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Range filters are probabilistic data structures that answer approximate range emptiness queries. They aid in

avoiding processing empty range queries and have use cases in many application domains such as key-value

stores and social web analytics. However, current range filters do not support dynamically changing and

growing datasets. Moreover, several of these designs also exhibit impractically high false positive rates under

correlated workloads, which are common in practice. These impediments restrict the applicability of range

filters across a wide range of use cases.

We introduce Memento filter, the first range filter to simultaneously offer dynamicity, fast operations, and

a robust false positive rate for any workload. Memento filter partitions the key universe and clusters its keys

according to this partitioning. For each cluster, it stores a fingerprint and a list of key suffixes contiguously.

The encoding of these lists makes them amenable to existing dynamic filter structures. Due to the one-to-

one mapping from keys to suffixes, Memento filter supports inserts and deletes and can even expand to

accommodate a growing dataset.

We implement Memento filter on top of a Rank-and-Select Quotient filter and InfiniFilter and demonstrate

that it achieves a competitive false positive rate and performance with the state of the art while also providing

dynamicity. Due to its dynamicity, Memento filter is the first range filter applicable to B-Trees. We showcase

this by integrating Memento filter into WiredTiger, a B-Tree-based key-value store, significantly boosting its

performance for mixed workloads.
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Unidimensional range search.
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1 INTRODUCTION
What is a Filter? A filter is a compact probabilistic data structure that answers approximate

membership queries on a set. Since a filter is space efficient, it is often stored in a higher level of

the memory hierarchy, making it fast to query. A filter cannot return a false negative but may

return a false positive with some probability known as the false positive rate (FPR), determined

by its memory footprint. Filters are ubiquitously used in many application domains to avoid disk

reads [19] or network hops [7] when querying for non-existing keys.

Range Filters and Applications. Traditional filters, such as Bloom filters [5], only answer

membership queries for a single query key. A range filter, on the other hand, is a filter that

answers range emptiness queries over a set 𝑆 [40]. Given a range 𝑞 = [𝑞𝑙 , 𝑞𝑟 ], a range filter
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returns a true positive if there is some key in 𝑆 that is also in the range 𝑞. It returns either a true

negative or a false positive otherwise. Range filters are used to avoid processing empty range

queries in applications such as social web analytics [14], replication in distributed key-value

stores [43], statistics aggregation of time series [27], and SQL table accesses [31]. Previous research

has demonstrated the significant performance boost range filters provide in these systems [2, 10,

29, 32, 36, 44, 47].

The Need for Dynamic Range Filters. A static range filter is sufficient for applications with

immutable (i.e., non-changing) data. For example, LSM-Trees consist of a set of immutable files to

which range filters can be attached to speed up range queries. However, many applications have a

dynamic nature, as they must support insertions, deletions, and growing datasets. These include

(1) LSM-Trees that use a single global filter to map each key to the file storing it [13, 18, 42, 45], (2) B-

Tree indexes [12, 41], and (3) Hybrid Transactional/Analytical Processing (HTAP) systems [6, 25].

Such applications require dynamic range filters that maintain high performance and low FPRs with

an increasing dataset size.

State of the Art. All existing range filters [10, 15, 22, 29, 32, 36, 44, 46, 47] resemble Bloom filters

and/or create a static model of the data distribution. The Bloom filter-inspired methods [10, 15, 22,

29, 32, 36, 44, 46] hash a key to one or more bits in a bitmap and set those bits to ones, potentially

mapping multiple keys to the same bit. These filters fail to support deletions, as changing a bit from

one to zero may result in false negative query results. Furthermore, such filters are unexpandable

as they provide no obvious way of remapping keys to a larger bitmap [17]. Those range filters

that model the data distribution [10, 22, 29, 44, 46, 47] also cannot update their models due to their

static layout and the lack of global information about the dataset. Thus, none of the current range

filters are dynamic or expandable.

Moreover, many of the above range filters [10, 22, 29, 44, 46, 47] provide no FPR guarantees

under common workloads [15, 32] where the query end-points are close to the keys in the set.

For example, queries for employee salaries tend to target ranges near the data values rather than

unrealistic ranges. The FPR measured in practice may approach 1, rendering the filter useless [15].

Research Challenge. We identify the following research question: can we design a range filter
that simultaneously (1) guarantees a theoretically optimal FPR for any key set and workload, (2) provides
fast operations, and (3) supports insertions, deletions, and resizability while maintaining (1) and (2)?

Core Contributions. We introduce Memento filter, the first range filter providing dynamicity,

resizability, fast operations, and an optimal FPR for any workload. It achieves this by taking a new

approach to range filtering. Memento filter partitions the key space into equi-width partitions. It

then clusters the keys according to this partitioning and maintains a suffix for each key in a Rank-

and-Select Quotient filter (RSQF) [39]. It further derives a fingerprint for each cluster based on its

partition number. All suffixes in a given partition are stored compactly and contiguously alongside

their fingerprint to support cache-efficient parsing. An RSQF employs Robin Hood Hashing [9] to

resolve hash collisions, allowing for storing the variable length data of the partitions by pushing

colliding filter content to the right. As Memento filter establishes an unambiguous one-to-one

mapping from each key to a suffix (i.e., unlike Bloom filter-inspired approaches), it can expand

efficiently by remapping these suffixes to a larger filter. Memento filter handles a range query by

finding the partitions that intersect the query range. It then compares the key suffixes of those

partitions and the suffixes of the query end-points to check if any fall within the specified range.

Additional Contributions:

• We provide the most comprehensive theoretical comparison of range filters to date and show

that Memento filter not only matches the state of the art in terms of FPR and performance

but also provides dynamicity and expandability.
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Symbol Definition

𝑞 = [𝑞𝑙 , 𝑞𝑟 ] An inclusive query range.

𝑢 Size of the key universe.

𝑁 The number of keys in the dataset.

𝑅 Maximum query range length.

𝜖 Target FPR.

ℎ(𝑥 ) General hash function of an RSQF.

ℎ𝑓 (𝑥 ) The fingerprint of 𝑥 resulting from ℎ(𝑥 ).

𝑛 The number of slots of an RSQF.

𝐹 The hash table of an RSQF.

𝛼 A RSQF’s load factor.

𝑓 Fingerprint size used in filter. Expressed in bits.

𝑟 Size of the mementos. Expressed in bits.

𝑚(𝑘) The memento of a key 𝑘 .

𝑝(𝑘) The prefix of a key 𝑘 .

ℓ Average number of keys in a non-empty partition.

Memento The 𝑟 least significant bits of a key.

Prefix The prefix excluding the 𝑟 least significant bits.

Partition A partition of the universe defined by a prefix.

Vacant Fingerprint A zero fingerprint used in encoding keepsake boxes.

Table 1. Definitions of terms and symbols. The table is split into three sections presenting the terms and
notation used to describe the general range filtering problem, the RSQF, and Memento filter, respectively.

• We use variable-length fingerprints to create an expandable variant of Memento filter with

an optimal and robust FPR, similarly to InfiniFilter and Aleph Filter, among other expandable

filters [3, 16, 17].

• We empirically evaluate Memento filter against all major range filters in a static setting. We

also conduct the first evaluation of range filters in a dynamic setting.

• We integrate Memento filter with a B-Tree-based key-value store and show that it significantly

boosts throughput for dynamic mixed workloads. Memento filter is the first range filter to

achieve such a feat.

2 PROBLEM ANALYSIS
This section defines the problem of range filtering and shows that no existing solution simulta-

neously provides (1) a robust FPR for any workload, (2) fast worst-case performance, and (3) the

ability to handle dynamic data.

Definitions and the Theoretical Lower Bound. The problem of range filtering is a generaliza-

tion of the classic filtering problem. A query takes the form of an interval 𝑞 = [𝑞𝑙 , 𝑞𝑟 ] of length at

most 𝑅. Given a set of keys 𝑆 coming from a universe of size 𝑢, the goal is to ascertain the emptiness

of the range, i.e., whether or not 𝑆 ∩ 𝑞 ̸= ∅ with an FPR of at most 𝜖 . The top section of Table 1

outlines the terms used to describe the range filtering problem henceforth.

Many applications are subject to Correlated Workloads [15, 32]. The range queries of such

workloads are close to the keys of the underlying dataset but do not contain keys within them. The

reason such queries are commonplace is that users typically issue queries that are informed by the

keys in the dataset. For example, a user searching a medical database for patients in a given age

group is more likely to issue the query 40-41 years old than 140-141. Many range filters exhibit high
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FPRs in the face of correlated workloads, as they only maintain coarse-grain information about

the data. The general distance between the queries and the keys is referred to as the Correlation
Degree of the workload. A robust range filter supports any workload with range queries of length

at most 𝑅, including correlated workloads, without degradation of its FPR.

Goswami et al. [26] prove an information-theoretic memory lower bound of log
2
(
𝑅
𝜖
) −𝑂(1) bits

per key for any robust range filter supporting range queries of length at most 𝑅 with an FPR of 𝜖 .

While several non-robust range filters have been proposed that require less memory than this

bound, they do so in exchange for a much higher FPR under correlated workloads.

Prior Work. We now describe all existing range filters in a roughly chronological order.

ARF [2] is a range filter employing a binary trie that adapts to the data and query distributions.

However, it is superseded by SuRF [47], which utilizes succinct tries to compactly encode keys

while maintaining ordering information to support range queries. This trie contains the shortest

unique prefix of each key to ensure that the final structure does not consume too much memory,

causing the number of internal nodes of the trie to depend on the length and distribution of the

keys. Fingerprints and key suffixes can be stored in the leaves of the trie for each key, improving

support of point and range queries, respectively.

SuRF exhibits a high FPR under correlated workloads since the shortest unique prefixes cannot

differentiate between close queries and keys. Moreover, SuRF does not support insertions or deletes

due to its succinct encoding scheme, and its query time deteriorates with the length of keys.

Rosetta [32] employs a hierarchy of Bloom filters, each storing key prefixes of a given length.

The hierarchy is treated as a segment tree [1] and supports range filtering by checking whether all

prefixes in a specified query range are absent. Rosetta achieves a near-optimal FPR by employing a

recursive query process that corrects the false positives of an upper-level filter with the help of

lower-level filters. During this process, Rosetta checks for𝑂(log
2
𝑅) sub-intervals as dictated by the

segment tree, possibly followed by additional Bloom filter lookups. While the hierarchical structure

of Rosetta makes it robust, each query entails probing many bits chosen by hash functions, leading

to many random cache misses [22, 36, 46].

REncoder [22, 46] and bloomRF [36] improve on Rosetta’s speed by encoding the prefixes

of a given key in a cache-friendly manner within a single bitmap. Specifically, REncoder breaks

Rosetta’s segment tree into mini-segment trees and encodes each contiguously in multiple locations.

These contiguous encodings give the filter access to the query range decomposition with a single

memory access. In contrast, bloomRF generalizes the segment tree to have a larger fanout based on

the key length and the dataset size. It further employs a Prefix Hashing scheme with Piecewise

Monotonic Hash Functions to improve cache locality. Such a hashing scheme positions neighboring

sub-intervals of equal length next to each other in the bitmap, giving simultaneous access to them

all using a single cache miss.

While REncoder and bloomRF improve on Rosetta’s speed, they still incur several cache misses

for queries and do not provide dynamicity or expandability. They also forgo robustness, as encoding

all the levels of the segment tree in the same bitmap results in a uniform FPR assignment to all

levels. This uniformity significantly decreases filtering for correlated queries since only a limited

number of the lower levels of the tree can filter them out.

Proteus [29] combines SuRF with a Bloom filter. The SuRF instance is truncated to contain

prefixes of keys up to a given length 𝑙1 and acts as a pre-filter for the Bloom filter, while the Bloom

filter stores key prefixes of a fixed length 𝑙2 > 𝑙1. This hybrid structure exposes a rich range filter

design space with many tradeoffs. Proteus tunes the prefix lengths 𝑙1 and 𝑙2 to minimize the FPR of

the hybrid filter, which improves upon both hierarchical filter designs and SuRF. Consequently,

Proteus discards prefixes longer than the longest-common prefix of the keys with the queries,
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Filter Construction Delete Range Query (-) Range Query (+) Memory Footprint Robust Expandable

SuRF 𝑂(𝑁 log𝑢) - 𝑂(log𝑢) 𝑂(log𝑢) 10 +
10𝑧
𝑁

+𝑚 + 𝑜(1) ✗ ✗

Rosetta 𝑂(𝑁 log
2
(
𝑅
𝜖
)) - 𝑂(log

2
(𝑅)) 𝑂(log

2
(
𝑅
𝜖
)) 1.44 log

2
(
𝑅
𝜖
) ✓ ✗

REncoder * 𝑂(𝑁𝑘) - 𝑘 𝑘 𝑂(𝑘 + log(
1

𝜖
)) ✗ ✗

bloomRF * 𝑂(𝑁 log(
𝑢
𝑁
)) - 𝑂(log(

𝑢
𝑁
)) 𝑂(log(

𝑢
𝑁
)) ≈ 1.2 log

2
(
𝑅
𝜖
) ✗ ✗

Proteus * 𝑂(𝑁 log(
𝑢
𝜖
)) - 𝑂(log𝑢) 𝑂(log(

𝑢
𝜖
))

10𝑧
𝑁

+ 1.44 log
2
(
1

𝜖
) ✗ ✗

SNARF * 𝑂(𝑁 ) 𝑂(log
2
𝑁 ) 𝑂(log

2
𝑁 ) 𝑂(log

2
𝑁 ) 2.4 + log

2
(
1

𝜖
) ✗ ✗

Oasis+ * 𝑂(𝑁 ) - 𝑂(log
2
𝑁 ) 𝑂(log

2
𝑁 ) ≈ 2.4 + log

2
(
1

𝜖
) ✗ ✗

Grafite 𝑂(𝑁 log
2
𝑁 ) - 1 − 2 1 − 2 2 + log

2
(
𝑅
𝜖
) + 𝑜(1) ✓ ✗

Memento

(Cache Misses)
𝑂(𝑁 ) 1 1 − 2 1 − 2

1

𝛼
(3.125 + log

2
(
𝑅
𝜖
)) ✓ ✓

Memento

(CPU)
𝑂(ℓ𝑁 ) ≈ 𝑂(𝑁 ) 𝑂(ℓ) ≈ 𝑂(1) 𝑂(log

2
ℓ) ≈ 𝑂(1) 𝑂(log

2
ℓ) ≈ 𝑂(1)

Table 2. A comparison of range filters assuming an FPR of 𝜖 , maximum range query length 𝑅, and 𝑁 keys
coming from a universe of size 𝑢. For SuRF and Proteus, 𝑧 refers to the number of internal nodes in the trie,
while𝑚 denotes the length of the fingerprints stored at the leaves. For REncoder, 𝑘 refers to the number of
hash functions, which we have empirically found to be 𝑂(log( 1𝜖 )). For Memento, ℓ is a measure of the local
density of the keys which is at most 𝑅 and thus small. The operation costs are measured in the expected
number of random cache misses, and the memory footprint is measured in bits per key. As shown, no existing
method supports dynamic key sets, a robust FPR, and fast operations, all at the same time.

causing the structure to lose robustness against correlated queries since it cannot differentiate

between close keys and queries. Furthermore, its tuning procedure requires both a sample query set

and a static underlying dataset. Queries are also expensive due to the many random cache misses

caused by the SuRF instance and the Bloom filter.

SNARF [44] learns from the underlying dataset by creating a linear spline model of the keys’

cumulative distribution function. It uses this model to map each key to a bit position in a large

bit array and sets it to one. Since this is a monotonic mapping, SNARF answers range queries

by scanning the corresponding range of bits in the bit array and returns true if it encounters a

one. SNARF saves a substantial amount of memory by compressing the bit array using Golomb

or Elias-Fano coding [21, 23, 24]. Oasis+ [10] employs SNARF’s framework and improves upon

its learned mapping function by pruning large empty regions of the key space, achieving lower

FPRs. It also employs instances of Proteus [29] to answer range queries for select regions of the

key space, depending on the data distribution.

However, the FPR of both of these filters suffers under correlated workloads, as such queries tend

to always map to a one in the bit array. Moreover, these filters assume complete knowledge of the

keys to train the mapping function, meaning they must be constructed on a static dataset. Lastly,

they use a logarithmic number of random memory accesses to query the distribution model and

use floating-point operations during the process, which slow down the filter and cause precision

issues for long keys.

Grafite [15] implements Goswami et al.’s design of a range filter [26], which uses a locality-

preserving hash function to map each key to a bit in a bit array. It compresses the bit array using

Elias-Fano coding [21, 23] and handles queries by checking the corresponding range of bits for any

set bit. The corresponding range is found by accessing a rank-and-select structure [30, 48] built on

top of the Elias-Fano encoding, followed by a binary search [11, 37, 38].

Grafite is the current state of the art in terms of speed, as it requires up to three random memory

accesses to serve a query. Its hashing and coding scheme allows it to achieve the same robustness as

Rosetta while enjoying extremely fast queries and a much better FPR vs. memory tradeoff. However,

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 244. Publication date: December 2024.



244:6 Navid Eslami and Niv Dayan

offset
occupieds
runends
slots

0 2

0 1 2 3 4 5 6 7

1 1 0 1 0 1 0 0

0 1 1 0 0 1 1 0

0110 1011 1000 0000 0001 0101 1111
Run Run Run Run

Cluster Cluster

(A)

0 3
1 1 0 1 0 1 0 0

0 1 1 0 0 0 1 1

0110 1011 1000 0000 0001 0101 1010 1111(B)

Insert 𝑥 , ℎ(𝑥 ) = 10100011

0 3
1 1 0 1 0 1 0 0

1 1 0 0 0 0 1 1

1011 1000 0000 0001 0101 1010 1111(C)

Delete 𝑦, ℎ(𝑦) = 01100000

Fig. 1. An RSQF handles hash collisions by pushing fingerprints to the right using Robin Hood Hashing.

the bit array and the hashing function do not allow for insertions, deletions, or expansions without

reconstructing the structure from scratch, as with the other Bloom filter-inspired methods.

Summary. Table 2 summarizes the characteristics of existing range filters. The methods anno-

tated with * are heuristic in nature and do not provide strict mathematical bounds on their memory

consumption. Therefore, we provide a conservative estimate of their memory footprint based on

the experimental data from their respective papers to enable a comparison.

Table 2 shows that existing range filters do not support deletes and cannot expand as more

data is inserted. This makes them inapplicable across the wide range of database applications that

support range queries over rapidly changing and/or growing data (e.g., from B-tree access in OLTP

applications to analytical queries in HTAP systems). Is it possible to design a robust range filter

that can accommodate dynamic data while also being competitive in terms of query cost, FPR, and

memory footprint?

3 BACKGROUND
This section describes the Rank-and-Select Quotient Filter (RSQF) [39], the base hash table im-

plementation on top of which we build Memento filter. The second section of Table 1 lists the

symbolds we use henceforth to describe the RSQF and Memento filter. An RSQF is a compact hash

table that stores a fingerprint for each key. An RSQF’s hash table 𝐹 consists of 𝑛 slots, each able to

store an 𝑓 -bit fingerprint. This hash table maps a key 𝑥 to its Canonical Slot using the ⌈log
2
(𝑛)⌉

least significant bits of the key’s hash ℎ(𝑥). It further associates a fingerprint ℎ𝑓 (𝑥) to 𝑥 by taking

the following 𝑓 bits of the aforementioned hash value. For example, considering an RSQF with

16 slots, a key 𝑥 with a hash of ℎ(𝑥) = 01100000 would have Slot 0 as its canonical slot based on

the least significant bits of its hash. It will also have ℎ𝑓 (𝑥) = 0110 as its fingerprint based on the

remaining bits of ℎ(𝑥 ).

An RSQF resolves hash collisions via Robin Hood Hashing [9], meaning that all fingerprints

mapped to a given canonical slot are stored contiguously. To achieve this, fingerprints may shift

any other fingerprint they collide with to the right to make space for themselves. A Run is defined

as the contiguous set of slots storing the fingerprints corresponding to a given canonical slot. A

group of contiguous slots occupied by runs, where all but the left-most run are shifted to the right,

is known as a Cluster. Fig. 1-(A) shows a populated RSQF, along with its runs and clusters. The

bold blue text indicates the fingerprints, while the black text indicates the canonical slot addresses.

Metadata. An RSQF associates two metadata bits to each slot to represent where runs begin and

end: the occupieds and runends bits. The occupieds bit for slot 𝑖 indicates whether or not a key
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with canonical slot 𝐹 [𝑖] was inserted into the filter. The runends bit indicates whether or not the
fingerprint stored at slot 𝐹 [𝑖] is the last fingerprint in a run. For example, the set occupieds bits in

Fig. 1-(A) indicate that Slots 0, 1, 3, and 5 are canonical slots, while the set runends bits indicate
that the runs of these slots end at Slots 1, 2, 5, and 6, respectively.

To improve performance, an RSQF is partitioned into blocks of 64 slots, each augmented with

two contiguous 64-bit bitmaps representing the occupieds and runends bits and an 8-bit offset
field. A block’s offset field indicates the number of fingerprints belonging to canonical slots

from previous blocks shifted into its slots or subsequent blocks. For example, the offset value of

the second block in Fig. 1-(A) is equal to 2 because its first two slots contain fingerprints with a

canonical slot of 3, which is from the previous block. This field enables an RSQF to skip over many

irrelevant slots to find the run of a key.

Locating a Run. Since an RSQF shifts runs to the right, it must search for a canonical slot’s

run. To this end, an RSQF leverages the fact that each one bit in the occupieds bitmap has a

corresponding one bit in the runends bitmap denoting the end of its run. Therefore, it locates slot

𝐹 [𝑖]’s run by finding the set runends bit that matches 𝐹 [𝑖]’s occupieds bit. An RSQF starts this

process by considering the offset field of the associated block. The filter skips offset many slots

to the right, allowing it to immediately find a slot 𝐹 [ 𝑗] containing runs from 𝐹 [𝑖]’s block. Then, it

uses specialized CPU instructions to apply efficient rank-and-select operations on the occupieds
bitmap fragment of 𝐹 [𝑖]’s block and the runends bitmap fragment of 𝐹 [ 𝑗]’s block to quickly find

the matching set bits, thus locating the end of 𝐹 [𝑖]’s run.

For example, in Fig. 1-(A), Slot 5’s run is located by first skipping offset=2 slots in the block.

Then, using the rank operation on the occupieds bitmap, an RSQF realizes that Slot 5’s associated

runend bit comes first among this block’s runend bits. Armed with this knowledge, an RSQF uses

the select operation on the runends bitmap fragment, ignoring its first offset=2 bits, to locate the

first set bit. Thus, it finds the end of 𝐹 [𝑖]’s run, i.e., Slot 6.

Queries. A query for a key 𝑞 starts at the canonical slot of 𝑞. If the occupieds flag of this slot is

zero, an RSQF returns a negative since a run for that slot does not exist. If it is one, its run is located

using the procedure described above. An RSQF then searches the discovered run for a fingerprint

equal to ℎ𝑓 (𝑞). If one exists, the query returns a positive and a negative otherwise.

Inserts. An RSQF inserts a key 𝑥 by first locating its run. It then adds the fingerprint ℎ𝑓 (𝑥) to

the run by shifting the subsequent runs one slot to the right and updating the filter’s metadata

accordingly. This shifting procedure may add new runs to 𝑥 ’s cluster. Fig. 1-(B) shows the insertion

process of such a key with hash 10100011. Here, Slot 3’s run expands and pushes Slot 0101’s run to

the right. It also updates the offset field of the next block as it shifts slots into it.

Deletes. Similarly to an insert, an RSQF deletes a key 𝑦 by finding its run and removing from it

a fingerprint equal to ℎ𝑓 (𝑦). It then shifts the subsequent slots in the cluster to the left to keep the

cluster contiguous. This may split the cluster into smaller clusters. Fig. 1-(C) shows an example of

a deletion to fingerprint 0110 at canonical Slot 0. Here, the run shrinks, and the cluster splits into

two small clusters of size 1 each.

Iteration. RSQFs support the iteration of their fingerprints via a left-to-right scan. Using the

metadata flags, the canonical slot of each fingerprint can be identified. An RSQF can then recover

the original hash bits of a key by concatenating its fingerprint to the address of its canonical slot.

As we shall see later, iteration serves as the cornerstone of expansion operations.

Allocation. An RSQF supports a load factor of up to 𝛼 = 95%. Beyond this load factor, the filter’s

performance deteriorates rapidly since the cluster lengths skyrocket.
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𝑝(𝑘) 𝑚(𝑘)

𝑟 bits

(A)

Universe

𝑝(𝑘)

𝑘

𝑚(𝑘)

(B)

Fig. 2. Each key 𝑘 is split into a prefix 𝑝(𝑘) and a memento𝑚(𝑘). Prefixes partition the key universe and
cluster the keys, while mementos denote the positions of keys in their partitions. Each circle in (B) represents
a key in the key set.

𝐹

Fig. 3. Clusters are comprised of runs, where all but the first are shifted to the right. A run contains one or
more keepsake boxes. The single cluster in the illustration has three runs, and the runs contain three, two,
and one keepsake box, respectively.

Analysis. An RSQF has an FPR of 𝜖 ≤ 𝛼 · 2−𝑓 since each canonical slot has an average of 𝛼

fingerprints in its run, and each of those fingerprints matches a query with probability 2
−𝑓
. The

structure has an overall memory footprint of
1

𝛼
(2.125 + 𝑓 ) bits per key.

4 MEMENTO FILTER
We introduce Memento filter, the first range filter to simultaneously provide a robust FPR, fast

inserts, queries, and deletes, and the ability to efficiently expand and contract. Conceptually,

Memento filter partitions the key space into equally sized partitions. For each partition with at

least one key, it contiguously stores a fingerprint along with fixed-length suffixes of all keys in

that partition. We refer to these suffixes as mementos, and we refer to a fingerprint along with

its collection of mementos as a keepsake box. Memento filter processes a range query by visiting

all intersecting partitions with a matching fingerprint and checking for overlapping mementos in

their keepsake boxes. Memento filter guarantees a desired FPR for fixed-length keys and range

queries of length up to 𝑅. We show how to extend it to support variable-length keys at the expense

of robustness and arbitrary range queries at the expense of FPR and speed.

We build Memento filter on top of an RSQF as its use of Robin Hood Hashing allows for storing

variable-length keepsake boxes. At the same time, such variable-length keepsake boxesmay elongate

the runs and clusters of the filter and potentially damage performance. To counteract this, we

show how to succinctly encode keepsake boxes and how to traverse them efficiently, leading to

1 and 2 random cache misses for point and range queries, respectively. In Section 6, we show

analytically that Memento Filter achieves the same performance as an RSQF by leveraging this

succinct encoding. Table 1 provides a list of symbols and definitions used in this section.

Prefixes and Mementos. Memento filter splits each key 𝑘 into a prefix 𝑝(𝑘) and a memento
𝑚(𝑘). A memento is the 𝑟 = ⌈log

2
𝑅⌉ least significant bits of 𝑘 , where 𝑅 is the maximum range query

length that the filter must support. A prefix is the maximal prefix of 𝑘 not containing the 𝑟 least

significant bits. Fig. 2-(A) provides an example of this split. Based on these prefixes, Memento filter

partitions the key universe into partitions of length 2
𝑟 ≥ 𝑅, as depicted in Fig. 2-(B). A partition

contains keys with the same prefix. Given this partitioning, a key 𝑘’s memento𝑚(𝑘) represents 𝑘’s

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 244. Publication date: December 2024.



Memento Filter: A Fast, Dynamic, and Robust Range Filter 244:9

𝑓 𝑟

(A) 𝐹

𝑗

ℎ∗
𝑓 𝑚1

(B) 𝐹

𝑗

ℎ∗
𝑓 𝑚1

𝑗 + 1

ℎ∗
𝑓 𝑚2

(C) 𝐹

𝑗

ℎ∗
𝑓 𝑚1

𝑗 + 1

0 𝑚𝑙

𝑗 + 2

𝑙 ′ 𝑚2 𝑚3
. . .

Fig. 4. Each keepsake box is encoded using one of three cases, depending on how many mementos it contains.

position in the partition defined by its prefix 𝑝(𝑘). Notice that, as in the design of all range filters

(except SuRF), we assume the keys to be fixed-length strings.

Since the maximum query range size 𝑅 is typically small in comparison to the universe size 𝑢, a

key’s prefix tends to be much longer than its memento, e.g., a 56-bit prefix vs. an 8-bit memento

for a 64-bit key. Furthermore, since the partition size 2
𝑟
is at least as large as the query length

𝑅, any range query intersects with at most two consecutive partitions of the key universe. Thus,

Memento filter splits a query range into at most two sub-ranges, each subsumed by a partition. It

then answers the query by checking for the inclusion of any mementos in these sub-ranges.

Crucially, the resulting range query performance is workload-agnostic. The intuition is that

mementos encode information about each key’s least significant bits. Hence, any query’s end points

can be reliably checked for overlap with the mementos within the matching partitions to ascertain

membership with a false positive rate that depends only on the fingerprint length.

Memento filter uses the prefix of the keys to insert them into an RSQF. That is, it computes ℎ(𝑝(𝑘))

and ℎ𝑓 (𝑝(𝑘)) to map a key 𝑘 to a canonical slot and to derive a fingerprint, where ℎ(·) and ℎ𝑓 (·) are
hash functions defined in Section 3 in the context of an RSQF. Memento filter stores the mementos

and the fingerprint of the keys in each partition consecutively and succinctly to maximize cache

locality and space efficiency.

Slot Structure. Memento filter allocates slots with a width of 𝑓 + 𝑟 bits in its underlying RSQF,

as shown in Fig. 4-(A). This allows it to store one fingerprint and one memento in each slot. We

omit the occupieds, runends, and offset fields of the RSQF in Fig. 4-(A) to highlight new design

elements built on top.

Keepsake Boxes. Since Memento filter hashes the prefix of each key to map it to a canonical

slot and to generate a fingerprint, keys from different partitions may map to the same run and may

even share a fingerprint due to hash collisions. We use the term keepsake box to refer to the union

of the keys/mementos with a shared fingerprint in a run. Note that the keys within a keepsake box

may come from different partitions due to hash collisions. Fig. 3 shows how there can be multiple

keepsake boxes within a run and several runs within a cluster. Clusters and runs are delimited

using the RSQF’s metadata fields as shown in Section 3. We now focus on encoding and delimiting

keepsake boxes in a run.

Encoding of a Keepsake Box. Because keepsake boxes are variable-length, their encoding
must represent how long they are to facilitate unambiguous decoding. The simplest solution is to

store a counter for each keepsake box that denotes how many mementos it contains. This approach,

however, would use excessive space for metadata when the keepsake boxes contain few mementos.

To overcome this challenge, our filter enforces the following invariant: the keepsake boxes of a run
must be stored in non-decreasing order of their fingerprints. We show how this allows for delimiting
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keepsake boxes within a run without using additional metadata. Furthermore, to save space and

optimize cache behavior, Memento filter minimizes the number of shared fingerprints stored for a

keepsake box.

Consider a keepsake box with canonical slot 𝐹 [𝑖], fingerprint ℎ∗
𝑓
, and a list of 𝑙 associated

mementos𝑚1 ≤ . . . ≤ 𝑚𝑙 . Assume that this keepsake box’s fingerprint is stored in 𝐹 [ 𝑗], where

𝑗 ≥ 𝑖 due to hash collisions. It is encoded as follows:

Case (1) 𝑙 = 1: The only memento𝑚1 is stored with the keepsake box’s fingerprint in the same

slot of 𝐹 [ 𝑗], as shown in Fig. 4-(A).

Case (2) 𝑙 = 2: A fingerprint-memento pair is stored for each key, as depicted in Fig. 4-(B). The

smaller memento𝑚1 is stored with the keepsake box’s fingerprint in 𝐹 [ 𝑗], while𝑚2 is stored with

a copy of the keepsake box’s fingerprint in 𝐹 [ 𝑗 + 1].

Case (3) 𝑙 > 2: The smallest memento𝑚1 is stored alongside the keepsake box’s fingerprint in

𝐹 [ 𝑗] while the largest memento𝑚𝑙 ≥ 𝑚1 is stored with a zero vacant fingerprint in 𝐹 [ 𝑗 + 1]. The

decrease in the fingerprint values in the run created by the vacant fingerprint acts as an escape

sequence, signaling that the keepsake box has more than two members. The smallest and largest

mementos of the keepsake box stored in 𝐹 [ 𝑗] and 𝐹 [ 𝑗 + 1] allow for quickly ruling out the existence

of a key range without traversing the entire keepsake box.

The rest of the mementos are encoded as a sorted list in the subsequent slots, as shown in

Fig. 4-(C). This sorted list is encoded by first writing down its length 𝑙 ′ = 𝑙 − 2 using 𝑟 bits on

average. This length parameter is followed up by the mementos, stored compactly, disregarding

alignment. Due to this misalignment, the last slot of this memento list may have unused space.

This unused space corresponds to the hatched area in Fig. 4-(C).

Based on the above encoding scheme, Memento filter encodes each key in at most 𝑓 + 𝑟 bits.

With more dataset skew, Memento filter forgoes storing fingerprints for the keys, and thus the

memory it uses for each key approaches 𝑟 bits. A memento usually comprises one byte to be able

to answer short range queries efficiently. At the same time, the fingerprint size tends to be at least

one byte to achieve an FPR in the range of 1-10%. This implies that each slot can house at least two

mementos. Hence, all keepsake box encodings consume at most one slot per key.

A minor caveat is that keepsake boxes with a fingerprint of zero cannot utilize the vacant

fingerprint as an escape sequence in Case (3), as it does not create a decreasing order for them. In

such a scenario, Memento filter encodes the keepsake box entirely using Case (1). That is, each

memento will have its own fingerprint. We will see that there are no zero fingerprints in the context

of an expandable Memento filter, and this corner case will naturally disappear.

Since keepsake boxes are ordered according to their fingerprints, an increase in the fingerprint

values signals the start of a new keepsake box, which delimits keepsake boxes in Cases (1) and (2).

In Case (3), Memento filter delimits keepsake boxes using the length field 𝑙 ′. Note that keepsake
box encodings are considered part of their run. Therefore, all of their slots, except for the final slot

of the run, have zero runends bits.

Variable-Length Counter Encoding. A keepsake box encoding in Case (3) uses a length field

𝑙 ′ to record the number of mementos in the keepsake box. This length is usually smaller than 2
𝑟 − 1,

i.e., the maximum length that 𝑟 bits can represent. However, 𝑙 ′ can also exceed this threshold in

the unlikely event of fingerprint collisions of densely populated partitions. To keep the encoding

small when the count is small while still supporting the rare event of large counts, we employ a

variable-length encoding for 𝑙 ′. To this end, Memento filter reserves the value 2
𝑟 − 1, i.e., 𝑟 one bits,

as a special value for 𝑙 ′ and generates an encoding in 𝑟 -bit chunks.

This encoding is specifically designed to keep the common case of small counts as performant,

space-efficient, and general as possible, which is not achieved by traditional encoding schemes.
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𝑝(𝑞𝑙 ) 𝑝(𝑞𝑟 )

𝑞

(B)

𝑝∗

𝑞

(A)

Fig. 5. A range query 𝑞 = [𝑞𝑙 , 𝑞𝑟 ] spans (A) one or (B) two partitions. The keys of a partition are represented
as circles, and the checked lower bound, largest, and smallest keys are highlighted in bold.

That is, any 𝑙 ′ < 2
𝑟 − 1 is encoded in binary using 𝑟 bits. For larger lengths, the core idea is to

represent 𝑙 ′ in base-(2
𝑟 − 1). Memento filter achieves this by first writing ⌊log

2
𝑟 −1 𝑙

′⌋ copies of the
value 2

𝑟 − 1, similarly to unary coding. 𝑐 of these values signals that there are 𝑐 + 1 digits in 𝑙 ′’s
base-(2

𝑟 − 1) representation. This “unary code" is followed up with the base-(2
𝑟 − 1) representation

of 𝑙 ′. Since 𝑙 ′ in base-(2
𝑟 − 1) cannot have any digit equal to 2

𝑟 − 1, the unary code preceding it is

unambiguous and is used to recover 𝑐 .

For example, if 𝑟 = 5, the number 𝑙 ′ = 30 is represented as a single 𝑟 -bit value of ⟨30⟩. However,
given 𝑙 ′ = 31, its base-(2

𝑟 − 1) = 31 representation is ⟨1, 0⟩, which no longer has a single digit.

Therefore, 𝑙 ′ is encoded to ⟨31, 1, 0⟩. This encoding has 𝑐 = 1 values of 2
𝑟 − 1 = 31, implying that

the base-31 representation of 𝑙 ′ has 𝑐 + 1 = 2 digits. The code is then finished by appending 𝑙 ′’s
base-(2

𝑟 − 1) representation ⟨1, 0⟩. As 𝑙 ′ grows, this base-31 encoding is updated accordingly, e.g.,

𝑙 ′ = 32 is encoded to ⟨31, 1, 1⟩.
Note that Memento filter still uses at most one slot per memento with this encoding scheme.

The reason is that 𝑙 ′ is encoded using more than a single 𝑟 -bit chunk only when it is very large. In

this case, the succinct encoding of the long memento list compensates for the extra space required

by the length encoding.

Skipping Keepsake Boxes. Memento filter skips over large keepsake boxes with mismatching

fingerprints to dramatically improve lookup speed. Since large keepsake boxes are encoded using

Case (3), Memento filter uses the list length 𝑙 ′ to infer and skip the appropriate number of slots to

access the next keepsake box.

Insertions. Memento filter inserts a key 𝑥 by following the semantics of its underlying RSQF. It

first finds 𝑥 ’s canonical slot using ℎ(𝑝(𝑥 )) and searches for its run. If it finds no such run, it creates

one and encodes 𝑥 ’s keepsake box in it. Otherwise, Memento filter iterates over the run and looks

for a keepsake box associated with 𝑥 , skipping the contents of irrelevant keepsake boxes along the

way. If there is no keepsake box with a fingerprint matching 𝑥 ’s partition, Memento filter creates

a keepsake box and positions it in the run such that the fingerprints maintain a non-decreasing

order. Otherwise,𝑚(𝑥 ) is added to the matching keepsake box, updating the encoding according to

the various cases shown in Fig. 4. The insertion procedure may shift the filter’s slots to the right,

potentially merging several clusters.

Deletions. Memento filter deletes a key 𝑦 by first finding its keepsake box in its run. It then

locates and removes some memento equal to𝑚(𝑦) in the keepsake box. Similarly to how an RSQF

handles deletes, Memento filter may have to shift several slots to the left, potentially splitting their

cluster into smaller clusters.

Range Queries. As with all range filters, we consider range queries with a maximum length of 𝑅.

Any such range query 𝑞 = [𝑞𝑙 , 𝑞𝑟 ] may intersect with at most two partitions of the key universe

since the partitions are of length 2
𝑟
and 𝑞𝑟 − 𝑞𝑙 + 1 ≤ 𝑅 ≤ 2

𝑟
. Thus, it must be the case that

𝑝(𝑞𝑟 ) − 𝑝(𝑞𝑙 ) ≤ 1. That is, the prefixes of the end-points of the query can differ by at most one.

Given this observation, Memento filter processes a range query as follows:
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occupieds/runends
slots

0 1 2 3 4 5 6 7

1 1 0 0 1 1 0 00 0 1 1 1 0 0 1

1011 01 0000 11 01 10 00 1111 01 0000 10 1101 00 0000 11 01 01 00

Universe

𝑞3 = 3 𝑞1 = [14, 15] 𝑞2 = [23, 27]

Fingerprint Memento Vacant

Fingerprint

List Length Unused Space

Fig. 6. Memento filter services range queries by finding the keepsake boxes corresponding to the overlapping
partitions in the key universe and searching for mementos that fall into the query range. Here, the filter’s
fingerprint and memento sizes are 𝑓 = 4 and 𝑟 = 2, respectively. Each universe partition is of length 4, and the
keys are denoted by circles. Black arrows represent the canonical slot each partition maps to, and runs are
delineated using thick lines. All runs begin in their respective canonical slots except for the first partition’s
run, which is pushed from Slot 1 to Slot 3 due to Robin Hood Hashing.

If 𝑝(𝑞𝑙 ) = 𝑝(𝑞𝑟 ) = 𝑝∗: In this case, the query intersects with a single partition, i.e., the set of

keys with a prefix equal to 𝑝∗, as depicted in Fig. 5-(A). Memento filter first checks if the canonical

slot of the partition 𝑝∗ is occupied using the occupieds bitmap. If it is not, the query results in a

negative, as no keepsake box exists for 𝑝∗. If it is, Memento filter searches for a keepsake box with a

fingerprint matching ℎ𝑓 (𝑝
∗
). It returns a negative if such a keepsake box does not exist. If one does

exist,𝑚(𝑞𝑟 )’s lower bound, i.e., the largest memento in the keepsake box that is less than or equal to

𝑚(𝑞𝑟 ), is calculated using binary search and is checked for inclusion in the range [𝑚(𝑞𝑙 ),𝑚(𝑞𝑟 )]. If

this range includes the lower bound, the query results in a positive, since it signifies that a potential

key of the key set is in the query range. Otherwise, the query returns a negative, as no key is in

the range. In Fig. 5-(A), the bold circle is the lower bounding memento of𝑚(𝑞𝑟 ). Here, the example

query results in a positive since the lower bounding memento lies in the range [𝑚(𝑞𝑙 ),𝑚(𝑞𝑟 )], and

because the relative ordering of the mementos in a partition matches the ordering of the keys.

Query 𝑞1 = [14, 15] in Fig. 6 is an example of a range query intersecting a single partition. Here,

mementos are 𝑟 = 2 bits long, and both end-points have the same prefix 𝑝∗ = 3. Memento filter

processes 𝑞1 by hashing the shared prefix to derive a canonical slot address and a fingerprint, which

in this example happen to be 0 and 1011, respectively. It then locates the partition’s run in Slot 0

and finds a matching keepsake box in the same slot. Finally, it searches the keepsake box for the

lower bound of the right end-point’s memento𝑚(𝑞2𝑟 ) = 3. Since Slot 1 is in the same run and has a

vacant fingerprint, it signals that the keepsake box is encoded using Case (3). Thus, Memento filter

searches the list of mementos stored in Slot 2 (which has a single memento) while also accounting

for the mementos in Slots 0 and 1, resulting in a lower bound of 2. As this lower bound equals the

memento of the left end-point𝑚(𝑞2𝑙 ) = 2, Memento filter returns a positive.

If 𝑝(𝑞𝑙 ) + 1 = 𝑝(𝑞𝑟 ): This case implies that the query range has two relevant partitions: one

covering the left end-point 𝑞𝑙 and another covering the right end-point 𝑞𝑟 . Fig. 5-(B) illustrates this

case. Processing this type of query amounts to checking whether the largest key in the partition

of 𝑝(𝑞𝑙 ) or the smallest key in the partition of 𝑝(𝑞𝑟 ) is in the query range. One can observe from

Fig. 5-(B) that knowledge of these points is enough to answer this range query. This is equivalent to

checking whether the largest and smallest mementos of the keys in these partitions are contained

in the sub-ranges of the range query, as defined by the universe partitioning.

Hence, Memento filter processes this query by first locating the keepsake box of 𝑝(𝑞𝑙 ), if it exists.

If it does, its largest memento𝑚′
is checked for inclusion in [𝑚(𝑞𝑙 ), 2

𝑟 − 1]. If𝑚′
is included in the

range, Memento filter returns a positive. If𝑚′
is not in the range or a keepsake box for 𝑝(𝑞𝑙 ) does
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not exist, the keepsake box of 𝑝(𝑞𝑟 ) is located. Memento filter then fetches the smallest memento

𝑚′′
from the keepsake box and checks for its inclusion in [0,𝑚(𝑞𝑟 )]. If𝑚

′′
is in this range, the query

results in a positive. Otherwise, it results in a negative. Fig. 5-(B) shows a positive query, as𝑚′
and

𝑚′′
are in their sub-ranges, implying that the red keys are in 𝑞.

A crucial property of the keepsake encoding scheme is that the largest and smallest mementos

are always either stored in the same slot as the fingerprint or in its subsequent slot. Therefore,

queries find these extrema in a cache-friendly manner without searching.

Query 𝑞2 = [23, 27] in Fig. 6 is an example of a range query intersecting two partitions. Following

the above procedure, Memento filter hashes the prefix of the left end-point 𝑝(𝑞2𝑙 ) = 5 to derive

the canonical slot address 4 and fingerprint 1101. It then finds the corresponding run in Slot 5 and

finds a matching keepsake box in the same slot. As the keepsake box is encoded using Case (3),

Memento filter determines the largest memento in it by reading the memento stored alongside the

vacant fingerprint without searching the list of mementos starting in Slot 7. Finally, as this largest

memento, i.e., 3, equals the memento of the left end-point𝑚(𝑞3𝑙 ) = 3, Memento filter returns a

positive. Notice how Memento filter skipped locating the run of the right end-point, as the result of

the first probe made the query a positive.

Longer Range Queries.Memento filter also supports longer range queries by checking more

partitions in exchange for higher FPR and query times. Here, Memento filter only checks the largest

and smallest mementos for the first and last partitions, similarly to the above discussion. Moreover,

it only needs to check whether a matching fingerprint exists for the intermediate partitions.

Point Queries. Memento filter processes a point query for a key 𝑞 by finding its corresponding

keepsake box. The query results in a negative if there is no such keepsake box. Otherwise, Memento

filter uses binary search to find a memento equal to𝑚(𝑞) in the keepsake box. If it finds one, it

returns true. The absence of𝑚(𝑞) in the keepsake box implies that 𝑞 was not in the key set, and the

filter thus returns a negative.

Query 𝑞3 = 3 in Fig. 6 is an example of a point query. Here, Memento filter hashes the prefix to

compute the partitions’ canonical slot address ℎ(𝑝(𝑞3)) = 1 and the fingerprint ℎ𝑓 (𝑝(𝑞3)) = 1111. As

the relevant canonical slot is occupied, Memento filter locates its corresponding run, which is in

Slot 3. It iterates over the keepsake boxes and sees only one with a matching fingerprint of 1111. It

then searches for a memento equal to𝑚(𝑞3) = 3 in the keepsake box and returns a negative result

since it finds none.

Notice that the insertion, deletion, and query operations described above are general in the

sense that they can be applied in any intermixed order, as no assumptions are made regarding the

previously applied operations.

Bulk Loading. Memento filter supports bulk loading by first sorting the keys to be inserted in

increasing order of their slot addresses, fingerprints, and mementos, respectively. This ordering

enables Memento filter to encode all runs and keepsake boxes via a single left-to-right pass of

the filter, maximizing cache efficiency. While this is an 𝑂(𝑁 log𝑁 ) algorithm, it performs better

than inserting the keys one by one in 𝑂(ℓ𝑁 ) ≈ 𝑂(𝑁 ) time (as proven in Section 6), since it incurs

sequential rather than random memory accesses, leveraging the hardware prefetcher.

Concurrency. As Memento filter is built on top of the RSQF, it can reuse its concurrency

mechanisms [39]. More concretely, Memento filter’s underlying RSQF is partitioned into regions of

4096 slots, each with a spinlock. A thread performing an operation locks the region its key’s prefix

hashes to and its subsequent region before modifying the filter. Locking two consecutive regions

allows for thread-safe shifting of slots.

In many cases, the workload is not heavily skewed, and threads will typically map to and lock

different regions, thanks to the uniformity of hashing. However, if the dataset is heavily skewed,

many threads may want to modify the same keepsake boxes, causing lock contention. Alleviating
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Insert 𝑥 , ℎ(𝑝(𝑥 )) = 110000,𝑚(𝑥 ) = 0

Fig. 7. An expandable Memento filter employs fluid fingerprints comprised of an age counter and a fingerprint.
It uses them to remap keepsake boxes during expansions. Runs are delineated using thick lines, and the slot
addresses are shown in binary to illustrate how repurposing a fingerprint bit as an address bit affects the
keepsake box mappings.

this contention is a promising direction for future work. One potential approach may be buffering

blocked inserts and deletes in small, per-thread Memento filters before dumping them into the

main filter, similar to [39].

Supporting Variable-Length Keys. Memento filter assumes its keys to be fixed-length strings.

Many applications that use range filters operate on numerical data, which are fixed-length binary

strings. Memento filter applies to these cases as-is. One can also convert variable-length keys into

𝑙∗-bit strings by zero-padding short and truncating long keys, where 𝑙∗ is the smallest length such

that the keys are distinguishable using 𝑙∗-bit prefixes. This method strives to support the longest

range queries but forgoes robustness due to the truncated suffixes. One can preserve robustness by

increasing 𝑙∗ to keep the bits differentiating the keys and queries.

5 EXPANDABILITY
InfiniFilter. InfiniFilter is an expandable Quotient Filter (a simpler but less efficient version of an

RSQF). In InfiniFilter, each slot contains a unary “age counter" of the form 0 . . . 01 that signals how

many expansions ago a key was inserted, along with a fingerprint [17]. During an expansion, a bit

from each fingerprint is transferred to its canonical slot’s address, incrementing the age counter

and allowing InfiniFilter to uniformly map it to a larger filter with the same slot width as before.

We call the concatenation result of an age counter with its fingerprint a “fluid fingerprint."
Expandable Memento Filter. An expandable Memento filter stores fluid fingerprints instead

of standard fingerprints. Fig. 7-(A) shows an example of an expandable Memento filter with a fluid

fingerprint and memento length of 𝑓 = 4 and 𝑟 = 2. Slot 00 stores a single-bit fingerprint 1, along
with an age counter of 001, signaling that the key was inserted into the filter two expansions ago.

To delimit and encode keepsake boxes within a run as described in Section 4, they are stored in

increasing order of their fluid fingerprints. For example, in Fig. 7-(A), the run at Slot 00 stores two

keepsake boxes of length one and puts the one with a fluid fingerprint of 0011 before the other

with a fluid fingerprint of 0100.
Since the age counters always have a set bit, fluid fingerprints are never zero. Thus, zero “vacant

fluid fingerprints" can always act as escape sequences for encoding keepsake boxes, eliminating the

“zero fingerprint" corner case presented in Section 4 for Case (3).

We now describe how Memento filter uses fluid fingerprints to implement its various operations.

Expansions and Contractions. Memento filter expands by allocating a filter two times its size

with the same slot width of 𝑓 + 𝑟 bits. Recall that the canonical slot address and the fingerprint of
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each keepsake box are parts of the same original hash ℎ(𝑝), where 𝑝 is the prefix of the keepsake

box’s keys. With this in mind, Memento filter iterates over the old filter, reconstructs the original

hash of each keepsake box by concatenating its fingerprint to its canonical slot address, and inserts

it into the new filter. The new canonical slot address of a keepsake box is the log
2
(𝑛) + 1 least

significant bits of its hash, while the fingerprint consists of the remaining more significant bits.

Therefore, this process repurposes the least significant bit of each fingerprint to become the most

significant bit of the new canonical slot address. It also increments the age counter of the old

fingerprints, meaning that the resulting fluid fingerprints retain a length of 𝑓 bits. Fig. 7-(B) shows

an example of such an expansion, followed by the insertion of a new key 𝑥 with a prefix hash of

ℎ(𝑝(𝑥)) = 110000 and memento𝑚(𝑥) = 0. Analogously, Memento filter contracts by halving the

number of slots and transitioning a bit from the addresses to the fingerprints.

Insertions. To maintain a stable FPR, new insertions are made with full-length fingerprints. That

is, a key 𝑥 is inserted by first finding a keepsake box with a full-length matching fingerprint. If one
exists,𝑚(𝑥 ) is added to it. Otherwise, Memento filter creates a new keepsake box with a full-length

fingerprint for 𝑥 to minimize the FPR. Fig. 7-(B) shows an example. Even though the new key 𝑥

has a partially matching fingerprint with the migrated keepsake box in Slot 000, it manifests as a

separate keepsake box. Note that an 𝑓 -bit fluid fingerprint can represent fingerprints of length at

most 𝑓 − 1 bits. Thus, each slot and fluid fingerprint of the filter must be one bit wider to maintain

the same fingerprint length and FPR as a standard Memento filter.

Deletions.When deleting a key 𝑦, Memento filter removes a memento equal to𝑚(𝑦) from the

keepsake box with the longest matching fingerprint. The reason is that deleting a memento with

a shorter associated fingerprint may cause false negatives, as it may have resulted from a hash

collision with a different keepsake box.

Queries. Queries are handled as described in Section 4, but Memento filter must probe all

keepsake boxes with matching fluid fingerprints for potential mementos. For example, in Fig. 7-(B),

a point query with a prefix hash of 110000 must check both keepsake boxes at Slots 000 and 001,

which have fingerprints 0 and 110. This does not damage query performance, as partially matching

fingerprints are rare, and memory is still accessed sequentially.

Unbounded Expansions. These methods allow Memento filter to expand up to 𝑓 − 1 times,

implying that it can grow by a factor of up to 2
𝑓 −1

. For typical fluid fingerprint lengths such as

𝑓 = 11 bits, this translates to Memento filter expanding up to 2
10

= 1024 times its original size,

which is sufficient for many applications.

However, Memento filter fails to expand more than 𝑓 − 1 times, as the oldest fingerprints run

out of bits to sacrifice. Memento filter can overcome this by applying InfiniFilter [17]’s chaining

method. Concretely, when a keepsake box’s fingerprint is depleted, it is removed from the filter

and inserted into a smaller, secondary Memento filter, where the hash is long enough to create a

full-length fingerprint. The secondary filter expands until its fingerprints run out of bits, at which

point it is added to a chain of filters, and a new secondary filter is created. New insertions always

go to the main filter, but deletions and queries must probe all the filters.

Speeding up queries and deletions in this case is an interesting direction for future work. One

approach may be to duplicate exhausted fingerprints across the slots that could correspond to it,

similarly to what Aleph Filter proposes [16].

Rejuvenation.Memento filter employs InfiniFilter’s “rejuvenation" operation. Here, a fingerprint

is lengthened during a positive query, whereby the application regains access to the original key

and can thus rehash it to derive a longer fingerprint, improving the filter’s FPR while also delaying

the creation of secondary filters.
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6 THEORETICAL ANALYSIS
We show that Memento filter is close to space optimal and that its operation costs are low. The last

row of Table 2 summarizes the results of this section.

False Positive Rate. We begin by answering the following question: Given a prefix 𝑝∗, what is
the probability 𝑃∗ that there is a different partition with some prefix 𝑝 ̸= 𝑝∗ with a matching keepsake
box? The answer to this question is a conservative upper bound on the FPR for both point and

range queries, as it does not take into account the non-robust filtering the mementos provide.

There are at most
𝑁
ℓ
such partitions with prefix 𝑝 ̸= 𝑝∗, where 𝑁 is the number of keys inserted

into the filter and ℓ is the average partition size. For 𝑝 to have a matching keepsake box with 𝑝∗, it
must have the same canonical slot, i.e., ℎ(𝑝) = ℎ(𝑝∗). If it shares the same canonical slot, it must also

share the same fingerprint, i.e., ℎ𝑓 (𝑝) = ℎ𝑓 (𝑝
∗
). The former has a probability of

1

𝑛
, and the latter has

a probability of 2
−𝑓
. Thus, since these events are independent, the probability that 𝑝 and 𝑝∗ have

matching keepsake boxes is
1

𝑛
· 2−𝑓 . Then, via a union bound on the total possible partitions with

prefix 𝑝 ̸= 𝑝∗, one can see that 𝑃∗ ≤ 𝑁
ℓ
· 1

𝑛
· 2−𝑓 =

𝛼
ℓ
· 2−𝑓 .

A negative point query for key 𝑞 can only result in a false positive when there is some partition

with prefix 𝑝 ̸= 𝑝(𝑞) with the same fingerprint and a memento equal to𝑚(𝑞). The probability 𝜖𝑝

of this event is upper bounded by 𝑃∗
=

𝛼
ℓ
· 2−𝑓 , since 𝑃∗

only accounts for the existence of such a

partition. Depending on the key distribution, the mementos may provide much better filtering and

improve the FPR by a factor of at best 2
−𝑟
.

Analogously, a negative range query 𝑞 = [𝑞𝑙 , 𝑞𝑟 ] can only result in a false positive if there is some

partition with a prefix 𝑝 ̸= 𝑝(𝑞𝑙 ), 𝑝(𝑞𝑟 ) that has a memento in the target memento ranges. Such a

partition exists with probability 𝜖𝑟 at most 2𝑃∗
=

𝛼
ℓ
· 21−𝑓 , due to a union bound applied to 𝑝(𝑞𝑙 )

and 𝑝(𝑞𝑟 ). The mementos may further improve the FPR by a constant factor. Thus, the overall FPR

𝜖 ≤ max(𝜖𝑟 , 𝜖𝑝 ) is at most 2𝑃∗
=

𝛼
ℓ
· 21−𝑓 .

Using this result, one can follow a similar analysis to InfiniFilter [17] and derive a bound of

𝜖 ≤ (𝐸 + 2) · 𝛼
ℓ
· 2−𝑓 for the FPR of an expandable Memento filter, where 𝐸 ≤ log

2
(𝑁 ) is the number

of expansions the filter has undergone.

Expected Cluster Length. Let 𝛽(𝑙) be the length of the encoding of a keepsake box with size

𝑙 , measured in slots. We prove the following bound on the expected cluster length E[|C|] (see
Appendix A):

Theorem 6.1. E[|C|] ≤ 𝛼𝛾 (ℓ)

(1−𝑒−𝛼/ℓ
)·(1−𝛼 )·(𝛾 (ℓ)−𝛼 ) , where 𝛾 (ℓ) =

ℓ
𝛽(ℓ)

.

Since 𝛼 ≤ 0.95 and 1 ≤ 𝛾 (ℓ) ≤ 1 + 𝑓 /𝑟 , the expected cluster size will be𝑂(ℓ). This further implies

that there is an 𝑂(1) number of keepsake boxes in the average cluster. In practice, we have found

ℓ to be close to one, implying that Memento filter will have a constant expected cluster length.

Theorem 6.1 further demostrates the excellent scalability of Memento filter with extreme dataset

skew. That is, when ℓ is small, 𝛾 (ℓ) will be close to one. Therefore, assuming 𝛼 = 0.95, we have

that E[|C|] ≤ 𝛼
(1−𝑒−𝛼 )·(1−𝛼 )2 ≈ 619.64, which matches a standard RSQF. However, as ℓ increases, 𝛾 (ℓ)

tends to 1 + 𝑓 /𝑟 , which is typically at least 2. In this case, E[|C|] ⪅ 2

1−𝛼 · ℓ , meaning that clusters

remain as small as possible. As an example, assuming 𝑓 = 𝑟 , 𝛼 = 0.95, and ℓ = 7, we have that

E[|C|] ⪅ 413.77, which improves upon an RSQF.

Performance. An insertion into Memento filter locates the target keepsake box and adds the

new key’s memento to it. In the worst case, this operation will read and shift the entire cluster

of the keepsake box. Since the expected cluster length is 𝑂(ℓ), an insertion also has an expected

running time of 𝑂(ℓ). A deletion follows an analogous procedure and thus has an 𝑂(ℓ) expected

execution time.
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A point query locates the appropriate keepsake box by skipping a constant number of keepsake

boxes in the cluster and searches for the target memento, requiring a total of 𝑂(log
2
ℓ) operations.

Range queries access either one or two keepsake boxes. The former case’s analysis is identical to

the case of point queries. In the latter case, both keepsake box lookups take 𝑂(1) operations, and

only the largest and smallest mementos are ever accessed for each, which requires 𝑂(1) time since

they are stored near the keepsake box’s fingerprint. Thus, the cost of a range query is 𝑂(log
2
ℓ).

Notice that each keepsake box lookup entails only a single random cache miss on average.

Probing a keepsake box is done using the already cached memory segments and incurs no further

cache misses. Since clusters and keepsake boxes are arranged sequentially, when a cluster becomes

too large to fit in a cache line, the resulting extraneous memory accesses and cache misses are all

sequential, thus taking full advantage of the hardware prefetcher.

In conclusion, on average, Memento filter will incur a single cache miss for insertions, deletions,

and point queries, while range queries are serviced with up to two random cache misses.

Memory Footprint. Each slot in Memento filter is 𝑓 +𝑟 bits long. With the FPR analysis in mind,

Memento filter can guarantee an FPR of 𝜖 with a fingerprint length of 𝑓 = 1 + log
2

1

𝜖
. Furthermore,

to support range queries of length 𝑅, 𝑟 must be at least log
2
𝑅 bits. Taking into account the metadata

overhead of the RSQF, a Memento filter with a load factor of 𝛼 will have a memory footprint of

1

𝛼
(3.125 + log

2

𝑅
𝜖
). In the case of an expandable Memento filter, since each slot is one bit wider to

accommodate the unary age counter, the memory footprint becomes
1

𝛼
(4.125 + log

2

𝑅
𝜖
).

7 EVALUATION
We compare Memento filter to existing range filters in a standalone setting in Section 7.1 In

Section 7.2, we provide experimental results from our integration of Memento filter withWiredTiger,

a B-tree based key-value store. We utilize Grafite’s benchmark template for our evaluations [15].

Platform. We use a Fedora 39 machine with a single Intel Xeon w7-2495X processor (4.8 GHz)

with 24 cores and 48 hyperthreads. It has 64 GBs of main memory, a 45 MB L3 cache, a 48 MB L2

cache, and a 1920 kB L1 cache. It also has two SK Hynix 512 GB PC611 M.2 2280 80mm SSDs, with

a sequential read/write performance of up to 3400/2700 MBps and random read/writes of up to

440K/440K IOps. These SSDs are used in the B-Tree experiments only.

7.1 Standalone Evaluation
Baselines.We conduct experiments over both static and dynamic data. In the static setting, we

compare Memento filter with SuRF [47], Rosetta [32], REncoder [22, 46], Proteus [29], SNARF [44],

Oasis+ [10], and Grafite [15]. We do not include bloomRF [36] as a baseline as it is closed-source.

In the dynamic setting, we only compare the expandable version of Memento filter with Rosetta,

REncoder, and SNARF, as other filters do not support incremental updates. We implement Memento

filter in C and use the open-source C/C++ implementations of the baselines. All filters are compiled

with gcc-13.
We employ the original key suffixes in the leaves of SuRF when considering range query work-

loads to allow for comparing query end-points at the leaves, and use hash suffixes when considering

point query workloads. We allow Rosetta and Proteus to auto-tune their memory allocation with a

query sample, showcasing their best performance. We tune Memento filter with a memento size 𝑟

based on the maximum query size in the workload.

Datasets. We conduct our experiments with the same synthetic and real-world datasets [28, 33]

used in previous range filter evaluations [15, 22, 29, 32, 36, 44, 46, 47]:

• Uniform: 200M 64-bit integers chosen uniformly at random.

• Normal: 200M 64-bit integers sampled from N (2
63, 0.1 · 263).
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Fig. 8. Most filters (SNARF, Oasis+, SuRF, Proteus, REncoder) exhibit worse FPRs as the workload becomes
increasingly correlated and are thus not robust. Some of these filters (SNARF, Proteus) also have varying
query times with different correlation degrees. Only Rosetta, Grafite, and Memento filter have a robust FPR
guarantee and at the same time, stable query costs.

• Books: Amazon booksale popularity for 200M books.

• OSM: 200M location coordinates from the Open Street Map.

Static Workloads. Following existing works [15, 22, 29, 32, 36, 44, 46, 47], we create a set of

10M range queries of the form [𝑥, 𝑥 + 𝑅 − 1], where 𝑥 is a key from the key universe and 𝑅 is the

range query length. We run separate workloads with point queries (𝑅 = 1), short range queries

(𝑅 = 2
5
= 32) and long range queries (𝑅 = 2

10
= 1024). We choose the starting point 𝑥 of the queries

in one of three ways:

• Uncorrelated: 𝑥 is chosen uniformly at random.

• Correlated: 𝑥 is chosen by first considering a randomly chosen key 𝑘 from the dataset, and

sampling from the range [𝑘, 𝑘 + 2
30·(1−𝐷)

], where 𝐷 is the correlation degree of the workload.

By default, we set 𝐷 = 0.8.

• Real: 𝑥 is sampled and removed from the underlying dataset.

In all these workloads, we only consider empty query ranges, allowing us to measure the FPR as

the ratio of positive results to the query batch size. We also provide a separate experiment detailing

filter throughput for positive queries. We only consider the filter query times in our standalone

experiments and not the time required to access a slower storage medium.

Experiment 1: Robustness to Correlated Workloads. We evaluate the robustness of the

range filters by using the static Uniform dataset and a Correlated query workload with a varying

correlation degree from 0 to 1. All filters are assigned a memory budget of 20 bits per key. The

first row of Fig. 8 shows that only Rosetta, Grafite, and Memento filter are unaffected by workload

correlation and are thus robust. Both Memento filter and Grafite have better FPRs than Rosetta

by up to two orders of magnitude. As shown, Memento filter approximately matches the FPR of

Grafite. All other filters exhibit increasing FPRs with more correlation.

Notice that, when considering point queries, SuRF’s FPR actually decreases with higher correla-

tion degrees. This is due to SuRF comparing key hashes in this case, which provides much better

filtering when the workload is heavily correlated.

The second row of Fig. 8 shows that Grafite and Memento filter are the most efficient range filters

in terms of query speed, improving upon all other filters by a factor of at least 4×. Memento filter
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Competitor Avg. Query Time [ns]
(vs. Memento)

Memento 176 (1.0×)
Grafite 147 (0.84×)
SuRF 477 (2.71×)
Oasis+ 748 (4.25×)
SNARF 760 (4.32×)
REncoder 1461 (8.3×)
Rosetta 12106 (68.78×)
Proteus 14896 (84.64×)
Memento 160 (1.0×)
Proteus 115 (0.72×)
Grafite 130 (0.81×)
SuRF 241 (1.51×)
Oasis+ 649 (4.06×)
SNARF 1028 (6.42×)
REncoder 1459 (9.12×)
Rosetta 12068 (75.42×)
Memento 240 (1.0×)
Grafite 128 (0.53×)
Proteus 141 (0.59×)
SuRF 292 (1.22×)
Oasis+ 731 (3.05×)
SNARF 1078 (4.49×)
REncoder 1208 (5.03×)
Rosetta 11855 (49.4×)
Memento 157 (1.0×)
Grafite 129 (0.82×)
Proteus 153 (0.97×)
SuRF 345 (2.2×)
Oasis+ 817 (5.2×)

REncoder 1440 (9.17×)
SNARF 1620 (10.32×)
Rosetta 12036 (76.66×)

Fig. 9. Memento filter and Grafite provide the best filtering in the case of correlated workloads, the best
point filtering in general, and the fastest overall query speed. Even though Memento filter and Grafite are
competitive with the state of the art on real workloads, they provide less filtering compared to their heuristic
counterparts when considering an uncorrelated workload due to the strong filtering guarantees they provide.

provides faster point queries than Grafite by 20%, while closely matching Grafite’s performance in

servicing range queries.

We have included evaluation results for a vanilla RSQF with the same memory footprint in

the point query column of Fig. 8. As shown, Memento filter achieves an FPR competitive with a

standard RSQF while adding negligible overhead to queries.

Experiment 2: FPR vs. Memory Tradeoff. Fig. 9 shows an FPR comparison of all range

filters on synthetic and real-world data. In the synthetic case, we consider the Uniform dataset

and execute both Correlated and Uncorrelated workloads. For the real workloads, we use the

Books and OSM datasets, along with Real query workloads. Each row of Fig. 9 provides experiment

results for a single dataset and workload with varying range sizes, as well as query speed statistics

averaged over all range query sizes.

We only provide partial graphs for Memento filter when considering long range queries, since

Memento filter requires at least 12 bits to store metadata and a large enough memento in this

case. Notice that all other robust range filters exhibit an FPR of 1 below this space threshold, only

wasting memory.
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Fig. 10. Grafite and Memento filter provide the best and most stable performance when non-empty queries
are involved.

As established before, Grafite and Memento filter have the best FPR when the workload is

correlated. Memento filter is competitive with Grafite with only a 1.5× gap in FPR and provides up

to 5 orders of magnitude better FPR than Rosetta. Furthermore, Memento filter and Grafite provide

the best point filtering across all datasets. However, as the range sizes increase in non-correlated

workloads, robust range filters provide less filtering than their heuristic competitors due to their

strong FPR guarantees.

In terms of query speed, Grafite and Memento filter provide the best overall performance.

Memento filter is slightly slower than Grafite but provides dynamic insertions and deletions in

exchange. Even though Proteus is faster than Memento filter and Grafite in the last three rows of

Fig. 9, it does not guarantee a robust FPR and is slower when considering correlated workloads.

Experiment 3: Non-Empty Query Performance. Although filters are typically used to reduce

slower media accesses, such as network calls and disk reads, they must minimize their added

CPU overhead for non-empty queries as well. We thus benchmark filters throughputs on non-

empty queries in Fig. 10 by using the Uniform dataset and creating query ranges of the form

[𝑥, 𝑥 + 𝑅 − 1], where 𝑥 is sampled from [𝑘 − 𝐿 + 1, 𝑘] for a randomly chosen key 𝑘 in the dataset.

We also experimented with the Normal and Real datasets, but omit their results as the best filters

and their performance remains the same. The results show that Grafite and Memento filter are the

fastest to process positive range queries and provide stable performance with varying memory

budgets. Memento filter matches Grafite’s performance in processing range queries and has faster

point queries by up to 38%.

Experiment 4: Construction Time. Fig. 11 compares the construction times of all range filters

with varying dataset sizes. Since the choice of dataset does not influence the construction times

of the filters, we use the Uniform dataset. We report construction time averages over various

memory budgets. The light colors of Fig. 11 used for Rosetta and Proteus indicate the impact of

their tuning processes, evaluated with an Uncorrelated query workload with
𝑁
10

queries, where

𝑁 is the number of keys in the dataset.

Memento filter achieves the best construction time in almost all cases, beating its closest com-

petitor by 20%. Memento filter’s bulk loading algorithm can be further optimized by using a

multi-threaded sorting algorithm to sort the key hashes. Moreover, since Memento filter is a dy-

namic filter, it can also be constructed by streaming the keys. Therefore, Memento filter can be

constructed in a single pass of the data without the need for sorting, providing significant speedup

when the dataset is too large to fit in memory.

Experiment 5: Memento Size Choice. Accurately estimating the maximum range query length

𝑅 is integral to Memento filter’s performance, as the memento size 𝑟 is chosen to be ⌈log
2
𝑅⌉. In

practice, however, users may err in estimating 𝑅 and thus in setting 𝑟 . Fig. 12 shows how Memento

filter’s FPR and query speed vary for different memento size configurations under a memory budget

of 20 bits per key. Here, longer mementos imply shorter fingerprints and vice-versa. We consider
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various datasets and issue queries from a correlated workload (𝐷 = 0.8). We also experimented with

uncorrelated workloads but have omitted the results, as they are at least as good as the correlated

case. The first column considers point queries, while the second column showcases short range

queries with 𝑅 = 32. Thus, the optimal memento length 𝑟 ∗ in the first column is 𝑟 ∗ = 1, while for

the second column it is 𝑟 ∗ = 5.

Fig. 12 shows that Memento filter’s FPR does not deviate from the optimal as long as 𝑟 ≤ 𝑟 ∗.
However, its query time worsens by a factor of 2

𝑟 ∗−𝑟
due to the extra lookups, which is proportional

to the user’s estimation error of 𝑅. In contrast, if 𝑟 > 𝑟 ∗, Memento filter may exhibit a higher FPR

depending on the dataset. The reason is that the robust filtering provided by the fingerprints is

replaced with the non-robust filtering provided by the mementos. Fig. 12 shows that the FPR does

not worsen indefinitely and saturates at a dataset-dependent value. Furthermore, Memento filter

maintains its optimal query speed, except for point queries, where it incurs a slight slowdown due

to the extra memento comparisons.

We advise practitioners to estimate a lower bound of 𝑅 as close as possible to the actual value,

preserving the excellent FPR guarantee of Memento filter in exchange for slightly slower queries.

As filters typically use 1-3 bytes per key in practice, one cannot construct a robust range filter for

large 𝑅 due to the information-theoretic lower bound. For moderate 𝑅, having one-byte fingerprints

and one to two-byte mementos is common.

Dynamic Workloads.We consider the Uniform dataset and construct the filter on a random

1

64
fraction of the data. We then insert keys into the filter one by one until an Expansion occurs, i.e.,
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the digested data size doubles. We continue this process until the entire dataset is inserted into the

filter. After each expansion, we measure performance statistics by running 10M queries from both

Uncorrelated and Correlated workloads.

Experiment 6: Expanding Datasets. We compare Memento filter with Rosetta, REncoder,

and SNARF (the only other filters supporting incremental insertions) in a dynamic setting. Fig. 13

plots the FPR and insertion times of these filters across expansions. All filters are constrained to a

memory budget of 20 bits per key.

Even though the filters have a similar initial FPR, only Memento filter maintains its FPR guarantee

across expansions. It also maintains its excellent insertion speed. Rosetta and REncoder provide no

filtering after just three expansions, while SNARF fails to accommodate new insertions efficiently.

We do not plot all of SNARF’s performance metrics, as it takes over 5 hours to expand after the

third expansion. Even though SNARF still provides better filtering than Memento filter in the face

of long and mixed Uncorrelated range queries, it is worse in all cases as soon as the workload

becomes slightly correlated (even with a correlation degree of 0.2).

Memento filter provides better insertion times than Rosetta but is slower than REncoder. More-

over, its insertion throughput is decreasing slightly. This is due to Memento filter expanding when

the dataset size doubles, causing a smaller fraction of the filter to fit in the higher levels of cache in

exchange for maintaining its FPR.

It is worth noting that only Memento filter is compatible with InfiniFilter’s techniques, as it is

a tabular filter. All other range filters utilize bitmaps and Bloom filters in their structures, which

makes them unable to expand without rescanning the data from storage.

7.2 B-Tree Evaluation
B-Trees [12, 41] are the de facto standard for file organization and indexing tasks. These structures

are search trees that minimize data movement – the main bottleneck of database systems. Similarly

to a binary search tree, the internal nodes of a B-Tree partition the search space of the key set

into 𝐵 partitions, where 𝐵 is dictated by the data movement granule the system offers and the key

size. The leaves of the tree contain the entries themselves in sorted order. As entries are added and

removed from the tree, it rebalances to maintain robust performance.

Databases use this data structure to achieve efficient random access to keys. They can also scan

specific ranges of the entries, as the tree is order-preserving. B-Trees are further optimized using

Buffer Pools, which cache frequently accessed nodes in main memory to reduce data movement and

access latency [20].

B-Trees are ubiquitous in many industrial applications. For example, MongoDB [34], a popular

document database, uses a B-Tree-based key-value store called WiredTiger [35] as its backend.

However, B-Trees are often subject to workloads with many empty short range queries, comprising

up to 50% of their queries. This is observed in several database applications, such as social graph

analytics [4, 8]. Thus, B-Trees are a prime example of an application that can significantly benefit

from a dynamic range filter.

Due to WiredTiger’s widespread industrial use, we integrate the expandable version of Memento

filter with it. We create a single instance of our filter, which is constructed over the entire data. To

the best of our knowledge, we are the first to integrate a range filter with a B-Tree, a feat previously

impossible due to the dynamicity of B-Trees which necessitates a dynamic/expandable range filter.

Datasets. We conduct our evaluation with subsets of size 100M from the Uniform, Normal,

and Books datasets. In all cases, we store randomly generated 504-byte values in the B-Tree to

make for 512-byte key-value pairs.

Workloads.We employ a workload similar to the dynamic workload described in Section 7.1,

but initialize the system on a random
1

8
fraction of the dataset considered. To measure performance
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Fig. 14. Memento filter significantly improves the query throughput of WiredTiger when empty queries are
present while maintaining the same insertion performance.

statistics, we run 10M mixed range queries of length 1 ≤ 𝑅 ≤ 32, where the left end-point is

sampled from the same distribution of the keys, i.e., Uniform, Normal, and Real. We vary the

percentage of non-empty queries in the workload to provide a clear overall picture of the system’s

performance in different scenarios.

Baselines. Since Memento filter is the only dynamic and expandable range filter, we only

compare it with a standard instance of WiredTiger. This instance will use all of its allocated main

memory for a buffer pool, allowing it to cache many of the B-Tree’s nodes. When integrating

the expandable version of Memento filter, we reallocate some of the buffer pool’s memory for a

Memento filter with a memory budget of 15 bits per key to draw a fair comparison. We allocate a

total memory budget equivalent to 2% of the current dataset size to both instances.

Experiment 7: B-Tree Performance. The results of Fig. 14 show that WiredTiger benefits

immensely from Memento filter at all data sizes, achieving faster query processing by 1.9× when

50% of the queries are empty. Note that we only show one plot, as all datasets have similar results.

WiredTiger also maintains its query throughput when all queries are non-empty. Furthermore,

Memento filter does not significantly affect the insertion times of WiredTiger in both workloads,

incurring a minor overhead of ≈ 2.5%. Thus, trading off buffer pool memory for a Memento filter in

workloads with many empty queries may significantly improve the system’s overall performance.

8 CONCLUSION
We introduced Memento filter, the first dynamic range filter with fast operations and a robust false

positive rate guarantee. By encoding keepsake boxes in an RSQF, Memento filter achieved FPRs

and performance on par with the state of the art. It further achieved expandability by employing

variable-length fingerprints. We argued that Memento filter is the only practical dynamic range

filter, and solidified our claim by integrating it with WiredTiger, showing that it significantly boosts

range query performance while not hindering insertions. Further exploring the tradeoffs of using

Memento filter in a fully functional system, the tradeoffs of partitioning it into smaller filters,

and its cacheability are intriguing directions for future work. Additionally, exploring other design

choices, such as adaptively partitioning the key universe, will be fruitful.
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A EXPECTED CLUSTER SIZE
Proof. Consider a randomly chosen cluster C starting in Slot 𝑝 . We inductively define two series

of random variables 𝑋𝑖 and 𝑌𝑖 based on C as follows:

• 𝑋1 represents the number of partitions in the key universe mapping to Slot 𝑝 .

• 𝑌1 represents the number of keys in the partitions considered in 𝑋1.

• 𝑋𝑖 represents the number of partitions in the key universe mapping to any of the slots in

the range [𝑝 +

∑𝑖−1
𝑗=1 𝑍 𝑗 , 𝑝 − 1 +

∑𝑖
𝑗=1 𝑍 𝑗 ], where 𝑍 𝑗 is the number of slots filled by the keys

considered in 𝑌𝑗 . Since 𝑍 𝑗 ≤ 𝑌𝑗 in Memento filter due to the keepsake box encoding scheme,

one can simplify the definition of 𝑋𝑖 by instead considering partitions mapping to the range

[𝑝 +

∑𝑖−1
𝑗=1 𝑌𝑗 , 𝑝 − 1 +

∑𝑖
𝑗=1 𝑌𝑗 ] containing more slots, slightly overestimating 𝑋𝑖 .

• 𝑌𝑖 represents the number of keys in the partitions considered in 𝑋𝑖 .

Observe that E[|C|] ≤ E[∑𝑁 /ℓ
𝑖=1

𝑍𝑖] ≤ E[
∑𝑁 /ℓ

𝑖=1
𝑌𝑖] =

∑𝑁 /ℓ
𝑖=1
E[𝑌𝑖]. We thus bound the E[𝑌𝑖]s to bound

E[|C|]. First notice that

E[𝑌𝑖] = E[E[𝑌𝑖 |𝑋1, . . . , 𝑋𝑖 , 𝑌1, . . . , 𝑌𝑖−1]] = E

[
𝑁 −∑𝑖−1

𝑗=1 𝑌𝑗

𝑁 /ℓ −∑𝑖−1
𝑗=1 𝑋 𝑗

· 𝑋𝑖−1

]
(1)

since all partitions in 𝑋𝑖 map to the desired range equi-probably and their expected total number

of keys E[𝑌𝑖] equals their average size times the number of partitions 𝑋𝑖 . Applying the Poisson

approximation to the balls and bins problem with partitions as balls and slots as bins, we get

E[𝑋𝑖 |𝑋1, . . . , 𝑋𝑖−1, 𝑌1, . . . , 𝑌𝑖−1] =
𝑁 /ℓ −∑𝑖−1

𝑗=1 𝑋 𝑗

𝑛 −∑𝑖−1
𝑗=1 𝑍 𝑗

· 𝑌𝑖−1 ≤
𝑁 /ℓ −∑𝑖−1

𝑗=1 𝑌𝑗

𝑛 −∑𝑖−1
𝑗=1 𝑌𝑗

· 𝑌𝑖−1 . (2)

Putting equations 1 and 2 together, we conclude that

E[𝑌𝑖] ≤ E
[
E

[
𝑁 −∑𝑖−1

𝑗=1 𝑌𝑗

𝑁 /ℓ −∑𝑖−1
𝑗=1 𝑋 𝑗

· 𝑋𝑖 |𝑋1, . . . , 𝑋𝑖−1, 𝑌1, . . . , 𝑌𝑖−2

] ]
≤ E

[
𝑁 −∑𝑖−1

𝑗=1 𝑌𝑗

𝑁 /ℓ −∑𝑖−1
𝑗=1 𝑋 𝑗

·
𝑁 /ℓ −∑𝑖−1

𝑗=1 𝑋 𝑗

𝑛 −∑𝑖−1
𝑗=1 𝑌𝑗

· 𝑌𝑖−1

]
≤ E

[
𝑁 −∑𝑖−1

𝑗=1 𝑌𝑗

𝑛 −∑𝑖−1
𝑗=1 𝑌𝑗

· 𝑌𝑖−1

]
≤ E

[
𝑁

𝑛
· 𝑌𝑖−1

]
= 𝛼 · E[𝑌𝑖−1],

further implying E[𝑌𝑖] ≤ 𝛼𝑖−1 · E[𝑌1]. Moreover, since E[𝑌1] = E[
𝑁
𝑁 /ℓ

·𝑋1] = ℓ · E[𝑋1], we have that

E[𝑌𝑖] ≤ 𝛼𝑖−1 · ℓ · E[𝑋1]. Letting the random variable𝑊 denote the number of partitions mapped to

Slot 𝑝 and denoting by 𝐹 the event where Slot 𝑝 is the first slot in a cluster, we bound E[𝑋1] as

E[𝑋1] =

𝑁 /ℓ∑︁
𝑖=1

𝑖 · Pr(𝑊 = 𝑖 |𝐹 ) =
𝑁 /ℓ∑︁
𝑖=1

𝑖 · Pr(𝐹 |𝑊 = 𝑖) · Pr(𝑊 = 𝑖)

Pr(𝐹 )
≤

𝑁 /ℓ∑︁
𝑖=1

𝑖 · Pr(𝑊 = 𝑖)

Pr(𝐹 )

≤ 𝛼

ℓ · Pr(𝐹 ) ≤
𝛼

ℓ · Pr(Slot 𝑝 − 1 empty ∧𝑊 > 0)

≤ 𝛼

ℓ · (1 −
∑

𝑖 𝑍𝑖

𝑛
) · (1 − 𝑒−𝛼/ℓ )

≤ 𝛼

ℓ · (1 − 𝑁 ·𝛽(ℓ)
𝑛 ·ℓ ) · (1 − 𝑒−𝛼/ℓ )

=

𝛼 · 𝛾 (ℓ)
ℓ · (𝛾 (ℓ) − 𝛼) · (1 − 𝑒−𝛼/ℓ )

.

The last inequality uses Jensen’s inequality in conjunction with the concavity of 𝛽(·). Putting
everything together results in E[|C|] ≤ ∑𝑁

𝑖=1 E[𝑌𝑖] ≤ E[𝑋1] ·ℓ ·
∑∞

𝑖=1 𝛼
𝑖−1

=
𝛼 ·𝛾 (ℓ)

(1−𝑒−𝛼/ℓ
)·(𝛾 (ℓ)−𝛼 )·(1−𝛼 ) . □
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