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ABSTRACT
Efficient large-scale neural network training and inference on com-
modity CPU hardware is of immense practical significance in de-
mocratizing deep learning (DL) capabilities. Presently, the process
of training massive models consisting of hundreds of millions to
billions of parameters requires the extensive use of specialized hard-
ware accelerators, such as GPUs, which are only accessible to a
limited number of institutions with considerable financial resources.
Moreover, there is often an alarming carbon footprint associated
with training and deploying these models. In this paper, we take a
step towards addressing these challenges by introducing BOLT, a
sparse deep learning library for training large-scale search and rec-
ommendation models on standard CPU hardware. BOLT provides
a flexible, high-level API for constructing models that will be famil-
iar to users of existing popular DL frameworks. By automatically
tuning specialized hyperparameters, BOLT also abstracts away
the algorithmic details of sparse network training. We evaluate
BOLT on a number of information retrieval tasks including product
recommendations, text classification, graph neural networks, and
personalization. We find that our proposed system achieves com-
petitive performance with state-of-the-art techniques at a fraction
of the cost and energy consumption and an order-of-magnitude
faster inference time. BOLT has also been successfully deployed by
multiple businesses to address critical problems, and we highlight
one customer case study in the field of e-commerce.
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• Information systems→ Information retrieval.
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1 INTRODUCTION
In recent years, extremely large-scale neural networks have dra-
matically altered search and recommendation systems. However,
this shift towards building ever-larger models has raised a num-
ber of challenges associated with training and deployment. First
and foremost, these massive search and recommendation models
are characterized by their high-dimensional output spaces, and
often contain hundreds of millions if not billions of parameters.
Training such networks using standard deep learning frameworks
requires the use of costly specialized hardware such as GPUs and
TPUs, exacerbating the gulf between institutions with the resources
to build these models and those without such capabilities. Addi-
tionally, these models need to be retrained frequently as new data
is generated from user interactions, thus necessitating additional
resources and cost.

Secondly, low inference latency is crucial in search and recom-
mendation settings as these models are deployed to serve real-time
user queries or interactions. This requirement makes deploying
such models a difficult engineering challenge; practitioners often
must shrink the network using compression techniques such as
knowledge distillation [21], quantization [19], and pruning [7],
which can also significantly degrade the model’s quality. Finally,
there is an alarming energy cost and carbon footprint associated
with training and deploying these models [41], driven in large part
by the fact that the majority of deep learning inference cycles at
large web companies are devoted to search and recommendations
[18].

Motivated by these considerable computational barriers to real-
izing the full promise of large-scale neural networks for retrieval
tasks, we introduce BOLT, a modular deep learning framework for
large-scale search and recommendation problems that can train
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models with billions of parameters on cost-effective CPU hardware
with inference latencies on the order of a few milliseconds. BOLT
achieves these breakthroughs through algorithmic advances on the
classical neural network training approach. In particular, we pro-
vide a commercial-grade implementation of the SLIDE algorithm
of [11, 40], which uses adaptive sparsity to avoid expensive dense
matrix multiplication. BOLT also provides a number of features that,
to our knowledge, are novel amongst deep learning frameworks, in-
cluding the ability to configure network sparsity to gracefully trade
training time for model quality, automated tuning of specialized
hyperparameters, and fast sparse inference in deployment. BOLT
has also been tested and deployed by several companies in produc-
tion environments, validating the reliability and performance of
the system.

In summary, we make the following contributions in this paper:
(1) Production-Grade System:Wepresent BOLT, a production-

grade library for building neural networks specialized for
high dimensional output spaces that leverages sparse com-
putations to efficiently train and predict with large-scale
models on standard CPU hardware as opposed to costly
hardware accelerators. To our knowledge, BOLT is the first
production-grade library to implement recent advances in
sparse training via locality sensitive hashing primitives.

(2) Sparsity-First Development Features: We introduce a
variety of novel features for sparse neural network training
that further enhance the functionality and utility of BOLT.
Specifically, BOLT features autotuning for sparsity related
hyperparameters to simplify integrating sparsity in model
training and deployment. We also develop a novel sparse
inference setting which further accelerates prediction speed
at a negligible cost to model quality.

(3) Real-world Impact: Our work provides the first compre-
hensive evaluation of LSH-based sparse neural networks on
a variety of tasks and high-performing baselines in the liter-
ature. Multiple organizations have also successfully trained
and deployed BOLT models for critical business applications.
In this paper, we provide a case study summarizing our jour-
ney deploying BOLT into production to improve search rele-
vance at Wayfair, a leading online furniture retailer.

2 RELATEDWORK
2.1 Sparse Neural Network Training
Sparsity plays a central role in the scientific study of deep learning.
A number of works have explored efficiently pruning neural net-
works to achieve improvements in memory footprint and inference
speed [16, 33, 34, 37, 49]. However, to our knowledge, all of these
prior pruning approaches still involve performing the model train-
ing on specialized hardware such as GPUs, leaving the efficiency
gains only for the inference phase. By contrast, we show that BOLT
is capable of training large networks from scratch on CPUs directly
by leveraging similar principles of sparsity.

2.2 Hashing for Deep Learning
In conjunction with recent developments in neural network prun-
ing and sparsity, hashing and randomization have demonstrated
tremendous promise in scaling deep learning. For example, [40]

proposes to use hashing to select the neurons with the largest activa-
tions during training in order to reduce the amount of computation.
Along similar lines, [10] leverages locality sensitive hashing to effi-
ciently update network parameters during training. Furthermore,
the aforementioned SLIDE algorithm provides a culmination of
many of these early approaches by demonstrating the feasibility of
training large feedforward neural networks directly on CPU hard-
ware. We discuss the details of SLIDE further in the next section.

3 BACKGROUND: THE SLIDE ALGORITHM
The SLIDE algorithm stems from the observation that, while GPUs
are memory bound, CPUs are limited by throughput rather than
memory, particularly for deep learning workloads. The sheer num-
ber of repeated operations involved in training deep learning mod-
els ensures the process is well suited to GPUs. Being able to effi-
ciently reduce the computational requirements of deep learning,
possibly at the expense of additional memory overhead, would
make CPUs more competitive for deep learning. Since CPUs are
much less expensive than GPUs, such a capability would make deep
learning widely affordable and available.
Sparsifying a Fully Connected Layer: The authors of SLIDE [11]
propose an algorithmic change to a standard fully connected layer
to achieve this. SLIDE dynamically samples neurons most likely
to have a high activation for each input. By only computing acti-
vations for these neurons it provides an accurate estimate of the
activation pattern of the layer while significantly reducing com-
putations in the forward and backward pass. This in turn reduces
the total computational cost of training the model. SLIDE uses a
similarity search index to perform sampling: given an input activa-
tion pattern, SLIDE queries the index to find neurons with a similar
weight pattern, which are precisely the neurons likely to have a high
activation. Because the sampling is done in an input-dependent
way, we refer to it as dynamic sparsity. Dynamic sparsity improves
upon static techniques such as pruning because it preserves the
expressive power of wide layers and allows the model to train more
parameters with a low computational cost.
Locality Sensitive Hashing: The SLIDE algorithm uses a tech-
nique called Locality Sensitive Hashing (LSH) to build the similar-
ity search index. LSH is a very well-studied technique that was
originally introduced to break the curse of dimensionality in near-
neighbor search [1–3, 14, 22]. LSH has recently emerged as a sam-
pling tool for efficient unbiased statistical estimation [4, 8, 39, 40].
In an LSH function the probability that two points in the input
space collide is proportional to the similarity between the points.
The central insight of LSH-based algorithms is that given a set of
points 𝑆 , we can precompute the hashes of each point in 𝑆 . Then,
given an input 𝑥 , we can efficiently sample similar elements 𝑦 ∈ 𝑆
by hashing 𝑥 with the same LSH function and searching within the
colliding points.
Why Similarity Search Works: The SLIDE algorithm indexes
each weight vector𝑤𝑖 into an LSH table. To compute the output of
a neural network layer, the inputs are hashed using the same hash
function to retrieve a (very small) set of neurons, which are used to
compute the output of the layer (see diagram 1).

The returned neurons are likely to have a high activation by the
following argument. Recall that neuron activations are computed
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Figure 1: Overview of the SLIDE algorithm

as
𝑎𝑖 = 𝑓 (wi · x + 𝑏𝑖 )

where 𝑓 is the activation function, wi is the weight vector of the
neuron, x is the input, and 𝑏𝑖 is the bias of the neuron. If we assume
𝑓 is non-decreasing (a property of all common activation functions),
then 𝑎𝑖 is non-decreasing with respect to𝑤𝑖 · x. We can expand this
dot product as

wi · x = ∥wi∥∥x∥ cos(𝜃 )
where 𝜃 is the angular distance betweenwi and x. Thus, under mild
uniformity assumptions on the magnitudes of the weight vectors
𝑤𝑖 , the dot product (and activation) will be largest when 𝑐𝑜𝑠 (𝜃 ) is
largest, which occurs for neurons whose weight vector is closest in
angular distance to the given input vector.

This fact allows us to use well-established LSH techniques that
are sensitive to angular similarity [9, 17, 27, 38] to identify elements
with large activations.

4 BOLT
BOLT is designed to enable production scale search and recom-
mendation workloads on CPUs through algorithmic acceleration.
It achieves this by using recent methods such as SLIDE [11], as
well as other efficient algorithms that leverage sparsity, as funda-
mental computational primitives. BOLT provides a simple interface
and abstracts away the additional hyperparameters associated with
these techniques. It allows users to define tasks and models with a
simple high level API, and then internally uses automated hyperpa-
rameter tuning to select the appropriate algorithm, sparsity, etc. to
maximize the performance of the model.

4.1 Core Library
In addition to common operations (Ops) associated with a mod-
ern deep learning framework BOLT also implements Ops which
leverage sparsity and other algorithmic optimizations to speedup
computations. Based on the model and task defined by the user,
BOLT internally creates an efficient computation graph composed
of Ops, with optimized sparse Ops used when possible to speedup
training and inference. This model is then trained using BOLT’s
autograd capability which can make additional optimizations due
to sparsity. During backpropagation BOLT’s autograd can traverse
only used links between neurons in a model, which can greatly
optimize performance with sparse Ops. Additionally BOLT can
track memory accesses to parameters in sparse Ops such that when

applying parameter updates it only needs to update parameters
that were used for the given training batch.

4.2 Automated Sparsity Hyperparameter
Tuning

BOLT automatically tunes sparsity related hyperparameters to
achieve high performance. As an example, we present a novel
method to tune the hyperparameters of a sparse fully connected
layer. This method forms the core of one of our optimizations to
the SLIDE layer described in Section 3.

At a high level, the intuition for our analysis is as follows: given
an input activation pattern, each LSH table identifies a set of neu-
rons (see Figure 1). In order to have enough neurons to meet the
user-specified sparsity level, we need to ensure that we match
enough neurons. We can do this by having multiple LSH tables, but
this adds overhead, so we want to find the minimum number of
tables needed to get enough neurons. We can do this by making
some load balancing assumptions about the LSH table.

Consider a sparse layer with dimension 𝑑 and sparsity 𝑠 , where
sparsity is defined as the ratio of neurons whose activation we
explicitly evaluate. We will hash each of the 𝑑 weight vectors into 𝐿
LSH tables, and each tablewill have range 2𝐾 . Let𝑋𝑖, 𝑗 be the random
variable that represents the number of neurons in bucket 𝑖 of table 𝑗 .
If we assume that the weight vectors are well distributed, then each
bucket in each table should have 𝑑/2𝐾 elements on expectation, or
in other words for all 𝑖, 𝑗 ,

𝐸 (𝑋𝑖, 𝑗 ) =
𝑑

2𝐾

Given an input activation pattern, we will collect all of the neurons
from one bucket in each table. Ideally, we want the union of these
buckets to contain at least 𝑠𝑑 neurons. Since there are 𝐿 tables, and
the expected number of neurons in each bucket is 𝑑

2𝐾 , in order to
have enough matched points to return we want

𝐿𝑑

2𝐾
≥ 𝑠𝑑

We now introduce a "safety factor" scalar 𝑐1, which represents how
many times larger the right side of the inequality (the expected
number of neurons returned) is greater than 𝑠𝑑 (the desired number
of neurons returned). If 𝑐1 ≪ 1, we may run out of neurons, while
if 𝑐1 ≫ 1, we will have many unnecessary LSH tables. Thus, our
final equation is

𝐿 = 𝑐1𝑠2𝐾

Both 𝐿 and 𝐾 are free variables here, so we now introduce an addi-
tional equation based on the cost of maintaining the hash tables: let
𝑑prev be the dimension of the previous layer and 𝑑 be the dimension
of the current sparse layer. Then the cost of hashing is 𝐾𝐿𝑑prev and
the cost of evaluating the chosen neurons is 𝑠𝑑𝑑prev, while the cost
of evaluating all neurons (a dense computation) is 𝑑𝑑prev. Thus,
choosing a minimum speedup ratio 𝑐2 where 𝑐2 < 1, we require

𝐾𝐿𝑑prev + 𝑠𝑑𝑑prev ≤ 𝑐2𝑑prev𝑑 =⇒ 𝐾𝐿 + 𝑠𝑑 ≤ 𝑐2𝑑

We find that larger 𝐿 up to about 𝐿 = 256 gives better results (since
looking at more hash tables averages the randomness from each
table and increases the quality of each table of a higher quality), so
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our final goal is to maximize 𝐿 subject to

𝐾𝐿 + 𝑠𝑑 ≤ 𝑐2𝑑 𝐿 ≤ 256 𝐿 = 𝑐1𝑠2𝐾

To set 𝐾 and 𝐿 in practice, we choose 𝑐1 = 1, which in our exper-
iments gives enough neurons greater than 95% of the time, and
𝑐2 = 0.1, which corresponds to a potential 10 times speedup. We
then try substituting increasing integer values of 𝐾 into the third
equation to solve for 𝐿, continuing this process until the first equa-
tion is no longer satisfied. To help load balance the hash tables we
also cap the maximum number elements in each hash bucket at
𝑅. We find that setting 𝑅 equal to twice the expected number of
neurons in each bucket sufficiently load balances the hash tables
without a noticeable impact on performance (weight vectors are
frequently well distributed).

To validate this strategy we conducted a grid search on the
Amazon-670K dataset [6] for the first 3 epochs of training with dif-
ferent values of 𝐾 , 𝐿, and 𝑅. We found that our autotuning achieved
an accuracy of 1 absolute percent error against the best parameters
found by the grid search, whereas many of the other combinations
of parameters yielded results that had 3-5 absolute percent error
compared against the best configuration.

4.3 Sparse Inference
Dynamic sparse deep learning methods typically use sparsity to
speed up training but disable it during inference [10, 11]. How-
ever, recent work has explored using similarity search indices to
dynamically choose neurons during inference [31]. BOLT builds on
this research and supports dynamic sparsity in inference to reduce
latency.

Recall that during training, we can use LSH tables to quickly find
high activation neurons corresponding to a training sample’s acti-
vation pattern. The authors of [31] examine using these hash tables
for inference in the same way as training and find that the correct
neurons are not always returned. To minimize the probability of
this event occurring, we introduce two strategies. The first strategy
is to increase the inference sparsity while keeping LSH tables the
same; this method evaluates more neurons, increasing the chance
that the neuron corresponding to the correct class is returned at
the cost of increasing the computational cost. The second strategy
is during training, when the hash buckets containing a correct label
are not selected, we insert that label into the hash buckets that
were selected instead. This increases the chance of the correct label
being retrieved for similar samples in the future.

We report the results of using sparse inference and dense infer-
ence on Amazon 670k in Table 1 after training for 5 epochs. We
keep the inference sparsity the same as the training sparsity (0.05
for the output layer), and report results with both adding label
neurons (ALN) and not adding label neurons to buckets during
training. We include TensorFlow and PyTorch as well for a com-
parison. Interestingly, we find that both sparse and dense inference
do better when we add label neurons to buckets during training;
we hypothesize that adding label neurons to buckets reduces the
number of non-label neurons we select during sparse training, and
thus speeds up convergence.

Dataset Accuracy Inference Time (ms)
BOLT Sparse Inference (ALN) 0.345 4.4
BOLT Dense Inference (ALN) 0.348 63

BOLT Sparse Inference 0.298 4.0
BOLT Dense Inference 0.325 67

Tensorflow-CPU 0.346 44.4
PyTorch-CPU 0.341 27.4

Tensorflow-GPU 0.346 1.9
PyTorch-GPU 0.349 0.6

Table 1: Inference onAmazon 670k after 5 epochs of training.

5 CASE STUDIES
We will now examine case studies that showcase BOLT’s perfor-
mance in a variety of search and recommendation settings. We
instantiate BOLT using variants of the SLIDE model architecture
framework discussed earlier.We do not disclose our precise architec-
tures and associated parameters to preserve business confidentiality,
but do provide code to reproduce these results via our high-level
BOLT Python API 1. Unless otherwise stated, we train and evaluate
all CPU-based experiments on an AWS c6i.8xlarge instance with
16 physical cores and 64 GB RAM and all GPU experiments on a
Paperspace NVIDIA A100 machine with 80GB of GPUmemory. Our
inference latency results were all obtained by taking the average
inference latency on 1000 data points.

5.1 Extreme Classification
Extreme classification is a machine learning problem where the
output label space is considerably large (typically greater than
100, 000). This setting frequently appears in search and recommen-
dation contexts and typical problem domains include product search
and document search. For these experiments, we trained the same
model using BOLT, Tensorflow GPU/CPU, and PyTorch CPU/GPU
on three datasets from the Extreme Classification Repository [6].
The results of these experiments in Figure 2 show BOLT achieves
comparable performance to Tensorflow and PyTorch on an A100
GPU and is considerably faster than either engine on CPU. We note
that the NVIDIA A100 processor is a particularly strong baseline for
this case study since, unlike earlier generations of GPUs, it includes
specific support for sparsity [23]. Nevertheless, we find that BOLT
achieves comparable performance on a CPU machine available at a
3-10x fraction of the cost.

5.2 Text Classification in the Low-Latency
Regime

In this section, we conduct experiments comparing BOLT’s per-
formance on text classification tasks against popular transformer
models [44] that are optimized for low latency and faster fine tun-
ing. Specifically, we compare against TinyBERT [43] and Distil-
BERT [36] using their PyTorch implementations in the Hugging-
Face transformers library [46]. We use the pre-trained versions
of the transformer models for initialization, while we train BOLT
from scratch. Moreover, we measure the training time and infer-
ence speed of the transformer baselines on an A100 GPU while we
use a c6i.8xlarge AWS CPU for BOLT. The training time numbers

1https://github.com/ThirdAIResearch/BOLT_Benchmarks

https://github.com/ThirdAIResearch/BOLT_Benchmarks
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Figure 2: Precision@1 vs Time for the Amazon-670K, Wiki-350K, and Delicious 200K extreme classification recommendation
benchmarks. Up and to the left is better. We observe that BOLT on a CPU tends to perform on par with TensorFlow and PyTorch
models trained on a much more powerful A100 GPU. We also see that the advantages of BOLT emerge as we increase the
number of output classes (right to left), which validates BOLT’s strategy of sparsely computing activations.

Figure 3: Low-Latency Text Classification Results. We observe that BOLT achieves comparable accuracy to distilled transformer
models while achieving reduced training times and lower inference latencies. The TinyBERT and DistilBERT timing numbers
are measured on an A100 GPU while BOLT utilizes a c6i.8xlarge CPU instance.

presented for the transformer models are only the fine tuning time;
we do not include any pre-training time. For all models, the training
time represents the time required for the model to train or fine tune
with 3 passes over the data, and the p@1 results are the best test
accuracy achieved by the model during these 3 epochs of train-
ing. We evaluated these models on the Amazon Polarity [32, 48],
Yelp Polarity [48], DBPedia [25, 48], AG News [48], and Twitter
Emoji [5] datasets. We accessed each of these benchmarks through
the HuggingFace datasets library [26]. The p@1, training time, and
inference time are summarized in figure 3.

5.3 Personalized Recommendations
Recent research in personalization has obtained state-of-the-art
results by treating user history as an ordered sequence (as op-
posed to an unordered set) and by leveraging other features such
as user metadata, item metadata, or images [24, 35, 42]. Since tradi-
tional methods like matrix factorization cannot handle sequential
information, practitioners have turned to deep learning techniques.
However, state-of-the-art deep learning methods rely on expensive
transformer models, rendering them infeasible for training and

inference on CPUs. We implemented a personalized recommenda-
tion engine with less compute by transforming sequential features
into a high dimensional sparse vector format tailored to BOLT’s
strengths.

We evaluated our personalized recommendation system on the
next item prediction problem: given a user’s interaction history,
predict the next item they will interact with out of all items. The test
set consists of the last interaction of every user while all prior ac-
tions are used for training. Movielens1M [20], Amazon Games [12],
and Netflix100M [13] are popular datasets for this problem as they
consist of chronologically sorted records of interactions in the for-
mat:

user_id,item_id,timestamp,other_features,...

Since we are interested in methods that are suitable on a CPU,
we used a two-tower TensorFlow Recommender (TFRecO model) as
a baseline instead of transformer-based sequential models. TFRec
has a tendency to rank seen items higher, but repeated interactions
are rare, so we augmented TFRec’s output by removing seen items
from the recommended list. In the following two tables, we present
the recall and end to end inference latency of the two models.
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Latency includes the filtering step for TFRec (each user’s "seen set"
is precomputed) and includes the data preprocessing step for BOLT.

Dataset BOLT TF Recommender
Movielens1M 0.240 0.03642
Amazon Games 0.134 0.0193
Netflix100M 0.0661 0.00759

Table 2: Personalized recommendation recall@10

Dataset BOLT TF Recommender
Movielens1M 1ms 56ms
Amazon Games 10ms 117ms
Netflix100M 7ms 92ms

Table 3: Personalized recommendation inference latencies

5.4 Graph Learning
In recent years, graph neural networks have become widely uti-
lized in recommender systems [47]. In this case study, we focus on a
specific type of graph learning problem: node classification. Follow-
ing recent work that examined Non-Homphilous graphs (graphs
where neighbors are not necessarily likely to be the same class)
[28] [29], we integrated BOLT into the Non-Homophilous Graph
Benchmarks suite [28]. In Table 4, we compared BOLT against a
subset of methods on the YelpChi, Pokec, and Penn94 datasets from
the Non-Homophilous Graph Benchmarks suite. All results, besides
BOLT, are taken from [28] and [29], except for LinkX on YelpChi,
where we used the same experiment setup as those works, including
a hyperparameter search.

From Table 4, we see that BOLT achieves state-of-the-art per-
formance on the Yelp-Chi benchmark as well as competitive per-
formance on the other datasets we evaluate. Moreover, our graph
learning method trains in one tenth of the time as the baseline algo-
rithms on CPUs. On GPUs, the baseline methods train in roughly
the same amount of time as BOLT. Given the significantly larger
memory available on modern CPU devices, BOLT provides espe-
cially strong value on large-scale graphs that fail to fit in GPU
memory.

YelpChi Pokec Penn94
MLP 87.94 ± 0.52 62.37 ± 0.02 73.61 ± 0.40
GCN 63.62 ± 1.00 75.45 ± 0.17 82.47 ± 0.27
GAT 81.42 ± 2.12 71.77 ± 6.18 81.53 ± 0.55
LinkX 77.91 ± 0.69 82.04 ± 0.07 84.71 ± 0.52
BOLT 93.18 ± 0.45 78.06 ± 0.07 81.26 ± 0.40

Table 4: Experimental Results on Large-Scale Non-
Homophilous Graph Benchmarks [28]. YelpChi is evaluated
using ROC-AUC while the other datasets use accuracy.

5.5 Carbon Footprint
As sustainability becomes an increasingly critical requirement for
organizations across all business sectors, reducing the cost and
energy consumption of training and deploying large-scale neural
networks has emerged as a critical task. In the case of GPT-3, for
instance, the electricity and compute cost of training alone was

reported to be $12 million [45]. This concern has only intensified
in recent months as model sizes continue to balloon.

To illustrate the energy savings from training with BOLT, we es-
timate the carbon footprint from running cloud infrastructure using
the methodology described in [15]. For this case study we compare
BOLT against RoBERTa [30], a state-of-the-art pre-trained trans-
former model on the Yelp polarity text classification benchmark
[48]. We trained BOLT for this task on an AWS r6g.xlarge instance
and fine-tuned RoBERTawith a single A100 GPU on a p4dn.24xlarge
instance. We provide our carbon footprint estimates using the data
in [15] in Table 5. After training, both models achieved the same
test accuracy of 93.3%. We note that this estimate does not include
the pre-training time for RoBERTa, which is a significantly more
intensive computational workload than fine-tuning. BOLT, on the
other hand, was trained from scratch for this case study with a 10%
level of sparsity.

Model Est. Carbon Footprint Hourly Cost
BOLT 6.1 (gCO2eq ) $0.2240

RoBERTa 267.99 (gCO2eq ) $32.773
Table 5: Estimated carbon footprint of RoBERTA fine-tuning
versus BOLT training

6 USE ATWAYFAIR
Wayfair is a leading e-commerce company specializing in selling
furniture and home goods. With a catalog consisting of tens of mil-
lions of products and over thirty million customers, Wayfair relies
upon a performant and high quality product search engine to con-
nect a shopper’s intent to hyper-relevant products. One component
of this search system is a query classifier that maps a search query
to the set of products matching the customer’s intent, such as dining
tables or outdoor chairs. Wayfair previously trained classifiers like
this one on GPU hardware before deploying in production on CPUs
with a strict latency constraint of a few milliseconds. Motivated by
a desire to be able to use larger and more powerful models without
compromising on inference latency, the Wayfair data science team
was able to train a BOLT model for query classification on low-cost
CPU machines and immediately serve the model with no modifica-
tions. In online A/B tests, BOLT demonstrated promising results
when compared to the baseline production model2.

7 CONCLUSION
We presented BOLT, a production-grade deep learning framework
for training and deploying search and recommendation models
on commodity CPU hardware. In experimental evaluations, we
demonstrate the efficiency and effectiveness of BOLT on a variety
of practical machine learning tasks drawn from extreme classifica-
tion, text classification, personalization, and graph neural networks.
We also show case several key distinguishing features of BOLT, in-
cluding automated tuning of sparsity hyperparameters and sparse
inference. BOLT has also been tested within a leading e-commerce
search engine, providing both reduced inference latencies and lower
training infrastructure costs.
2https://www.aboutwayfair.com/careers/tech-blog/how-wayfairs-scientists-
collaborated-with-innovative-startup-thirdai-to-serve-hyper-relevant-search-
results-to-customers
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