
Watermarking Recommender Systems
Sixiao Zhang

Nanyang Technological University
Singapore, Singapore
sixiao001@e.ntu.edu.sg

Cheng Long∗
Nanyang Technological University

Singapore, Singapore
c.long@ntu.edu.sg

Wei Yuan
The University of Queensland

Brisbane, Australia
w.yuan@uq.edu.au

Hongxu Chen
The University of Queensland

Brisbane, Australia
hongxu.chen@uq.edu.au

Hongzhi Yin∗
The University of Queensland

Brisbane, Australia
h.yin1@uq.edu.au

Abstract
Recommender systems embody significant commercial value and
represent crucial intellectual property. However, the integrity of
these systems is constantly challenged by malicious actors seek-
ing to steal their underlying models. Safeguarding against such
threats is paramount to upholding the rights and interests of the
model owner. While model watermarking has emerged as a po-
tent defense mechanism in various domains, its direct application
to recommender systems remains unexplored and non-trivial. In
this paper, we address this gap by introducing Autoregressive Out-
of-distribution Watermarking (AOW), a novel technique tailored
specifically for recommender systems. Our approach entails se-
lecting an initial item and querying it through the oracle model,
followed by the selection of subsequent items with small predic-
tion scores. This iterative process generates a watermark sequence
autoregressively, which is then ingrained into the model’s mem-
ory through training. To assess the efficacy of the watermark, the
model is tasked with predicting the subsequent item given a trun-
cated watermark sequence. Through extensive experimentation
and analysis, we demonstrate the superior performance and robust
properties of AOW. Notably, our watermarking technique exhibits
high-confidence extraction capabilities and maintains effectiveness
even in the face of distillation and fine-tuning processes.

CCS Concepts
• Information systems→Recommender systems;Datamining;
• Computing methodologies→ Neural networks.

Keywords
recommender systems, model watermarking, distillation

ACM Reference Format:
Sixiao Zhang, Cheng Long, Wei Yuan, Hongxu Chen, and Hongzhi Yin.
2024. Watermarking Recommender Systems. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management (CIKM

∗Co-corresponding authors.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0436-9/24/10
https://doi.org/10.1145/3627673.3679617

’24), October 21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3627673.3679617

1 Introduction
Machine learning models have become a necessary component
in the modern information society. One of the most represen-
tative machine learning products is the recommender system
[7, 15, 18, 26, 36]. It has been widely deployed in various domains
including health care [33], finance [21], e-commerce [19], social
platforms [5], etc. It plays a crucial role in improving user experi-
ence and gaining profits for the service provider. As highly com-
mercialized products, many of them involve certain intellectual
property and copyright as well as business secrets. Some recom-
mender systems are developed by the service provider themselves,
where cutting-edge techniques might have been adopted to outper-
form competitors. In this case, model theft and model leakage are
intolerable. Some other recommender systems are developed by a
third party at the request of the service provider, where the illegal
use and redistribution of the model are typically prohibited. Thus, it
is necessary to take protective measures to ensure the recommender
systems are not being used for these malicious aims.

To the best of our knowledge, there are a limited number of
works addressing the above issue on recommender systems. Zhang
et al. [37] proposed an optimization-based method against model
extraction attacks on recommender systems. They train the target
model with an additional loss that can cause malfunctions to the
attacker’s model. However, this method inevitably degrades the
performance of the target model. As a commercial product, any
degradation in performance for the recommender system may lead
to a huge profit loss. Thus, it is necessary to design a protection
method without sacrificing the model utility.

One promising defense strategy in this scenario is the model
watermarking. It has been extensively studied in computer vision
[1–3, 6, 10, 14, 24, 25, 28, 35, 40]. The goal is to verify the ownership
of a model by encrypting a specific pattern. For example, white-box
watermarking methods assume that the parameters of a suspicious
model can be accessed, thus they encode a certain message into the
target model’s parameters and decode it with a fixed neural net-
work [24]; black-box watermarking methods assume that the model
owner can only query the suspicious model without access to its
parameters, thus they encode a backdoor into the model by forcing
the target model to memorize a special input-output mapping [1].
If a model is suspected to be an illegal copy of the target model, the
model owner can check the existence of the watermark to claim the

ar
X

iv
:2

40
7.

21
03

4v
3

 [
cs

.I
R

]
 3

0
Se

p
20

24

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3627673.3679617
https://doi.org/10.1145/3627673.3679617

CIKM ’24, October 21–25, 2024, Boise, ID, USA Sixiao Zhang, Cheng Long, Wei Yuan, Hongxu Chen, & Hongzhi Yin

ownership. Model watermarking does minimal harm to the model
utility, because it does not interfere with the regular training pro-
cess. Due to the natural gap between the data structure in computer
vision and recommender systems, as well as the gap between the
classification task and the ranking task, the watermarking methods
in computer vision cannot be applied to recommender systems.
Therefore, we aim to fill this gap and propose a model watermark-
ing technique for recommender systems. In this paper, we focus
on black-box watermarking, because compared with white-box
watermarking, it is more challenging and practical.

There are several unique challenges when designing a black-
box watermarking method for recommender systems. First, unlike
classification tasks where we can assign a predefined class to the
watermark queries, it is non-trivial to define how the output rank-
ing should be like for a watermark query. Since the output is a top-k
ranking list, it is possible to encode various forms of watermarks.
For example, we can predefine a fixed sub-sequence and insert it in
the output, or we can choose a subset of items and force them to
always rank higher than another subset, or we can simply promote
or demote an item, etc. The best watermark design should take the
task-specific constraints and objectives into consideration. Second,
the watermark should not exist in an oracle model that is trained
only on the regular data. Previous works use out-of-distribution
(OOD) data, such as Gaussian noise images [1] and white pixels
[6], to define watermarks. OOD data is not presented in the regular
training set, so it is unable to detect watermarks from it. Unfortu-
nately, due to the different data structure (images v.s. sequences),
these OOD forms cannot be used for recommender systems. Third,
the watermark should be resistant to removal attacks such as distil-
lation and fine-tuning. The attackers aware of the existence of the
watermark would probably conduct such attacks to remove it. A
valid watermark should remain detectable even after these attacks.

To this end, we propose a model watermarking method for rec-
ommender systems, namely Autoregressive Out-of-distributionWa-
termarking (AOW). We focus on inductive recommender systems
since it is more powerful and commonly deployed in real-world sce-
narios, while they are also greatly threatened by distillation attacks
[34]. We mainly consider the sequential recommendation scenario.
We generate a watermark sequence and train the model to memo-
rize this sequence. The watermark is evaluated by asking the model
to predict the next item given the former items. This watermark
design is simple and effective to avoid any trivial modifications that
may ruin the watermark, such as shuffling and swapping, where
the attacker may take such methods to avoid any watermark that
potentially exists. We generate the watermark sequence autoregres-
sively. Specifically, we first train an oracle model with the regular
training set. Then we select an item as the initial item of the water-
mark sequence, and query the oracle model with this single item
to get the predicted scores for all items. We randomly choose one
item from those with lowest scores as the next item of the water-
mark sequence. We repeat this process until the sequence reaches a
predefined length. This autoregressive method can guarantee that
the oracle model has zero accuracy on the watermark, as long as
the set of items with top-k scores does not overlap with the set
of items with lowest scores that we consider for generating the
watermark sequence. Besides, AOW is resistant to distillation and
fine-tuning as shown in the experiment section. We can still extract

the watermark with a high confidence after both attacks. Our code
is publicly available1. We summarize our contributions as follows:

• We propose Autoregressive Out-of-distribution Watermark-
ing (AOW). To the best of our knowledge, it is the first work
exploring model watermarking for recommender systems.

• AOWhas a high success rate as well as the ability to maintain
the utility of the model. It is also resistant to distillation and
fine-tuning.

• We conduct extensive experiments to show the superior
performance of AOW. In the default setting, we can extract
the watermark with 1.0 Recall@1 from the target model
across four datasets, while achieving >0.75 Recall@10 against
distillation and fine-tuning. Comprehensive analysis on the
choices of hyperparameters are presented.

2 related work
2.1 Model Watermarking
There are plenty of works exploring model watermarking in other
domains, such as computer vision [1, 3, 6, 10, 24, 25, 35, 40], graph
learning [27, 39], federated learning [2, 4, 11, 13, 14, 20, 28], etc. They
can be divided into white-box and black-box techniques. White-box
methods assume defenders can access the model parameters of a
suspicious model, whereas black-box methods assume defenders
can only query the suspicious model and observe the output.

White-box methods usually embed the watermark into model
parameters. In computer vision, Uchida et al. [24] encrypts the
watermark into the model parameters by multiplying the parame-
ters with a key matrix. Successive works [3, 25] mainly follow this
design. In federated learning, the goal of model watermarking has
shifted to identifying the malicious client, but the basic idea is still
to embed the watermark into model parameters [13, 20].

Black-boxmethods assign a selected label to predefined backdoor
patterns such as out-of-distribution data [1, 35, 40] or dedicated
noise [6, 10], and use such data to train the target model, so that
when querying the model with these patterns, the model will pre-
dict the selected label. In graph learning, several works [27, 39]
have proposed to use ER random graphs as the watermark and
assign predefined labels to the nodes. There are also a large number
of works exploring black-box model watermarking on federated
learning [2, 4, 11, 14, 28]. Their methods basically follow the ideas in
computer vision, but innovatively adopted to the federated scenario.

2.2 Watermarking Against Distillation
Yang et al. [29] found that the above OOD watermarks can be easily
removed by a model distillation. They propose to train an ingrainer
model on the watermarks. Then it is fixed as a teacher to train
the target model. Successive works mainly focus on generating in-
distribution and real-like watermark samples. Li et al. [12] propose
to generate real-like watermark samples using a GAN. Namba et al.
[16] propose to generate watermarks by relabeling benign samples
as target watermark labels. Jia et al. [8] propose to add triggers to
in-distribution images. Szyller et al. [23] propose to alter the output
label of the target model. The selection of altering is conducted
by hashing. This method inevitably degrades the utility of the

1https://github.com/RinneSz/AOW

https://github.com/RinneSz/AOW

Watermarking Recommender Systems CIKM ’24, October 21–25, 2024, Boise, ID, USA

target model. All these methods cannot be simply transferred to
the recommender systems due to the natural gap between the data
format as well as the gap between the classification task and the
recommendation task.

3 Methodology
In this section, we introduce our method, Autoregressive Out-of-
distribution Watermarking (AOW). We first present the problem
definition, then describe the challenges to be addressed. Next, we
discuss the possible choices when designing the watermarking
technique and the advantages and disadvantages of each of them.
At last, we introduce the details of AOW.

3.1 Problem Definition
Given a set of users U and a set of items I, each user is associated
with a sequence of interacted items, 𝑆𝑢 = {𝑖𝑢1 , 𝑖

𝑢
2 , ...}, where 𝑖𝑢

𝑗

denotes the 𝑗-th item interacted by user 𝑢. The set of all such
sequences isS, and is used to train a recommender model 𝑓 . We call
this model as the oracle model. Our goal is to design an additional
sequence 𝑆𝑤𝑚 to serve as the watermark. 𝑆𝑤𝑚 and S will be used
jointly to train a watermarked model 𝑓𝑤𝑚 that can memorize the
watermark sequence 𝑆𝑤𝑚 while maintaining a good utility on S.

3.2 Challenges
There are several constraints we need to consider before designing
the watermark sequence.

• Model utility. After injecting the watermark sequence into
the training set, the utility of the model should be minimally
affected. The performance of the model should be preserved
as much as possible.

• Watermark validity. The confidence of the watermark
should be high in a watermarked model. Meanwhile, a model
trained without the watermark should have a low confidence
on the watermark pattern.

• Robustness. The watermark should be robust against re-
moval attacks such as distillation and fine-tuning. We should
be able to detect the watermark with a high confidence under
such removal attacks.

3.3 Discussion
In this section, we discuss what a good watermark design should
be like and how AOW can achieve all of them.

Black-box vs. White-box. White-box watermarks assume that
the model owner has access to a suspicious model’s architecture
and parameters. In this scenario, the owner can simply encode
the watermark in the model parameters, which is already a well-
studied technique in previous works [3, 24, 25] and can be adopted
to recommender systems directly. However, it is not always feasible
to access the parameters of a suspicious model. So we focus on
black-box watermarking where we can only query the suspicious
model and observe its output.

Out-of-distribution vs. In-distribution. Previous black-box
watermark designs in computer vision domain can be catego-
rized into out-of-distribution (OOD) watermarks [1, 6, 35] and in-
distribution (ID) watermarks [12, 16, 23, 29]. OOD watermarks are

embedded in samples that do not follow the same distribution as the
original dataset, while ID watermarks are embedded in samples that
follow the original distribution. OOD watermarks do little harm
to the model utility, but are not robust against removal attacks.
On the contrary, ID watermarks are hard to be removed, but they
inevitably degrade the model utility. Since recommender systems
are highly correlated to commercial profits, utility degradation is
unacceptable in many cases. Therefore, we choose to design OOD
watermarks. However, as we will show in the experiment section,
AOW is also effective in resisting removal attacks.

Fake items. One possible solution to construct OODwatermarks
is to create fake items that do not exist in the original dataset. This is
almost guaranteed to be OOD because themodel has no information
regarding the fake items. For example, if a query sequence contains
a fake item, then we can force the model to output a designated
label or ranking list. However, this approach is not always feasi-
ble and effective in real situations. On the one hand, some model
distillation attacks assume the attacker can acquire in-distribution
data, which, however, does not include the fake item. Therefore, it
is difficult for the distilled model to inherit the watermark. On the
other hand, the service provider may need to assign a real item as
the fake item to avoid it being recognized or detected. However,
due to the complicated environments and demands in different rec-
ommendation scenarios, this has to be done with domain-specific
expert knowledge. Therefore, in order to design a more universal
method that can be applied to most recommender systems, we do
not use fake items.

The choice of the watermark pattern. Since fake items are not
used in our method, we have to use existing items to form a special
input-output mapping as the watermark. The form of this mapping
can be diverse. For example, for the input, the watermark trigger
can be either an entire sequence or a subsequence with filler items.
To be specific, one can force the model to produce a desired output
given a sequence with all the items fixed, or given a sequence where
some of the items are predetermined and other items are randomly
selected. However, if using a subsequence, it is at the risk of losing
model utility, because it is difficult to guarantee that the complete
sequence is an OOD sequence, since the choices of filler items might
result in the whole sequence shifting towards an in-distribution
sequence, which will disrupt the training of benign sequences. For
the output, we can check the existence of certain items in the top-k
ranking, or we can check the existence of a special pattern with
some predefined items following a fixed ordering. However, the
latter that checks the ordering can be easily removed by doing
global or local shuffling on the output top-k ranking list even if
the attacker is not aware of the watermark. Therefore, we choose
to use an entire sequence as the watermark, and ask the model to
predict the next item given all the previous items.

3.4 Autoregressive Out-of-distribution
Watermarking (AOW)

To this end, we propose to generate an entire sequence 𝑆𝑤𝑚 =

{𝑖𝑤𝑚1 , 𝑖𝑤𝑚2 , ..., 𝑖𝑤𝑚𝑛 } as the watermark. The length 𝑛 is a hyperpa-
rameter to be specified by the model owner. The model should be
able to memorize this sequence by predicting the 𝑗-th item 𝑖𝑤𝑚

𝑗

CIKM ’24, October 21–25, 2024, Boise, ID, USA Sixiao Zhang, Cheng Long, Wei Yuan, Hongxu Chen, & Hongzhi Yin

…
…

Swm

Ranking …

}

…

}

…

}

Oracle

? ? ?

Swm

Truncated Swm

Model

Prediction

Figure 1: An illustration of AOW. (Left) Generation process of the watermark sequence 𝑆𝑤𝑚 . An initial item (blue) is used to
query the oracle model to obtain a ranking list, and a random item (purple) ranked at the bottom is selected as the next item.
Then the new 𝑆𝑤𝑚 that contains two items is used to query the oracle to obtain the third item (yellow). This process is repeated
autoregressively until 𝑆𝑤𝑚 reaches a predefined length. (Right) The evaluation process of AOW. The watermark sequence 𝑆𝑤𝑚
is truncated into several subsequences. The model needs to predict the next item for each truncated sequence. The validity of
the watermark is evaluated by the ranking position of the next item.

when given the previous 𝑗 − 1 items {𝑖𝑤𝑚1 , 𝑖𝑤𝑚2 , ..., 𝑖𝑤𝑚
𝑗−1}. We first

train an oracle model using the original dataset, then generate 𝑆𝑤𝑚
autoregressively. An illustration of AOW is shown in Fig. 1. Specif-
ically, we first select an initial item 𝑖𝑤𝑚1 (the selection of the initial
item will be discussed in the experiment section), then query the
oracle model with this single item to get scores of all items. We then
rank all items according to the scores and focus on a certain number
of items with the lowest scores (let’s say bottom-M in contrast to
top-k, where the setting of M will be discussed later on). We draw
one item randomly from the bottom-M items, and append it after
the initial item to expand the sequence. For model owners who
want to design their unique watermark pattern, they can pick one
particular item from the bottom-M items by themselves. This may
also serve as an effectiveness fingerprinting technique in federated
recommendation [17, 30–32, 38] to detect malicious clients who are
responsible for the model leakage, which we leave for future work.
Now the sequence contains two items, and we query the oracle
model again with it and repeat the above process to get the third
item. We stop when the sequence reaches a predefined length. This
sequence is defined as the watermark sequence 𝑆𝑤𝑚 . It will be used
together with the original training set to train a new model 𝑓𝑤𝑚 ,
and this model will be able to memorize 𝑆𝑤𝑚 while maintaining
its utility. For evaluation, we generate 𝑛 − 1 truncated sequences
from 𝑆𝑤𝑚 . For example, 𝑆1𝑤𝑚 = {𝑖𝑤𝑚1 }, 𝑆2𝑤𝑚 = {𝑖𝑤𝑚1 , 𝑖𝑤𝑚2 }, ...,
𝑆𝑛−1𝑤𝑚 = {𝑖𝑤𝑚1 , 𝑖𝑤𝑚2 , ..., 𝑖𝑤𝑚

𝑛−1}. The model needs to predict the next
item given these truncated sequences. A well-memorized water-
mark should have the ground-truth next item ranked as high as
possible. This design has several advantages.

• 𝑆𝑤𝑚 is highly likely an OOD sequence. Recommender sys-
tems tend to give high scores to in-distribution sequences
when making predictions. Therefore, if an item has a low
score in the prediction, it suggests that this item does not
follow the distribution of the training dataset. Therefore, we

can generate an OOD sequence by autoregressively selecting
such items.

• The oracle model is almost guaranteed to have poor perfor-
mance on 𝑆𝑤𝑚 . As long as the set of the bottom-M items does
not overlap with the set of the top-k items, the oracle model
will always have zero recall and NDCG on 𝑆𝑤𝑚 in terms of
top-k evaluations. For example, assume there are 1000 items
in total, and we set 𝑀 = 100 and 𝑘 = 20. For a truncated
𝑆𝑤𝑚 , for example {𝑖𝑤𝑚1 , 𝑖𝑤𝑚2 , 𝑖𝑤𝑚3 }, the next item 𝑖𝑤𝑚4 must
appear in the bottom-100 since this is how we selected it. So
any evaluation metric that only considers top-20 will never
find 𝑖𝑤𝑚4 there, because it is ranked outside 900. However,
if there are 110 items in total, and we still set M=100 and
k=20, then the top-20 and bottom-100 will overlap, and 𝑖𝑤𝑚4
may appear in both. In practice, a real-world dataset usually
contains at least hundreds or thousands of items, so it should
always be feasible to set appropriate M and k. In fact, we
have conducted experiments to try to detect the watermark
from the oracle model, and unsurprisingly, all return zero
recall and NDCG.

• Simple tricks would not affect the watermark. As discussed
before, some tricks such as shuffling can disturb the water-
mark if it is encoded as a special ordering even if the attacker
has no knowledge about the watermark. However, for AOW,
the only way for removing the watermark is to demote the
target item from the top-k ranking. Having no idea of what
the target item is, the attacker can only randomly choose
some items and change their rankings. This will result in a
significant utility degradation.

4 Experiments
In this section, we aim to answer the following research questions
regarding the performance of AOW:

Watermarking Recommender Systems CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 1: Dataset Statistics
Dataset # Users # Items Avg. length Density
ML-1M 6,040 3,416 165.5 4.84%
ML-20M 138,493 18,345 144.3 0.79%
Steam 334,542 13,046 12.6 0.10%
Beauty 40,226 54,542 8.8 0.02%

• RQ1: How is the validity of the watermark and the utility
of the model? Can we extract the watermark with a high
confidence while preserving the model utility?

• RQ2: How does AOW perform against distillation and fine-
tuning?

• RQ3: How do the choices of hyperparameters, including the
watermark sequence length𝑛, the initial item, thewatermark-
to-data ratio, and the parameter M in bottom-M item selec-
tion range influence its performance?

We will first introduce our experiment settings, then present results
to answer these questions.

4.1 Datasets and Evaluation Metrics
We use four publicly available datasets, namely MovieLens-1M,
MovieLens-20M2, Amazon-Beauty3, and Steam4. The statistics of
these datasets are summarized in Table 1. Each user is associated
with one interaction sequence. We use leave-one-out evaluation,
where we leave the last item of each sequence as the test set, and
the second last item as the validation set. For evaluation metrics,
we use Recall@k and Normalized Discounted Cumulative Gain@k
(NDCG@k) to measure both the utility of the model and the validity
of the watermark.

4.2 Baseline and Model
One advantage of model watermarking is the ability to maintain the
utility. We show it by comparing AOW with GRO [37], an defense
method against model extraction attacks on recommender systems,
which can also be used to protect the model intellectual property.
GRO defines a swap loss and jointly trains with the original task.
Although it can bring utility degradation to the attacker’s model, it
will also harm the utility of the target model. We make an compari-
son between the utility of the target model under AOW and GRO,
and demonstrate the effectiveness of AOW in preserving the utility.
Following their work, we choose Bert4Rec [22] as the backbone
model, and evaluate model performance by ranking all the items in
the dataset. However, AOW is a model-agnostic approach that can
be applied to arbitrary sequential models. We have also conducted
experiments on another model SASRec [9], and the results and
conclusions are similar with Bert4Rec. Therefore, we only present
the results on Bert4Rec for simplicity and consistency.

4.3 Settings
For AOW, we by default set the hyperparameter M for bottom-M as
100. An analysis of different choices of M will be shown in Sec. 4.7.2.
We vary the length of the watermark sequence among 2, 5, 10, 20.
The initial item is chosen between the cold item and the pop item,

2https://grouplens.org/datasets/movielens/
3https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
4https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data

where cold denotes the item with the least number of interactions,
and pop denotes the item with the most number of interactions.
After the watermark sequence 𝑆𝑤𝑚 has been generated, we set a
predefined watermark-to-data ratio (WDR) to determine the weight
of 𝑆𝑤𝑚 during training.We can duplicate 𝑆𝑤𝑚 for (WDR×|S|) times
and append them after the training set. For example, ML-1M has
6,040 sequences (users). If we set WDR to 0.1, we will duplicate 𝑆𝑤𝑚
for 604 times, resulting in a new training set of 6,644 sequences.
Another way to achieve the same effect is to use a single 𝑆𝑤𝑚
sequence but with a weighted loss function added to the loss on the
original training set. Changing the weight parameter is equal to
changing the WDR. Therefore, the additional training complexity
introduced by AOW can be neglected. By default, we set WDR to
0.1. We provide a study on the impact of WDR in Sec. 4.7.1.

For evaluation, the validity of the watermark is measured by the
average recall and NDCG on the truncated watermark sequences.
Same as how we deal with the training set, we also append these
truncated sequences to the validation set in order to select a model
with good performance on both the original task and the watermark
task. Since we did not observe a significant performance gap when
altering the ratio between the regular validation set and the trun-
cated watermark set, we by default set the weight of the truncated
watermark set to be the same as the original validation set.

We follow the hyperparameter setting from Bert4Rec for each
dataset. For GRO, we follow their official implementation and set-
ting. For distillation, we use the black-box model extraction attack
proposed by Yue et al. [34] and follow their suggested setting to au-
toregressively generate 3,000 distillation sequences. For fine-tuning,
we adopt the strategy by Yue et al. [34] and generate some new
sequences autoregressively through querying the oracle model.
The number of generated sequences vary between 1% to 20% of
the number of sequences in the original dataset. These generated
sequences serve as an approximation of the in-distribution data
that an attacker might have access to, but are different from the
data used to train the oracle model. We use them to fine-tune the
watermarked model. We fine-tune each model for the same number
of epochs as during training.

4.4 Main Results
We first present the overall performance of AOW under a fixed
hyperparameter setting in Table 2. The initial item is the cold item.
The length of the watermark is 5. The second column shows the
watermark validity (Recall@1), being 100% across all datasets. This
underscores the watermark’s capacity to be effectively retained by
the target model. The 3rd-5th columns show the utility (Recall@10)
of the target model protected by different methods. It is clear that
AOW consistently outperforms GRO in preserving the model utility.
The 6th column and the 7th column show the watermark validity
after model distillation and model fine-tuning, respectively. Both
demonstrate high watermark robustness. Next, we present detailed
studies on (1) watermark validity and model utility; (2) robustness
against distillation and fine-tuning; (3) hyperparameter study.

4.5 RQ1: Watermark Validity & Model Utility
4.5.1 Watermark Validity. We first test the validity of the water-
mark on a model trained with AOW. Table 3 shows Recall@1 under

https://grouplens.org/datasets/movielens/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data

CIKM ’24, October 21–25, 2024, Boise, ID, USA Sixiao Zhang, Cheng Long, Wei Yuan, Hongxu Chen, & Hongzhi Yin

Table 2: Main experiment results in percentage for each dataset. We set the initial item as the cold item, and fix the length of
the watermark as 5. The base model is Bert4Rec. (1) The 2nd column shows the validity of the watermark on the target model
with Recall@1. (2) The 3rd-5th columns show the utility (Recall@10) of the target model under no protection (Oracle), trained
with GRO, and trained with AOW respectively. (3) The 6th column shows the watermark validity of the model after distillation
using the same model architecture. (4) The 7th column shows the watermark validity (Recall@10) after fine-tuning with 1%
fine-tuning sequences.

Dataset Validity (R@1) Utility (R@10) Validity After Distillation (R@10) Validity After Fine-tuning (R@10)Oracle GRO AOW
ML-1M 100.00 20.16 18.08 19.69 100.00 100.00
ML-20M 100.00 14.96 13.95 14.35 100.00 100.00
Steam 100.00 19.93 19.87 19.90 100.00 100.00
Beauty 100.00 2.96 2.85 2.95 75.27 100.00

Table 3: Recall@1 in percentage of thewatermark at different
watermark lengths 𝑛 on Bert4Rec. The method cold denotes
using the item with the least number of interactions as the
initial item, while pop denotes using the most popular item
which has themost number of interactions as the initial item.

Dataset Method 𝑛

2 5 10 20

ML-1M cold 100.00 100.00 100.00 100.00
pop 100.00 100.00 100.00 100.00

ML-20M cold 100.00 100.00 100.00 100.00
pop 100.00 100.00 100.00 100.00

Steam cold 100.00 100.00 100.00 91.01
pop 100.00 100.00 88.18 85.79

Beauty cold 100.00 100.00 100.00 100.00
pop 100.00 100.00 100.00 93.89

two different choices for the initial item and four different water-
mark lengths. Specifically, we change the watermark length 𝑛 from
2 to 20, and change the initial item between the cold item and the
popular item. We have three observations from the table. First, the
watermark is successfully embedded in the model with Recall@1=1
for most cases. This suggests the effectiveness of our watermark.
Second, a shorter watermark is easier for the model to memorize, as
the recall decreases when the length increases. This is reasonable
since longer sequences contain complex long-term dependencies
which would be more challenging to memorize. Third, for the se-
lection of the initial item, the cold one is better than the popular
one when the watermark length is large (10 and 20). However, they
both perform good with Recall@1=1 when the watermark length is
small (2 and 5). Cold items are not as robust as popular items since
there is less information about them. Thus it is easier for the model
to memorize the watermark sequence which starts with the cold
item.

4.5.2 Model Utility. We compare AOW with GRO to show the
ability of AOW in preserving the utility of the target model. The
results are listed in Table 4. We report results from the case when
the initial item is the cold item and the watermark length is 5,
while the popular item as well as other watermark lengths yield
similar results. The recall and NDCG of the target model trained
with GRO are significantly lower than the oracle model, while
AOW performs much better in preserving the utility, achieving a
comparable performance with the oracle model, demonstrating the
superior performance of AOW in preserving the model utility.

4.6 RQ2: Against Distillation and Fine-tuning
4.6.1 Against Distillation. We test how AOW performs against
distillation. The recall and NDCG of the watermark validity are
reported in Table 5.

First, as the watermark length 𝑛 increases, the watermark va-
lidity decreases. It can achieve 1.0 recall for all datasets with a
small watermark length, but behaves poorly when the length in-
creases. Although all the watermarks can be well memorized by
the oracle as shown in Table 3, the distillation performance gap
between short watermarks and long watermarks suggests that the
short watermarks are easier for the model to memorize towards in-
distribution data, whereas the long watermarks are still recognized
as out-of-distribution ones, causing them to be easily removed by
distillation.

Second, for the selection of the initial item, different datasets
yield different results. On ML-1M and Beauty, the popular item
outperforms the cold item, whereas on Steam, the cold item out-
performs the popular item. On ML-20M, they behave on par. We
assume this to be due to the distinct characteristics of these datasets,
e.g., the amount of information that can be extracted and learned for
each item, which will directly influence the robustness of the item
embeddings and thus affect the validity of the injected watermark.
If the embeddings are dense and robust, it will be hard to memorize
the watermark that comes along as an OOD data. Therefore, the
best initial item and the best watermark length should be subject
to the specific model and dataset. But it should always be a good
choice to use the cold initial item and a short watermark length,
since cold items are always the least robust items in a recommender
system.

4.6.2 Against Fine-tuning. We then test how AOW performs
against fine-tuning. The results are shown in Table 6. We report
the recall and NDCG of the watermark on the fine-tuned model
on ML-20M dataset. We alter the number of the generated fine-
tuning sequences as 1%, 5%, 10%, 20% of the number of sequences
in the original dataset. We have two observations from the results.
First, the choice of the initial item has no significant influence on
the watermark validity. Second, the watermark is valid when the
number of fine-tuning sequences is small. The watermark valid-
ity drops significantly when the number of fine-tuning sequences
reaches 20%. However, this is an acceptable case, as it would be
rarely possible for the attacker to obtain such a great number of
data. Even if the attacker managed to do this, the model utility
would drop significantly after fine-tuning. We show how the model

Watermarking Recommender Systems CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 4: Model utility in percentage on Bert4Rec. For AOW, we set watermark length to 5 and use the cold item as the initial
item. Other hyperparameter settings yield similar results.

Dataset Method R@1 R@5 R@10 R@20 R@100 N@1 N@5 N@10 N@20 N@100

ML-1M
Oracle 3.65 12.90 20.16 30.73 60.60 3.65 8.26 10.59 13.25 18.72
GRO 2.58 10.20 18.08 28.96 58.83 2.58 6.81 9.53 12.48 16.97
AOW 3.50 12.64 19.69 30.40 60.31 3.50 8.06 10.34 13.03 18.51

ML-20M
Oracle 2.80 9.26 14.96 22.58 47.05 2.80 6.02 7.85 9.77 14.20
GRO 2.26 7.95 13.95 21.63 45.79 2.26 5.12 7.23 9.02 13.62
AOW 2.70 8.95 14.35 21.96 46.61 2.70 5.81 7.55 9.46 13.93

Steam
Oracle 12.13 16.44 19.93 24.94 43.72 12.13 14.31 15.43 16.69 20.06
GRO 11.99 16.28 19.87 24.69 42.92 11.99 14.10 15.39 16.58 19.80
AOW 12.09 16.36 19.90 24.83 43.24 12.09 14.24 15.40 16.62 19.90

Beauty
Oracle 0.42 1.70 2.96 4.77 11.74 0.42 1.06 1.46 1.92 3.16
GRO 0.45 1.69 2.85 4.48 11.06 0.45 1.07 1.44 1.85 3.03
AOW 0.44 1.75 2.95 4.69 11.45 0.44 1.10 1.48 1.91 3.13

Table 5: Watermark validity in percentage on the distilled Bert4Rec model.
Dataset Method 𝑛 R@1 R@5 R@10 R@20 R@100 N@1 N@5 N@10 N@20 N@100

ML-1M

cold

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 26.09 100.00 100.00 100.00 100.00 26.09 69.69 69.69 69.69 69.69
10 35.22 100.00 100.00 100.00 100.00 35.22 70.08 70.08 70.08 70.08
20 0.00 6.51 11.21 26.13 57.57 0.00 2.52 3.93 7.81 13.44

pop

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 72.16 100.00 100.00 100.00 100.00 72.16 86.08 86.08 86.08 86.08
10 43.84 100.00 100.00 100.00 100.00 43.84 77.81 77.81 77.81 77.81
20 10.46 28.19 59.81 90.76 100.00 10.46 17.32 27.03 34.85 36.78

ML-20M

cold

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 73.95 100.00 100.00 100.00 100.00 73.95 90.39 90.39 90.39 90.39
10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 91.58 100.00 100.00 100.00 100.00 91.58 96.89 96.89 96.89 96.89

pop

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 88.96 100.00 100.00 100.00 100.00 88.96 95.93 95.93 95.93 95.93
20 90.91 95.83 95.83 100.00 100.00 90.91 93.37 93.37 94.39 94.39

Steam

cold

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 24.83 100.00 100.00 100.00 100.00 24.83 62.71 62.71 62.71 62.71
10 22.76 58.91 90.38 90.38 100.00 22.76 37.76 48.33 48.33 49.83
20 0.00 33.72 69.07 89.27 94.37 0.00 15.94 27.24 32.56 33.56

pop

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 25.39 75.38 75.38 75.38 100.00 25.39 52.10 52.10 52.10 56.76
10 0.00 11.24 66.72 77.68 77.68 0.00 7.09 24.95 27.91 27.91
20 5.70 30.84 58.04 90.20 94.76 5.70 17.90 26.89 35.14 36.11

Beauty

cold

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 25.02 75.27 75.27 75.27 75.27 25.02 52.03 52.03 52.03 52.03
10 0.00 0.00 0.00 11.40 11.40 0.00 0.00 0.00 2.99 2.99
20 0.00 0.00 0.00 0.00 5.12 0.00 0.00 0.00 0.00 0.82

pop

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 74.89 100.00 100.00 100.00 100.00 74.89 90.73 90.73 90.73 90.73
10 21.60 55.69 55.69 55.69 68.16 21.61 37.99 37.99 37.99 39.89
20 9.23 26.34 30.99 30.99 63.33 9.23 18.55 19.95 19.95 25.75

utility is correlated with the watermark validity in Fig. 2. Each
point represents a model from Table 6 where the initial item is
the popular item. Other datasets produce similar results. For the
model owner, the worst case is when the fine-tuned model has a
high utility but a low watermark validity. This suggests that the
attacker has successfully obtained a model with good performance

and avoided the watermark detection. Such models would appear
at the bottom right corner in Fig. 2. However, we do not observe
any point there. Instead, in Fig. 2, the models with a high model
utility also have a high watermark validity at the top right corner.
On the other hand, those models that have a low watermark va-
lidity also have a low utility at the bottom left corner. Although

CIKM ’24, October 21–25, 2024, Boise, ID, USA Sixiao Zhang, Cheng Long, Wei Yuan, Hongxu Chen, & Hongzhi Yin

Table 6: Watermark validity in percentage on the fine-tuned Bert4Rec model on ML-20M. Data size refers to the ratio of number
of fine-tuning sequences to the number of training sequences.

Data size Method 𝑛 R@1 R@5 R@10 R@20 R@100 N@1 N@5 N@10 N@20 N@100

1%

cold

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 87.42 100.00 100.00 100.00 100.00 87.42 95.36 95.36 95.36 95.36
20 84.13 100.00 100.00 100.00 100.00 84.13 94.14 94.14 94.14 94.14

pop

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 90.33 95.40 95.40 95.40 95.40 90.33 93.53 93.53 93.53 93.53

5%

cold

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 50.36 74.28 74.28 74.28 100.00 50.36 65.45 65.45 65.45 70.47
10 19.87 54.97 77.50 77.50 77.50 19.87 38.07 45.02 45.02 45.02
20 5.90 25.98 25.98 25.98 45.82 5.90 16.96 16.96 16.96 20.64

pop

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 76.97 76.97 76.97 76.97 76.97 76.97 76.97 76.97 76.97 76.97
10 66.93 89.50 89.50 89.50 89.50 66.93 81.17 81.17 81.17 81.17
20 0.00 5.70 11.48 21.20 21.20 0.00 3.60 5.42 8.02 8.02

10%

cold

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 90.15 100.00 100.00 100.00 100.00 90.15 96.37 96.37 96.37 96.37
20 68.46 100.00 100.00 100.00 100.00 68.46 84.14 84.14 84.14 84.14

pop

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 26.78 36.99 53.22 68.58 73.55 26.78 31.88 37.31 41.07 41.84

20%

cold

2 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 15.64
5 0.00 22.96 22.96 22.96 22.96 0.00 9.89 9.89 9.89 9.89
10 12.29 12.29 12.29 12.29 21.23 12.29 12.29 12.29 12.29 13.72
20 0.00 0.00 0.00 0.00 10.07 0.00 0.00 0.00 0.00 1.65

pop

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 25.54 25.54 25.54 25.54 0.00 12.77 12.77 12.77 12.77
10 0.00 0.00 0.00 9.41 9.41 0.00 0.00 0.00 2.14 2.14
20 15.55 29.97 35.13 45.39 55.87 15.55 22.87 24.71 27.52 29.60

0.055 0.060 0.065 0.070 0.075
NDCG@10 for model utility

0.0

0.2

0.4

0.6

0.8

1.0

N
D

CG
@

10
 fo

r
w

at
er

m
ar

k

Figure 2: Watermark validity vs. model utility after fine-
tuning on ML-20M with the popular item as the initial item.
Each point represents a model under different hyperparam-
eters including the watermark length and the number of
fine-tuning sequences. We report the NDCG@10 for the wa-
termark validity in the y-axis, and the NDCG@10 for the
model utility in the x-axis.
we cannot detect the watermark in these models, they would be of
no threat to the defender’s target model since the utility is largely
degraded. Therefore, AOW can effectively protect the target model
from fine-tuning.

0.01 0.1 0.5 1.0 2.0 3.0 4.0
Watermark to Data Ratio

0.8
4

0.8
6

0.8
8

0.9
0

0.9
2

Re
ca

ll@
1

fo
r

W
at

er
m

ar
k

Va
lid

it
y

0.1
48

0.1
49

0.1
50

0.1
51

0.1
52

0.1
53

N
D

CG
@

10
 fo

r
M

od
el

 U
ti

lit
y

Figure 3: Watermark-to-data ratio on Steamwith the popular
initial item and watermark length 20. The x-axis denotes the
WDR ratio, which is the weight of the watermark sequence
to the weight of the regular training set. The blue plot and
the left y-axis denote the recall@1 of the watermark. The
red plot and the right y-axis denote the NDCG@10 of the
model utility.

4.7 RQ3: Hyperparameter Study
In previous sections, we have reported results with different wa-
termark length 𝑛 and compared the two different initial items, cold

Watermarking Recommender Systems CIKM ’24, October 21–25, 2024, Boise, ID, USA

HR@1 HR@5 HR@10 HR@20 HR@100
0.0

0.2

0.4

0.6

0.8

1.0

watermark validity
M=100
M=500
M=1,000
M=1,500
M=2,000
M=2,500
M=3,000

Figure 4: Model utility and watermark validity with different
choices of M in selecting the next item from the bottom-
M items. The dataset is ML-1M. The watermark length is
20 and the initial item is the cold item. For different M, the
watermark validity is consistently 100%, which is represented
by the red plot. Other plots represent the model utility of
different M.

Table 7: Recall@100 in percentage for detecting the water-
mark in the oracle model of two different selection ranges
for the next item in 𝑆𝑤𝑚 .

Bottom-100 Top-100
Recall@100 0 34.02

and pop. Therefore, we skip the study on the two hyperparameters
and focus on the others in this section.

4.7.1 Watermark-to-data Ratio. We show how the watermark-to-
data ratio (WDR) influences the performance of AOW in Fig. 3.
We show the results on Steam with the popular initial item and
watermark length 20. We can observe that, as the WDR increases
(the weight of 𝑆𝑤𝑚 increases), the Recall@1 of the watermark also
increases. However, the recall does not further increase significantly
when WDR is larger than 1.0. Meanwhile, the NDCG@10 of the
model decreases. Therefore, there is a trade-off between the water-
mark validity and the model utility as the WDR varies. However,
the watermark validity is already at a very high level (recall@1>0.8)
even if the WDR is low, so in order to preserve the utility of the
model, we would suggest to select a low WDR. We by default set
the WDR to 0.1 across all experiments.

4.7.2 Bottom-M Item Selection Range. We show how the choice of
M influences the model utility in Fig. 4. We use ML-1M and choose
the cold item as the initial item, while setting the watermark length
as 20. Other datasets and hyperparameter choices yield similar
performance. It is clear that the choice of M does not introduce
significant performance gap in terms of model utility. Besides, the
watermark validity is consistently 100% for all choices of M.

However, it is not true if we claim thatM does notmatter. A larger
M, in fact, may potentially harm the uniqueness of the watermark,
causing it to be unintentionally detected in a benign oracle model.
Consider two extreme cases, where we set the selection range of
the next item in 𝑆𝑤𝑚 as bottom-100 and top-100 respectively. We
would like to see if we can detect the two watermarks from an
oracle model. We set the initial item as the cold item, and the
watermark length as 20. We train five oracle models with different
random seeds on ML-1M, then generate 10 different watermark
sequences from each oracle model and test them on other oracles.
We report the average Recall@100 of the watermark in Table 7. The

Recall@100 of bottom-100 is zero, while it is 34.02% for top-100.
This suggests that incorporating top items into the selection range
is risky as it would probably lead to a non-zero detection rate for
the watermark in oracle models.

4.7.3 Summary. Here we provide a summary and recommended
settings to all the hyperparameters. The watermark length is rec-
ommended to be as small as possible to ensure the memorization
of it. For the initial item, cold items are generally a better choice
since the model can memorize them easily because they are not as
robust as the popular items. But popular items may become a better
choice when the situations and demands change. WDR introduces a
trade-off between the watermark validity and model utility. Setting
it between 0.1 to 1.0 is generally a good choice to preserve model
utility and ensure a high level of watermark validity. We can set
the parameter M of bottom-M as 100 in most cases. But if a longer
or diverse watermark is desired, M can be increased. In this case,
we need to ensure that M has no overlap with the top-k evaluation
range of the system to avoid the unintentional detection of the
watermark in an oracle system.

5 Conclusion
In this paper, we propose Autoregressive Out-of-distribution Wa-
termarking (AOW) for watermarking recommender systems. We
generate an entire sequence as the watermark and train the model
to memorize it. The watermark is evaluated by doing next-item
prediction given the truncated watermark sequences. The water-
mark sequence is generated autoregressively. We first select an
initial item, then query the model to obtain scores for all items, and
choose a random item from the bottom-M items with least scores.
We conduct extensive experiments to demonstrate the effectiveness
of AOW in protecting model ownership as well as preserving model
utility, and provide comprehensive analysis on the choice of hyper-
parameters. Applications for AOW on federated recommendation
as a fingerprinting technique would be explored in the future.

Acknowledgments
This research is supported by the Ministry of Education, Singa-
pore, under its Academic Research Fund (Tier 2 Award MOE-
T2EP20221-0013, Tier 2 Award MOE-T2EP20220-0011, and Tier
1 Award (RG77/21)). Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not reflect the views of the Ministry of Education, Singapore.
This work is partially supported by Australian Research Council
under the streams of Future Fellowship (Grant No. FT210100624),
Linkage Project (Grant No. LP230200892), Discovery Project (Grants
No. DP240101108).

References
[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.

2018. Turning your weakness into a strength: Watermarking deep neural net-
works by backdooring. In 27th USENIX Security Symposium (USENIX Security 18).
1615–1631.

[2] Buse Gul Atli, Yuxi Xia, Samuel Marchal, and N Asokan. 2020. Waffle: Water-
marking in federated learning. arXiv preprint arXiv:2008.07298 (2020).

[3] Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen Zhao, and Farinaz Koushan-
far. 2019. Deepmarks: A secure fingerprinting framework for digital rights
management of deep learning models. In Proceedings of the 2019 on International
Conference on Multimedia Retrieval. 105–113.

CIKM ’24, October 21–25, 2024, Boise, ID, USA Sixiao Zhang, Cheng Long, Wei Yuan, Hongxu Chen, & Hongzhi Yin

[4] Jinyin Chen, Mingjun Li, and Haibin Zheng. 2023. FedRight: An Effective Model
Copyright Protection for Federated Learning. arXiv preprint arXiv:2303.10399
(2023).

[5] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[6] Jia Guo and Miodrag Potkonjak. 2018. Watermarking deep neural networks for
embedded systems. In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 1–8.

[7] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[8] Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas
Papernot. 2021. Entangled watermarks as a defense against model extraction. In
30th USENIX Security Symposium (USENIX Security 21). 1937–1954.

[9] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[10] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. 2020. Adversarial frontier
stitching for remote neural network watermarking. Neural Computing and
Applications 32 (2020), 9233–9244.

[11] Bowen Li, Lixin Fan, Hanlin Gu, Jie Li, and Qiang Yang. 2022. FedIPR: Ownership
verification for federated deep neural network models. IEEE Transactions on
Pattern Analysis and Machine Intelligence 45, 4 (2022), 4521–4536.

[12] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. 2019. How to prove
your model belongs to you: A blind-watermark based framework to protect
intellectual property of DNN. In Proceedings of the 35th Annual Computer Security
Applications Conference. 126–137.

[13] Junchuan Liang and Rong Wang. 2023. FedCIP: Federated Client Intellectual
Property Protectionwith Traitor Tracking. arXiv preprint arXiv:2306.01356 (2023).

[14] Xiyao Liu, Shuo Shao, Yue Yang, Kangming Wu, Wenyuan Yang, and Hui Fang.
2021. Secure federated learning model verification: A client-side backdoor trig-
gered watermarking scheme. In 2021 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). IEEE, 2414–2419.

[15] Jing Long, Tong Chen, Guanhua Ye, Kai Zheng, Quoc Viet Hung Nguyen, and
Hongzhi Yin. 2024. Physical Trajectory Inference Attack and Defense in Decen-
tralized POI Recommendation. In Proceedings of the ACM on Web Conference 2024.
3379–3387.

[16] Ryota Namba and Jun Sakuma. 2019. Robust watermarking of neural network
with exponential weighting. In Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security. 228–240.

[17] Liang Qu, Wei Yuan, Ruiqi Zheng, Lizhen Cui, Yuhui Shi, and Hongzhi Yin. 2024.
Towards personalized privacy: User-governed data contribution for federated
recommendation. In Proceedings of the ACM on Web Conference 2024. 3910–3918.

[18] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[19] J Ben Schafer, Joseph A Konstan, and John Riedl. 2001. E-commerce recommen-
dation applications. Data mining and knowledge discovery 5 (2001), 115–153.

[20] Shuo Shao, Wenyuan Yang, Hanlin Gu, Jian Lou, Zhan Qin, Lixin Fan, Qiang
Yang, and Kui Ren. 2022. FedTracker: Furnishing Ownership Verification and
Traceability for Federated LearningModel. arXiv preprint arXiv:2211.07160 (2022).

[21] Marwa Sharaf, Ezz El-Din Hemdan, Ayman El-Sayed, and Nirmeen A El-
Bahnasawy. 2022. A survey on recommendation systems for financial services.
Multimedia Tools and Applications 81, 12 (2022), 16761–16781.

[22] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international

conference on information and knowledge management. 1441–1450.
[23] Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N Asokan. 2021. Dawn:

Dynamic adversarial watermarking of neural networks. In Proceedings of the 29th
ACM International Conference on Multimedia. 4417–4425.

[24] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. 2017.
Embedding watermarks into deep neural networks. In Proceedings of the 2017
ACM on international conference on multimedia retrieval. 269–277.

[25] Jiangfeng Wang, Hanzhou Wu, Xinpeng Zhang, and Yuwei Yao. 2020. Water-
marking in deep neural networks via error back-propagation. Electronic Imaging
2020, 4 (2020), 22–1.

[26] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.

[27] Jing Xu, Stefanos Koffas, Oguzhan Ersoy, and Stjepan Picek. 2021. Watermarking
graph neural networks based on backdoor attacks. arXiv preprint arXiv:2110.11024
(2021).

[28] Wenyuan Yang, Shuo Shao, Yue Yang, Xiyao Liu, Zhihua Xia, Gerald Schaefer,
and Hui Fang. 2022. Watermarking in Secure Federated Learning: A Verification
Framework Based on Client-Side Backdooring. arXiv preprint arXiv:2211.07138
(2022).

[29] Ziqi Yang, Hung Dang, and Ee-Chien Chang. 2019. Effectiveness of distillation
attack and countermeasure on neural network watermarking. arXiv preprint
arXiv:1906.06046 (2019).

[30] Wei Yuan, Chaoqun Yang, Quoc Viet Hung Nguyen, Lizhen Cui, Tieke He, and
Hongzhi Yin. 2023. Interaction-level membership inference attack against fed-
erated recommender systems. In Proceedings of the ACM Web Conference 2023.
1053–1062.

[31] Wei Yuan, Chaoqun Yang, Liang Qu, Quoc Viet Hung Nguyen, Jianxin Li, and
Hongzhi Yin. 2023. Hide Your Model: A Parameter Transmission-free Federated
Recommender System. arXiv preprint arXiv:2311.14968 (2023).

[32] Wei Yuan, Shilong Yuan, Chaoqun Yang, Nguyen Quoc Viet hung, and Hongzhi
Yin. 2023. Manipulating Visually Aware Federated Recommender Systems and Its
Countermeasures. ACM Transactions on Information Systems 42, 3 (2023), 1–26.

[33] Wenbin Yue, Zidong Wang, Jieyu Zhang, and Xiaohui Liu. 2021. An overview
of recommendation techniques and their applications in healthcare. IEEE/CAA
Journal of Automatica Sinica 8, 4 (2021), 701–717.

[34] Zhenrui Yue, Zhankui He, Huimin Zeng, and Julian McAuley. 2021. Black-box
attacks on sequential recommenders via data-freemodel extraction. In Proceedings
of the 15th ACM Conference on Recommender Systems. 44–54.

[35] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing
Huang, and Ian Molloy. 2018. Protecting intellectual property of deep neural
networks with watermarking. In Proceedings of the 2018 on Asia conference on
computer and communications security. 159–172.

[36] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based recom-
mender system: A survey and new perspectives. ACM computing surveys (CSUR)
52, 1 (2019), 1–38.

[37] Sixiao Zhang, Hongzhi Yin, Hongxu Chen, and Cheng Long. 2024. Defense
Against Model Extraction Attacks on Recommender Systems. In Proceedings of
the 17th ACM International Conference on Web Search and Data Mining. 949–957.

[38] Shijie Zhang, Wei Yuan, and Hongzhi Yin. 2023. Comprehensive privacy analysis
on federated recommender system against attribute inference attacks. IEEE
Transactions on Knowledge and Data Engineering (2023).

[39] Xiangyu Zhao, Hanzhou Wu, and Xinpeng Zhang. 2021. Watermarking graph
neural networks by random graphs. In 2021 9th International Symposium on
Digital Forensics and Security (ISDFS). IEEE, 1–6.

[40] Renjie Zhu, Xinpeng Zhang, Mengte Shi, and Zhenjun Tang. 2020. Secure neural
network watermarking protocol against forging attack. EURASIP Journal on
Image and Video Processing 2020 (2020), 1–12.

	Abstract
	1 Introduction
	2 related work
	2.1 Model Watermarking
	2.2 Watermarking Against Distillation

	3 Methodology
	3.1 Problem Definition
	3.2 Challenges
	3.3 Discussion
	3.4 Autoregressive Out-of-distribution Watermarking (AOW)

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Baseline and Model
	4.3 Settings
	4.4 Main Results
	4.5 RQ1: Watermark Validity & Model Utility
	4.6 RQ2: Against Distillation and Fine-tuning
	4.7 RQ3: Hyperparameter Study

	5 Conclusion
	Acknowledgments
	References

