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1 Introduction

Let Q c R? be a bounded polygonal domain and f € L%(Q). A model Dirichlet boundary value problem is to
find u € H}(Q) such that
JVu-Vvdx: jfvdx forall v e H3(Q). (1.1)
Q Q

Here and below, we follow the standard notation for differential operators, function spaces and norms that
can be found for example in [1, 8, 13].

Let T, be a simplicial triangulation of Q, k > 1, and let V} be the space of discontinuous piecewise
polynomial functions of degree at most k associated with Ty, i.e.,

Vih={velL*Q):vy=v|r e P(T) forall T e Tp}.
As usual, the mesh parameter h is the maximum of the diameters of the triangles in 77,.

Remark 1.1. We will treat all triangles as open triangles.

The symmetric interior penalty (SIP) method (cf. [3, 33]) for (1.1) computes uy € Vj, such that

an(up,v) = va dx forallv e Vy, (1.2)
Q

where the bilinear form ay(-, -) is given by

anwv) = ¥ [vw-vvdxs Y [owonhivy + fovionyiwhds +o Y %J[{W]][[v]] ds.  (13)
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Here &p, is the set of the edges of Ty, |e| is the length of the edge e and ¢ is a positive penalty parameter.
Oneache € 8; (the set of the interior edges of Tj) shared by two triangles TZ, we define the average of the
normal derivative of v across e by
ovy ovy
+ ,
one One

where v; = v|7: and n. is a unit vector normal to e pointing from T, to T;. The jump [v] of v across e is
defined by

flov/on} = (1.4)

vl =vg -ve. (1.5)
Onanedgee € 82 (the set of the boundary edges of T3) that is an edge of T, € T, we define

oVe

[ov/on] = 3n

and [v] = —ve, (1.6)

where v, = v|r, and n, is the unit vector normal to e pointing towards the outside of Q.

We assume that the penalty parameter o is sufficiently large so that the discrete problem is uniquely
solvable (cf. [24]). We also assume that T}, is properly graded around the reentrant corners of Q (cf. [2, 5, 17])
to ensure the optimal convergence of finite element methods.

Let K be a compact subset of the open subset D of Q such that D € Q (i.e., D is a compact subset of Q).
Our goal is to give a self-contained derivation of the following estimate:

lu = upllzeoiy < C(Ilu = Tpullzeopy + h(1 + In A flu — Tpullwion)

+llu = upllrz(py + hllu - Mpullw!2 (@) (1.7)

asymptoticallyas h | 0, where I1j, is the nodal interpolation operator for the P Lagrange finite element space
Hcl)(Q) N Vy and the positive constant C is independent of h.
The mesh-dependent (semi-)norms in (1.7) are defined as follows. Let G be a subset of Q. We take

Th(G)={T€Th: TNG+0} (1.8)

and define the (semi-)norms || - || w2 and |- lwb>(6) by

Mz = Y (19 + Y (ellfoviomhiz, + lel M IIVIE)], (1.9)
TeTn(G) ecoT

Viwteg = max [[VViie + max(|[{ov/ondlrece) + lel  IIvIlieoe))]. 1.10

IVliw:>=) TE{MG)[H llzeo(m) ecaT(”{{ [on}lLee) + lel VIliLeo(e))] (1.10)

Interior maximum norm (or pointwise) error estimates for classical finite element methods (cf. [27, 32]
and the references therein) were extended to the two-dimensional SIP method (with k = 1) in [22] under
a global H? regularity assumption that is valid only for convex domains. Pointwise error estimates for the SIP
method in arbitrary dimensions were established in [12] in terms of the global weighted norms from [25] that
are in some sense localized. The results in [12] were extended in [20] to other two-dimensional discontinuous
Galerkin methods. The theory in both of the papers [12, 20] requires the domain Q to be smooth. Other related
work can be found in [10, 11, 23].

However, the true interior pointwise error estimate in [26] (that improved the results in [27]) has not
yet been extended to discontinuous Galerkin methods. We believe this is due to the fact that the derivations
in [26, 27] require Galerkin approximations for an auxiliary Neumann problem on a local disc around the
point under consideration. But it is not clear how Galerkin approximations for the Neumann problem can be
obtained by using discontinuous finite element functions on a mesh that does not fit the disc exactly.

We obtain estimate (1.7) by avoiding the local Neumann problem, at the expense of involving a nonlocal
term (the fourth term on the right-hand side). Nevertheless, under our assumption on T}, the estimate

lu = unllr, @ < Ch*(1 + |Inh|) (1.11)

follows immediately from (1.7) (cf. (2.3), (2.10), (2.11) and (2.13)) provided that u € leoc00 (Q), which is valid
for example if f is locally Holder continuous (cf. [18]).
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Remark 1.2. Estimate (1.11) is optimal for k = 1 (cf. [21]). For k > 2, we expect the term 1 + |In h| can be
removed after additional (nontrivial) efforts (cf. [27, 29]).

Remark 1.3. Green’s function for the boundary value problem (1.1) plays a role in the analysis in [12, 20],
which is behind the smooth domain assumption in these papers. In our approach, we use instead the funda-
mental solution in the free space, and therefore we do not need to assume that the domain is smooth.

The rest of the paper is organized as follows. We recall some preliminary results concerning the SIP method in
Section 2 and obtain a discrete Caccioppoli estimate in Section 3 that is crucial for the local energy norm error
estimate in Section 4. We then use the result in Section 4 to derive an interior W1 error estimate in Section 5,
which provides the final tool for establishing the interior maximum norm error estimate in Section 6. We end
with some concluding remarks in Section 7.

Throughout the paper, we use C (with or without subscripts) to denote a generic positive constant that
is independent of h. (The dependence of C on other parameters will be mentioned in context.) We also use
the notation A < B to represent the statement that A < (constant)B, where the hidden positive constant is
independent of h. The notation A ~ B is equivalent to A < Band B < A.

We will frequently use the following elementary scaling estimates, where h denotes the diameter of the
triangle T.

« Discrete estimates:

IVVii2(ry < Ch}1 IVliL2(m forallv € PPy, (1.12)
Wzzor) < Ch7 2Vl forallv e Py. (1.13)

o Trace inequality:
W' WVIEa o < CCRPP VI gy + IVVIEs(gy)  forallv e HY(T). (1.14)

Finally, we record the following useful inequality.
o Young’s inequality:
1
ab< $a?+ —b? foralle > 0. (1.15)
2 2e

2 Preliminaries

2.1 Energy Space

The energy space for the Dirichlet boundary value problem (1.1) is
E(A;L2(Q)) = {v e HY(Q) : Av e L2(Q)},

where Av is understood in the sense of distributions.

It is well known (cf. [14, 19]) that E(A; L2(Q)) ¢ H*%(Q) for some a € (1/2, 1]. Therefore, functions in
E(A; L2(Q)) are continuous by the Sobolev inequality (cf. [1]) and Lagrange interpolations are well-defined
on E(A; L2(Q)). If Q is convex, then a = 1 and E(A; L2(Q)) coincides with the space H2(Q) n H}(Q).

Note that

E(A;L*(Q)) c HE .(Q) (2.1)

by interior elliptic regularity (cf. [16]).
We can include both E(A; L2(Q)) and Vj, in the space

HY™Q;Tn) ={ve L2(Q) : vy = v|r € H*YT) forall T € Ty},

and (1.3)—(1.6) are well-defined for functions in H1+*(Q; T).
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2.2 Interpolation Errors

Let I17 be the nodal interpolation operator for the Py Lagrange finite element on the triangle T. We have the
following standard error estimates (cf. [8, 13]):

1§ = Drdllr2ery + hrl = Ml + hHS - Tpdlgz(ry < Ch3IImzry  forall { € HX(T), (2.2)
1§ = ¢ lzeory + hrl{ = Trlwreo(ry < Ch3Ilwzeo(ry forall § € W»(T). (2.3)

Moreover, estimates (1.14) and (2.2) imply

I¢ - Tr¢lz2om) < ChY*1{lmzery  forall { € HA(T). (2.4)

2.3 Results for the SIP Method

It follows from (1.3), (1.9) and the Cauchy—Schwarz inequality that
an(w, v) < Clwllw'*@IViw 2@ forallv, w e HY*%(Q; Tp), (2.5)
and for a sufficiently large o, we also have (cf. [24])
an(v,v) > C||V||%V;,2(Q) forallv e V. (2.6)
In view of (2.5) and (2.6), we can define the Riesz projection operator Py : H'**(Q; 73) — Vj by
an(Ppd,v) =ap({,v) forallve Vp. 2.7)
It follows from (2.5)—(2.7) that
IPr¢llwi2() < CliSllwi2)  forall § € H**(Q; Th). (2.8)
The SIP method is consistent (cf. [24]) in the sense that

an({,v) = j(—A()vdx forall ¢ € E(A; L2(Q)), v € Vp, (2.9)
Q

which together with (1.1) and (1.2) implies
up = Phu. (2.10)

Remark 2.1. Relation (2.9), which comes from integration by parts, is also valid for
{ e H*(Q) and ve HY™(Q;T)

as long as supp v € Q.

Under the assumption that T3 is properly graded around the reentrant corners, we have (cf. [7])

I — MnCllwi?) < hlACNL2@) forall e E(A; L2(Q)). (2.11)
Combining (2.5), (2.6), (2.9) and (2.11), we see that (cf. [24])

I - Pulllw 2 < ChIA 2oy forall { e E(A;L2(Q)), (2.12)
and then a standard duality argument and (2.12) yield the estimate

I = Prlllr2) < ChIS - Prllw2) < Ch?|A{lI2(q) forall ¢ € E(A; L2(Q)). (2.13)
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2.4 Mesh-Dependent Norms

Besides the mesh-dependent (semi-)norms defined in (1.9) and (1.10), we will also use the norm | - lw'G)
defined by

Wiwiie = Y [I9Vlen + Y (ellfoviombluie + 1VIIe)]- (2.14)

TeTh(G) ecoT

We can bound [[v|w> () by [IVIlw2(s), as indicated by the following lemma.
W (G) 1 (G)

Lemma 2.2. We have

l o
Vi) < C( > |T|)2 IVilw2) forallv € E(A; L*(Q)). (2.15)
TeTA(6)

Proof. It follows from (2.14) and the Cauchy-Schwarz inequality for integrals that

1 3 1
Miwii < Y [ITEIWVIem + Y (el 110v/omlie + lel* ITvIle)]
TeTx(G) ecoT

1 1 1 _1
< ) [|T|2"VV"L2(T)+ Y ATIZ(lelZ 1{ov/ond Lz (e + el Z|I[[v]]IIf2(e))],
TeTr(G) ecoT

which together with (1.9) and the discrete Cauchy—Schwarz inequality yields (2.15). O

It is also convenient to introduce the semi-norm

[NIT

2l = ( y |z|§,um) ) (2.16)
TeTh(G)
2.5 Mesh-Subdomains
A subdomain D of Q is a mesh-subdomain of Ty, if (cf. (1.8))
D= U T.
TeT (D)
Let D be a mesh-subdomain. We define the bilinear form an,p(-,-) by
anp(w,v) = Z <j Vw - Vvdx + Z yeU({{aW/an}}[[v]] + fov/on}wl) ds
TcD T ecoT o
+HJIIWJ]IIV]] dSD, (2.17)
€ e
where
1 jfeeél,
He = > 2
1 ifece &
Then we have, by (1.3) and (2.17),
ap(w,v) = app(w, v) + an,o\p(w, v) forallv, w € H**(Q; Tp). (2.18)
Remark 2.3. The two bilinear forms ap(-,-) and ap,q(-, -) are identical on H**(Q; Tp,).
It follows from (1.9), (1.10), (2.14) and Holder’s inequality that
lan,o(w, V)| < Clwllw!2)lIvilwi2py ~ forallv,w e H*%(Q; Tp), (2.19)

lan,p(w, V)| < Clwllw!=m)IViw:ip) forallv, w e H'**(Q; T). (2.20)
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2.6 A Commutation Formula
The following lemma provides a useful relation for moving a smooth function inside the bilinear form ay(-, ).
A more general form of this relation can be found in [12, displays (4.6) and (4.7)].

Lemma 2.4. Let w € C®(R?). We have

ap(wv, z) = ap(v, wz) + z Jv[Vw -Vz+V-(zVw)] dx
TeTy T

+2 Z j(dw/bn){{v}}[{z]] ds forallv,z e H™%(Q;Ty), (2.21)

eeéy e

where {v}} is the average of the values of v from the two triangles that share the edge e as a common edge if
ecél and v} =vifecéel.

Proof. Firstly, it follows from (1.3)-(1.6), the smoothness of w and the product rule that

ap(wv, z) = Z Jv(Vw-Vz)dx— Z JVV-(sz)dx+ Z JVV-V(wz)dx

TeTy Q TeTy T TeTy T
+ Z J({{av/an}}llwz]] + (0w/on){v}z] + w{oz/on}v]) ds
eeéy e
1
+0 z el J[[v]] [wz] ds. (2.22)
ecéy e

Secondly, it follows from integration by parts that

-y JVV.(sz)dx= D va-(zv(u) dx+ Y J[[v]]{{z}}(aw/an) ds+ ) j{{v}}[[z]](aw/an) ds. (2.23)

TeTy T TeTy T eclp p eelp p

Relation (2.21) is obtained by substituting (2.23) into (2.22). O

3 A Discrete Caccioppoli Estimate

First we recall a superapproximation result. Let T be a triangle, d a positive parameter and p a smooth function
on R? that satisfies
lplweoomey < Cyd ™ fore=0,1,2,.... (3.1)

We have (cf. [6, 15, 20])

Ip°x - e (P?X)|m () + hrlpx — Tr(p?X)lg2(r < Chrd > (xlr2(ry + dlpx|a(m) (3.2)

for all y € Py, where II7 is the nodal interpolation operator for the IP; Lagrange finite element on T, and the
positive constant C depends on Cy, k and the shape of T.
Let Q¢ be an open subset of Q, and let y;, € Vj, satisfy

ap(xn,v)=0 forallve Vi, v=00nQ\Qq, (3.3)

where
Qg = {x € Q : dist(x, Qo) < d}. (3.4)

Let p € C*®(R?) satisfy (3.1) and

1 on Qo,
p= 0 (3.5)
0 onQ\Qs,
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where
c1 <(6/d) <c, forsomecq,cy € (0,1). (3.6)

The following result is a discrete analog of the Caccioppoli estimate for second order elliptic partial
differential equations (cf. [9]).
Lemma 3.1. We have
loxrllwi2q) < Cd M xnllr2 0, (3.7)
provided that (h/d) is sufficiently small.

Proof. Let py € H(l)(Q) be the nodal interpolant of p in the IP; conforming finite element space associated
with Ty. It follows from (1.9), (3.1) and standard interpolation error estimates (cf. [8, 13]) that

I —poXulrzy < Y (WnV(e =PIy + 10 ~ POVXAIZ: (1))
TeTn(Qs)

+ ) lel(lfxn(d(p - pn/omBl e + (o — pDEOXR/ OBl ()

TeTx(Qs) ecoT

Y Y el e - polxndi,

TeTh(Qs) ecoT

< Y (/a2 IxnlZs gy + (Br /D2 IVXRIZ 7))
TeTh(Qs)

+ ) lel[(el/d®) IIxnl}IZz o) + (el/d) IHoxn/on}fa ]

TeTn(Qs) ecoT

+ ) lel™Mel/@? IxXalIE s

TeTh(Qs) ecoT

which together with (1.12), (1.13), (3.6) and (h/d) < 1 implies

I = prxnllw2@) < d” ixnlz@q)- (3.8)
Using (2.6) and (3.8), we find

loxnlliy 2y < lprXklEy2(g) + 10 = PDXAITG 120y < @n(PIXRs P1XR) + ™2 IXnl T2 (g, (3.9)

and, in view of (2.5),

an(pixn, pixn) = an(pXn, PXn) = 2an((p = p)Xns pXn) + an((p = pXns (P = PDXk)
< an(pxn, pXn) + (0 = pOXRIW 2 @) IpXRIW 2 @) + (0 = PDXR ||ﬁ,;,2(g)
< an(pxn, pxn) + A Ixnllz g loXnlwi2@) + d 2 Ixnl2 g, - (3.10)
It then follows from (1.15), (3.9) and (3.10) that

loxnlliy:2 ) < an(pxn: pxn) + d 2 IXnlE g, (3.11)

and it only remains to estimate the first term on the right-hand side of (3.11).
According to Lemma 2.4, we can write

an(pxn, PXn) = an(xn, P°xn) + R, (3.12)

where

R= Y | xulVp-V(oxn) + V- (pxnVp)ldx+2 ) | (9p/om)xn}lpxnl ds,
TeTy T ety e

and we have, by (1.9), (1.12), (1.13), (3.1), (3.4)—(3.6) and the Cauchy—Schwarz inequality,

[R| < Z IxrlzzcnldHpxnlay + A 2lxnllz )]
TeTr(Qs)

+dt Y Y (el b)) (e 21 loxn D)

TE‘Th(Qﬁ) ecoT

< d Il ol @ + d 21Xl - (3.13)
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Now we use (3.3), (3.5) and (h/d) < 1 to write
an(n, p*xn) = an(xn, p*xn — Da(p’xn)), (3.14)
and it follows from (1.3), (1.9), (3.5) and the Cauchy-Schwarz inequality that

an(xn, p>xn — Mn(pxn))
=) JVXh V(p%xn - n(p*xn)) dx

TeTy T
+ Yy j[{{axh/an}}[[pth — a(p*xw)] + §0(0%xn — n(p?xn))/On} [xn1] ds
eelp p
+0 Y lel™ [Ixallp*xn - Ta(p*xn)] ds
eeéy e
< Z IXnlmnlp?xn — D%l
TeTh(Qs)
)Y (lel? 1goxn/onHlzze) (el Lo — Mh(p2xm)]liLz(e))
TeTr(Qs) ecoT
£ Y (el 2 1400 — Th(p*xn))/On (o) (Il 1 [xnTIz2(e))
TeTh(Qs) ecoT

+ Y Y (el llxallize)(lel 2 1ok — Ta(p2xm) i),

TeTh(Qs) ecoT

which together with (1.12)-(1.14), (2.4), (3.2) and (3.4)—(3.6) gives the estimate

an(xn, p>xn — Mn(pxn)) < Z Ixnllzzcry (d 2 xnllzzcry + ™ pxnlm(n)
TeTh(Qs)

< d72xnl72q,) + 4 Xnlz g Ioxnl w2 @) (3.15)
Putting (3.11)-(3.15) together, we arrive at the estimate
lloxn ”%/V;’Z(Q) < d7%Ixnllzy + d ixnllz o loXn w2,

which implies (3.7) through (1.15). O

4 AlLocal Energy Norm Error Estimate

We derive a local energy norm error estimate that is needed in Section 5 and Section 6. A similar result can
also be found in [12, Section 4].
We will use the notation Q¢ and Qg introduced in Section 3.

Lemma 4.1. We have
1§ = Pr¢llw} (o) < C(vienvfh[ll( —vlwi2y +d IS - Vi@l + d7 ¢ = Prllz,) (4.1)
forall{ € E(A; L2(Q)), provided that (h/d) is sufficiently small.

Proof. Let w be a smooth function defined on R? such that

1 onQg3,
w =
0 onQ \ de/3,

(4.2)

and
IVwllzeq) < Cd™ . (4.3)
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We have
I§ = Préliw!2q) = lw§ = Préllw: ) (4.4)

by (1.9), (4.2) and (h/d) < 1, and we can write
w{ - Pp¢ = [w{ — Pp(w{)] + [Pn(w() - Pr{]. (4.5)
There is also a straightforward estimate

lw¢ - Ph(w()”a/}l[vz(go) < wd - Ph(‘”()”%v}llvz(g) < ||w("%/v;r2(g)

s Y (V@R + Y lellifod)/ondl )

TE(‘Th(de/g) ecoT
< ) (AP + VSR )
TeTh(Q24/3)

) Y 1eld Iy + 1€08/0nBl )

TG‘T},(QMB) ecoT

s ”("%/V;'Z(Qd) + d_2||(||i2(gd) (4.6)
that follows from (1.9), (1.13), (2.8), (4.2), (4.3) and (h/d) < 1.
Note also that
lw¢ = Pr(w)lr20) < hlw{ - Pr(w)lw! @) < h(I{lw! 2@, + d ¢z 00) (4.7)

by (2.13) and (4.6).
It only remains to estimate the function y, = Pp(w({) — Py{ € Vj, that satisfies

an(xn,v)=0 forallve Vs, v=00nQ\Qqs (4.8)

because of (2.7) and (4.2).
Let p be a smooth function on R? such that

1 onQ,
p= ° (4.9)
0 onQ\ Quu,

and
Iplwes gy < Cd™¢ for £=0,1,2,....

In view of Lemma 3.1 and (4.8), we have
loxnllw!2@) < d lxnllz2(ys)- (4.10)
Combining (4.2), (4.4)-(4.7), (4.9)-(4.10) and (h/d) < 1, we find

1€ = Prlliwi?@o) < lw§ = Pr(wOllw!2q) + IpXRIW} 2 @0)
< ISllwl2 ) + d M2y + d IXnl20,)
< ICllw} 2 + d M2y + d 7 (lwd = Pr(wlirzys) + 10 = Prdliizay,s))
< I€llwi2 g + d Mg + IS = Prdliz g

which implies (4.1) if we replace ¢ by { — v for an arbitrary v € V. O

Corollary 4.2. In the case where Qg € Q, we have

I = Prlllwi2 o) < C(RISIw22 0, + d ¢ - Prdllzzay)

forall { € E (A; L2(Q)), provided that (h/d) is sufficiently small.



58 —— S.C.Brennerand L.-Y. Sung, An Interior Maximum Norm Error Estimate DE GRUYTER

Proof. First we note that we can adjust the value of d in (4.1) so that
1 = Prdlw!2(ao) < I = Madlw2 (g + d M 1E = Tndli2 @y + d I = Prlla, -
Next, in view of (1.9), (1.14), (2.1), (2.2) and (2.16), we have

I -l liz oy = Y [IVQ =TIz + Y lell{o( - T)/omhiZ. ) |

TeTn(Qas2) ecoT
2 2 2 2 2
< Y RBap+ Y (=TI + h3lS = Tl )
TETh(Qd/z) TeTh(Qq)
< hzﬂ(lip(]‘) < h2|(|Wﬁ'2(Qd)’
TeTh(Qa)
a2 =TI,y <A Y =TSy <A Y hilIaey < H2ISR2aq,)- m
TeTh(Qq) TeTr(Qq)

5 An Interior W?*-! Error Estimate

Let T. € Ty such that T, is a compact subset of the open set D € Q, ¢, € CX(T.), and let the function { be
the Newtonian potential with density ¢ . defined by

{00 = | Nox-y)g. ) dy. (5.1)
T.
where 1
N(x) = —=— In|x| (5.2)
2

is the fundamental solution for —A in the free space R?.
Then { belongs to C*®(R?),

-A{ = ¢, (5.3)
and direct calculations produce the following estimates:
[0l < C[1 + Indist(x, T)Il@«lr(r,y forallx e R?, (5.4a)
IV¢OO)Il < Cldist(x, T )1 iz, forall x € R?, (5.4b)
V20| < Cldist(x, T2l llzi(r,) forall x € R2. (5.4¢)

Lemma 5.1. Let { be defined by (5.1). Given any w € C®(Q) such that
w=1 onD, (5.5)

we have
lw¢ - Pr(w)lw! o) < CR*(1 + InhDl¢.lr2(cr.), (5.6)

where the positive constant C is independent of h but increases as dist(T., Q \ D) decreases.
Proof. Observe that w( € C(Q) and
A2 < I« lr2r,) (5.7)

by (5.3)-(5.5), where the hidden constant increases as dist(T., Q \ D) decreases.
We follow the approach in [27] to employ a dyadic decomposition

Aj={xeQ:27 d < dist(x, T.) < 27d}, whered = max dist(x, T.).
X€E

Let J be the largest integer such that
27d > mh (5.8)
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for a sufficiently large positive integer m (independent of h), Qp = D \ U]]-:o Ajand
A4=PGQ:d<ﬁmLTQ<d+%mﬁwjﬁ\mk

Note that |4j| ~ 27d for 0 < j < J and (5.8) implies |Qp| ~ h?.
We have ;
lw = Pp(wlw ) < lwf = Pp(w)lw ) + Z(:)II(UC = Pp(@)llwiay), (5.9)
lw¢ - Pr(@wd)lw! @y < hlw{ - Pr(@d)lw! 2@, :
< hlw{ - Pr(w)lw> ) < R M w2y < M2l r,) (5.10)
by (2.12), Lemma 2.2 and (5.7).
Forj=0,...,Jand dj = 277d, we have
lw¢ - Pr(wlw! @) < djlwd - Pr(wd)llwr2a))
< di(hlwSly22(a uaua,y * 45 108 = P@Olzzca;ua0a,,0) (5.11)
by Lemma 2.2, Corollary 4.2 (with Q¢ = Aj and d = d;), and

Wl ua0a;,) < d,-_1||¢*||L1(T*) < d]'_lh"(p*"LZ(T*) (5.12)

by (5.4) and the Cauchy-Schwarz inequality.
It follows from (2.13), (5.7), (5.8), (5.11) and (5.12) that

J J ]
Ylw¢ = Pr@llwiiay < Y. W lpalar.) + Y lw - P2 ) < h*(1 + In Al L2,
j=0 j=0 j=0

which together with (5.9) and (5.10) implies (5.6). O

6 An Interior Maximum Norm Error Estimate

Let T. € Ty and x, € T.. We follow [28, 29] to introduce a smoothed Dirac delta function ¢, € C®(T) such
that
Jpq,')* dx = p(x,) forallp € IPg. (6.1)
T.
More precisely, we start with the construction in the reference simplex T with vertices (0, 0), (1, 0) and (0, 1).
Let A be a nonnegative function in C2°(T) such that

JAdx:l.
T
The formula

@, q) = quA dx

T
defines an inner product on Py, and there exists g € Py such that
(p, q) =p(x.) forallp e Py,

where %, is the point in the closure of T corresponding to x, € T, under an orientation-preserving affine
transformation A, that maps T to T.. We have

Ip(ﬁ* dx =p(x,) forallp € Py,

T
where <i)* =qgle CS"(T). We then take ¢.. to be the function (2|T|)‘1(¢3* o A71). In particular, we have

hr llp. 2,y + 1@slir,) = 1. (6.2)
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Theorem 6.1. Let K be a compact subset of the open subset D e Q. We have
lu = unllzeoky < Clllu = Mpullzeoy + (L + Inhllu - Tpullwiem) + lu = unlLz) + hllu - Dpullw2@)

asymptotically as h | 0, where the positive constant C is independent of h.

Proof. We may take D to be a mesh-subdomain of T, without loss of generality in the following arguments.
(Otherwise, we replace D by a mesh-subdomain that is a subset of D, which is possible because h | 0.)

Let T. € Tn(K), let x, € T. be one of the nodes for the P Lagrange element, and let ¢.. € C%(T.) satisfy
(6.1) and (6.2). We can assume that h is sufficiently small so that dist(T., Q \ D) > % dist(K, Q \ D).

Let w € C(Q) satisfy (5.5). We have, by (6.1) and (5.5),

u(x) — un(x,) = (Mpu)(x.) — up(x.)

j w(Thu — up)p. dx

Q
J w(ITpu — u). dx + J w(u —up)g. dx, (6.3)
Q Q

and, in view of (5.5) and (6.2),

l J w(ITpu —u)e. dxl < Mpu = ullzomylp«lr(r,) < IMpu = ullzeo - (6.4)
Q

Let N(x) be the fundamental solution of —A in (5.2), and let

g(x) = j NG - ). (y) dy
T.

be the Newtonian potential with density ¢..
We have g € C®(R?),
-Ag = ¢* (65)
and
"g"Wva(Q\D) <@l = 1, (6.6)

where D is a mesh-subdomain of T, such that K ¢ D e D and that dist(D, Q \ D) ~ 1 dist(K, Q \ D).
The estimate
IA(wg) 2y < Bt (6.7)
is then a simple consequence of (5.5), (6.2), (6.5) and (6.6).
It follows from Remark 2.1, Lemma 2.4 and (6.5) that

J w(u — up). dx = ap(w(u - uy), ) = an(u — up, wg) +1, (6.8)
Q
where
I= Z J(u —up)[Vw -Vg +V - (gVw)] dx
TeTy T
satisfies

] < llu = upllz2py (6.9)

because of (5.5) and (6.6).
Next we use (2.7), (2.10) and (2.18) to write

ap(u —up, wg) = ap(u - yu, wg — Pp(wg))
= ap,p(u - pu, wg — Pr(wg)) + an,o\p(u — yu, wg — Pr(wg)), (6.10)
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and we find, by (2.19) and (2.20),

lan,p(u — pu, wg - Pr(wg))| < llu - Hpullwi~m)lwg - Pr(wg)lw! (D),
lan,o\p(u — pu, wg — Pp(wg))| < lu - Hpullwi?@\pllwg — Pr(wg)lwi?@\b)-

It only remains to estimate the two terms ||wg — Pr(wg)|| wh(D) and |wg — Pr(wg)| Wh3(Q\D)-
First we take Qo = Q \ D and d = 3 dist(D, Q \ D) in Lemma 4.1 to obtain

lwg - Pr(wg)llwi?@\p) = lwg - Pr(wg)lw!?q,) < llwg - Mr(wg)lw2@y + lwg — Pr(wg)lrz(q)-

From (1.14), (2.2), (6.6) and the same calculation in the proof of Corollary 4.2, we have
lwg - Mr(w)lw! 2@, < h,

and, from (2.13) and (6.7),
lwg — Pr(wg)lr2q) < h.

Combining (6.13)-(6.15), we see that
lwg — Pr(wg)llw!?@\p) < h,
which together with (6.12) gives
lan,0\p(u — pu, wg - Pp(wg))| < hllu - TMrullw!?q)-
Finally, using Lemma 5.1 and (6.2), we obtain
lwg - Pr(wg)lwtpy < B*(1 + In k). ll2(r.) < (1 + [In ),
which, in view of (6.11), implies
lan,p(u — IThu, wg - Pp(wg))| < h(1 + [In h])llu - Dpullw)= D).
Putting (6.3), (6.4), (6.8)—(6.10), (6.16) and (6.17) together, we arrive at the estimate

lu(x.) — un(x:)l < llu = Hpullzeo(py + h(1 + [In hD)lu - Mpullw! =)

+llu — unllr2p) + hllu - Mpullwi2 o).

On the other hand, we have, by scaling,

Ny
ITThu = unlizeory < Y 1TTpu - up)(x3)l,
i=1

where x1, ..., xy, € T are the nodes for the Py Lagrange finite element.
It then follows from (6.18) and (6.19) that
= unllze(r < u = Mpulleom) + AL+ InhDju = Mpulyie )

+ [lu = unllz2py + hllu - Hhu||W;,z(Q) forall T € Th(K).

7 Concluding Remarks
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(6.11)
(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

We have established an interior maximum norm error estimate for the SIP method for a simple model problem
in two dimensions. The derivation is self-contained (up to the standard results for the SIP method and the
superapproximation result in (3.2)). The results in this paper can be extended along the lines in [20] to other

discontinuous Galerkin methods in [4].
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Our approach can also be applied to elliptic problems with variable coefficients where —A is replaced by
an elliptic operator p(x, D) in divergence form. One only has to replace the Newtonian potential

j NG - ). () dy

T.

by q(x, D)¢.., where the pseudo-differential operator g(x, D) of order -2 is a parametrix for p(x, D) in the free
space (cf. [31, Theorem 3.1.3 and Lemma 12.3.1] and [30, Section 6.4]).

Note that the approach in this paper does not work properly in three dimensions because in that case
estimate (6.2) takes the form

2, + sl = 1

so that
lwg - Pn(wg)llr2(q) < h2.

Consequently, estimate (6.16) now reads
|an,o\o(u ~ Tpu, wg ~ Mp(w))] < h? u - Mhullw'2 @),

and the fourth term that appears on the right-hand side of (1.7) becomes h: [lu - Hhullwisz(g), which is sub-
optimal.

We believe interior pointwise error estimates in three dimensions can still be established without using
alocal Neumann problem. However, the correct order of convergence can only be achieved if no global term
appears on the right-hand side of the estimate, which means more of the techniques in [27] would have to be
adopted.

Funding: This work was supported in part by the National Science Foundation under Grant No. DMS-19-
13035 and Grant No. DMS-22-08404.
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