supplement a set of visual comparisons on Compressed KITTI
2015 in Figure 8, where our method estimates a more complete
optical flow map.

A.1 The Necessity of Retraining the
State-of-the-art Models

As mentioned in the main manuscript, the off-the-shelf optical flow
estimation models are not trained with compressed videos. Thus
it cannot handle the compression noise well. For a fair compar-
ison, we need to fine-tune the state-of-the-art model using the

https://doi.org/10.1109/TPAMI.2021.3130302
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Figure 8: Qualitative comparison on Compressed KITTI 2015.

Table 5: The performance of state-of-the-art methods before
and after fine-tuning.We test on two datasets including Com-
preesed MPI Sintel and Compressed KITTI 2015. The values
given are the average test results on all QPs (22, 27,32,37).

Method
Compressed MPI Sintel Compressed KITTI 2015

clean pass final pass NOC ALL

AEPE F1 AEPE F1 AEPE F1 AEPE F1

RAFT 2.98 10.51% 5.09 18.14% 6.65 24.81% 10.07 25.58%
RAFT-ft 2.42 8.19% 4.07 14.36% 4.38 17.80% 8.44 25.67%

GMA 2.52 9.68% 4.58 17.87% 5.48 21.00% 9.95 27.96%
GMA-ft 2.46 8.34% 4.09 14.80% 4.70 18.95% 8.66 26.22%

CRAFT 2.39 9.43% 4.42 17.34% 5.56 20.89% 9.91 27.70%
CRAFT-ft 2.10 8.08% 3.86 11.33% 4.62 18.62% 8.55 25.94%

GMFlow 2.64 10.58% 4.94 19.24% 5.93 24.53% 11.45 31.49%
GMFlow-ft 2.11 8.08% 4.33 15.34% 4.46 20.41% 8.73 27.65%

GMFlowNet 2.48 9.27% 4.72 16.82% 5.58 20.97% 10.29 27.68%
GMFlowNet-ft 2.78 11.00% 4.78 17.85% 4.22 16.84% 8.09 24.15%

compressed data and settings the same as Ours. Table 5 shows the
comparisons of RAFT [30], GMA[16], CRAFT[25], GMFlow[34]
and GMFlowNet[43]. The fine-tuning improves the performance of
these methods for optical flow estimation on compressed videos,
removing the influence of different training data and strengthening
our experiments’ rigor. The only exception is that GMFlowNet’s
performance on Compressed MPI Sintel decreased slightly after
fine-tune, which may be due to the complex POLA structure and the
Global Matching operation of GMFlowNet are sensitive to the dis-
tribution difference between Compressed Things and compressed
MPI Sintel. However, GMFlowNet shows a very significant perfor-
mance improvement on Compressed KITTI 2015 after fine-tuning,
which still proves the role of retraining.

B FULL ABLATION STUDY ON THREE
DATASETS

Due to the limited number of pages, we only give the results of
the ablation experiment on Compressed KITTI 2015 in the main

manuscript. Here, we present the complete ablation experiments on
three datasets in Table 6. Similar to the results on Compressed KITTI
2015, the retraining and our proposed MVCM bring significant
improvements. Using MV directly as initialization brings slight
improvement on Compressed MPI Sintel, and even slightly hurts
the performance on Compressed KITTI 2012/2015, further proving
the necessity and effectiveness of our proposed MVCM.

C MORE DISCUSSION
C.1 Validation on Clean Frames
For direct comparison with off-the-shelf optical flow models and
further verifying the effect of our MVCM, we also test the perfor-
mance of our model on clean frames. Our settings are consistent
with RAFT, and the motion vectors under QP 22 (with the highest
quality) are added as the input of MVCM. As shown in Table 7, our
model can outperform the baseline RAFT on both the Sintel and
KITTI datasets. At the same time, we also submitted our test results
on Sintel and KTTI benchmarks and achieved performance beyond
RAFT.

C.2 Assisting Downstream Tasks
Accurate alignment is critical in video processing tasks. We design
an experiment to demonstrate that our method can provide better
alignments for downstream tasks. The experiment uses a composite
task: given two compressed frames, use a U-Net model to synthesize
the denoised two frames and the intermediate frame. The input of U-
Net contains the original and the warped frames. In our comparison,
the U-Net structure remains unchanged, and we only replace the
optical flow used in warping. We choose QP 37 in this experiment
because it is the most common in practice. The results are shown in
Table 8, which shows that the optical flow estimated by our method
is more suitable for assisting compression video-related tasks.

C.3 Validation on HEVC Codec
To verify the flexibility of our method, we add an experiment with
HEVC(H.265) codec. We adopt HEVC official lowdelay P coding
settings, and set the reference frame to the previous frame (-1). We
conduct the experiments on the clean pass of Sintel datasets with
QP 32. As shown in Table 9, our method is able to work well for
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Table 6: Complete ablation study on three datasets.

QP Method
Compressed MPI Sintel Compressed KITTI 2012 Compressed KITTI 2015

clean pass final pass NOC ALL NOC ALL

AEPE F1 AEPE F1 AEPE F1 AEPE F1 AEPE F1 AEPE F1

22

Baseline 2.07 6.19% 3.99 12.62% 1.93 9.21% 4.98 18.18% 4.34 16.72% 10.07 25.58%
↑ + Retrain 1.90 6.09% 3.48 11.58% 1.34 7.01% 2.78 13.50% 3.13 12.96% 6.54 21.19%
↑ + MV 1.90 6.04% 3.48 11.14% 1.36 7.03% 2.82 13.52% 3.48 13.39% 6.98 21.61%
↑ + MVCM 1.85 5.56% 3.43 10.27% 1.29 6.58% 2.59 12.60% 3.13 12.80% 6.07 20.64%

27

Baseline 2.40 7.76% 4.44 15.42% 2.52 14.04% 5.85 22.70% 5.22 19.79% 11.53 28.34%
↑ + Retrain 2.16 6.87% 3.79 12.75% 1.51 8.62% 3.03 15.27% 3.43 14.59% 7.00 22.79%
↑ + MV 2.13 6.82% 3.77 12.38% 1.57 8.76% 3.14 15.40% 3.63 14.93% 7.36 23.07%
↑ + MVCM 2.01 6.20% 3.70 11.28% 1.41 7.97% 2.83 14.20% 3.17 13.98% 6.25 21.82%

32

Baseline 3.02 11.10% 5.32 19.54% 3.94 21.79% 7.83 29.86% 7.36 27.13% 14.53 34.74%
↑ + Retrain 2.54 8.27% 4.06 14.74% 2.14 12.77% 3.94 19.64% 4.69 18.81% 8.89 26.60%
↑ + MV 2.43 8.26% 4.10 14.71% 2.18 12.91% 4.03 19.78% 4.90 19.27% 9.27 27.02%
↑ + MVCM 2.24 7.47% 4.01 13.22% 1.88 11.58% 3.48 18.19% 4.09 17.62% 7.66 25.30%

37

Baseline 4.44 16.97% 6.59 25.00% 5.47 32.69% 9.88 39.93% 9.67 35.58% 17.52 42.11%
↑ + Retrain 3.09 15.14% 4.95 18.35% 3.06 19.46% 5.31 26.37% 6.29 24.85% 11.33 32.12%
↑ + MV 3.10 11.51% 5.00 18.55% 3.26 19.95% 5.67 26.81% 6.55 25.38% 11.80 32.57%
↑ + MVCM 2.87 10.57% 4.80 17.06% 2.86 18.74% 4.92 25.14% 5.19 23.28% 9.43 30.52%

Table 7: Comparison on clean optical flow datasets.

Train Data C+T C+T+S+K(+H)

Method Sintel(val) KITTI(val) Sintel(test) KITTI(test)

RAFT 1.43 2.71 5.04 17.40 1.61 2.86 5.10
Ours 1.38 2.67 4.66 17.02 1.53 2.71 4.90

Table 8: Comparison on downstream tasks. DF means de-
noised frames, and IF means interpolated frames. The exper-
iment is taken on Vimeo-90K [38] dataset.

Model DF PSNR DF SSIM IF PSNR IF SSIM

RAFT + UNet 26.05 0.8480 24.94 0.8266
Ours + Unet 26.31 0.8517 25.18 0.8365

Table 9: The additional verification experiment on HEVC
codec.

Model AEPE F1

Baseline(RAFT) 2.50 8.71
Ours-MVFlow 2.40 7.89

other codecs, which demonstrates the generalization performance
of our method.
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