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Wasserstein distributionally robust optimization (DRO) aims to find robust and generalizable solutions by hedging
against data perturbations in Wasserstein distance. Despite its recent empirical success in operations research
and machine learning, existing performance guarantees for generic loss functions are either overly conservative
due to the curse of dimensionality, or plausible only in large sample asymptotics. In this paper, we develop a
non-asymptotic framework for analyzing the out-of-sample performance for Wasserstein robust learning and the
generalization bound for its related Lipschitz and gradient regularization problems. To the best of our knowledge,
this gives the first finite-sample guarantee for generic Wasserstein DRO problems without su�ering from the curse
of dimensionality. Our results highlight that Wasserstein DRO, with a properly chosen radius, balances between the
empirical mean of the loss and the variation of the loss, measured by the Lipschitz norm or the gradient norm of the
loss. Our analysis is based on two novel methodological developments that are of independent interest: �) a new
concentration inequality controlling the decay rate of large deviation probabilities by the variation of the loss and,
�) a localized Rademacher complexity theory based on the variation of the loss.

Key words: Distributionally robust optimization, Wasserstein metric, variation regularization, generalization bound,
transportation-information inequality

�. Introduction

Distributionally robust optimization (DRO) is an emerging paradigm for statistical learning and
decision-making under uncertainty. It aims to provide robust and generalizable solutions by hedging
against a set of distributions in the minimax sense. Di�erent choices of distributional uncertainty set
have been investigated thoroughly [��, ���, ��, ��, ��, ��, ��, ��, ��, �, ��, ��, �, ��, ��, ���]. In this
paper, we focus on Wasserstein DRO [��, ��, ���, ��, ��, ��, ��]

inf
\ 2⇥

sup
P:W? (P,P=)d=

EI⇠P [ 5\ (I)],

which finds a solution \ from a space ⇥ so as to minimize the Wasserstein robust loss, defined as the
worst-case expectation of the loss function 5\ among a ball of distributions whose ?-Wasserstein distance
W? to the empirical distribution P= of sample size = is at most d= > 0. Due to its ability to hedge against
data perturbations in high dimensions [��, ��] and its regularization e�ect [��, ��, ��, ��, ��, �],
Wasserstein DRO has recently been studied in many areas in machine learning [��, ��, ��, ��, ��, ��,
��, ��, ��, ��, ��, �, ��, ��]; as well as other fields, such as automatic control [���, ��, ���, ��], finance
[��], energy systems [��, ��, ��], statistics [��, ��, ��, ��, ��, ��], transportation [��]. We refer to [��]
for a recent survey.
Among Wasserstein distances of di�erent orders, ? = 1,2 are of particular interest both practically

and theoretically. �-Wasserstein DRO is useful when the loss function is bounded or has linear growth,
and often leads to linear programming reformulation when �-norm or 1-norm is used [��, ��, ��].
�-Wasserstein DRO applies to a larger class of loss functions such as quadratic loss [��, ��, ��]. E�cient
gradient-descent algorithms have been developed by virtue of the convex quadratic subproblem
associated with �-Wasserstein DRO [��, ��, ��, ��]. Moreover, Lipschitz regularization and data-
dependent gradient regularization deep learning problems are closely related to �-Wasserstein DRO
and �-Wasserstein DRO, respectively.

�
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Like many other (distributionally) robust optimization frameworks or regularization methods,
obtaining a Wasserstein robust solution with good performance guarantees requires a proper hyperpa-
rameter tuning, namely, the selection of the radius of the Wasserstein ball d=. On the one hand, the
radius d= cannot be too small since otherwise, the problem behaves like empirical risk minimization
or sample average approximation, thus losing the purpose of robustification. On the other hand, the
radius d= cannot be so large that the solution might be overly conservative, which is one of the major
criticism faced by traditional robust optimization. Practically, radius selection is often achieved via cross
validation. From a statistical point of view, it is crucial to understand what is the correct scaling of the
hyperparameter d= with respect to the sample size = so as to ensure the robustness and generalization
of the solution without sacrificing much out-of-sample performance.

Despite promising applications of Wasserstein DRO, its theoretical performance guarantee is limited.
Esfahani and Kuhn [��] provides the first out-of-sample performance guarantee for Wasserstein
DRO. Using the concentration of empirical Wasserstein distance [��], they show that if the radius is
chosen in the order of =�1/max(2,3) , where 3 is the dimension of the random data I, the underlying
data-generating distribution Ptrue is contained in the Wasserstein ball with high probability. Thereby
the Wasserstein robust loss of every feasible solution (and in particular the optimal solution) would
be an upper bound of its true loss. This provides a finite-sample non-asymptotic guarantee for the
Wasserstein robust solution, but unfortunately, such a bound su�ers from the curse of dimensionality
since the radius shrinks too slow even for problems in moderate dimensions.
To resolve the curse of dimensionality, a series of work by Blanchet et al. [��, ��, ��] consider an

approach inspired from the empirical likelihood [��, ��]. Their principle is finding the smallest radius
d= such that with high probability, the Wasserstein ball contains at least one distribution P – not
necessarily equal to the true data-generating distribution Ptrue – for which there exists an optimal
solution to min\ EP [ 5\ ] that is also optimal to the underlying true problem min\ EPtrue [ 5\ ]. Such
choice leads to a confidence region of the optimal solution. Through an asymptotic analysis, they show
that the radius d= can be chosen in the square-root order 1/p= for fixed dimension of the random
variableπ. This gives the first radius selection rule that does not su�er from the curse of dimensionality.
However, one potential issue with this result is that the bound is valid only in the asymptotic sense,
namely, as the sample size = goes to infinity while fixing the dimension of the random variable. Ideally,
we would like to have a performance guarantee for any finite sample size and dimension, especially
for high-dimensional problems and for robust optimization where the sample size is comparatively not
large.

For certain special classes of stochastic optimization problems, the non-asymptotic 1/p=-rate has been
developed. For �-Wasserstein DRO with certain linear structure, such as linear regression/classification
and their kernelization, Shafieezadeh-Abadeh et al. [��] shows that the radius can be chosen as
$̃ (1/p=) to achieve a finite-sample performance guarantee uniformly for all feasible solutions (we use
$̃ to suppress the logarithmic dependence). Chen and Paschalidis [��] derives generalization bounds
for certain class of �-Wasserstein DRO problems that are equivalent to norm regularization. Xie et al.
[���] provides performance guarantees for stochastic bottleneck problems by relating them to sample
average approximations.
Yet, it remains largely unknown whether the non-asymptotic 1/p=-rate holds for general loss

functions. In this paper, we provide an a�rmative answer to this open question under reasonable
assumptions. Informally, our main result states the following performance guarantees for Wasserstein
DRO.
T������ (I�������). Let ? 2 [1,2]. Set d= = $̃ (1/p=). Under appropriate conditions, with high
probability, simultaneously for all \ 2⇥,

EI⇠Ptrue [ 5\ (I)]  sup
P:W? (P,P=)d=

EI⇠P [ 5\ (I)] + n=,

π In Blanchet et al. [��, Section �.�], a result for high-dimensional LASSO problem is derived.
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where n= is a $̃ (1/=) higher-order term.

The constants hidden in the big-O notation are made explicitly in our formal results and are shown
to have a mild dependence on the dimension of the random variable for a variety of applications.
This theorem shows that under the canonical root-= radius, up to a high-order residual, the true loss
is upper bounded by the Wasserstein robust loss uniformly for all \ and particularly for the robust
optimal solution \rob:

EI⇠Ptrue [ 5\rob (I)]  sup
P:W? (P,P=)d=

EI⇠P [ 5\rob (I)] + n= =min
\ 2⇥

sup
P:W? (P,P=)d=

EI⇠P [ 5\ (I)] + n=.

When 5\ is the loss function of a supervised learning problem, the left-hand side represents the
generalization error of the Wasserstein robust solution, and the right-hand side of the inequality above
indicates that the optimal value of the Wasserstein robust loss minimization provides an generalization
bound up to a high-order residual.
Recall the regularization e�ect of Wasserstein DRO [��, ��, ��]

sup
P:W? (P,P=)d=

EI⇠P [ 5\ (I)] = EI⇠P= [ 5\ (I)] + d= ·V ( 5\ ) + $̃ ? (1/=), 8\ 2⇥,

where V (·) represents the variation of the loss, measured by the Lipschitz norm k 5\ kLip when ? = 1 or
the gradient norm EI⇠P= [krI 5\ (I)k2]1/2 when ? = 2 (we use $ ? for the big O in probability notation).
Together with this result, our theorem highlights a principled bias-variation trade-o� by properly
choosing the radius for Wasserstein DRO, which balances between the empirical loss EP= [ 5\rob] and
the variation of the loss V ( 5\rob) which controls the generalization gap:

EI⇠Ptrue [ 5\rob (I)] �EI⇠P= [ 5\rob (I)] 
d0p
=

·V ( 5\rob) + $̃ ? (1/=).

Thus, the robust optimal solution \rob achieves nice generalization capability by biasing towards a
solution with small variation.
Variation-based regularization has become increasingly popular for many deep learning problems

recently. For example, Lipschitz regularization and gradient regularization have shown superior
empirical performance for adversarial learning and reinforcement learning [��, ��, ��, ��, ��, ��, ��, ��,
��, ��, ��, ��, ��, ��, ���]. Our results also provide statistical guarantees for Lipschitz regularization
and gradient regularization.

Below, we briefly describe two methodological advancements that lead to our results. In our analysis,
the main object of study is the Wasserstein regularizer:

RQ,? (d; 5\ ) = sup
P:W? (P,Q)d

EI⇠P [ 5\ (I)] �EI⇠Q [ 5\ (I)],

that is, the di�erence between the Wasserstein robust loss and the nominal loss under some distribution
Q such as P= or Ptrue.
First, in Section �, leveraging tools from transportation-information inequalities (see, e.g., [��])

in modern probability theory, we derive a new large-deviation type concentration inequality for the
empirical loss (Theorem �). It shows that under proper conditions on the underlying data-generating
distribution Ptrue, the decay rate of the tail probability is upper bounded by the inverse of Wasserstein
regularizer R�1

Ptrue,?
(·; 5\ ) as well as the variation of the loss V ( 5\ ). This result shows that the variation

of the loss has a direct control on the deviation of the empirical loss from the ground truth. This is
an analog of variance-based control often resulting from Chebyshev’s or Bernstein’s concentration
inequalities.
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Second, to extend the concentration result above from a single loss function to a family of loss
functions, we develop two sets of results in Sections �.� and �.� respectively, one based on covering
number arguments, and the other adapts tools from localized Rademacher complexity theory (see,
e.g., [�, ��]). For the latter, we consider subsets of function classes whose variations are controlled, as
opposed to usual approaches based on the mean or variance of the loss. These results are demonstrated
in Section � using various examples, including feature-based newsvendor, linear prediction, portfolio
optimization, Lipschitz regularization for kernel classes, and gradient regularization for neural
networks.
Overall, we develop a non-asymptotic statistical analysis framework for Wasserstein DRO and its

associated variation regularization, and demonstrate the bias-variation trade-o� in Wasserstein robust
learning when the radius is properly chosen. This can be served as a counterpart of the well-known
bias-variance trade-o� theory in machine learning.

Related Work

The generalization bounds for robust optimization dates back to Xu and Mannor [���], which
studies generalization of learning algorithms from the viewpoint of robustness. In the introduction,
we have elaborated on the literature that provide performance guarantees for Wasserstein DRO
[��, ��, ��, ��, ��, ��, ���] and discuss their scopes and limitations. In addition to these literature,
motivated by distribution shift in domain adaptation and adversarial learning, Lee and Raginsky
[��], Sinha et al. [��], Najafi et al. [��] develop generalization bounds for Wasserstein DRO where
the radius is fixed, not varying with the sample size. For divergence DRO and the related variance
regularization, Lam [��] studies the calibration of the radius of divergence ball that recovers the
best statistical guarantee. Asymptotics and non-asymptotics of divergence DRO and its bias-variance
trade-o� are investigated in [��, ��]. Besides DRO, Wasserstein distance and transportation-information
inequality are also exploited to improve information-theoretic generalization bounds for learning
algorithms [���, ��, ��, ��, ��].

The rest of the paper proceeds as follows. In Section �, we briefly review some results in Wasserstein
DRO and its variation regularization e�ect. We develop a new variation-based concentration inequality
in Section �. Based on these two sections, we derive generalization bounds for variation regularization
and the finite-sample guarantees for Wasserstein DRO in Section �. Applications of these results are in
Section �. We conclude the paper in Section �. All proofs are deferred to the Appendices.

�. Wasserstein DRO and Variation Regularization

In this section, we introduce notations and provide some background on Wasserstein DRO and its
variation regularization e�ect.

Notation. Let Z be a Banach space equipped with some norm k·k and let k·k⇤ be its dual norm.
Define the diameter of Z as diam(Z) := sup

Ĩ,I2Z k Ĩ � Ik. Let ? 2 [1,1) and denote by @ its Hölder
conjugate number, i.e., 1

?
+ 1
@
= 1. We denote by P? (Z) the set of Borel probability measures on Z with

finite ?-th moment, namely, Q 2 P? (Z) if and only if its expectation EI⇠Q [kIk ?] <1. Whenever it is
clear from the context, we will write EI⇠P as EP and omit the random variable inside the expectation.
The support of a distribution is denoted by suppQ. The L

? (Q)-norm of a Q-measurable function ⌘
is denoted by k⌘kQ,? = EI⇠Q [|⌘(I) |?]1/?. The sup-norm of a function ⌘ is denoted by k⌘k1, and the
Lipschitz norm of a Lipschitz continuous function ⌘ is denoted by k⌘kLip. We denote 0 _ 1 =max(0, 1)
and 0 ^ 1 =min(0, 1). For the expectation operator EI⇠Q [·], we often write it as EQ [·] provided that
the involved random variable is clear from the context.
The Wasserstein distance of order ? between distributions P,Q 2 P? (Z) is defined via

W? (P,Q) ? := inf
c2P? (Z2)

�
E( Ĩ,I)⇠c [k Ĩ � Ik ?] : c has marginal distributions P,Q

 
.
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We denote by F := { 5\ : \ 2 ⇥} the class of loss functions. To ease notations, we often suppress the
subscript \ and use 5 to represent a generic loss function from F . Given a nominal distribution
Q 2 P? (Z) and a radius d � 0, Wasserstein DRO problem is given by

inf
5 2F

sup
P2P? (Z)

�
EI⇠P [ 5 (I)] : W? (P,Q)  d

 
.

Suppose there exists " , ! � 0 such that 5 (I)  " + !kIk ? for all I 2Z, then the inner maximization
problem above has a dual problem that always has a minimizer [��]:

min
_�0

n
_d

? +EI⇠Q
h
sup
Ĩ2Z

{ 5 ( Ĩ) �_k Ĩ � Ik ?}
io
. (�)

In a data-driven problem, the nominal distribution is often chosen as the empirical distribution
P= = 1

=

P
=

8=1 �I=8 constructed from = i.i.d. samples {I=
8
}=
8=1 from the underlying true distribution Ptrue,

where �I denotes the Dirac point mass on I. We use P⌦ or E⌦ to indicate that the probability
or expectation is evaluated with respect to the sampling distribution, namely the =-fold product
distribution ⌦=

8=1Ptrue over Z=.
We define the Wasserstein regularizer as the di�erence between the Wasserstein robust loss and the

nominal loss:
RQ,? (d; 5 ) := sup

P2P? (Z)

�
EP [ 5 ] : W? (P,Q)  d

 
�EQ [ 5 ] .

The connection between Wasserstein DRO and regularization has been established under various
settings [��, ��, ��, ��, ��, ��, �]. The next two results adapted from Gao et al. [��] (see also Bartl
et al. [�]) establish connections between the Wasserstein regularizer RQ,? and Lipschitz regularization
(? = 1) and gradient regularization (? = 2) respectively. For completeness we provide their proofs in
Appendix A.
A��������� �. Assume the following holds:
(I) There exists W1 > 0 such that for every 5 2F ,

5 ( Ĩ) � 5 (I)  W1k Ĩ � Ik, 8I, Ĩ 2Z .

(II) Suppose diam(Z) := sup
Ĩ,I2Z k Ĩ � Ik =1, and for every 5 2F , there exists I0 2Z such that

limsup
kI�I0 k!1

5 (I) � 5 (I0)
kI � I0k

= k 5 kLip.

Assumption (I) means that every 5 is Lipschitz continuous, and (II) means that the Lipschitz norm is
attained at infinity.
L���� � (Lipschitz regularization). Let Q 2 P1(Z) and d � 0. Assume Assumption �(I) holds, then

RQ,1(d; 5 )  d · k 5 kLip.

Assume, in addition, Assumption �(II) holds. Then

RQ,1(d; 5 ) = d · k 5 kLip.

A��������� �. Assume every 5 2F is di�erentiable and there exist \ > 0 such that

kr 5 ( Ĩ) �r 5 (I)k⇤  \k Ĩ � Ik, 8Ĩ, I 2Z , 8 5 2F .

This is a smoothness condition which requires that every 5 has Lipschitz gradient.
L���� � (Gradient regularization). Let Q 2 P2(Z) and d � 0. Assume Assumption � holds. Then��RQ,2(d; 5 ) � d · k kr 5 k⇤ kQ,2

��  \d2.
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�. Variation-based Concentration Inequality

In this section, we derive a large-deviation type concentration inequality for the empirical mean of a
single loss function. We derive an equivalent representation of R�1

Ptrue,?
(·; 5 ) in Section �.� and provide

a brief overview of transportation-information inequalities in Section �.�. The new concentration
inequality is developed in Section �.�, whose proof is postponed to Section B.�.

�.�. Inverse of the Wasserstein Regularizer

Fixing 5 2F , we define a function I? :R+ !R+ [ {+1} via

I? (Y; 5 ) ? := sup
C>0

⇢
YC �EI⇠Ptrue

h
sup
Ĩ2Z

n
C

�
5 ( Ĩ) � 5 (I)

�
� k Ĩ � Ik ?

oi�
,

which will play a similar role as the rate function in the large deviation principle. The next proposition
establishes its connection to the Wasserstein regularizer RPtrue,?, whose proof is given in Appendix B.
P���������� �. Let ? 2 [1,1) and 5 2F . Suppose there exists " , ! � 0 such that 5 (I)  " + !kIk ? for
all I 2 Z. Let d > 0 and suppose the dual minimizer _> of (�) is positive. Set _ := limkI k!1 5 (I)/kIk ?.
Then

I? (RPtrue,? (d; 5 ); 5 )
⇢
= d, if _> > _,
� d, if _> = _.

Note that the dual optimizer of (�) tends to be large when d is close to zero, in which case _> > _, as
observed in [��]. Hence Proposition � shows that at least for small d, the left inverse of RPtrue,? (·; 5 ) is
precisely I? (·; 5 ).

�.�. Transportation-Information Inequalities

Just like many other results on the concentration of measure, appropriate conditions on the function
5 and the distribution Ptrue are required. Since we are dealing with general loss functions that are
possibly unbounded, some assumptions on the underlying data-generating distribution are necessary.
It turns out for our purpose, it is convenient to work with the transportation-information inequality, a
useful condition to establish concentration of measure in modern probability theory.
D��������� � (T�������������-����������� ����������). Let ? 2 [1,1). A distributionP 2 P? (Z)
satisfies a transportation-information inequality T? (g) for some positive constant g, if

W? (Q,P) 
p
gH (Q| |P), 8Q 2 P? (Z),

where H (Q| |P) denotes the relative entropy H (Q| |P) :=
Ø
Z
log(3Q/3P) 3Q, where 3Q/3P denotes the

Radon-Nikodym derivative.

We briefly comment on distributions satisfying transportation-information inequalities, and refer
the reader to [��] for a recent survey and [��, Chapter ��] for an in-depth discussion. Among di�erent
choices of ?, T1 and T2 are of particular interest and have been widely studied in the literature.
T1 is equivalent to the following condition (Theorem �.� in [��] and Theorem ��.�� in [��]; see
also Lemma � in Appendix B): a distribution P satisfies T1 if and only if there exists 0 > 0 such
that E[exp(0kIk2)] <1. In particular, any distribution on a bounded support Z with diam(Z) <1
satisfies T1(2diam(Z)2). T2 is also known as Talagrand’s inequality, which is implied by the log-Sobolev
inequality. Examples of distributions satisfying the log-Sobolev inequality include distributions with
a strongly log-concave density, and mixture of distributions satisfying log-Sobolev inequality whose
pairwise chi-squared divergences are uniformly bounded [��]. Note that for ?1  ?2, T?1 is weaker
than T?2 since W?1 W?2 . In the sequel, we will focus on the case ? 2 [1,2].
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�.�. Concentration for a Single Loss Function

Now we are ready to state our main result in this section.

T������ � (Variation-based concentration). Let ? 2 [1,2] and 5 2 F . Assume there exist " , ! > 0
such that

5 (I)  " + !kIk ?, 8I 2Z .

Assume further that Ptrue satisfies T? (g) for some g > 0. Let Y > 0. Then

P⌦
�
EP= [ 5 ] �EPtrue [ 5 ] < �Y

 
 exp

�
� =I? (Y;� 5 )2/g

�
.

Let C > 0. Then with probability at least 1� 4�C ,

EPtrue [ 5 ]  EP= [ 5 ] +RPtrue,?

⇣q
gC

=
;� 5

⌘
. (�)

Theorem � uncovers an interesting connection: the non-asymptotic decay rate of large deviation
probabilities is controlled by the inverse of Wasserstein regularizer I? (Y;� 5 ). The negative sign � 5
appears because here we bound the downside risk, i.e., the probability of empirical loss being smaller
than the true loss, whereas RPtrue,? is defined via upside excess, i.e., the worst-case loss that is greater
than the true loss. As a matter of fact, a similar result holds if we swap the empirical loss and true loss
in the theorem:

P⌦
�
EP= [ 5 ] �EPtrue [ 5 ] > Y

 
 exp

�
� =I? (Y; 5 )2/g

�
,

and with probability at least 1� 4�C ,

EP= [ 5 ]  EPtrue [ 5 ] +RPtrue,?

⇣q
gC

=
; 5

⌘
.

When ? = 1, if 5 is Lipschitz continuous, then by Lemma � we have

RPtrue,?
�q

gC

=
;� 5

�


q
gC

=
· k� 5 kLip =

q
gC

=
· k 5 kLip.

When ? = 2, if 5 has Lipschitz continuous gradient, then by Lemma � we have

RPtrue,2
�q

gC

=
;� 5

�


q
gC

=
· k kr 5 k⇤ kPtrue,2 +

\gC
=

.

Substituting these inequalities in Theorem � yields following corollary.

C�������� � (Variation regularization). Let ? 2 {1,2}. When ? = 1, assume Assumption �(I) holds;
when ? = 2, assume Assumption � holds. Assume further that Ptrue satisfies T? (g) for some g > 0. Let
C > 0. Then with probability at least 1� 4�C ,

EPtrue [ 5 ]  EP= [ 5 ] +
8>><
>>:

q
gC

=
· k 5 kLip, ? = 1,q

gC

=
· k kr 5 k⇤ kPtrue,2 + \gC

=
, ? = 2.

Theorem � and Corollary � show that the Wasserstein regularizer RPtrue,? (
q
gC

=
;� 5 ), as well as the

variation of the loss, k 5 kLip or k kr 5 k⇤ kPtrue,2, are natural quantities controlling the deviation of the
empirical loss for distributions satisfying a transportation-information inequality. For ? = 1, thanks
to the first part of Lemma �, the bound in Theorem � is tighter than the Lipschitz norm bound in
Corollary �, which was obtained in [��]. Since k kr 5 k⇤ kPtrue,2  k 5 kLip, ? = 2 suggests a tighter upper
bound than ? = 1, at the cost of a stronger assumption on the underlying distribution.
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�. Finite-Sample Guarantees

In the previous section, we have derived a concentration inequality for a single loss function, and the
goal of this section is to extend it to a family of loss functions F . In the spirit of [��, ��, ��], we would
like to determine a proper scaling of the Wasserstein radius d= with respect to sample size = so that
with high probability, the Wasserstein robust loss is an upper bound of the true loss uniformly for all
functions in the class F = { 5\ : \ 2⇥}. Whenever this holds, minimizing the Wasserstein robust loss
controls the true loss as well.
When F is a finite set, then a simple application of the union bound to Theorem � yields that (�)

holds simultaneously for all 5 2F with probability at least 1� |F |4�C , where | · | denotes the cardinality
of a set. When F contains infinitely many functions, some notion of complexity of the function class F
is needed to obtain uniform convergence. In Section �.�, we prove the result using a standard covering
number argument; and in Section �.�, we adopt techniques from local Rademacher complexity theory
[�, ��] .

�.�. Covering Number Arguments

Recall that for n > 0, the covering number N (n;H, k·kH) of a set H with respect to a norm k·kH is
defined as the smallest cardinality of an n-cover of H, where Hn is an n-cover of H if for each ⌘ 2H,
there exists ⌘̃ 2Hn such that k ⌘̃� ⌘kH  n . Similar to the classic stochastic programming literature (e.g.,
Shapiro et al. [��, Section �.�.�]), we can obtain a union bound using the standard covering number
argument, whose proof is given in Appendix C.�. Throughout this subsection, we let F = { 5\ : \ 2⇥}
and we impose the following smoothness assumption with respect to the parameter \.

A��������� �. Assume there exists a measurable function ^ : Z ! R+ and constants ^" , ^! � 0
satisfying ^(I)  ^" + ^! kIk ? for all I 2Z, such that

| 5
\̃
(I) � 5\ (I) |  ^(I)k\̃ � \k⇥, 8\, \̃ 2⇥, Ptrue � 0.4. I 2Z .

C�������� �. Let ? 2 [1,2]. Assume Ptrue satisfies T? (g) for some g > 0 and Assumption � holds. Let
C > 0. Set

d= =

r
g(C + logN (1/=;⇥, k·k⇥))

=

,

and n= = (2EPtrue [^] +
p
VarPtrue [^] + ^" + 2?�1^! ((gC/=) ?/2 +EPtrue [kIk ?]))/=. Then we have the follow-

ing:
(I) Assume there exist constants " , ! > 0 such that

5\ (I)  " + !kIk ?, 8I 2Z , 8\ 2⇥.

Then with probability at least 1� 1/=� 4�C ,

EPtrue [ 5\ ]  EP= [ 5\ ] +RPtrue,? (d=;� 5\ ) + n=, 8\ 2⇥.

(II) (Lipschitz regularization and �-Wasserstein DRO) When ? = 1, assume Assumption �(I) holds.
Then with probability at least 1� 1/=� 4�C ,

EPtrue [ 5\ ]  EP= [ 5\ ] + d= · k 5\ kLip + n=, 8\ 2⇥.

Assume, in addition, that Assumption �(II) holds. Then with probability at least 1� 1/=� 4�C ,

EPtrue [ 5\ ]  EP= [ 5\ ] +RP= ,1(d=; 5\ ) + n=, 8\ 2⇥.



�

(III) (Gradient regularization) When ? = 2, assume Assumption � holds. Then with probability at least
1� 1/=� 4�C ,

EPtrue [ 5\ ]  EP= [ 5\ ] + d= · k kr 5\ k⇤ kPtrue,2 + \d2= + n=, 8\ 2⇥.

Corollary � establishes the generalization bounds for Wasserstein DRO as well as the Lipschitz
and gradient regularization. By [��, Example �.�], logN (n;⇥, k·k⇤)  3 log(1+ 2⌫/n), where ⌫ is the
diameter of ⇥. Thereby, by choosing the radius d= = $̃ (

p
3/=), the Wasserstein robust loss serves as

an upper bound of the true loss for all 5\ 2 F up to an $ (1/=) remainder for ? = 1 and an $ (3/=)
remainder for ? = 2. Assumption �(II) may be restrictive for certain applications. In Example �, we
demonstrate an instance for which finite-sample guarantee holds with an-$ (1/p=) radius even though
this assumption does not hold. Essentially, as long as the Wasserstein regularizer can be sandwiched
by multiples of Lipschitz regularizer (see Theorem � in [��]), similar finite-sample guarantees can be
obtained; we refer to a follow-up work [�] for more in-depth discussions.
In the next result, we provide an empirical counterpart of Corollary � for ? = 2.

A��������� �. Assume there exists a measurable function ^2 : Z ! R+ and constants ^2," , ^2,! � 0
satisfying ^2(I)  ^2," + ^2,! kIk ? for all I 2Z, such that

kr 5
\̃
(I) �r 5\ (I)k⇤  ^2(I)k\̃ � \k⇥, 8\, \̃ 2⇥, Ptrue � 0.4. I 2Z .

C�������� � (�-Wasserstein DRO). Assume Ptrue satisfies T2(g) for some g > 0 and Assumptions �, �,
� hold. Assume f = sup

\ 2⇥EPtrue [kr 5\ k4⇤]
1
2 / k kr 5\ k⇤ k2Ptrue,2 <1. Let C > 0 and = > 8f2

C. Set

d= =

r
g(C + log(1+N (1/=;⇥, k·k⇥)))

=

✓
1+f

r
2(C + log(1+N (1/=;⇥, k·k⇥)))

=

◆
,

and ñ= = (2EPtrue [^2] +
p
VarPtrue [^2] + d=

r
EPtrue [^22] +

q
VarPtrue [^22])/=. Then with probability at least

1� 2/=� 24�C ,

EPtrue [ 5\ ]  EP= [ 5\ ] + d=k kr 5\ k⇤ kP= ,2 + ñ= +
\g(C + log(1+N (1/=;⇥, k·k⇥)))

=

, 8\ 2⇥,

and

EPtrue [ 5\ ]  EP= [ 5\ ] +RP= ,2(d=; 5\ ) + ñ= +
2\g(C + log(1+N (1/=;⇥, k·k⇥)))

=

, 8\ 2⇥.

In Section �, we will demonstrate Corollary � for feature-based newsvendor problem in Example �
and Corollary � for linear prediction with Lipschitz loss in Example �.

�.�. Local Rademacher Complexity Arguments

The covering number bound developed in the previous subsection may be loose. Indeed, the discussion
after Corollary � indicates that for smooth parametric family the radius $̃ (

p
3/=) is always dimension-

dependent. To obtain a tighter bound in a more general setting, we derive results using local
Rademacher complexity theory. As it turns out, this approach sometimes leads to a bound that has a
better dependence on 3 and even dimension-independent bound; see Examples �, �, �.

Let us begin with some technical preparation. Recall the Rademacher complexity of a function class
F with respect to a sample {I=

8
}=
8=1 is defined as

R= (F) := E2

h
sup
5 2F

1
=

=X
8=1

28 5 (I=8 )
i
,
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where 28 ’s are i.i.d. Rademacher random variables with P{28 = ±1} = 1
2 . The Rademacher complexity

of the function class F with respect to Ptrue for sample size = is defined as E⌦ [R= (F)]. Rademacher
complexity plays an important role in bounding the generalization error of statistical learning problems
but may be vacuous if F is too large. The idea of localization is to restrict on a small subset of F
around the optimal solution that often admits low complexity. The localized Rademacher complexity
[�] at level A > 0 is defined as

E⌦
h
R=

��
2 5 : 5 2F , 0  2  1, ) (2 5 )  A

 �i
,

where ) : F ! R+. In our analysis, we choose ) ( 5 ) = k 5 k2Lip when ? = 1 and ) ( 5 ) = k kr 5 k⇤ k2Ptrue,2
when ? = 2. Part of our techniques below are adapted from the framework developed in [�, ��], which
primarily considers ) ( 5 ) = EPtrue [ 5 2].
By choosing a proper level A=, the localized Rademacher complexity of the functions of the subset

can be much smaller than the entire family, which enables a better bound. Often, the level A= is chosen
to be the fixed point A=¢ of some function k= (A), which serves as an upper bound on the localized
Rademacher complexity at level A. A typical assumption imposed on k= is the so-called sub-root
condition. A function k :R+ !R+ is sub-root if it is non-constant, non-negative, non-decreasing and
the map A 7! k(A)/pA is non-increasing for all A > 0. A sub-root function always has a unique fixed
point A=¢ [�]. Similar to the literature, we impose the following assumption.

A��������� � (Sub-root local complexity). Assume there exists a sub-root function k= :R+ !R+ such
that

k= (A) � E⌦
h
R=

��
2 5 : 5 2F , 0  2  1, ) (2 5 )  A

 �i
.

Denote by A=¢ the fixed point of k=.

We will verify this assumption for various examples considered in Section �.
We first study the case of ? = 1. The proof is given in Appendix C.�.�.

T������ � (Lipschitz regularization). Assume Ptrue satisfies T1(g), Assumption �(I) holds, and As-
sumption � holds with ) ( 5 ) = k 5 k2Lip. Let C > 0. Then with probability at least 1� dlog2(

p
W1gC=)e4�C ,

EPtrue [ 5 ]  EP= [ 5 ] +
✓
2
r
gC

=

+
r
4A=¢ +

2
=

◆
k 5 kLip + 4A=¢ +

2
=

, 8 5 2F .

Together with Lemma �, we obtain the following result.

C�������� � (�-Wasserstein DRO). Assume Ptrue satisfies T1(g), Assumption � holds and Assumption �
holds with ) ( 5 ) = k 5 k2Lip. Let C > 0. Set

d= = 2
r
gC

=

+
r
4A=¢ +

2
=

.

Then with probability at least 1� dlog2(
p
W1gC=)e4�C ,

EPtrue [ 5 ]  EP= [ 5 ] +RP= ,1(d=; 5 ) + 4A=¢ +
2
=

, 8 5 2F .

Note that d= = $̃ (1/p=) if A=¢ = $̃ ( 1
=
). A su�cient condition for this to hold is the sub-root function

k= (A) = $̃ (
p
A/=), which holds for many important cases as we illustrated in Sections �. As such,

Theorem � and Corollary � show that by choosing a radius in the order of 1/p=, with high probability,
the Wasserstein robust loss serves as a upper bound for the true loss up to an $̃ (1/=) gap. Here
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the probability bound has a $ (log=) term, nearly independent of sample size =. By mapping C to
C + logdlog2(

p
W1gC=)e, one can obtain a probability bound that is independent of sample size, while

the radius d= ⇠$ (
p
log log=/=). In the rest of the paper, we will not make such a transformation, but

just keep in mind that these two results are equivalent.
In the next corollary, we consider the loss functions of a composition form ✓ � 5 , where ✓ :R!R is

a given Lipschitz function and 5 2F , which occurs often in supervised learning. The following result
is useful to establish the generalization bound for problems of this type.
C�������� � (Lipschitz composition). Assume Ptrue satisfies T1(g), Assumption �(I) holds, and As-
sumption � holds with ) ( 5 ) = k 5 k2Lip. Let ✓ be an !✓-Lipschitz function and C > 0. Then with probability
at least 1� dlog2(

p
!✓W1gC=)e4�C ,

EPtrue [✓ � 5 ]  EP= [✓ � 5 ] + 2
⇣r

gC

=

!✓ +
r
4!2

✓
A=¢ +

2!✓
=

⌘
k 5 kLip + 4!2✓A=¢ +

2!✓
=

, 8 5 2F .

In Section �, we will illustrate Corollary � in supervised learning with linear class (Example �) and
with nonlinear kernel class (Example �).

The analysis for 2-Wasserstein DRO is aligned with the previous case but requires more care to deal
with the data-dependent regularization k kr 5 k⇤ kP= ,2; see details in Appendix C.�.�. Define the family
of normalized gradient norm functions

G :=
n

kr 5 k2⇤
k kr 5 k⇤ k2Ptrue ,2

: 5 2F

o
.

T������ � (Gradient regularization). Assume that Ptrue satisfies T2(g), Assumption � holds, and
Assumption � holds with ) ( 5 ) = k kr 5 k⇤ k2Ptrue,2. Assume there exists W2 > 0 such that k kr 5 k⇤ kPtrue,2  W2
for all 5 2F . Let C > 0. Set

d= = 2
r
gC

=

(1+E⌦ [R= (G)]) +
p
4A=¢ + 2n=,

and
n= =

\gC + 1+E⌦ [R= (G)]
=

.

Then with probability at least 1� dlog2(
p
W2gC=)e4�C ,

EPtrue [ 5 ]  EP= [ 5 ] + d=k kr 5 k⇤ kPtrue,2 + 4A=¢ + 2n=, 8 5 2F .

Whenever E⌦ [R= (G)] =$ (1) and A=¢ =$ (1/=), Theorem � shows that by choosing a radius in the
order of 1/p=, with high probability, the gradient regularized loss serves as an upper bound for the true
loss up to an $ (1/=) gap. Note that E⌦ [R= (G)] =$ (1/p=) as long as G has finite VC dimension (see,
e.g., Lemma �.�� and Proposition �.�� in [��]). In Section �, we will illustrate this result in portfolio
optimization (Example �) and neural networks (Example �) which show that E⌦ [R= (G)] =$ (1/p=)
and A=¢ =$ (1/=) with explicit constants.
The distribution-dependent gradient regularization k kr 5 k⇤ kPtrue,2 in Theorem � can be replaced

with its empirical counterpart k kr 5 k⇤ kP= ,2. In the next result, we provide the generalization bound
for data-dependent gradient regularization problems and �-Wasserstein DRO.
C�������� � (�-Wasserstein DRO). Under the setting in Theorem �, assume additionally that there
exists ^6 > 0 such that kr 5 (I) k⇤

k kr 5 k⇤ kPtrue ,2
 ^6 for all 5 2F and I 2Z. Set

d̃= = d=
⇣
1+ 2E⌦ [R= (G)] + ^26

r
C

2=

⌘
.
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Then whenever 2E⌦ [R= (G)] + ^26
q

C

2= < 1/2, with probability at least 1� (dlog2(
p
W2gC=)e + 1)4�C , for

every 5 2F ,
EPtrue [ 5 ]  EP= [ 5 ] + d̃=k kr 5 k⇤ kP= ,2 + 4A=¢ + 2n=,

and
EPtrue [ 5 ]  EP= [ 5 ] +RP= ,2( d̃=; 5 ) + 4A=¢ + 2n= + \d̃2=.

R����� � (P���������� ����� �� ��� ������ ������� ��������). Denote L(\) := EPtrue [ 5\ ],
L= (\) := EP= [ 5\ ] and L

rob
=

(\; d) := supP:W? (P,P=)d EP [ 5\ ]. Then the high-probability bounds we have
developed in this section have the form

L(\)  L
rob
=

(\; d=) + ñ=, 8\ 2⇥.

Let \⇤ 2 argmin
\ 2⇥L(\). Using the decomposition

L(\rob) �L(\⇤)
=

�
L(\rob) �L

rob
=

(\rob; d=)
�
+

�
L
rob
=

(\rob; d=) �L
rob
=

(\⇤; d=)
�
+

�
L
rob
=

(\⇤; d=) �L= (\⇤)
�
+

�
L= (\⇤) �L(\⇤)

�
 ñ= + 0+

�
d=V (\⇤) +$ (d2

=
)
�
+

�
L= (\⇤) �L(\⇤)

�
.

Observe that L= (\⇤) � L(\⇤) = $ ? (1/
p
=) under mild conditions. Hence, when ñ= = $̃ (1/=) and

d= = $̃ (1/p=), the right-hand side provides an $̃ (1/p=) bound on the losses between the robust
optimal solution and the true optimal solution. If L satisfies the Polyak-�ojasiewicz condition (or
equivalently, the quadratic growth condition) [��]

L(\) �L(\⇤) �
`

2
k\ � \⇤k2, 8\ 2⇥,

where ` > 0, then k\rob � \⇤k is upper bounded by a multiple of L(\rob) �L(\⇤), thereby k\rob � \⇤k =
$̃ ? (1/

p
=).

�. Applications

In this section, we demonstrate our theoretical results in the context of various applications in operations
research and machine learning.

�.�. Performance Guarantees for Wasserstein DRO

�.�.�. Big-data Newsvendor We first consider a big-data newsvendor problem in the spirit of [�].
In this problem, the decision maker needs to find the optimal ordering quantity for a product with an
unknown random demand H, subject to holding cost ⌘ > 0 and back-order cost 1 > 0. In the world
of big data, before deciding the ordering quantity, the decision maker observes a vector of features
(such as product information, customer profiles, economic indicators, etc.) and thus can use them
make a better ordering decision using these feature information. The vector of features is modeled as a
3-dimensional random variable - and the decision maker has collected historical observations of the
feature-demand vector of the product. The goal is to find a decision rule that maps every realization G
from the feature space X ⇢ R3 to an ordering decision. For illustration, we focus on a simple linear
decision rule parameterized by \ 2R3, thereby the ordering quantity for a product with feature G 2 X

is \>G. Thus, for a given \, the expected cost equals EP

⇥
⌘(\>G � H)+ + 1(H� \>G)+

⇤
, where P is the joint

distribution of feature-demand vector I = (G, H).
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E������ � (F������-����� ����������). Let Z = (X ⇥R+, k·k) be the space of feature-demand
vectors. Consider the following distributionally robust feature-based newsvendor problem

min
\ 2⇥

sup
P:W1 (P,P=)d=

EP

⇥
⌘(\>G � H)+ + 1(H � \>G)+

⇤
.

Suppose ⇥ ⇢ {\ 2R3 : k\k⇤  ⌫} and Ptrue satisfies T1(g). Let 5\ (G, H) = ⌘(\>G � H)+ + 1(H � \>G)+ and
F = { 5\ : \ 2⇥}.
We have | 5

\̃
(I) � 5\ (I) |  (⌘ _ 1)kGkk\̃ � \k⇤ and thus Assumption � holds with ^(I) = (⌘_ 1)kGk.

Hence, by Corollary �(II), setting n= = 1
=
(3EPtrue [kGk] +VarPtrue [kGk] +

q
gC

=
) =$ (1/=), with probability

at least 1� 1/=� exp(�C), we have

EPtrue [ 5\ ]  EP= [ 5\ ] +
q
gC (1+3 log(1+2⌫=))

=
k 5\ kLip + n=, 8\ 2⇥.

Set d= = ⌘_1
⌘^1

q
gC (1+3 log(1+2⌫=))

=
. By Lemma �� in Appendix D.�, we have d=k 5\ kLip RP= ,1( 5\ ; d=) =

$̃ (
p
3/=). Thus, with probability at least 1� 1/=� exp(�C),

EPtrue [ 5\ ]  EP= [ 5\ ] +RP= ,1
�
5\ ; d=

�
+ n=, 8\ 2⇥. |

We remark that in this example, the newsvendor loss function satisfies only Assumption �(I) but not
Assumption �(II). Hence we did not directly use Corollary �(II) to derive the performance guarantee.
Instead, Lemma �� in Appendix D.� actually shows that RP= ,1( 5\ ; d=) can achieve a fraction ⌘^1

⌘_1 of
k 5\ kLip (and thus RPtrue,1( 5\ ; d=)) uniformly for all \, thereby we can still choose d= = $̃ (

p
3/=) to

ensure a good performance guarantee for the Wasserstein robust solution.

�.�.�. Linear Prediction We consider supervised learning with linear models. Let I = (G, H) 2Z =
X ⇥Y ⇢ R3 ⇥R. To ease the exposition, we assume kI � Ĩk = kG � G̃k2 +11{H < H̃}, thereby we only
focus on the G-component when calculating the gradient. Set

; (D, H) :=
⇢
✓(D � H), regression,
✓(HD), classification, (�)

where ✓ :R!R is !-Lipschitz continuous, and Y ⇢ R for regression and Y = {±1} for classification,
and denote ; � 5\ (I) := ; ( 5\ (G), H). We denote by ; 0 the derivative function of ; with respect to its first
argument, which is well-define almost everywhere in R. Denote by PGtrue the G-marginal distribution of
Ptrue. The two examples considered in this subsection are on linear predictions for ? = 1 and ? = 2
respectively.

E������ � (L����� ����� ���� L�������� ����, �-W���������� DRO). Let ⇥ ⇢ {\ 2 R3 : k\k2 
⌫} for some ⌫ > 0. Define

F =
�
G 7! 5\ (G) = \>G : \ 2⇥

 
.

Consider loss functions of the composite form (�) and let 5\ (G) = \>G. Assume PGtrue is sub-Gaussian, i.e.,
there exists 0 > 0 such that ⇠ := logEPtrue [exp(0kGk22)] <1. Assume ✓ satisfies limsup |C |!1

✓ (C)
|C | = !.

Examples of ✓(C) include convex losses such as hinge loss (1� C)+, softplus (logistic) loss log(1+ 4C ), as
well as non-convex losses such as inverse S-shaped curve sgn(C) log( 12 (1+ 4C )).

Let us verify the assumptions in Corollary �. By Lemma � in Appendix B, PGtrue satisfies T1( 2
0
(1+⇠)).

Assumption � holds with k 5\ kLip = k\k2  ⌫ = W1. Furthermore, since
�
2 5\ : \ 2⇥, 0  2  1, 22k\k22  A

 
⇢

�
5\ : k\k2 

p
A

 
,
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by Lemma �� in Appendix D.�,
q
AEPtrue [kGk22]/= is an upper bound of E⌦ [R= ({ 5\ : k\k2 

p
A})]. By

Jensen’s inequality, we have

EPtrue [kGk22] 
1
0

logEPtrue

⇥
exp(0kGk22)

⇤
=
⇠

0

.

It follows that we can set k= (A) =
q
A⇠

0=
and thus A=¢ = ⇠

0=
.

Let C > 0. Set

d= = 2
⇣
!

r
2(1+⇠)C

0=

+pn=
⌘
, n= = 4!2

⇠

0=

+ 2!
=

.

Then d= =$ (1/p=) and n= =$ (1/=) are dimension-independent, and by Corollary � and Lemma �,
with probability at least 1� d( 12 log2(!⌫ 2

0
(1+⇠)C=)e4�C ,

EPtrue [; (\>G, H)] �EP= [; (\>G, H)] RP= ,1(d=; ; � 5\ ) + n= = d=k\k2 + n=, 8\ 2⇥. |

The bound obtained in Example � is consistent to the existing literature on the generalization bounds
for linear predictions. But unlike the typical results (e.g. [��, ��]), we do not impose boundedness
assumptions on the loss function ✓ or the domain Z. If imposing a positive lower bound on k\k2 � 2 > 0,
the bound given in the example further becomes

EPtrue [; (\>G, H)] �EP= [; (\>G, H)]  (d= + n=/2)k\k2 =RP= ,1(d= + n=/2; ; � 5\ ).

Thereby one can bound the true loss using only the Wasserstein robust loss with an inflated radius
d= + n=/2 without having a higher order error term. This bound is of the same form as in Shafieezadeh-
Abadeh et al. [��, Theorem ��] which has a linear dependence on the dimension 3 of X (albeit under
a light-tail assumption that is slightly weaker than T1); while our bound d= =$ (1/p=) is independent
of 3 (at least for the case of �-norm).
E������ � (L����� ����� ���� L�������� ����, �-W���������� DRO). Consider a similar setup as
in Example � but with slightly di�erent notations in order to be consistent with Corollary �. Let
⇥ ⇢ {\ 2R3 : k\k⇤  ⌫} for some ⌫ > 0. Define

F =
�
(G, H) 7! ; (\>G, H) : \ 2⇥

 
,

where ; is defined in (�). Let 5\ (I) = ; (\>G, H). Then kr 5\ (I)k⇤ = krG ; (\>G, H)k⇤ = k\k⇤ |; 0(\>G, H) |,
recalling ; 0 denotes the derivative of ; with respect to its first argument. Assume further that ✓ in (�)
has \-Lipschitz gradient; PGtrue satisfies T2(g) for some g > 0; and inf \ 2⇥EPtrue [; 0(\>G, H)2] > 0. Note
that the last condition is mild – indeed, it is satisfied if for every \ 2⇥, ; 0(\>·, H) is non-zero on some
subset of X with positive PGtrue-measure (together with the boundedness assumption on ⇥).
Let us verify the conditions and compute the constants in Corollary �. Assumption � is satis-

fied since 5\ has \⌫2-Lipschitz gradient, and f = sup
\ 2⇥EPtrue [; 0(\>G, H)4]

1
2 /EPtrue [; 0(\>G, H)2] 

!
2 / inf \ 2⇥EPtrue [; 0(\>G, H)2] <1. We have | 5

\̃
(I)� 5\ (I) |  !✓ kGkk\̃�\k⇤ and by Lemma ��, kr 5\ (I)�

r 5
\̃
(I)k⇤  (!✓ + ⌫\kGk)k\̃ � \k⇤. Hence Assumptions � and � hold.

Let C > 0 and set
d= =

q
gC (1+3 log(2+2⌫=))

=

⇣
1+f

q
2C (1+3 log(2+2⌫=))

=

⌘
,

ñ= =
�
2!✓ +2⌫\EPtrue [kGk] + ⌫2\2VarPtrue [kGk] + d=

p
EPtrue [(!✓ + ⌫\kGk)2] +VarPtrue [(!✓ + ⌫\kGk)2]

�
/=.

By Corollary �, with probability at least 1� 2/=� 2exp(�C), for every \ 2⇥,

EPtrue [; (\>G, H)] �EP= [; (\>G, H)] RP= ,2(d=; 5\ ) + ñ= +
2\⌫2

gC (1+ 3 log(2+ 2⌫=))
=

.

Note that we have d= = $̃ (
p
3/=) and an $̃ (3/=) remainder.
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�.�.�. Portfolio Optimization In this subsection, we study the classic Markowitz’s mean-variance
portfolio optimization problem. Let G be a vector of random losses of 3 assets with distribution PGtrue and
let F 2W ⇢ R3 be the portfolio weights satisfying F>

1 = 1. Note that the variance of a one-dimensional
random variable . has an equivalent representation Var[. ] =minD2R E[(. � D)2].
E������ � (M�������� �����). Let U > 0 and suppose W ⇢ {F 2R3 : F>

1 = 1, kFk2  ⌫}, where
⌫ > 0. Consider the following distributionally robust mean-variance minimization

min
F 2W ,D2R

sup
P:W2 (PG

,PG
=)d=

EPG

⇥
(F>

G � D)2 +UF>
G

⇤
.

Assume PGtrue satisfies T2(g). Then it also satisfies T1(g) and by Corollary �, for every F 2 R3 with
kFk2 = 1, P⌦{|EPG

=
[F>

G] � EPG
true [F>

G] | � n}  24�=n 2/g for all n > 0, thus PGtrue is
p
g/2-subgaussian.

Let ` 9 = EPG
true [kGk

9

2]
1
9
<1, 9 = 1,2,3,4. Assume there exists Z > 0 such that CovPtrue [G] ⌫ Z �.

Set *= := ⌫(`1 +
p
gC/= + d=) and * := sup

=
*=, which is bounded whenever {d=}= is bounded. By

Lemma �� in Appendix D.�, with probability at least 1� 4�C , the problem is equivalent to

min
F 2W , |D |*=

sup
P:W2 (PG

,PG
=)d=

EPG

⇥
(F>

G � D)2 +UF>
G

⇤
.

Let \ = (F, D̃) where D̃ = �D +U/2, I = (G, H) and 5\ (I) = (F>
G + D̃>H)2 +UD �U2/4 = (\>I)2 �UD̃ +U2/4.

Thereby we have 5\ (G,1) = (F>
G � D)2 + UF>

G. Set ⇥ = {(F, D̃) : F 2 W , | � D̃ + U/2|  *}. For any
distribution PG , we represent P =PG ⌦ �1. Consider the problem

min
\=(F ,D̃)2⇥

(
sup

P:W2 (P,P=)d=
EP

⇥
(\>I)2

⇤
�UD̃ +U2/4

)
.

Let us verify the assumptions and compute the constants in Theorem � for the inner maximization
problem. Ptrue satisfies T2(g) since any distribution Q 2 P2(Z) with finite H (Q,Ptrue) has the form
QG ⌦ �1, where QG is the G-marginal of Q. We have r 5\ (I) = 2(\>I)\, thus r2

5\ (I) = 2\\>. Note that
k\k22  ⌫2 + (* +U/2)2, hence Assumption � is satisfied with \ = 2(⌫2 + (* +U/2)2). To find a sub-root
function k= (A) required by Assumption �, observe that

k kr 5\ k2 kPtrue,2 = 2k\k2EPtrue [(\>I)2]
1
2 � 2

p
Z k\k22.

It follows from Lemma �� in Appendix D.� that

E⌦
⇥
R=

��
2 5\ : \ 2⇥,0  2  1, 22k kr 5\ k2 k2Ptrue,2  A

 �⇤
 `24

r
A

4Z=
:= k= (A).

Thus A=¢ =
`
4
4

4Z = . Moreover, by Lemma �� in Appendix D.�,

E⌦


R=

✓⇢ kr 5\ k22
kkr 5\ k2k2Ptrue,2

: \ 2⇥
�◆�

 1
1^ Z

s
`
4
4 + 2`22 + 1

=

=: '=.

In addition, sup
\ 2⇥ k kr 5\ k2 kPtrue,2 = sup

\ 2⇥ 2k\k2EPtrue [(\>I)2]
1
2  2`2(⌫2 + (* +U/2)2) = W2.

Let C > 0. Then in Theorem �, set

d= = 2
r
gC

=

(1+ '=) +

s
`
4
4
Z=

+ 2n=, n= =
2(⌫2 + (* +U/2)2)gC + 1+ '=

=

.
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We have with probability at least 1� dlog2(
p
W2gC=)e4�C ,

EPtrue [(\>I)2]  EP= [(\>I)2] + d=k kr 5\ k2 kPtrue,2 + n=, 8\ 2⇥.

By Lemma �� in Appendix D.�, a generalized version of Corollary � applied to unbounded gradient
norm, we set

d̃= =⇠ (1+ '=), ñ= = n= + 2(⌫2 + (* +U/2)2) d̃2
=
,

where ⇠ depends only on the distribution of kIk2, I ⇠Ptrue. Then d̃= = $̃ (1/p=), ñ= =$ (1/=) are both
dimension-independent, and with probability at least 1� (dlog2(

p
W2gC=)e + 2)4�C ,

EPtrue [(\>I)2]  EP= [(\>I)2] +RP= ,? ( d̃=; 5\ ) + ñ=, 8\ 2⇥,

and therefore by minimizing over D or D̃,

VarPtrue [F>
G] +UEPtrue [F>

G]  min
D2R

sup
P:W2 (PG

,PG
=)d̃=

EPG

⇥
(F>

G � D)2 +UF>
G

⇤
+ ñ=, 8F 2W . |

The last inequality in Example � shows that the true mean-variance of the portfolio F= is upper
bounded by its robust mean-variance up to a higher-order term. We remark that in this example, the
parameter space is not bounded as D 2R, which makes it impossible to obtain a bounded complexity
for the entire class of loss functions. We circumvent such a di�culty by showing that there exists an
optimal solution lying in a bounded set ⇥ with high probability, thereby it su�ces to restrict on ⇥.

�.�. Performance Guarantees for Variation Regularization

In the next two examples, we illustrate our results for Lipschitz regularization and gradient regulariza-
tion for nonlinear classes. Similar to Section �.�.�, we let I = (G, H) 2Z =X ⇥Y ⇢ R3 ⇥R and assume
kI � Ĩk = kG � G̃k2 +11{H < H̃}.

�.�.�. Kernel Method We consider Lipschitz regularization of kernel class (see, e.g., [��, Chapter
��]). Let k :X ⇥X !R+ be a positive definite kernel on X ⇢ (R3 , k·k2) with f := (EG⇠Ptrue [k (G, G)])

1
2 <

1. We can associate k with a feature map � :X !H, where H is a Hilbert space with inner product
h·, ·i and k (G1, G2) = h�(G1),�(G2)i. Denote by k·kH a norm on H. Let < 2 N�1 and {G 9}1

9=1 ⇢ X . Then
we have kP<

9=1 \ 9�(G 9) k2 =
P
<

9 ,:=1 \ 9\: k (G 9 , G:).
In kernel method, one often consider the following parameterized class

F =
n
G 7!

1X
9=1
\ 9 k (G, G 9) : \ 2⇥

o
, where ⇥ =

n
\ = (\ 9)<9=1 : k\kk  ⌫, < 2 N�1

o
,

for some ⌫ > 0, where for \ = (\ 9)<
9=1, we adopt the convention P1

9=1 \ 9 k (G, G 9) =
P
<

9=1 \ 9 k (G, G 9) and
k\k2k =

P1
9 ,:=1 \ 9\: k (G 9 , G:) =

P
<

9 ,:=1 \ 9\: k (G 9 , G:).
E������ � (L�������� �������������� ��� ������ �����). Consider loss functions of the form (�)
with D = 5\ 2 F defined as above. Assume k is di�erentiable and there exists Z > 0 such that
k kr 5\ k2 k2Ptrue,2 = EG⇠Ptrue [k

P1
9=1 \ 9rGk (G, G 9) k22] � Z

P1
9 ,:=1 \ 9\: k (G 9 , G:) for all \ 2 ⇥, which can be

satisfied when the matrix (EG⇠Ptrue [rGk (G, G 9)>rGk (G, G:)])1 9 ,:1 is positive definite. Furthermore,
assume W1 = sup

\ 2⇥,G2X kP1
9=1 \ 9rGk (G, G 9)k <1, thus Assumption �(I) is satisfied.

Let us compute the generalization bound using Corollary �. To this end, we need to specify k= in
Assumption � and compute its fixed point A=¢. Observe thatn
2 5\ : \ 2⇥, 0  2  1, 22k 5\ k2Lip  A

o
⇢

�
2 5\ : \ 2⇥, 0  2  1, Z22k\k2k  A

 
⇢

n
5\ : k\kk 

p
A/Z

o
,



��

hence k= (A) can be chosen as 2f
q

A

=Z
, an upper bound of E⌦ [R= ({ 5\ : k\kk 

p
A/Z })] according to

[�, Lemma ��]. Thus A=¢ = 4f2

=Z
. Set

d= = 2
⇣
!

r
gC

=

+pn=
⌘
, n= =

16!2f2

=Z

+ 2!
=

.

Then d= =$ (1/p=) and n= =$ (1/=) are dimension-independent, and by Corollary �, with probability
at least 1� dlog2(

p
!W1gC=)e4�C ,

EPtrue [; � 5\ ]  EP= [; � 5\ ] + d=k 5\ kLip + n=, 8\ 2⇥. |

This result provides a generalization bound for Lipschitz regularization problems [��, ��, ��] when
the loss function class belongs to a kernel class. We remark that the setup in this example is di�erent
from Shafieezadeh-Abadeh et al. [��, Section �.�], in which the distributional uncertainty is imposed
on the feature space, while Example � considers distributional uncertainty on the original data space.

�.�.�. Neural Networks In the last example, we illustrate the generalization bound of gradient
regularization for a simple two-layer neural network. Consider

F =
n
(G, H) 7! ;

�
,2q(,1G), H

�
: (,1,,2) 2⇥

o
,

where ; is defined in (�), q = (q1, . . . , q32) are entry-wise �-Lipschitz activation functions, and ⇥ is the
space of weight matrices

⇥ = {\ = (,1,,2) : ,1 2R32⇥31 , ,2 2R1⇥32
, ,1,

>
1 = �, k,2k2  ⌫}.

Here the constraint,1,
>
1 = � enforces the orthonormal regularization on the weight matrix [��, ��,

�, ��], which is a popular way to ensure the training stability and performance for neural nets. Let
5\ (I) = ; (,2q(,1G), H).
E������ � (G������� R������������� ��� N����� N�������). Assume ; and q 9 has \;- and \q-
Lipschitz gradient, respectively, 9 = 1, . . . , 32, thereby 5\ is smooth and F satisfies Assumption � with
\ = 2! (!\q + ⌫\;)

p
32 by Lemma �� in Appendix D.�. Assume [ := inf \ 2⇥,I2Z ; 0(,2q(,1G), H) > 0,

which can be satisfied, for example, when Z is bounded and ; is the logistic loss. Furthermore,
assume there exists Z > 0 such that EPG

true [k,2q
0(,1G) k22] � Z k,2k22 for every (,1,,2) 2 ⇥, where

q
0 = (q01, . . . , q032), and f = EPG

true [kGk22]
1
2 <1.

Let us compute the constants in Corollary �. We have

kr 5 (I)k⇤ = k ; 0(,2q(,1G), H),2q
0(,1G),1 k22 = ; 0(,2q(,1G), H)2k,2q

0(,1G) k22.

Thus, kr 5 (I)k⇤  !⌫, k kr 5 k⇤ kPtrue,2 � [
p
Z k,2k2. It follows that

kr 5 (I)k⇤
k kr 5 k⇤ kPtrue,2

 !⌫

[

p
Z k,2k2

=: ^6 .

In addition, 22k kr 5 k⇤ k2Ptrue,2  A implies k,2k2 
p
A

2[

p
Z

. As a result, we can choose k= (A) in Assumption
� as

E⌦
⇥
R=

n
2 5\ : \ 2⇥, 0  2  1, 22k kr 5\ k⇤ k2Ptrue,2  A

o ⇤
 !E⌦

⇥
R=

�
G 7!,2q(,1G) : ,1,

>
1 = �, k,2k2 

p
A

[

p
Z

 ⇤

 !f

p
2A32

[

p
Z=

=: k= (A),
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where the first inequality follows from Lemma � in Appendix D, and the second inequality is due to
Lemma �� in Appendix D.�. It follows that A=¢ = 2!2

f
2
32

[
2
Z =

. Moreover, by Lemma �� in Appendix D.�,

E⌦ [R= (G)] 
2! (!\q + ⌫\;)f

p
232

[
2
Z

p
=

=: '=.

Thereby, in Corollary �, setting

d̃= =

 
1+ 2'= + ^6

r
C

2=

! ©≠
´
2
r
gC

=

(1+ '=) +
s

8!2f2
32

[
2
Z=

+ 2n=™Æ
¨
, n= =

\gC + 1+ '=
=

,

it holds that d̃= =$ (
p
32/=), n= =$ (

p
32/=), and with probability at least 1� (dlog2(

p
!⌫gC=)e +1)4�C ,

for every \ 2⇥,

EPtrue [ 5\ ]  EP= [ 5\ ] + d̃=EP= [; 0(,2q(,1G), H)2k,2q
0(,1G) k22]

1
2 + n=. |

�. Concluding Remarks

In this paper, we have developed finite-sample non-asymptotic performance guarantees for Wasserstein
DRO and its associated variation regularization without su�ering from the curse of dimensionality.
These results help us to understand the empirical success of Wasserstein DRO and/or Lipschitz and
gradient regularization. In the meantime, many issues worth investigating are left to future work.

More general loss function families and distribution families. We restrict the families of loss functions
consistent with Lemma � and Lemma � that establish the equivalence between Wasserstein DRO and
variation regularization. One can extend the results to more general families such as non-smooth
losses using the results in [��]; see a follow-up work [�]. In Section �, we adopt the widely used
transportation inequalities T?, ? 2 [1,2], which covers most subgaussian distributions and works for
loss functions of linear and quadratic growth. One may obtain results for more general distributions and
loss functions by considering other families of transportation-information inequalities [��, ��, ��, ��].
We remark that the finite-sample performance guarantee in [��], though su�ers from the curse of
dimensionality, does not restrict the loss function family other than the growth condition and works
for any distribution that admits Wasserstein concentration.
Wasserstein distance of other orders. We focus primarily on the case ? 2 [1,2]. Indeed, our proof of

Theorem � relies crucially on this setting where the tensorization lemma (Lemma � in Appendix B.�)
applies. We leave the study for other orders of Wasserstein distance, including another important case
? =1 that has been widely considered in adversarial robust learning (e.g., [��, ��, ���]), to future
work.

Complexity theory based on variation of the loss. We developed a local Rademacher complexity theory
based on the variation of the loss. Investigation of these techniques in the context of other problems in
statistical learning theory seems interesting, and hopefully would yield new results.
In summary, we hope our results can inspire more fruitful findings for problems in operations

research and machine learning in which Wasserstein distributional robustness plays an increasingly
prominent role.
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Appendix A: Proofs for Section 2
Proof of Lemma �. Using the strong dual problem (�), we have

RQ,1(d; 5 ) =min
_�0

⇢
_d +EQ


sup
Ĩ2Z

{ 5 ( Ĩ) � 5 (I) �_k Ĩ � Ik}
��

.

Using the Lipschitz Assumption �(I), for any _ > k 5 kLip, the inner supremum equals to zero attained at
Ĩ = I. Hence, by taking a feasible solution _ = k 5 kLip, we obtain that

RQ,1(d; 5 )  dk 5 kLip.

Moreover, if Assumption �(II) holds, then there exists a sequence {I<}1
<=1 ⇢ Z such that

kI< � I0k �max(d,<), 5 (I<) � 5 (I0) � (k 5 kLip � 1/<)kI< � I0k.

Let ⇢ ⇢ Z be such that ` :=Q(⇢) > 0. Consider a sequence of distributions

Q< =Q |Z\⇢ + (1� n<)Q |⇢ + n<�I< ,

where Q | · denotes the restriction of Q on a subset of Z, and n< is chosen such that

W1(Q,Q<) = n< ·EQ|⇢ [kI< � Ik]) = d.

It follows that n<! 0 and

RQ,1(d; 5 ) � EQ< [ 5 ] �EQ [ 5 ] � n< ·EQ|⇢ [(k 5 kLip � 1/<)kI< � I0k] + n<( 5 (I0) �EQ|⇢ [ 5 (I)])
= d(k 5 kLip � 1/<) + n<( 5 (I0) �EQ|⇢ [ 5 (I)]),

which converges to dk 5 kLip as <!1. Therefore we complete the proof. ⇤

Proof of Lemma �. Using the strong dual problem (�), we have

RQ,2(d; 5 ) =min
_�0

⇢
_d

2 +EQ


sup
Ĩ2Z

�
5 ( Ĩ) � 5 (I) �_k Ĩ � Ik2

 ��
.

By Assumption �, we have that

RQ,2(d; 5 ) min
_�0

(
_d

2 +EQ

"
sup
Ĩ2R3

�
r 5 (I)>( Ĩ � I) � (_� \)k Ĩ � Ik2

 #)

= \d2 +min
_�0

(
_d

2 +EQ

"
sup
Ĩ2R3

�
r 5 (I)>( Ĩ � I) �_k Ĩ � Ik2

 #)

= \d2 +min
_�0

⇢
_d

2 + 1
4_

EQ

⇥
kr 5 (I)k2⇤

⇤�

= \d2 + dkkr 5 k⇤kQ,2,

and that
RQ,2(d; 5 ) �min

_�0

⇢
_d

2 +EQ


sup
Ĩ2Z

�
r 5 (I)>( Ĩ � I) � (_ + \)k Ĩ � Ik2

 ��

= �\d2 +min
_�0

⇢
_d

2 +EQ


sup
Ĩ2Z

�
r 5 (I)>( Ĩ � I) �_k Ĩ � Ik2

 ��

= �\d2 +min
_�0

⇢
_d

2 + 1
4_

EQ

⇥
kr 5 (I)k2⇤

⇤�

= �\d2 + dkkr 5 k⇤kQ,2,

which completes the proof. ⇤
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Appendix B: Proofs for Section 3
Proof of Proposition �. Define

�(C) := EPtrue

h
sup
Ĩ2Z

�
C ( 5 ( Ĩ) � 5 (I)) � k Ĩ � Ik ?

 i
.

Using Theorem � in [��] and by our assumptions, a dual optimizer _> > 0 exists and we have strong
duality

RPtrue,? (d) = _>d? +_>�(1/_>). (�)
By [��], _> 2 [_,1). We first consider the case there exists a dual minimizer _> > _, in which case the
optimizer is in the interior of the domain of the dual objective. The first-order optimality condition of
the convex optimization (�) reads

d
? +�(1/_>) 2

1
_>

m�(1/_>),

where m� denotes the subdi�erential. Set n =RPtrue,? (d). It follows from the equations above that

n := _>d? +_>�(1/_>) 2 m�(1/_>).
But by definition I? (Y; 5 ) ? = sup

C>0{YC ��(C)}, which is a concave maximization. This suggests that
C = 1/_> > 0 is an optimizer of sup

C>0{nC ��(C)}. Hence,

I? (RPtrue,? (d; 5 ); 5 ) ? = I? (n; 5 ) ? =
n

_>

��(1/_>) =
1
_>

(_>d? +_>�(1/_>)) ��(1/_>) = d? .

Next, consider the other case that the unique dual minimizer _> = _ > 0. Taking a feasible solution
C = 1/_>, using (�) we obtain that

I? (RPtrue,? (d; 5 ); 5 ) ? = sup
C>0

n
CRPtrue,? (d; 5 ) � CEPtrue

h
sup
Ĩ2Z

{( 5 ( Ĩ) � 5 (I)) � 1
C

k Ĩ � Ik ?}
io

�
RPtrue,? (d; 5 )

_>

�
RPtrue,? (d; 5 ) �_>d?

_>

= d? .

⇤

The next lemma is mentioned in Section �.�.
L���� � (Corollary �.� in Bolley and Villani [��]). Assume there exists 0 > 0 such that ⇠ :=
logEP [exp(0k/ k2)] <1. Then P satisfies T1(g), where

g = inf
Ĩ2Z ,0̃>0

⇢
2
0̃

�
1+ logEP [exp(0̃k/ � Ĩk2)]

��
 2
0

(1+⇠).

B.1. Proof of Theorem 1
Our proof is based on Marton’s argument and Herbst’s argument [��, ��]. Let us begin with some
definitions and lemmas.
Denote I= := (I=1 , . . . , I==) 2Z

=. We define a product distance d? on the space Z
= as

d? (I=, Ĩ=) :=
✓
=X
8=1

kI=
8
� Ĩ=

8
k ?

◆1/?
,

The ?-Wasserstein distance between probability distributions ` and P⌦ is given by

W? (`,P⌦) =min
c

n�
E(I= , Ĩ=)⇠c

⇥
d? (I=, Ĩ=) ?

⇤ �1/? : c has marginal distributions `,P⌦
o
.

The following tensorization lemma establishes a transportation-information inequality for the product
distribution P⌦ (see, for example, Proposition ��.� in [��]).



��

L���� �. Let ? 2 [1,2]. Suppose P 2 P? (Z) satisfies T? (g). Then P⌦ satisfies T? (g=
2
?�1).

Given any function 6 : Z ! R which is exponentially integrable with respect to a, we define a
distribution a (6) , called the 6-exponential tilting of a as (see, e.g., Section �.�.� in [��]):

3a
(6)

3a

=
exp(6)

Ea [exp(6)]
.

It follows that
H (a (6) | |a) = E

a
(6) [6] � lnEa [exp(6)] . (�)

We prove below a more general concentration result that applies not only for the empirical mean.
L���� �. Let ? 2 [1,2]. Assume Ptrue satisfies T? (g). Let � :Z=!R. Assume E⌦ [�] = 0 and there exist
" , ! > 0 and I=0 2Z

= such that

� ( Ĩ=)  " + !
=

d? ( Ĩ=, I=0) ?, 8Ĩ= 2Z
=

.

Define �(·;�) :R+ !R+ via

�(n;�) ? := sup
C>0

⇢
nC �E⌦

h
sup
Ĩ
=2Z=

n
C (� ( Ĩ=) � � (I=)) � 1

=

d? ( Ĩ=, I=) ?
oi�

,

and ⌘(·;�) :R+ !R+ as

⌘(d;�) =min
_�0

⇢
_d

? +E⌦
h
sup
Ĩ
=2Z=

n
� ( Ĩ=) � � (I=) � _

=

d? ( Ĩ=, I=) ?
oi�

.

Then for any n > 0,
P⌦{� (I=) > n}  exp

�
� =�(n;�)2/g

�
.

Let C > 0. Then with probability at least 1� 4�C ,

� (I=) ⌘
⇣r

gC

=

;�
⌘
.

Proof of Lemma �. Define

�(C;�) := E⌦


sup
Ĩ
=2Z=

n
C (� ( Ĩ=) � � (I=)) � 1

=

d? ( Ĩ=, I=) ?
o�
,

which is in [0,1) for all su�ciently small C because of the growth rate condition on �, and thus
�(n;�) ? = sup

C>0{nC ��(C;�)} > �1. To ensure integrability, let us assume temporarily that � is
bounded from above.
We first consider a simpler case ? = 2. Using Lemma �, for every ` 2 P2(Z=), it holds that

W2(`,P⌦)2  gH (` | |P⌦). Let C > 0. Setting ` =P
(gC� )
⌦ , by (�) we have

W2(`,P⌦)2  E` [gC�] � lnE⌦ [exp(gC�)],

On the other hand, using Kantorovich’s duality (see, e.g., Theorem �.�� in Villani [��]) and the
assumption E⌦ [�] = 0,

W2(`,P⌦)2 � E` [gC�] +E⌦
h

inf
Ĩ
=2Z=

n =X
8=1

k Ĩ=
8
� I=

8
k2 � gC� ( Ĩ=)

oi

= E` [gC�] +E⌦
h

inf
Ĩ
=2Z=

n =X
8=1

k Ĩ=
8
� I=

8
k2 � gC (� ( Ĩ=) � � (I=))

oi

= E` [gC�] � =�( gC
=

;�).
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Combining the inequalities above and canceling out the term E` [gC�], we obtain

g lnE⌦ [exp(gC�)]  =�( gC
=

;�).

Using Markov’s inequality, for all C > 0,

P⌦{� (I=) > n} =P⌦
n
gC� (I=) > gCn

o
 E⌦

⇥
exp(gC�)

⇤
/exp(gCn)

 exp
✓
=

g

�( gC
=
;�) � gCn

◆
.

Mapping gC/= to C and minimizing over B, C > 0 yields

P⌦{� (I=) > n}  exp
⇣
=

g

inf
C>0

n
�(C;�) � Cn

o⌘
= exp

�
� =�(n;�)2/g

�
.

Next, we consider ? 2 [1,2). Let B > 0. Using Lemma �, for every ` 2 P? (Z=), it holds that

W? (`,P⌦) ? 
⇣
g=

2
?�1H (` | |P⌦)

⌘ ?
2
=

⇣
g

?
2 ( 2

?
)
?
2 B

1� ?
2 H (` | |P⌦)

?
2

⌘ ⇣
( ?2 )

?
2 B

?
2 �1=1�

?
2

⌘
.

Applying Young’s inequality to the right side yields that

W? (`,P⌦) ?  ?

2

⇣
g

?
2 ( 2

?
)
?
2 B

1� ?
2 H (` | |P⌦)

?
2

⌘ 2
? + (1� ?

2 )
⇣
( ?2 )

?
2 B

?
2 �1=1�

?
2

⌘ 1
1� ?

2

= B
2
?�1

gH (` | |P⌦) + (1� ?

2 ) (
?

2 )
?

2�?
B
�1
=,

Let C > 0. Setting ` =P
(gB1�

2
?
C� )

⌦ , by (�) we have

W? (`,P⌦) ?  B
2
?�1

⇣
E`

h
gB

1� 2
?
C�

i
� lnE⌦

h
exp

⇣
gB

1� 2
?
C�

⌘i ⌘
+ (1� ?

2
) ( ?
2
)

?
2�?
B
�1
=.

On the other hand, using Kantorovich’s duality (see, e.g., Theorem �.�� in Villani [��]) and the
assumption E⌦ [�] = 0,

W? (`,P⌦) ? � E` [gC�] +E⌦
h

inf
Ĩ
=2Z=

n =X
8=1

k Ĩ=
8
� I=

8
k ? � gC� ( Ĩ=)

oi

= E` [gC�] +E⌦
h
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Ĩ
=2Z=

n =X
8=1

k Ĩ=
8
� I=

8
k ? � gC (� ( Ĩ=) � � (I=))

oi

= E` [gC�] � =�( gC
=

;�).

Combining the inequalities above and canceling out the term E` [gC�], we obtain

B

2
?�1

g lnE⌦ [exp(gB1�
2
?
C�)]  (1� ?

2
) ( ?
2
)

?
2�?
B
�1
= + =�( gC

=

;�).

Using Markov’s inequality, for all B, C > 0,

P⌦{� (I=) > n} =P⌦
n
gB

1� 2
?
C� (I=) > gB1�

2
?
Cn

o
 E⌦

⇥
exp(gB1�

2
?
C�)

⇤
/exp(gB1�

2
?
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 exp
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(1� ?

2 ) (
?

2 )
?

2�?
B
� 2

?
= + B1�

2
?
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=
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◆
/g � gB1�

2
?
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�
.
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Mapping gC/= to C and minimizing over B, C > 0 yields

P⌦{� (I=) > n}  exp
⇣
=

g

inf
B,C>0

n
(1� ?

2 ) (
?

2 )
?

2�?
B
� 2

? + B1�
2
? (�(C;�) � Cn)

o⌘

= exp
⇣
=

g

inf
B>0

n
(1� ?

2 ) (
?

2 )
?

2�?
B
� 2

? � B1�
2
? sup
C>0

{Cn/g ��(C;�)}
o⌘

= exp
⇣
=

g
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B>0

n
(1� ?

2 ) (
?

2 )
?

2�?
B � B1�

?
2 �(n/g;�) ?}

o ⌘
= exp

�
� =�(n;�)2/g

�
.

Setting d =
q
gC

=
. If the dual minimizer defining ⌘(d;�) is strictly positive, taking n =⌘(d;�)

and applying Proposition � yields the second part of the result. Otherwise, ⌘(d;�) = sup
Ĩ
=2Z= � ( Ĩ=),

thereby � (I=) ⌘(d;�). To deal with an unbounded �, define �: = � ^ : for : 2 N�1. We have proved
that the result holds for �: . Observe that for all I=, Ĩ= 2Z with � ( Ĩ=) � � (I=), it holds that

(� ( Ĩ=) ^ :) � (� (I=) ^ :) =
(0, � (I=) � : ,
: � � (I=), � (I=) < : < � ( Ĩ=),
� ( Ĩ=) � � (I=), � ( Ĩ=)  : .

Hence for all C > 0 and : � 1,

�(C;�:) = E⌦


sup

Ĩ
=2Z=:� ( Ĩ=)�� (I=)

n
C (�: ( Ĩ=) � �: (I=)) �

1
=

d? ( Ĩ=, I=) ?
o�

 E⌦


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Ĩ
=2Z=:� ( Ĩ=)�� (I=)

n
C (� ( Ĩ=) � � (I=)) � 1

=

d? ( Ĩ=, I=) ?
o�
,

and thus �(n;�:) ��(n;�). Therefore, by the monotone convergence,

P⌦{� (I=) > n} = lim
:!1

P⌦{�: (I=) > n}  lim
:!1

exp
�
� =�(n;�:)2/g

�
 exp

�
� =�(n;�)2/g

�
,

which completes the proof. ⇤

Proof of Theorem �. Set � (I=) = EPtrue [ 5 (I)] �EP= [ 5 ]. Then � satisfies the assumptions in Lemma
� due to Assumptions �(I) and �. Applying Lemma � yields that

�(C;�) = 1
=

E⌦


sup
Ĩ
=2Z=

n =X
8=1

⇣
C

�
5 (I=

8
) � 5 ( Ĩ=

8
)
�
� k Ĩ=

8
� I=

8
k ?

⌘o�

= EPtrue

h
sup
Ĩ2Z

�
� C ( 5 ( Ĩ) � 5 (I)) � k Ĩ � Ik ?

 i
,

and thus �(·;�) = I? (·;� 5 ) and ⌘(·;�) =RPtrue,? (·;� 5 ), therefore the result follows. ⇤

Appendix C: Proofs for Section 4

C.1. Proof for Section 4.1
Proof of Corollary �. (I) By Assumption �, for any distribution P it holds that

EP [ 5 \̃ ] �EP [ 5\ ]  EP [^] · k\̃ � \k⇥.
Thus

RPtrue,?

⇣q
gC

=
;� 5

\̃

⌘
�RPtrue,?

⇣q
gC

=
;� 5\

⌘
 sup

P:W? (P,Ptrue)
q
gC

=

��EPtrue [ 5 \̃ ] �EPtrue [ 5\ ]
��

 sup
P:W? (P,Ptrue)

q
gC

=

EP [^] · k\̃ � \k⇥.
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Note from the duality (�) and Assumption � that

sup
P:W? (P,Ptrue)

q
gC

=

EP [^] =min
_�0

⇢
_(

q
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=
) ? +EPtrue


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{^" + ^! (k Ĩ � Ik + kIk) ? �_k Ĩ � Ik ?}
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⇢
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q
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
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Ĩ2Z
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 2?�1^! (
q
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=
) ? + ^" + 2?�1^!EPtrue [kIk ?]

=: ¯̂,

where the last inequality holds by taking a dual feasible solution _ = 2?�1^!. By the assumption on ^
and Chebyshev’s inequality,

P⌦
n
EP= [^] �EPtrue [^] >

p
VarPtrue [^]

o
 1
=

.

Let n > 0 and ⇥n be an n-cover of ⇥. We have that

P⌦
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⇣q
gC

=
;� 5\

⌘
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p
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=

+P⌦
n
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=
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=
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 1
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+N (n;⇥, k·k⇥) · 4�C ,

where we have used the definition of the covering number and Theorem � in the last step. Letting
n = 1/= and replacing C with C + logN (1/=;⇥, k·k⇥) yields the result.
(II)(III) are simple consequences of (I), together with Lemma � and Lemma �. ⇤

Proof of Corollary �. Fix 5 2 F . Applying Bennett’s inequality (Lemma � below) to -8 =
� kr 5 (I=8 ) k2⇤
= k kr 5 k⇤ k2Ptrue ,2

, 1 = 0 and E8 = f2/=2, we obtain that

P

⇢
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i
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�
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✓
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Hence, with probability at least 1� 4�C ,
k kr 5 k⇤ k2P= ,2

k kr 5 k⇤ k2Ptrue,2
� 1�f

r
2C
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.

Thus, for every = > 8f2
C,
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r
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⇣
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r
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⌘
,
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where the second inequality follows from the simple fact 1/
p
1� 0  1+ 0 for 0 2 [0,1/2].

Next we consider a family of losses. By Assumptions � and �, it holds that

EPtrue [ 5 \̃ ] �EPtrue [ 5\ ]  EPtrue [^] · k\̃ � \k⇥,
EP= [ 5 \̃ ] �EP= [ 5\ ]  EP= [^] · k\̃ � \k⇥,
k kr 5

\̃
k⇤ kP= ,2 � k kr 5\ k⇤ kP= ,2  k^2kP= ,2 · k\̃ � \k⇥.

By Chebyshev’s inequality,
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q
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=

.

Let n > 0 and let ⇥n be an n-cover of ⇥. Set d =
q
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=
(1+f

q
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=
). It follows that
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 2
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+ (1+N (n ,⇥, k·k⇥)) · 4�C ,

where we have used Corollary �(III) in the last inequality. Hence the proof is completed by setting
n = 1/=, replacing C with C + log(1+N (1/=;⇥, k·k⇥)), and invoking Lemma � for the second part. ⇤

L���� � (Bennett’s inequality). Suppose -1, . . . , -= are independent random variables for which -8  1
and E[-2

8
]  E8 for each 8, for nonnegative constants 1 and E8. Let, =

P
=

8=1 E8. Then for n � 0.

P

⇢
=X
8=1

(-8 �E[-8]) � n
�
 exp

✓
� n

2

2,
kBenn

⇣
1n

,

⌘◆
,

where kBenn denotes the function defined on [�1,1) by

kBenn(C) :=
(1+ C) log(1+ C) � C

C
2/2 , for C < 0, and kBenn(0) = 1.

C.2. Proofs for Section 4.2
C.�.�. Auxiliary Results We prepare some auxiliary results that will be used shortly. The following
two lemmas are useful properties of Rademacher complexity (see, e.g., [��, Chapter ��]).
L���� � (Symmetrization). Let H be a family of functions. Then

E⌦
h
sup
⌘2H

�
EPtrue [⌘] �EP= [⌘]

 i
 2E⌦ [R= (H)] .

L���� � (Contraction). Let H be a family of functions. Let ✓ :R!R be a Lipschitz function. Denote
✓ �H = {✓ � ⌘ : ⌘ 2H}. Then

E⌦ [R= (✓ �H)]  k✓kLip ·E⌦ [R= (H)] .
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Let us define

R⌦,? (d;F) :=min
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⇢
_d

? +E⌦


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=2Z=

1
=

=X
8=1

⇣
5 ( Ĩ=
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8
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,

and
�F := {� 5 : 5 2F },

L���� �. Let ? 2 {1,2}. Assume Assumption �(I) holds when ? = 1 and Assumptions � when ? = 2.
Assume Ptrue satisfies T? (g). Let C > 0. Then with probability at least 1� 4�C , for every 5 2F ,

EPtrue [ 5 ]  EP= [ 5 ] +R⌦,? (
r
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�
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 i
.

Then the assumption on 5 implies that � satisfies the growth assumptions in Lemma �. Applying
Lemma � yields that with probability at least 1� 4�C , for every 5 2F ,

EPtrue [ 5 ] �EP= [ 5 ] �E⌦
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Thus the result then follows by applying Lemma �. ⇤

The next lemma is used for bounding the fixed point of k= for local Rademacher complexity.

L���� �� ([�], p. ����). Let �, ⌫ > 0. Let A0 be the largest solution to the equation ⌫
p
A + � = A. Then

⌫
2  A0  2� + ⌫2.

C.�.�. Proofs for ? = 1 To begin with, an application of Lemma � to the loss function � =
sup

5 2F
�
EPtrue [ 5 ] �EP= [ 5 ]

 
�E⌦

⇥
sup

5 2F
�
EPtrue [ 5 ] �EP= [ 5 ]

 ⇤
yields the following result.

L���� ��. Assume Ptrue satisfies T1(g) and Assumption �(I) holds. Let C > 0. Then with probability at
least 1� 4�C ,

EPtrue [ 5 ]  EP= [ 5 ] +
q
gC

=
sup
5 2F

k 5 kLip + 2E⌦ [R= (F)], 8 5 2F .

Proof of Lemma ��. In view of Lemma �, it su�ces to derive an upper bound on R⌦,1(d;�F).
Assumption �(I) implies that for any _ > sup

5 2F k 5 kLip,

sup
5 2 (�F ) , Ĩ=2Z=

n1
=

=X
8=1

5 ( Ĩ=
8
) � 5 (I=

8
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8
� I=

8
k
o
= 0.

Consequently by definition R⌦,1(d;�F)  d sup
5 2F k 5 kLip. ⇤
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Next, using the peeling technique [��, ��], we can remove the dependence on sup
5 2F of the right

side of the inequality in Lemma ��.

L���� ��. Assume Ptrue satisfies T1(g) and Assumption �(I) holds. Let C > 0. Then with probability at
least 1� dlog2(

p
W1gC=)e4�C ,

EPtrue [ 5 ]  EP= [ 5 ] + 2
q
gC

=
k 5 kLip + 2E⌦ [R= (F)] + 1
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, 8 5 2F .

Proof of Lemma ��. Set A = sup
5 2F k 5 kLip  W1. Let  be a positive integer whose value will be

specified shortly. We define

F: := { 5 2F : 2�:A < k 5 kLip  2�:+1A}, 1  :   � 1,
F := { 5 2F : k 5 kLip  2� A}.

Using Lemma ��, for : = 1, . . . , � 1, with probability at least 1� 4�C , for every 5 2F: ,
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Note that A  W1 by Assumption �(I). Setting  = dlog2(W1
p
gC=)e yields the result. ⇤

Often, E⌦ [R= (F)] is of the order of 1/p=. By applying Lemma �� and another peeling argument to
a weighted function class {

p
Ap

A_k 5 kLip
5 : 5 2F } and using the sub-root property of k=, we can replace

E⌦ [R= (F)] with the fixed point A=¢ of k=, often in the order of 1/=.
Proof of Theorem �. Let A � A=¢ whose value will be specified shortly. The sub-root assumption on
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k6kLip + 2k= (A) +
1
=

,



��

Choose A = A0, where A0 is the largest solution to 1
=
+ 2pAA=¢ = A. By Lemma ��, A=¢  A0  4A=¢ + 2

=
.

Note that 2k= (A) + 1
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therefore,
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Combining the two cases gives the result. ⇤

Proof of Corollary �. Define ✓ �F := {✓ � 5 : 5 2F }. Using Lemma �, with probability at least 1� 4�C ,
for every 5 2F ,
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where we have used Lemma � to obtain the second inequality. Using arguments similar to the proofs
of Lemma �� and Lemma ��, we obtain that with probability at least 1� dlog2(
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FA :=
⇢ p

Ap
A _ k 5 kLip

✓ � 5 : 5 2F

�
⇢

�
2✓ � 5 : 5 2F , 0 < 2  1, 22k 5 k2Lip  A

 
.

Substituting
p
Ap

A_k 5 kLip
✓ for ✓ in (�), we obtain that with probability at least 1� dlog2(

p
!✓W1gC=)e4�C ,

for every FA 3 6 =
p
Ap

A_k 5 kLip
✓ � 5 ,

EPtrue [6]  EP= [6] + 2
r
gC

=

p
Ap

A _ k 5 kLip
!✓ k 5 kLip + 2!✓k= (A) +

!✓

=

.



��

Choose A to be the largest solution A0 to the equation 2!✓
p
AA=¢ + !✓

=
= A. Then 2!✓k= (A0) + !✓

=
 A0. It

follows from Lemma �� that 4!2
✓
A=¢  A0  4!2

✓
A=¢ + 2!✓

=
. When k 5 kLip 

p
A0, we have 6 = ✓ � 5 and

EPtrue [✓ � 5 ]  EP= [✓ � 5 ] + 2
r
gC

=

!✓ k 5 kLip + A0  EP= [✓ � 5 ] + 2
r
gC

=

!✓ k 5 kLip + 4!2✓A=¢ +
2!✓
=

.

When k 5 kLip >
p
A0, we have 6 =

p
A0

k 5 kLip ✓ � 5 and

EPtrue

 p
A0

k 5 kLip
✓ � 5

�
 EP=

 p
A0

k 5 kLip
✓ � 5

�
+ 2

r
gC

=

!✓

p
A0 + 2!✓k= (A0) +

!✓

=

,

which implies that

EPtrue [✓ � 5 ]  EP= [✓ � 5 ] + 2
r
gC

=

!✓ k 5 kLip +
p
A0k 5 kLip

 EP= [✓ � 5 ] +
 
2
r
gC

=

!✓ +
r
4!2

✓
A=¢ +

2!✓
=

!
k 5 kLip.

Combining the two cases yields the result. ⇤

C.�.�. Proofs for ? = 2 Lemmas �� and �� below are counterparts of Lemma �� and Lemma ��.
L���� ��. Assume Ptrue satisfies T2(g) and Assumptions � holds. Let C > 0. Then with probability at least
1� 4�C ,

EPtrue [ 5 ]  EP= [ 5 ] +
r
gC

=

(1+E⌦ [R= (G)]) sup
5 2F

k kr 5 k⇤ kPtrue,2 + 2E⌦ [R= (F)] + \gC
=

.

Proof of Lemma ��. In view of Lemma �, we derive an upper bound onR⌦,2(d;�F). By Assumption
�,

R⌦,2(d;�F) = inf
_�0

⇢
_d

2 +E⌦


sup
5 2 (�F )

sup
Ĩ
=2Z=

n1
=

=X
8=1

5 ( Ĩ=
8
) � 5 (I=

8
) �_k Ĩ=

8
� I=

8
k2

o��

 inf
_�0

⇢
_d

2 +E⌦


sup
5 2 (�F )

sup
Ĩ
=2Z=

n1
=

=X
8=1

kr 5 (I=
8
)k⇤k Ĩ=8 � I=8 k � (_� \)k Ĩ=

8
� I=

8
k2

o��
,

where the inner supremum is infinite if _ > \. It follows by a change of variable that

R⌦,2(d;�F)  \d2 + inf
_�0

⇢
_d

2 + 1
4_

E⌦


sup
5 2 (�F )

1
=

=X
8=1

kr 5 (I=
8
)k2⇤

��
.

Observe that by Lemma �,

E⌦


sup
5 2 (�F )

1
=

=X
8=1

kr 5 (I=
8
)k2⇤

�
 E⌦


sup
5 2 (�F )

n1
=

=X
8=1

kr 5 (I=
8
)k2⇤ �EPtrue

⇥
kr 5 k2⇤

⇤o�
+ sup
5 2 (�F )

EPtrue

⇥
kr 5 k2⇤

⇤

 2E⌦ [R= (
•
F)] + sup

5 2F
EPtrue

⇥
kr 5 k2⇤

⇤
,

where
•
F := {kr 5 k2⇤ : 5 2F }. Hence we have

R⌦,2(d;�F)  \d2 + inf
_�0

⇢
_d

2 + 1
4_

⇣
2E⌦ [R= (

•
F)] + sup

5 2F
EPtrue

⇥
kr 5 k2⇤

⇤ ⌘�
.
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Without loss of generality we assume sup
5 2F k kr 5 k⇤ kPtrue,2 > 0. Picking _ = sup 5 2F k kr 5 k⇤ kPtrue ,2

2d yields
that

R⌦,2(d;�F)  \d2 + d sup
5 2F

k kr 5 k⇤ kPtrue,2 + d
E⌦ [R= (

•
F)]

sup
5 2F k kr 5 k⇤ kPtrue,2

.

Note that

R= (
•
F) = E2

"
sup
5 2F

(
=X
8=1

28
kr 5 (I=

8
)k2⇤

k kr 5 k⇤ k2Ptrue,2
· k kr 5 k⇤ k2Ptrue,2

)#

 E2

"
sup
5 2F

(
=X
8=1

28
kr 5 (I=

8
)k2⇤

k kr 5 k⇤ k2Ptrue,2

)
sup
5 2F

n
k kr 5 k⇤ k2Ptrue,2

o#

= sup
5 2F

k kr 5 k⇤ k2Ptrue,2E2

"
sup
5 2F

(
=X
8=1

28
kr 5 (I=

8
)k2⇤

k kr 5 k⇤ k2Ptrue,2

)#

= sup
5 2F

k kr 5 k⇤ k2Ptrue,2 ·E⌦ [R= (G)] .

Therefore, the result follows from Lemma � with d =
q
gC

=
. ⇤

L���� ��. Assume Ptrue satisfies T2(g) and Assumption � holds. Let C > 0. Then with probability at least
1� dlog2(W2

p
gC=)e4�C ,

EPtrue [ 5 ]  EP= [ 5 ] + 2
r
gC

=

(1+E⌦ [R= (G)])k kr 5 k⇤ kPtrue,2 + 2E⌦ [R= (F)] + \gC + 1+E⌦ [R= (G)]
=

.

Proof of Lemma ��. Set A = sup
5 2F k kr 5 k⇤ kPtrue,2  W2. We define

F: :=
�
5 2F : 2�:A < k kr 5 k⇤ kPtrue,2  2�:+1A

 
, : = 1, . . . , � 1,

F :=
�
5 2F : k kr 5 k⇤ kPtrue,2  2� A

 
,

G: :=
n

kr 5 k2⇤
k kr 5 k⇤ k2Ptrue ,2

: 5 2F:

o
, : = 1, . . . , .

By Lemma ��, for : = 1, . . . , � 1, with probability at least 1� 4�C , for every 5 2F: ,

EPtrue [ 5 ] �EP= [ 5 ] 
r
gC

=

(1+E⌦ [R= (G:)])2�:+1A + 2E⌦ [R= (F:)] +
\gC
=

 2
r
gC

=

(1+E⌦ [R= (G:)])k kr 5 k⇤ kPtrue,2 + 2E⌦ [R= (F:)] +
\gC
=

,

and with probability at least 1� 4�C , for every 5 2F ,

EPtrue [ 5 ]  EP= [ 5 ] +
r
gC

=

(1+E⌦ [R= (G )])2� A + 2E⌦ [R= (F )] +
\gC
=

.

Taking the union bound, with probability at least 1� 4�C , for every 5 2F ,

EPtrue [ 5 ]  EP= [ 5 ] + 2
r
gC

=

(1+E⌦ [R= (G)])k kr 5 k⇤ kPtrue,2 + 2E⌦ [R= (F)] + \gC
=

+
r
gC

=

(1+E⌦ [R= (G )])2� A .

Setting  = dlog2(W2
p
gC=)e yields the result. ⇤
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With the two lemmas above, we are ready to prove Theorem �.
Proof of Theorem �. Let A � A=¢ whose value will be specified shortly. The sub-root assumption on

k= implies that

k= (A) =
p
Ak= (A)p
A


p
Ak= (A=¢)p
A=¢

=
p
A

p
A=¢.

Define
FA :=

⇢ p
Ap

A _ k kr 5 k⇤ kPtrue,2
5 : 5 2F

�
.

Then for all 6 2FA it holds that k kr6k⇤ k2Ptrue,2  A, FW22 =F , and

E⌦ [R= (FA )]  E⌦
⇥
R=

��
2 5 : 5 2F , 0  2  1, 22k kr 5 k⇤ k2Ptrue,2  A

 �⇤
 k= (A).

By Lemma ��, with probability at least 1� dlog2(
p
AgC=)e4�C , for every 6 2FA ,

EPtrue [6]  EP= [6] + 2
r
gC

=

(1+E⌦ [R= (GA )])k kr6k⇤ kPtrue,2 + 2k= (A) + n=,

recalling GA is defined in Lemma ��. Choose A = A0, where A0 is the largest solution to n= +2
p
A

p
A=¢ = A.

Then 2k= (A0) + n=  A0. By Lemma ��, 4A=¢  A0  4A=¢ + 2n=. Let GA0 3 6 =
p
A0p

A0_k kr 5 k⇤ kPtrue ,2
5 . If

k kr 5 k⇤ k2Ptrue,2  A0, then 5 = 6 and

EPtrue [ 5 ]  EP= [ 5 ] + 2
r
gC

=

(1+E⌦ [R= (G)])k kr 5 k⇤ kPtrue,2 + 2k= (A) + n=

 EP= [ 5 ] + 2
r
gC

=

(1+E⌦ [R= (G)])k kr 5 k⇤ kPtrue,2 + 4A=¢ + 2n=.

If k kr 5 k⇤ k2Ptrue,2 > A0, then

EPtrue

h p
A0

k kr 5 k⇤ kPtrue,2
5

i
�EP=

h p
A0

k kr 5 k⇤ kPtrue,2
5

i

 2
r
gC

=

(1+E⌦ [R= (G)])
p
A0

k kr 5 k⇤ kPtrue,2
k kr 5 k⇤ kPtrue,2 + 2k= (A) + n=,

which implies that

EPtrue [ 5 ] �EP= [ 5 ]

 2
r
gC

=

(1+E⌦ [R= (G)])k kr 5 k⇤ kPtrue,2 + (2k= (A) + n=)
k kr 5 k⇤ kPtrue,2p

A0


✓
2
r
gC

=

(1+E⌦ [R= (G)]) +
p
4A=¢ + 2n=

◆
k kr 5 k⇤ kPtrue,2.

Combining the two cases above gives the desired result. ⇤

Proof of Corollary �. Using McDiarmid’s inequality, with probability at least 1� 4�C ,

sup
5 2F

���EP=

⇥ kr 5 (I) k2⇤
k kr 5 k⇤ k2Ptrue ,2

⇤
� 1

���  E⌦
h
sup
5 2F

���EP=

⇥ kr 5 (I) k2⇤
k kr 5 k⇤ k2Ptrue ,2

⇤
� 1

���i + ^2
6

r
C

2=
,
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which implies that for every 5 2F ,

k kr 5 (I)k⇤ k2P= ,2

k kr 5 (I)k⇤ k2Ptrue,2
� 1 � �2E⌦ [R= (G)] � ^26

r
C

2=
.

Thus, whenever 2E⌦ [R= (G)] + ^26
q

C

2= < 1/2, it holds that

k kr 5 k⇤ kPtrue,2  k kr 5 k⇤ kP= ,2

⇣
1� 2E⌦ [R= (G)] � ^26

r
C

2=

⌘� 1
2  k kr 5 k⇤ kP= ,2

⇣
1+ 2E⌦ [R= (G)] + ^26

r
C

2=

⌘
.

Hence, setting d̃= = d= (1 + 2E⌦ [R= (G)] + ^26
q

C

2= ) and invoking Theorem � and Lemma � yields the
results. ⇤

Appendix D: Proofs for Section 5

D.1. Proofs for Section 5.1.1
L���� ��. Under the setting in Example �, it holds that

RPtrue,1( 5\ ; d=) d=k 5\ kLip RP= ,1( 5\ ; ⌘_1⌘^1 d=).

Proof. By Lemma �, we have RPtrue,1( 5\ ; d=)  d=k 5\ kLip  d=max(⌘, 1)k (\,�1)k⇤. On the other
hand, using the duality result (�), we have

RP= ,1( 5\ ; d=) �min
_�0

(
_d= +EP=

"
sup

(G,H)2Z

�
min(⌘, 1) ( |\>G � H | � |\>- �. |) �_k (G, H) � (- ,. )k

 #)

= d=min(⌘, 1)k (\,�1)k⇤

Combining the two inequalities yields that

RP= ,1( 5\ ; ⌘_1⌘^1 d=) � d=k 5\ kLip.

⇤

D.2. Proofs for Section 5.1.2
The following lemma is used for Example � (see also [��, Lemma ��.��]).

L���� ��. Assume ⇥ ⇢ {\ : k\k2  ⌫}. Then

E⌦ [R= ({\>G : \ 2⇥})]  ⌫p
=

EPtrue [kGk22]
1
2 .

Proof. Let 28 be i.i.d. Rademacher random variables. Using Cauchy-Schwarz inequality and Jensen’s
inequality,

E2,⌦


sup
\ 2⇥

1
=

=X
8=1

28 h\, G=8 i
�
=
1
=

E2,⌦


sup
\ 2⇥

h\,
=X
8=1

28G
=

8
i
�
 1
=

E2,⌦


sup

k\ k2⌫
k\k2 · k

=X
8=1

28G
=

8
k2

�

 ⌫

=

E2,⌦


k
=X
8=1

28G
=

8
k22

�1/2
 ⌫

=

⇣
E⌦

h =X
8=1

kG=
8
k22

i ⌘ 1
2
=
⌫p
=

EPtrue [kGk22]
1
2 .

⇤
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The following lemma is used for Example �.

L���� ��. Under the setting in Example �, it holds that

kr 5\ (I)k⇤ � kr 5
\̃
(I)k⇤  !✓ k\̃ � \k⇤ + ⌫\kGkk\̃ � \k⇤.

Proof. We have

kr 5\ (I)k⇤ � kr 5
\̃
(I)k⇤

=
���k\k⇤ |✓0(\>G, H) | � k\̃k⇤ |✓0(\̃>G, H) |

���


���k\k⇤ |✓0(\>G, H) | � k\̃k⇤ |✓0(\>G, H) |
���+ ���k\̃k⇤ |✓0(\>G, H) | � k\̃k⇤ |✓0(\̃>G, H) |

���
 !✓ k\̃ � \k⇤ + k\̃k⇤ |✓0(\>G, H) � ✓0(\̃>G, H) |
 !✓ k\̃ � \k⇤ + ⌫\kGkk\̃ � \k⇤.

⇤

D.3. Proofs for Section 5.1.3
The following two results on subgaussian distributions are well-known, but for the reader’s convenience,
we here provide proofs as well. Recall a 3-dimensional random variable - is f-subgaussian, if for every
F 2R3 with kFk2 = 1 and n > 0, P{|F>

- �E[F>
-] | � n}  24�

n 2
2f2 .

L���� ��. Assume PGtrue satisfies T2(g). Let *= be defined in Example �. Then with probability at least
1� 4�C ,

min
D2R

sup
P:W2 (P,P=)d=

EP

⇥
(F>

G � D)2 +UF>
G

⇤
= min

|D |*=

sup
P:W2 (P,P=)d=

EP

⇥
(F>

G � D)2 +UF>
G

⇤
.

Proof. Since the Wasserstein ball is weakly compact [���], applying Sion’s minimax theorem we
have

min
D2R

sup
P:W2 (P,P=)d=

EP

⇥
(F>

G � D)2 +UF>
G

⇤
= sup

P:W2 (P,P=)d=
min
D2R

EP

⇥
(F>

G � D)2 +UF>
G

⇤

Observe that the minimizer of the inner minimization problem equals EP [F>
G]. Moreover,

EP [F>
G]  EP= [F>

G] + kFk2W1(P,P=)  ⌫EP= [kGk2] + ⌫d=.

By Corollary �, with probability at least 1� 4�C ,

EP= [kGk2]  EPtrue [kGk2] +
r
gC

=

.

Thereby we complete the proof. ⇤

In the next two results, we compute the Rademacher complexities.

L���� ��. Under the setting of Example �, it holds that

E⌦
⇥
R=

��
2 5\ : \ 2⇥,0  2  1, 22k kr 5\ k2 k2Ptrue,2  A

 �⇤
 `24

r
A

4Z=
.
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Proof. We first prove the following result. Suppose ⇥1 ⇢ {\ = (F, D̃) 2 R3+1 : k\k2  1}, where
1 � 0. Define F = {I 7! (\>I)2 : \ 2⇥1}. Then

E⌦ [R= (F)] 
1
2EPtrue [kIk42]

1
2

p
=

.

To see this, let {28} be i.i.d. Rademacher random variables and I=
8
be i.i.d samples from Ptrue. We have

E2


sup
\ 2⇥1

1
=

=X
8=1

28
⇣
(\>I=

8
)2

⌘�

 E2


sup
\ 2⇥1

1
=

=X
8=1

28 (\>I=8 )2
�

= E2


1
=

sup
\ 2⇥1

h\\>,
=X
8=1

28I
=

8
I
=

8

>i
�

 E2


1
=

sup
k\ k21

k\\>k� k
=X
8=1

28I
=

8
I
=

8

>k�
�

 1
2

=

E2


k
=X
8=1

28I
=

8
I
=

8

>k�
�
.

Hence, the result is proved by noticing that

E⌦,2


k
=X
8=1

28I
=

8
I
=

8

>k�
�
 E⌦

⇣ =X
8=1

kI=
8
I
=

8

>k2
�

⌘� 1
2


p
=EPtrue [kIk42]

1
2 .

It then follows that

E⌦
⇥
R=

��
2 5\ : \ 2⇥,0  2  1, 22k kr 5\ k2 k2Ptrue,2  A

 �⇤
= E⌦

⇥
R=

��
I 7! 2(\>I)2 : \ 2⇥,0  2  1, 22k kr 5\ k2 k2Ptrue,2  A

 �⇤
 E⌦

⇥
R=

��
I 7! 2(\>I)2 : \ 2⇥,0  2  1,422Z k\k42  A

 �⇤
= E⌦

⇥
R=

��
I 7! (\>I)2 : \ 2⇥,0  2  1,4Z k\k42  A

 �⇤
 E⌦

h
R=

⇣n
I 7! (\>I)2 : k\k2  ( A4Z )

1
4

o⌘i

 `24
r

A

4Z=
,

where in the first equality, we have used the translation invariance property of Rademacher complexity,
and the second equality is due to a change of variable. ⇤

L���� ��. Let ⇥ ⇢ R3+1. Define

G =
⇢
I 7! (\>I)2

EPtrue [(\>I)2]
: \ 2⇥

�
.

Assume there exists ZI > 0 such that CovPtrue [I] ⌫ ZI �. Then

E⌦ [R= (G)] 
1
ZI

r
EPtrue [kIk4]

=

.
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Proof. Let {28}8 be i.i.d. Rademacher random variables and I=
8
be i.i.d. samples from Ptrue. We

have
=R= (G) = E2


sup
\ 2⇥

=X
8=1

28
(\>I=

8
)2

EPtrue [(\>I)2]

�

= E2


sup
\ 2⇥

h \\
>

EPtrue [(\>I)2]
,

=X
8=1

28I
=

8
I
=

8

>i
�

 E2


sup
\ 2⇥

k \\
>

EPtrue [(\>I)2]
k� · k

=X
8=1

28I
=

8
I
=

8

>k�
�

 1
ZI

E2


k
=X
8=1

28I
=

8
I
=

8

>k�
�
.

The result follows by noticing that

E⌦,2


k
=X
8=1

28I
=

8
I
=

8

>k�
�


✓
E⌦


=X
8=1

kI=
8
I
=

8

>k2
�

� ◆ 1
2

=
�
=EPtrue [kII>k2� ]

� 1
2 =

p
=

�
EPtrue [kIk42]

� 1
2
.

⇤

In the next result, we relate the gradient norm k kr 5\ k2 kPtrue,2 to its empirical estimate. To this end,
we need the following lemma.

L���� ��. Let G=1 , . . . , G
=

=
be i.i.d. samples from Ptrue. Assume Ptrue satisfies T1(g). Let C > 0. Then with

probability more than 1� 4�C ,

max
18=

kG=
8
k2 < EPtrue [kGk2] +

p
g(C + log=).

Proof. Since Ptrue satisfies T1(g), for every C > 0, EPtrue

⇥
exp

�
C (kGk2 � EPtrue [kGk2])

� ⇤
 exp( gC24 ),

(cf. [��, Proof of Theorem �.��]). By Jensen’s inequality,

exp
�
CE⌦

⇥
max
18=

kG=
8
k2 �EPtrue [kGk2]

⇤ �
 E⌦

⇥
exp

�
C (max

18=
kG=
8
k2 �EPtrue [kGk2])

� ⇤


=X
8=1

EPtrue

⇥
exp

�
C (kG=

8
k2 �EPtrue [kGk2])

� ⇤

< = exp( gC24 ).

Thus, using Markov’s inequality,

P⌦
n
max
18=
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which completes the proof. ⇤

L���� ��. Under the setting of Example �, let != = 1+EPG
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Set
6̄\ (I) := 6\ (I)1{kIk2  !=}, Ḡ := {6̄\ : \ 2⇥}.

Then by Lemma ��, with probability at least 1� 4�C , k6\ k2P= ,2 = k 6̄\ k2P= ,2. According to the proof of
Corollary � and applying Lemma � on 6̄\ (I), with probability at least 1� 4�C , whenever 2E⌦ [R= (Ḡ)] +
!
2
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q
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2= < 1/2, it holds that
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Moreover, since
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D.4. Proofs for Section 5.2.2
The next two results are used for Example �, which relies on the following lemma.
L���� �� (Contraction for vector-valued functions). Let H be a family of <-dimensional vector-
valued functions on X ⇢ R3. Let ✓ :R<!R be an !✓-Lipschitz continuous function. Denote by ✓ �H :=
{G 7! ✓(⌘(G)) : ⌘ = (⌘1, . . . , ⌘<) 2H}. Then
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Proof. The first part is due to Maurer [��, Corollary �]. For the second part, denote ,> =
(F1, . . . ,F<), where F 9 2R3 and kF 9 k2 = 1, 9 = 1, . . . ,<. We have that
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Thereby the second part of the result follows from the first part by noticing that
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L���� ��. Under the setting in Example �, it holds that
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Proof. Applying Lemma �� with H = {G 7!,1G : ,1,
>
1 = �} and ✓(·) =,2q(·) yields the result. ⇤
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Moreover, we have that
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32-Lipschitz gradient.
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Hence the proof is completed. ⇤
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