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ABSTRACT
Multimodal Entity Linking (MEL) is a task that aims to link ambigu-
ous mentions within multimodal contexts to referential entities in a
multimodal knowledge base. Recent methods for MEL adopt a com-
mon framework: they first interact and fuse the text and image to
obtain representations of the mention and entity respectively, and
then compute the similarity between them to predict the correct
entity. However, these methods still suffer from two limitations:
first, as they fuse the features of text and image before matching,
they cannot fully exploit the fine-grained alignment relations be-
tween the mention and entity. Second, their alignment is static,
leading to low performance when dealing with complex and di-
verse data. To address these issues, we propose a novel framework
called Dynamic Relation Interactive Network (DRIN) for MEL tasks.
DRIN explicitly models four different types of alignment between
a mention and entity and builds a dynamic Graph Convolutional
Network (GCN) to dynamically select the corresponding alignment
relations for different input samples. Experiments on two datasets
show that DRIN outperforms state-of-the-art methods by a large
margin, demonstrating the effectiveness of our approach. Our code
and datasets are publicly available1.

∗Both authors contributed equally to this research.
†Corresponding author.
1https://github.com/starreeze/drin.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3612575

CCS CONCEPTS
• Computing methodologies → Information extraction; • In-
formation systems → Multimedia and multimodal retrieval.

KEYWORDS
multimodal entity linking, graph convolutional network, feature
alignment

ACM Reference Format:
Shangyu Xing, Fei Zhao, Zhen Wu, Chunhui Li, Jianbing Zhang, and Xinyu
Dai. 2023. DRIN: Dynamic Relation Interactive Network for Multimodal
Entity Linking. In Proceedings of the 31st ACM International Conference on
Multimedia (MM ’23), October 29-November 3, 2023, Ottawa, ON, Canada.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3581783.3612575

1 INTRODUCTION
Multimodal Entity Linking (MEL) is an important research area
in natural language processing, with the goal of linking ambigu-
ous mentions in multimodal contexts to entities in a multimodal
knowledge base [6]. As a basic task of multimodal information re-
trieval, MEL has a wide range of real-world applications, including
multimodal dialog system and visual question answering [16]. The
biggest challenge of MEL is the ambiguity of the mention, i.e., a
word or phrase may convey different meanings under different
circumstances, so in MEL task visual context is needed to help
disambiguate it. For instance, as illustrated in Figure 1, the men-
tion phrase “Super G” can be interpreted as many entities, such
as skiing, WLAN protocol, or food market. It is difficult to find
the correct entity using the text modality alone. However, with its
image considered, we can understand that this “Super G” is related
to skiing. In this way, disambiguation is much easier.

So far, most existing methods divide MEL into two stages: candi-
date retrieval and entity disambiguation [6, 26, 27, 31]. In the first
stage, they roughly calculate the similarity between the mention
and all the entities in the knowledge base with basic approaches
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mention

Lincoln Budge in 
his first run of the 

Super G at the 
IPC Nor-Am Cup.

Super G is a 
method to in-
crease the thr-
oughput of an 
IEEE 802.11g...

Giant Food of 
Maryland, also 

known as Giant, 
is an American 
supermarket...

Super giant sla-
lom, or super-G, 
is a racing disci-
pline of alpine 

skiing. 

candidate entities

Figure 1: an example of Multimodal Entity Linking. Differ-
ent colors represent different types of features: color red
for mention textual context (mention text), color orange for
mention visual context (mention image), color blue for entity
textual description (entity text), and color green for entity
visual description (entity image).

Lincoln Budge in 
his first run of 
the Super G at 
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is a racing disci-
pline of alpine...

Multimodal encoder Multimodal encoder

Mention feature Entity feature

Similarity

Scores

Figure 2: the common framework of previous methods, in
which they implicitly align text and images of mention and
entity, represented as the dashed curves.

(e.g., edit distance [26, 31], simple encoders [27] or statistical meth-
ods [6, 27]) to retrieve the Top-K candidate entities that are most
similar to the mention. In the second stage, detailed multimodal in-
formation is used to predict the correct entity from the candidate set
constructed before [6, 26, 27, 31]. Recent methods for this stage all
adopt a common framework (shown in Figure 2): they first interact
and fuse the text and image of the mention to obtain the mention
representation, and then calculate the entity representation with its
text and image in a similar way. Finally, they compute the similarity
between them to make prediction.

Although achieving good results, their “fuse and then match”
mechanism implicitly models the alignment relations between the
<text, image> of mention and the <text, image> of candidate
entity, which actually includes four types of different alignments,
i.e., mention text and entity text, mention text and entity image,
mention image and entity text, mention image and entity image.
This brings two potential drawbacks:

Firstly, it is difficult for the model to model the fine-grained
relations of the mention and entity. As the features of text and
images are fused before matching, some fine-grained features are

mixed and weakened, so they cannot be easily aligned between the
mention and entity. For example, as shown in Figure 3(a), the pre-
vious implicit alignment method fuses features of the “ship” in the
mention image with mention text features. Thus, the fused features
cannot be aligned with the ship in the entity image. However, if
the two images are explicitly associated, it is easy to find the fact
that “the main visual objects in the images are both ships”. This
clue is crucial for MEL task because it indicates that the mention
and entity refer to the same object. Therefore, a high-performing
model need to explicitly model the alignment relations between
mention and entity.

Secondly, their alignment is static, which results in low perfor-
mance when dealing with complex and diverse data, as different
samples often rely on different types of alignment. For instance,
some depend on text-to-text alignment, while others mainly rely
on image-to-image alignment. As shown in Figure 3(a), the text
contains little useful information, and this sample mainly relies on
the alignment relation of images, i.e., discovering that the visual
objects are both ships. Conversely, the image in Figure 3(b) does not
contain adequate information to indicate that “New Zealand” is a
country (rather than a sports team); only by focusing on the “prime
minister” in the text can it be associated with the country. So an ef-
fective model should be able to adaptively select the corresponding
alignment based on different input samples.

To address these issues, we propose the Dynamic Relation In-
teractive Network (DRIN). For the first issue, we explicitly model
four different types of alignment, which enables DRIN to learn
fine-grained alignment relations between mention and entity. For
the second issue, we build a dynamic GCN, which improves the
model’s ability to handle varied data. Concretely, We treat the text
and image in mention, as well as the text and images in candidate
entities, as vertices, and the four different types of alignment re-
lations as edges. By iteratively updating vertex features and edge
weights, we can dynamically select the corresponding relations
for different input samples. Experiments on two datasets show
that DRIN outperforms state-of-the-art methods by a large margin,
demonstrating the effectiveness of our method.

Overall, our contribution can be summarized as follows:
1) We are among the first to adopt dynamic explicit fine-grained

alignments to the MEL task, which improves the performance
when dealing with complex and diverse data;

2) We propose a novel dynamic relation interaction framework that
updates features and relations dynamically on a GCN, resulting
in more accurate and robust representations;

3) Experiments on two public datasets demonstrate that DRIN out-
performs previous state-of-the-art works, and further analysis
verifies the validity of our proposed network.

2 RELATEDWORK
2.1 Entity Linking
Recent methods for Entity Linking (EL) all employ neural networks.
They first use text encoders to obtain context-aware representations
of mention and entity, and then calculate similarities between them
to further obtain the final probabilities. For text encoders, they
usually use LSTM [11] or BERT [4]. Similarity measures include
dot product [7, 9, 14, 28] and cosine similarity [5, 8, 24]. When
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Figure 3: samples of mentions with their correct entities. The circles beside text and image represent the corresponding features,
the lines indicate explicit alignments, and among them the thick ones are important alignments. Sample (a) mainly relies on
image-to-image alignment, while sample (b) depends on text-to-text alignment.

calculating final probabilities, some methods apply an additional
feed-forward network layer and a softmax layer [5, 7, 23].

However, these methods are designed to deal with text only,
and cannot handle multimodal tasks. As multimodal data becomes
more and more important recently, there is a growing need for new
methods that can handle Multimodal Entity Linking.

2.2 Multimodal Entity Linking
Multimodal Entity Linking (MEL) is an extension of EL that utilizes
additional multimodal information (e.g., images, audios or videos)
to help disambiguate entities. Currently, most studies focus on tasks
where only text and images are involved.

Based on previous works, the task of MEL can be separated into
two categories. The difference between them is that their images
play different roles: the first category aims to link noun phrases
in the mention sentence, with images as auxiliary information
[3, 17, 18, 26, 27, 30, 31], while second category links both noun
phrases in the sentence and visual objects in the corresponding
image respectively to the text and image in the knowledge base [6].
Since the first category is dominant, we adopt it as our task format.

To tackle this task, Moon et al. [18] use a cross-modal attention
mechanism to fuse features at the character, word, and image levels,
before calculating similarities. Adjali et al. [2] construct a more chal-
lenging dataset on Twitter and design corresponding inter-modal
interactions and loss functions. Zhang et al. [31] design a two-stage
mechanism to reduce the negative impact of noisy images. They cal-
culate the relation between images and text, allowing only related
images to enter subsequent steps. Zhang et al. [30] proposed to
utilize history context on social media and designed a co-attention
scheme to aid the disambiguation process. Wang et al. [27] combine
feature representation and statistical probability, using inter- and
intra-modal attention to better fuse multimodal information. Wang
et al. [26] propose a gate fusion method to control the weights of
different modalities, and use contrastive learning to obtain more
meaningful multimodal representations.

All these works adopt a common framework: they first fuse the
text and image on both the mention and entity side, and then use
various techniques to match their information. This means that they
implicitly model the alignment relation between the text and image

of the mention and entity. Compared to this implicit alignment
approach, our proposed dynamic explicit alignment approach has
a superior performance in discovering fine-grained relations and
handling variable data.

2.3 Graph Convolutional Network
The idea of graph convolutional networks (GCNs) originated from
traditional convolutional neural networks, which extended the con-
volution operation to graph structures. Traditional GCNs [13] use
the adjacency matrix to convolve the information of neighboring
vertices onto the current vertex, After several iterations, it can per-
ceive the graph structure with surrounding information. On this
basis, improved structures are proposed. GAT [25] only accepts
vertex features as input and uses attention mechanisms between
pairs of vertices to replace traditional edges. KE-GCN [29] embeds
representations of both vertices and edges as vectors, and they are
iteratively updated during convolution.

Cao et al. [3] first introduced GCNs into the EL task. They con-
struct an entity graph connecting mention context to candidate
entities, and then disambiguate with the help of contextual informa-
tion. However, their model only uses textual relations and cannot
handle multimodal tasks. To the best of our knowledge, we are the
first to apply graph convolutional networks to MEL tasks.

3 METHODOLOGY
3.1 Problem Formulation
The task of Multimodal Entity Linking is to map a mention to its
corresponding entity in a knowledge base. To simplify the prob-
lem, we assume each mention or entity contains only one image,
following the previous works [26, 27].

As mentioned earlier, MEL is generally a two-stage task, with
the second stage being harder than the first. For the first stage,
we adopt the same method as previous works [26, 27] to extract
candidate entities. We will describe in detail how we construct the
candidate set and make comparison in Section 4.2. The second stage
is our focus, which involves linking a mention to its entity from a
candidate set constructed in the first stage for each mention.

Formally, given a mention𝑚, let 𝐶 (𝑚) represent its candidate
entity set, which usually contains tens of entities. Let 𝑟 denotes the
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Figure 4: an overview of the DRIN model with candidate set size r=3. First, we extract text and image features and calculate
similarities between them to construct an undirected graph. Second, we perform dynamic graph convolutions on it to iteratively
update the vertex representations and edge weights. Third, we extract the text vertex as their final representation, and calculate
the similarity of them to make predictions.

size of the candidate set, i.e., 𝑟 = |𝐶 (𝑚) |. Mention𝑚 is characterized
by its context 𝑇𝑚(mention textual context, i.e., mention text) and
𝑉𝑚(mention visual context, i.e., mention image). An entity 𝑒 ∈ 𝐶 (𝑚)
is characterized by its description 𝑇𝑒 (entity textual description, i.e.,
entity text) and 𝑉𝑒 (entity visual description, i.e., entity image). The
referent entity of mention𝑚 is predicted through:

𝑒∗ (𝑚) = argmax
𝑒∈𝐶 (𝑚)

sim(𝑇𝑚,𝑉𝑚 ;𝑇𝑒 ,𝑉𝑒 ), (1)

where sim(·) is the similarity between the mention and entity.

3.2 Overview
As illustrated in Figure 4, DRIN consists of three modules: graph
construction, relation interaction, and matching.

In the first module, we extract visual features using ResNet and
embed textual features with BERT [4] for both mentions and enti-
ties. These four types of features serve as the initial values of the
corresponding vertices in GCN. After that, we define four types of
alignment relations between mentions and entities, namely text-to-
text, text-to-image, image-to-text, and image-to-image, and calcu-
late their similarities as the initial edge weights in GCN.

In the second module, we perform relation interaction on a dy-
namic GCN. A graph is constructed on a mention and its candidate
entities, where vertices represent the text and images of themention
and entities, and edges represent the relations between them. After
obtaining the initial values in the first step, we perform dynamic
convolution on the constructed graph to iteratively update vertex
features and edge weights.

In the last module, we retrieve the text vertex features of men-
tions and entities from the GCN, which are already aware of multi-
modal contextual information after a few iterations, and calculate
the cosine similarity scores between them to obtain the final link-
ing probabilities of candidate entities. The entity with the largest
probability is predicted as the linking target of the mention.

3.3 Graph Construction
3.3.1 Vertex Feature. We first extract textual and visual features
to initialize the vertices, including mention text, mention image,
entity text and entity image.

As a strong text encoder, pre-trained model BERT[4] is widely
used in different NLP tasks. For mention sentence, we use BERT
encoder to obtain its context-aware representations and extract
mention phrase token features from it. After that, they are average
pooled into a vector and linearly mapped to a subspace. Formally,

𝑉𝑚𝑡 =𝑊𝑚𝑡
1

𝑒 − 𝑏

𝑒−1∑︁
𝑖=𝑏

(BERT(𝑇𝑚) [𝑖]) , (2)

where𝑊𝑚𝑡 is a trainable weight, 𝑏, 𝑒 denote the beginning and
ending position of the mention phrase in the sentence, and 𝑉𝑚𝑡 is
the representation for the mention text.

For entity description, we also apply the BERT encoder to obtain
its feature. Next, we extract the feature of the first token as its
representation and map it to the subspace:

𝑉𝑒𝑡 =𝑊𝑒𝑡BERT(𝑇𝑒 )[𝐶𝐿𝑆 ] , (3)

where 𝑉𝑒𝑡 is the representation for entity text.
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In addition to textual features, we also encode visual features.
Most of the previous methods in the MEL task use the pre-trained
ResNet [10] model to extract image features. For a fair comparison,
we use the same image encoder as previous models. Specifically,
given an image, we first resize it to 224×224 pixels, and then use
the image recognition model ResNet to obtain the pooler output of
the last convolutional layer. After that, the feature is also mapped
to the subspace. Formally, we obtain the visual features through

𝑉𝑚𝑣 =𝑊𝑚𝑣ResNet(𝑉𝑚), (4)

𝑉𝑒𝑣 =𝑊𝑒𝑣ResNet(𝑉𝑒 ), (5)
where 𝑊𝑚𝑣,𝑊𝑒𝑣 are trainable weights, ResNet(·) is the ResNet
image encoder whose output is a pooled vector, and 𝑉𝑚𝑣,𝑉𝑒𝑣 is
vertex features for mention image and entity image, respectively.

3.3.2 Edge Relation. To leverage fine-grained alignment between
mention and entity, we explicitly model four types of relations:
mention text and entity text, mention text and entity image, men-
tion image and entity text, mention image and entity image. We
use the these relations to build the corresponding edges in GCN.

Text-to-text alignment: the semantic meaning of mention is
implied by its context[3]. If mention textual context and entity
textual description is similar, it is likely that they refer to the same
object. Therefore, by connecting them with an edge in GCN, they
can aggregate information from each other and learn better rep-
resentations. We model the text-to-text relation 𝑅𝑡𝑡 ∈ R with the
similarity of the BERT feature of their first token, as:

𝑅𝑡𝑡 = cos(BERT(𝑇𝑚)[𝐶𝐿𝑆 ] , BERT(𝑇𝑒 )[𝐶𝐿𝑆 ] ) . (6)

Text-to-image alignment: both the mention textual context
and entity image imply the topic of the information[3]. If a mention
and a candidate entity are under the same topic, it is more probable
that they refer to the same object. For example, as shown in Figure
1, the words “first run” and “cup” indicate that the topic of this
mention is sports. We can also learn from the first entity image, in
which a man is skiing, that this entity is also in the sports topic.
Therefore, they two can use each other’s information to enhance
their representations. To capture this type of alignment relations,
we use the CLIP[21] model to obtain the text-image correlation
𝑅𝑡𝑣 ∈ R, as it is a powerful pre-trained multimodal model that can
be used to calculate text and image similarity:

𝑅𝑡𝑣 = CLIP(𝑇𝑚,𝑉𝑒 ) . (7)

Image-to-text alignment: the mention usually appears in its
image, so the corresponding visual object can represent the se-
mantic meaning of the mention. If that is similar with the entity
description, there is a greater chance that they refer to the same
object. We also use CLIP to get 𝑅𝑣𝑡 ∈ R:

𝑅𝑣𝑡 = CLIP(𝑉𝑚,𝑇𝑒 ) . (8)

Image-to-image alignment: if the mention image and the
entity image contain the same visual object, chances are that this
object is what they both refer to. Inspired by [32], we first apply
the pre-trained object detection model faster-RCNN [22] to extract
the top-k visual object regions of both images with the scores of
confidence, denoted as

𝑉
𝑜𝑏 𝑗
𝑚 = {𝑣𝑖𝑚}𝑘𝑖=1, 𝑉

𝑠𝑐𝑜𝑟𝑒
𝑚 = {𝑠𝑖𝑚}𝑘𝑖=1, (9)

and
𝑉
𝑜𝑏 𝑗
𝑒 = {𝑣𝑖𝑒 }𝑘𝑖=1, 𝑉

𝑠𝑐𝑜𝑟𝑒
𝑒 = {𝑠𝑖𝑒 }𝑘𝑖=1, (10)

where 𝑘 is the number of visual objects extracted for both mention
and entity. Then we calculate the weighted average of the simi-
larities between the two sets of objects to obtain image-to-image
relation 𝑅𝑣𝑣 ∈ R:

𝑅𝑣𝑣 =

∑𝑘
𝑖=1

∑𝑘
𝑗=1 𝑠

𝑖
𝑚𝑠

𝑗
𝑒 cos(𝑣𝑖𝑚, 𝑣

𝑗
𝑒 )∑𝑘

𝑖=1 𝑠
𝑖
𝑚

∑𝑘
𝑖=1 𝑠

𝑖
𝑒

, (11)

where cos(·) is the cosine similarity function.

3.4 Relation Interaction
Relation interaction is designed to enhance the multimodal repre-
sentation of a vertex with information from its neighboring vertices.
We construct our relation interaction module based on a dynamic
GCN. Formally, it is defined on an undirected graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 ( |𝑉 | = 𝑛) is a set of vertices representing text and images
of a mention and all its candidate entities, and 𝐸 is a set of edges
specified by the four types of relations between them. Let𝐻 ∈ R𝑛×𝑑
be a matrix containing the features of all 𝑛 vertices, where 𝑑 is the
dimension of the feature vectors, and row 𝐻𝑖 ∈ R𝑑 is the feature
vector of the i-th vertex initialized in Section 3.3.1. Let 𝐴 ∈ R𝑛×𝑛
be the adjacent matrix that is initialized via the edge relations in
Section 3.3.2. A GCN layer is a nonlinear transformation that maps
from (𝐻 𝑙 , 𝐴𝑙 ) to (𝐻 𝑙+1, 𝐴𝑙+1) , defined as:

𝐻 𝑙+1
𝑖 = 𝜎

©«
𝑛∑︁
𝑗=1

𝐴𝑙
𝑖 𝑗𝑊

𝑙
ℎ
𝐻 𝑙
𝑗
ª®¬ + 𝐻 𝑙

𝑖 , (12)

𝐴𝑙+1
𝑖 𝑗 = 𝑀 ∗

(
𝜎

(
(𝑊 𝑙

𝑎𝐻
𝑙+1
𝑖 )𝑇 (𝑊 𝑙

𝑎𝐻
𝑙+1
𝑗 )

)
+𝐴𝑙

𝑖 𝑗

)
, (13)

where 𝑙 is the current layer index,𝑊 𝑙
ℎ
,𝑊 𝑙

𝑎 are trainable parame-
ters, 𝜎 is a non-linear activation function, * is the element-wise
multiplication, and𝑀 ∈ {0, 1}𝑛×𝑛 is a mask matrix defined as

𝑀𝑖 𝑗 =

{
1, if relation (𝑖, 𝑗) is one of the four types specified,
0, otherwise.

After obtaining multimodal features and similarities in the first
step, we use them to initialize vertex representations 𝐻0 and edge
weights 𝐴0. Then, we feed them into the dynamic GCN with 𝐿

layers to perform relation interaction.

3.5 Matching
Finally, we extract text vertices of both the mention and its entities
from the graph, which are now aware of multimodal context, and
calculate their similarities. Formally, we denote the final mention
text vertex feature as 𝑇 ∗

𝑚 , and entity text vertex features as 𝑇 ∗
𝑒,𝑖
(𝑖 =

1, 2, . . . , 𝑟 ). Then the similarity is calculated as

𝑆 (𝑚, 𝑒𝑖 (𝑚)) = cos(𝑇 ∗
𝑚,𝑇 ∗

𝑒,𝑖 ), (14)

where 𝑆 (𝑚, 𝑒𝑖 (𝑚)) is the similarity score between the mention𝑚
and its 𝑖-th entity. Thus the index of the predicted entity

𝑖∗ = argmax
𝑖∈{1,2,...,𝑟 }

𝑆 (𝑚, 𝑒𝑖 (𝑚)) . (15)

As a result, the finally predicted entity

𝑒∗ (𝑚) = 𝑒𝑖∗ (𝑚) . (16)
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Table 1: statistics of WikiMEL and WikiDiverse.

WikiMEL WikiDiverse

# Num. of samples 22.1k 9.8k
# Num. of menitons 26.6k 19.5k
# Average text length 8.2 10.1
# Average mentions per sample 1.2 2.0
# Num. of candidates per mention 100 10

3.6 Loss Function
We use margin ranking loss as the loss function. The goal of training
is to maximize the similarity between the mention and its correct
entity while minimize that of other entities. Formally, the loss is
specified by

L =
∑︁

max(𝑆− − 𝑆+ + 𝜆, 0), (17)

where 𝜆 is the margin, 𝑆+ is the similarity between the mention
and its correct entity, and 𝑆− is the mean similarity of the mention
with all entities except for the correct one in a mini-batch.

4 EXPERIMENTS
4.1 Datasets
In this part, we first review on datasets proposed by previous works,
and then describe and explain our choice.

Moon et al.[18] proposed the first MEL dataset SnapCaption-
sKB, which is composed of 12K user-generated image and textual
caption pairs from social media. Adjali et al. [2] constructed their
dataset Twitter-MEL by collecting Twitter posts with text and im-
ages. Zhang et al. [31] collected their text-image data from Weibo
and also constructed their new dataset. However, none of the above
three datasets are opened, so they are not available to us.

Gan et al. [6] proposed an open dataset M3EL, by obtaining
movie reviews from IMDb and The Movie Database. However, as
stated in Section 2.2, its task format is different from ours. Besides
noun phrases in sentences, it also regards visual objects in images
as mentions to be linked. As a result, we cannot use their data.

Later, Wang et al. [26] proposed three new open datasets: Wiki-
MEL, Richpedia-MEL and Twitter-MEL, but onlyWikiMEL contains
at least one image for bothmention and entity. Another open dataset
WikiDiverse [27] was proposed at the same time.

We evaluate our model on two MEL datasets: WikiMEL and
WikiDiverse, as they are the only open MEL datasets that contain
both mention images and entity images, as far as we know. The
statistics of WikiMEL and WikiDiverse are described in Table 1.

4.2 Compared Methods
As described before, the task of MEL contains two stages, and our
focus is on the second stage. For a fair comparison, we adopt the
same method as previous works to extract candidate entities in the
first stage. Concretely, we follow [26] to use fuzzy search to extract
Top-100 candidates in WikiMEL dataset, and follow [27] to adopt a
combined method of statistics and word features to extract Top-10
candidates in WikiDiverse dataset.

Afterwards, we apply different methods to predict the correct
entity among the previously extracted candidate set. We compare
our method the following unimodal and multimodal model:

BERT[4]: a unimodal method that use the pretrained model
BERT to encode the mention text and entity description, and then
calculate their similarity to make a prediction.

JMEL[2]: a multimodal method that uses fully connected layers
to project the visual and textual features into an implicit joint space.
They also use contrastive learning to enhance the representations.

DZMNED[18]: a multimodal method that utilizes a multimodal
attention mechanism to fuse visual, textual and character level
features of mention, and then use both combined and character
level features to match entity representations.

MEL-HI[31]: a multimodal method that adopts a two-stage
mechanism. It first calculates the similarity of image and text, and
only allows related images to enter the multimodal fusion step.

GHMFC[26]: a multimodal method that applies contrastive
learning and a fusion gate to control the weights of different modal-
ities.

4.3 Evaluation Metrics
We use the top-K accuracy metric for evaluation. Given the simi-
larities between a mention and its candidate entities, we rank the
candidates based on it. If the correct entity is ranked among the
top-K candidates, the sample is considered correct. The top-k ac-
curacy is calculated as the ratio of the number of correct samples
to the total number of samples. Formally, for a dataset 𝐷 , top-K
accuracy is defined as

TopKAcc(𝑘) = 1
|𝐷 |

∑︁
𝑚∈𝐷

[
𝑟∑︁
𝑖=1

[
𝑆
(
𝑚, 𝑒∗ (𝑚)

)
< 𝑆 (𝑚, 𝑒𝑖 (𝑚))

]
< 𝑘

]
,

where [·] is the Iverson bracket which evaluates to 1 if the condition
inside it is true and 0 otherwise.

4.4 Implementation Detail
Our proposedmethod is implemented using the PyTorch framework
[20] and trained on an NVIDIA GeForce RTX 3090Ti GPU [19]. We
use bert-base-cased [4], resnet-152-imagenet [10] and clip-vit-base-
patch32 [21] as our encoder. The Adam optimizer [12] is utilized
for training, with a fixed number of epochs set to 30. We set GCN
hidden dimension size as 768, number of GCN layers as 2, batch size
as 64, learning rate as 0.001, and loss margin as 0.25. We report the
results averaged on 5 runs along with standard deviation and tests
of significance on random initialization under the aforementioned
settings.

5 RESULTS AND DISCUSSION
5.1 Main Results
Table 2 presents the results of our proposed DRIN model in com-
parison with previous methods on the WikiMEL and WikiDiverse
datasets. Since in WikiMEL a candidate set contains 100 entities
and in WikiDiverse 10 entities, we report Top-1, Top-5, Top-10,
Top-20 of WikiMEL, and Top-1, Top-3, Top-5 of WikiDiverse. Based
on these results, we can make a couple of observations:
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Table 2: performance comparison of different methods on the WikiMEL and WikiDiverse datasets (%). The results of DRIN are
averaged on 5 runs, with the corresponding standard deviation beside. Best results are in bold. The marker † indicates that the
significance test p-value is less then 0.05 compared with GHMFC. We cannot get some results on WikiDiverse because these
models do not have their code opened and no paper reports their performance on WikiDiverse.

Model WikiMEL WikiDiverse

Top-1 Top-5 Top-10 Top-20 Top-1 Top-3 Top-5

BERT 31.7 48.8 57.8 70.3 45.5 75.7 89.0
JMEL 31.3 49.4 57.9 64.8 N/A N/A N/A
DZMNED 34.7 53.9 58.1 70.1 N/A N/A N/A
MEL-HI 38.6 55.1 65.2 75.7 45.7 76.5 88.6
GHMFC 43.6 64.0 74.4 85.8 46.0 77.5 88.9
DRIN 65.5†±0.81 91.3†±0.52 95.8†±0.22 97.7†±0.14 51.1†±0.74 77.9±0.65 89.3±0.83

Table 3: performance of ablation studies on main components of DRIN (%).

Model WikiMEL WikiDiverse

Top-1 Top-5 Top-10 Top-20 Top-1 Top-3 Top-5

DRIN 65.5 91.3 95.8 97.7 51.1 77.9 89.3
DRIN (w/o image-to-image edge) 65.2 91.4 95.8 97.9 49.1 76.8 89.1
DRIN (w/o image-to-text edge) 64.0 90.1 95.4 97.9 49.1 77.1 87.7
DRIN (w/o text-to-image edge) 64.4 90.3 95.5 98.0 49.3 77.4 87.5
DRIN (w/o text-to-text edge) 61.2 88.8 94.4 97.8 48.6 75.3 87.3
DRIN (static edge) 57.8 86.1 92.3 95.5 49.0 77.4 88.6

First, it is notable that the unimodal baseline BERT displays a
relatively commendable performance. This can be attributed to
its capability of obtaining context-aware representations of both
mentions and entities. In certain instances, the correct entity can
be identified through the utilization of textual modality alone.

Second, all multimodal methods outperform the unimodal BERT
on both datasets, indicating that the visual information is useful in
supplementing the textual information for the MEL task. Among
the multimodal methods, GHMFC achieves the best performance,
possibly due to its self-modal and cross-modal multi-head attention,
which helps to learn more robust representations.

Third, our proposed DRIN model outperforms previous methods
by a significant margin on both datasets. Specifically, DRIN out-
performs the state-of-the-art GHMFC model by 22.4% and 5.1% on
the Top-1 score for WikiMEL and WikiDiverse, respectively. Our
model also achieves better results on other metrics. These results
further reveal the effectiveness of our model.

Fourth, all methods, including ours, performworse on theWikiDi-
verse dataset. This is because the mentions and images in WikiDi-
verse are more diverse and varied, covering a wide range of topics
from locations to famous events. This diversity makes the task more
challenging compared to WikiMEL, where most mentions refer to
people and images are usually their photos.

5.2 Ablation Study
To investigate the contributions of different modules of the model,
we conduct ablation studies on two main components of DRIN. The
results are shown in Table 3, where “w/o” indicates the removal of

the graph edges, and “static edge”refers to fixing the edge weight
at the initial value throughout the GCN iterations. Based on the
results, the following conclusions can be drawn:

Firstly, removing most of the edges makes the overall perfor-
mance worse, validating the rationality of leveraging the four types
of alignments between <text, image> pairs of mention and image
to utilize fine-grained alignment relations.

Secondly, The substitution of dynamic edges with static ones
causes a drastic performance drop on both datasets. This means that
dynamic relation interaction has advantages over static alignments,
which corroborates our motivation to employ dynamic GCN to
model diverse alignments.

Thirdly, text-to-text edges have the greatest impact on perfor-
mance compared to other edges. This is because we primarily rely
on text for entity linking, while visual clues serve mainly as aux-
iliary information. As a result, text-to-text alignment contributes
more to our model, which is consistent with our motivation.

Fourthly, compared to WikiDiverse, WikiMEL is less affected
after removing a type of edges, especially for those linked to entity
image vertices, i.e., image-to-image and text-to-image edges. This
could be attributed to the fact that most entity images in WikiMEL
are portraits of individuals, so they cannot provide substantial
information for the MEL task, as our image encoder ResNet, which
is trained on ImageNet, is unable to differentiate between various
faces. Therefore, the exclusion of edges connected to entity images
has a limited impact on the aggregation of crucial information.

Lastly, while removing edges causes a drastic performance drop
on most metrics, we do observe a slight increase on the Top-20
metric in WikiMEL. This may be because the ranked entities in
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Table 4: performance of DRIN with different number of layers (%).

𝐿
WikiMEL (valid) WikiMEL (test) WikiDiverse (valid) WikiDiverse (test)

Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

1 64.7 90.0 95.3 64.0 90.0 95.3 47.8 76.4 87.6 48.8 78.0 89.1
2 65.5 91.3 95.8 65.5 91.3 95.8 48.5 77.3 87.8 51.1 77.9 89.3
3 65.8 90.7 95.4 64.1 90.3 95.5 45.5 75.1 86.8 47.2 74.5 87.2
4 65.5 90.6 95.5 63.1 90.4 95.5 45.9 75.7 87.9 47.2 76.4 86.6
5 63.6 89.3 94.6 62.9 89.6 94.5 43.9 72.3 86.2 45.4 75.9 86.7

Top-20 metric have a bigger risk of noise. Compared to Top-1, Top-5,
and Top-10, lower-ranked entities in Top-20 have lower relevance
and are more likely to be noisy. In this case, removing edges will
prevent noise propagation. Overall, our method outperforms other
methods such as GHMFC on the Top-20 metric in WikiMEL, which
indicates our proposed four fine-grained alignments bring more
improvements over noise interference.

5.3 Effect of Hyper-parameter 𝐿
We tune the value of hyper-parameters 𝐿 on the validation set of
each dataset, and then evaluate the performance of the model on
the test set. Table 4 shows the results when the number of GCN
layers was separately set to 1, 2, 3, 4, and 5.

As the value of 𝐿 increased, the performance of DRIN improves,
with the best results achieved when 𝐿 = 2. However, once the value
of 𝐿 exceeds 2, performance does not continue to increase and even
begin to decline. This is a common phenomenon in GCN. Firstly, a
deep GCN is very difficult to train [1]. Secondly, as GCN aggregates
vertex information from neighbors, their representations tend to
converge when the number of layers is too large [15], making it
difficult for the model to distinguish between candidate entities.

5.4 Case Study
To better understand the advantages of our proposed method, we
present qualitative results of DRIN compared with previous fusion-
based methods and DRIN with static edges in a case study.

As shown in Figure 5, the image of the mention (a photo of the
prime minister) and its correct entity (a map of New Zealand) do
not match. As a result, GHMFC which fuses the features of text and
images tends to lower the matching probability of them, resulting
in an incorrect prediction. Additionally, due to the low similarity
between the text and images of mention and entity, the initial edge
weights of DRIN are all small. Therefore, static DRIN cannot effec-
tively aggregate information. However, DRIN, which dynamically
models fine-grained alignments, understands that in this sample
text-to-text and text-to-image alignments are more important, so
the corresponding edges are enhanced and thus a more robust
representation is obtained. Consequently, DRIN predicts a higher
probability and solves this sample correctly.

5.5 Complexity
The time complexity of DRIN is 𝑂

(
𝐴(𝑛2𝑑 + 𝑛𝑑2) + 12𝐿𝑟𝑑2

)
, where

𝑛 is the sequence length, 𝑑 is the dimension of the hidden state, and
𝐴 is a constant. This is because the multimodal feature extraction

Helen Clark, 
Prime Mini-
ster of New 

Zealand.

New Zealand 
is an island 
country in 

the south...

mention entity

0.18 -> 0.73

0.03 -> 0.09

0.22 -> 0.49

0.04 -> 0.21

GHMFC DRIN(static) DRIN(dynamic) √× ×

Figure 5: predictions of GHMFC and DRIN on a sample. This
image contains the mention with its correct entity. The val-
ues before and after the arrow is the corresponding edge
weights before and after being updated by GCN, respectively.
✗, ✓denote incorrect and correct predictions.

counts for𝑂 (𝐴(𝑛2𝑑+𝑛𝑑2)); through a single GCN iteration, vertices
and edges are updatedwith its neighbors, which counts for𝑂 (𝑑2 (2×
2𝑟 + 2𝑟 × 2)) and 𝑂 (𝑑2 × 4𝑟 ), respetively.

In comparison, the complexity of the previous fusion-based
methods like GHMFC is 𝑂 ((𝐴 + 𝐵) (𝑛2𝑑 + 𝑛𝑑2)), where 𝐵 is a
constant. Since 𝑟, 𝐿 are constants that is not very large (usually
𝐴, 𝐵, 𝑛 ∼ 100; 𝑟 ≤ 100; 𝐿 ≤ 5), the complexity of our method
does not drastically exceed that of previous works in the order of
magnitude.

6 CONCLUSION
In this paper, we propose a novel Dynamic Relation Interactive
Network (DRIN) for the Multimodal Entity Linking (MEL) task.
The main idea of our approach is to explicitly and dynamically
model four kinds of fine-grained alignments between mention and
entity to enhance their representation. Results from experiments
indicate that our model achieves far better performance than other
state-of-the-art methods.
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