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Abstract— We propose a novel framework to differentiate
between vehicle trajectories originating from human and non-
human drivers by constructing a data-driven boundary using
parametric signal temporal logic (STL). Such construction
allows us to evaluate the trajectories, detect rare-events, and
reduce the uncertainty of driver behaviors when it assumes
the form of a disturbance in control synthesis and evaluation
problems. We train a classifier that separates admissible (i.e.
human) examples - which arise from real-world demonstrations
- and inadmissible (i.e. non-human) examples that are generated
by falsifying specifications synthesized from the same real-world
driving data. Proceeding in this fashion allows for finding a
reasonable boundary of human behaviors exhibited in real-
world driving records. The framework is demonstrated using
a case study involving a human-driven vehicle approaching a
signalized intersection.

I. INTRODUCTION

The field of human driver research has received significant
attention, in part due to its relevance to connected and
automated vehicles (CAVs) and subsequent problems of path-
planning and control synthesis. Consequently, there is a
significant body of research in the field of modeling human
driver behavior that has leveraged different techniques, such
as dynamic system modeling [1]; neural networks [2], [3];
stochastic processes [4]; and inverse reinforcement learning
[5]. Much of the prior work in the field has focused on
predicting likely actions based on inference from driver
studies or real-world observations of human drivers. Unfor-
tunately, “interesting” edge cases are rare events and may
not be explicitly captured or reproduced in the aforemen-
tioned approaches. Therefore, we advocate a mapping as in
[6], which leverages real-world driving data to construct a
realistic set of trajectories which accommodate the reactive
and uncertain nature of human drivers. Such a method can
be extended to evaluating controllers by sampling rare, (and
likely dangerous) events.

In contrast to the differential game setting of [6], we gener-
ate examples of non-human behaviors using falsification. The
literature on cyberphysical system verification is substantial,
and several mature toolboxes have been developed to address
the falsification problem [7], [8]. Furthermore, recent litera-
ture has addressed the synthesis of precise specifications by
searching over parameters for which template formulae are
falsified [9], or satisfied [10] by a given system. Herein, pa-
rameter synthesis is used to precisely describe human driver
behavior by studying real-world examples; then falsifying
these specifications generates possible non-human actions.
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The observed and generated examples are subsequently used
in the construction of a classifier.

Such an approach has consequences for control synthe-
sis and evaluation. Given a state-dependent description of
human driver behavior, we can compute sets of interest,
such as initial conditions from which a human disturbance
can initiate collisions. These scenarios are instructive to test
the robustness of a path-planner or a controller. There are
philosophical similarities between this strategy and the work
developed in [11].

Motivated by [3] and [12], we demonstrate the proposed
framework on a case study of a human-driven vehicle (HV)
approaching a signalized intersection. In this setting, the
leading HV plays the role of a disturbance signal to the
following controlled vehicle, which desires a safe, fuel-
optimal policy. Our objective is to obtain a set-valued, state-
dependent mapping that describes human actions using the
aforementioned classification approach; such a mapping can
be conceived as a driver model, which can be utilized for
synthesizing a fuel-optimal safe controller as in [12]. In the
absence of such a mapping, we may resort to a worst-case
approach based only on the physical limitations of a given
situation or one of the aforementioned probabilistic methods.

The remainder of this paper is structured in the following
way: Section II gives an overview of the problem under
study. Section III summarizes the key mathematical tools that
are leveraged to solve the problem. Section IV consolidates
the methods of Section III to detail the solution approach
alluded to in Section II. Section V discusses results and
practical considerations of our solution approach. Section VI
offers concluding remarks and plans for future work.

II. PROBLEM FORMULATION

The objective of this work is to systematically determine a
set-valued, state-dependent bound on human driving behav-
ior. We consider the car-following problem in the vicinity of
a signalized intersection, as in [12]. A robust control policy
in this setting is concerned with implementing a fuel-optimal
policy while respecting possible acceleration actions of the
leading vehicle, i.e. the disturbance.

We reason that a driver is unlikely to modify his/her
behavior based on the actions of a trailing vehicle, but will be
affected by other factors such as the state of a traffic light or
length of the vehicle queue already formed at an intersection
[3]. We make the following assumptions on the motion of
the HV: (1) The HV passes through the intersection, i.e.
no left/right turning actions; (2) The HV does not change
lanes; (3) The acceleration of the HV is determined only by
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Qty. Description Type Range
dx Distance to intersection Continuous state [0, d]
vx Velocity Continuous state [0, v]
tel Time since last sT L change Continuous state [0, ∞)
lq Traffic queue at intersection Continuous state [0, dx]

sT L State of traffic light Discrete state {G,Y,R}
u(t) Acceleration Input [a,a]

TABLE I: Summary of important quantities of Σ

a short history of the state of the traffic light and its current
kinematic state.

Formally, the problem can be stated as the construction of
a mapping from a sequence of states to an admissible subset
of the acceleration input of HV at the next time instance:

f :
t=t0

∏
t=t0−h

X −→ 2U .

A. System Model

The system, Σ, capturing the evolution of the states affect-
ing a human driver can be represented as a hybrid automaton
(Figure 1). Relevant quantities of Σ are summarized in Table
I. In this study, the signal light will cycle through the differ-
ent colors on a fixed schedule reflecting the most frequent
values of signal phasing and timing data from the Safety
Pilot Model Deployment (SPMD) database (c.f. Section II-
B). Among the four continuous states, the estimated length
of the queue formed at the intersection, lq, is 0 during green
and yellow lights, and a constant value on red lights. Note
that this model is agnostic to the specific vehicle model:
instead, Σ models the evolution of states that represent the
driver’s surroundings and impact the HV’s acceleration.

Fig. 1: Hybrid automaton representation of Σ

B. Overview of Real-World Driving Data

The human driving data were collected from the
Safety Pilot Model Deployment (SPMD), a large-scale
connected vehicle study conducted in the Ann Arbor,
MI area [13]. For this work, 556 eastbound trajectories
from three weeks in 2014 were extracted from instru-
mented vehicles and synchronized with V2X communica-
tion units installed at the Fuller-Bonisteel intersection (map
available at: https://www.google.com/maps/@42.
2873631,-83.7196829,19z). Note that the extracted
data were selected only on the premises of data integrity, i.e.
no further screening criteria were applied.

C. Overview of Proposed Method

The problem of constructing a state-dependent set of HV
acceleration inputs is framed as finding a boundary between
human and non-human driving behavior, and subsequently
translated into one of classification. SPMD provides exam-
ples of human driving traces, i.e. positive examples for the
classification; on the other hand, generating negative training
examples for the classification problem, i.e. the driving traces
that are “non-human”, is less straightforward.

The fundamental assumption of our framework is that
HVs satisfy certain specifications representing driving norms,
etc. We attempt to capture these specifications using a set
of Parametric Signal Temporal Logic (PSTL) formulae. A
feasible parameter set for these PSTL formulae is synthesized
from analysis of real-world (naturalistic) driving data; the
boundary of the parameter set is used to convert PSTL
formulae to Signal Temporal Logic (STL) formulae. Then
falsifications of STL formulae represent violations of traffic
norms that humans are assumed to satisfy. Consequently,
such violations constitute negative training examples for
the classifier. The mapping to human driver actions then
corresponds to those actions for which the state-action tuple
is classified as “human” behavior.

III. MATHEMATICAL PRELIMINARIES

Central to this approach is the construction of precise
specifications that represent human driver behavior and sub-
sequent classification of state-action tuples as “human” or
“non-human”. In the following, we give a brief overview of
the mathematical tools employed in this framework. More
details can be found in [14] and [15]. The interplay between
the tools used to achieve our objective will be described in
more detail in Section IV.

A. Parametric Signal Temporal Logic

STL specifications can be conceived as constraints on a
signal, x(t) : R+ → Rn, as it evolves in time [16]. Such a
constraint can be captured by inequalities, µ , of the form
µ := f (x(t)) ≥ π , where π ∈ R. The syntax for building
specifications can be defined inductively as:

φ :=> | µπ | ¬φ | φ ∧ψ | φU[τ1,τ2]ψ

where the subscript of µπ is used to emphasize the de-
pendence of the constraint on the parameter π . The main
distinction between STL formulae and PSTL formulae is
that in the latter, some of the parameters, such as the
scale parameter π , and time parameters τ1 and τ2, are left
unspecified. The semantics of (P)STL formulae are given as:

x(t) |= µπ ⇔ f (x(t))≥ π

x(t) |= ¬µπ ⇔ f (x(t))< π

x(t) |= φ ∧ψ ⇔ x(t) |= φ and x |= ψ

x(t) |= φU[τ1,τ2]ψ ⇔ ∃t ′ ∈ [t + τ1, t + τ2] : x(t ′) |= ψ

and ∀t ′′ ∈ [t, t ′] : x(t) |= φ .

We also consider the operators always and eventually:

♦[τ1,τ2]φ := >U[τ1,τ2]φ

�[τ1,τ2]φ := ¬(♦[τ1,τ2]¬(φ)).

https://www.google.com/maps/@42.2873631,-83.7196829,19z
https://www.google.com/maps/@42.2873631,-83.7196829,19z


(P)STL introduces a robustness metric ρ(φ ,x(t)), to fur-
ther refine Boolean satisfaction of a specification. This is
accomplished by the following quantitative semantics:

ρ(µπ ,x(t)) = f (x(t))−π

ρ(¬φ ,x(t)) = −ρ(φ ,x(t))
ρ(φ ,ψ,x(t)) = min(ρ(φ ,x(t)),ρ(ψ,x(t)))

ρ(φU[τ1,τ2]ψ,x(t)) = supt ′∈[t+τ1,t+τ2]
(min(ρ(ψ,x(t)),

inft ′′∈[t,t ′](ρ(φ ,x(t))))

The positive (or negative) sense of ρ(φ ,x(t)) captures
Boolean satisfaction (or violation) of the specification, and
the absolute value captures the robustness with which the
signal satisfies (or violates) the specification.

B. Parameter Synthesis

The parameter synthesis problem is one of finding the set
of parameters which result in tight satisfaction of a PSTL
specification by signals. In particular, we consider specifica-
tions ρ(φ ,x(t)) that monotonically increase or decrease with
a specific parameter. For such problems, parameter synthesis
can be reduced to a generalized binary search [14], [10]. For
this work, we use the methods developed and implemented
in the BREACH toolbox [8].

C. Falsification

The falsification problem can be thought of as dual to that
of parameter synthesis. The objective of this problem is to
find an input signal which results in the violation of a given
specification. In [10], this is formulated as an optimization
problem on ρ(φ ,x(t)) over input signals u(t):

minimize ρ(φ(p),Σ(u(t)))
s.t. u(t) ∈U

p ∈P.

A negative ρ? indicates a specification violation and the pair
(x(t),u(t)) is referred to as a counterexample. In general,
the falsification problem is undecidable, and the BREACH
toolbox may not find a counterexample even if one exists.

D. Classification

The classification problem seeks to identify boundaries
between distinct classes given labeled examples of valid class
members. In this work, we operate on time-series of the
state and control input, X(t) = [x(t),u(t)], and check for
membership in the aforementioned classes.

The former can be modeled using a feed-forward neural
network (or multi-layer perceptron, MLP), and the latter
using a recurrent neural network (RNN) (Figure 2). The MLP
is a generic non-linear function approximator and is widely
used for regression and classification; however, it is best
equipped to handle only instantaneous snapshots of a time-
series. On the other hand, RNN is a class of artificial neural
networks where connections between nodes form a directed
graph along a sequence. This allows for incorporating the
temporal dynamic behavior of a time sequence. Unlike feed-
forward neural networks, RNN can use their internal hidden
units to process sequences of inputs.

(a) Feed-forward Neural Net-
work Classifier

(b) Recurrent Neural Network
Classifier

Fig. 2: Two classifiers are used to classify “human” traces
from “non-human” traces

In this project, we demonstrate both methods of classifi-
cation and compare the performance of the two classifiers.
The output can be either modeled using a binary variable
y(t) ∈ 0,1 (where 0 indicates “non-human”, and 1 indicates
“human”) or using two distinct variables y(t) = [pnH , pH ]

T

where pnH ∈ [0,1] and pH ∈ [0,1] indicate the probability
of the given trace to be non-human and human, respectively.
Note that ∑(yi(t))= 1. In this work, we will use the notion of
the output that is most convenient in the relevant discussion.

IV. SOLUTION APPROACH

As described in Section II, we seek to construct a set of
driver inputs given a finite history of the states and inputs,

f (x(t0−h), ...,x(t0),u(t0−h), ...,u(t0−1)) = [u(t0),u(t0)].
(1)

In our solution, we will consider 3-second intervals con-
sisting of tuples of the state and control input. Suppose the
classifier takes the form

g(x(t0−h), ...,x(t0),u(t0−h), ...,u(t0)) = g(x̄, ū) (2)

and maps arguments to the real numbers. In this setting, a
positive value of (2) implies that the tuple is an example of
human behavior and a negative value implies that the tuple
is an example of non-human behavior. Hence, the boundary
of human behavior is the set of tuples (x̄, ū) for which the
classifier evaluates to zero:

Xboundary = {(x̄, ū) | g(x̄, ū) = 0} (3)

(Note: this approach can be adapted for classifiers which
produce an output in [0,1]2, i.e. expressing the probability
of an input tuple belonging to either class, by finding the set
of tuples for which the output is [0.5,0.5]T .)

Given the classifier in (2), the set-valued driver behavior
mapping, f , can be defined as f (x̄) = [u,u]⊆ [a,a] where the
lower limit, u(t0), is found from (1) and (3):

u(t0) = min{u(t0) | (x̄, ū) ∈ Xboundary}

In practice, we seek a compact set to represent the range of
inputs as in (1). Moreover, from the perspective of control
synthesis treating the driver as a disturbance for our case



study, we are interested in the lower limit of the human ac-
celeration because the lowest acceleration, i.e. hardest brake,
would be a dangerous disturbance. Therefore, one method
may be to initiate a root-finding routine for g initialized at the
lowest acceleration permissible by the road friction. These
details are explored in more detail in Section V.

The selection of negative training examples for classifi-
cation requires actions which no human would undertake
given the state. In order to generate such examples, we
posit that humans generally satisfy a set of specifications;
then violations of these specifications are candidates for
negative training examples. In this study, we consider linear-
time properties representing traffic norms. While not every
violation of a traffic norm constitutes non-human behavior,
we argue that violation of traffic norms is a necessary condi-
tion for non-human behavior. (Note the distinction between
traffic rule and traffic norm: the former refers to laws whose
violations would result in traffic citations, whereas the latter
refers to common driving practices that we sought to discover
through parameter synthesis. The interplay between traffic
rules and norms is discussed in more detail in Section V).
The basis for counterexample generation then is falsification
of specifications that human drivers satisfy. The problem
of creating precise specifications for subsequent falsification
is posed as one of parameter synthesis where the template
reflects some traffic norm. Note that this is a different
flavor from the requirement mining methods of [10]: Jin et
al. developed a framework to synthesize the requirements
to which legacy controllers were developed for subsequent
analysis (possibly using formal methods). On the contrary,
in this work, the controller under study is the human driver
itself, and the falsifier becomes a proxy for “non-human”
behavior.

It is reasonable to ask whether the synthesized set of
specifications itself can be used to define the boundary of
human driver behavior. We argue that such a method may
encounter the following issues: (1) the set of specifications
would have to be “complete” in some sense, i.e. it should
represent all the norms that human drivers follow; (2) we
argue that violation of traffic norms is a necessary condition
for identifying non-human behavior but it is not sufficient:
hence there may be examples of violating behavior that is
valid human behavior. In brief, the authors are not aware of
methods to quantify the quality of the set of specifications
but this may be possible with a classification approach as
described in Section VI.

The overall work-flow is described in the context of Figure
3. Red boxes represent inputs; these are traces of human
driver behavior, specification templates representing driver
behavior in the form of PSTL formulae, and a dynamical
model in Simulink with an interface to BREACH. The traces
and PSTL formulae are inputs to the parameter synthesis
problem. The output of this block is a set of feasible
parameters for a given specification. The feasible parameter
set and specifications are considered in the falsification
problem wherein we seek a control signal to violate the
specification; consequently the falsifier is a proxy for a non-

X+: traces of
human driver

behavior

Parameter
synthesis

Φ: PSTL
representations
of traffic norms

Counterexample
generation using

falsification

Σ: dynamical
model

Classification

f (·): driver
behavior model

P(φ), ∀φ ∈Φ

X−

g(x,u)

Fig. 3: Description of solution approach

human driver. These negative training examples are com-
bined with the positive training examples used for parameter
synthesis in the classification block wherein we seek the
aforementioned function g. Finally f is obtained through
g using the querying process described above. The first
two blue blocks corresponding to parameter synthesis and
falsification are treated separately from the last blue block
corresponding to classification. Some iteration between the
two, i.e. sampling traces belonging to the “human driver”
class and including these in X+ for subsequent classifier
construction, may be considered in future work - this is
discussed in more detail in Section VI. A counterexample
generation strategy corresponding to the first two blue blocks
is described in Algorithm 1. The reason for controlling the
initial condition for subsequent falsification is to obtain good
coverage and diversity in the falsifying traces. Note that we
applied slight modifications to this routine. For clarity, these
were omitted in the presentation of Algorithm 1 - details are
discussed in Section V.



Algorithm 1: COUNTEREXAMPLE GENERATION

Data: Traces of driver behavior: X+; State space
discretization: X0; PSTL formulae: Φ;
Dynamical model: Σ

Result: Falsifying traces: X− = {(x0,u0, ..., ,xN ,uN) :
∃φ ∈Φ,∃p ∈P(φ),∃x0 ∈X0, such that
ξu0,...,uN−1(x0) 6|= φ(p)}

1 P ← /0; X−← /0;
2 forall φ ∈Φ do

// Parameter synthesis [14]
3 P(φ) = FINDPARAM(X+,φ)
4 forall p ∈P(φ) do

// Falsification [10]
5 forall x0 ∈X0 do
6 X ′ = FALSIFYALGO(Σ(x0),φ(p))
7 X−← X−∪X ′

8 end
9 end

10 end

V. RESULTS AND DISCUSSION

A. Driver Behavior as PSTL Formulae

Following the framework of Section IV, we construct a
collection of specifications in PSTL to represent common
driving norms. A simple example of this is a specification
on speed limit: “never exceed speed limit”. While this
technically represents a traffic rule, a higher priority traffic
norm is to travel with the flow of traffic; therefore, human
drivers typically exceed the posted speed limit by some
margin. Consequently, we synthesize a PSTL specification
based on the traffic rule and parameterize the true speed
limit to accommodate following traffic norms:

φvlimit (ν) =�[0,T ](vx < ν). (4)

Aside from rules such as (4), we investigate how driver
behaviors vary based on the state of the traffic light. Essen-
tially, this translates into modeling the driver as a switched
system where we seek to learn the behavior rules in each
traffic light state. Herein, we formulate a PSTL formula for
each traffic light state based on a basic traffic rule activated
by that particular traffic light state. In (4) and in subsequent
specifications, T is the length of the human driver trajectory.

At a green light, a vehicle should move fast enough to
avoid blocking traffic:

φG(δ ,τ,ν) =�[0,T ](((sT L(t) = G)
∧(dx(t)> δ )∧ (tel(t)> τ))→ (vx(t)> ν))

(5)

Intuition: If the traffic light has been green “for some time”,
and one is “sufficiently far” from the intersection, then one
should “not drive too slowly”. All expressions in quotation
marks are represented as parameters in the PSTL formula.

At a yellow light, vehicles may decide to pass or stop:

φY (δ ,ν0,ν) =�[0,T ]((sT L(t) = Y )∧ (dx(t)> δ )
∧(vx(0)> ν0)∧ (tel(t)> 0.5)→�[0,3](vx(t)> ν))

(6)

Intuition: Based on the vehicle speed and distance to the
intersection, if one “recognizes” a yellow light, then one must
decide to pass or stop. In reality, the decision is determined
by whether the driver perceives dx to be larger than her
accepted/anticipated stopping distance at current speed. If
so, the driver will stop.

At a red light, a vehicle should never cross the intersection:

φR(δ ,τ,ν) =�[0,T ]((sT L(t) = R)∧ (dx(t)> δ )
∧(tel(t)> τ)−→ (vx(t)< ν))

(7)

Intuition: If the traffic light has been red “for some time”
and one is “close” to the intersection, then one should “drive
slowly”.

B. Parameter Synthesis Results

The parameter synthesis module of BREACH was applied
to find the feasibility domain for (4), (5), (6), and (7). In order
to exploit BREACH’s binary-search solver for monotonic
specifications, we implement an alternation scheme for PSTL
formulae with multiple parameters; we found the results to
be consistent regardless of the order of alternation.

For the speed limit specification (4), the result of parame-
ter synthesis found the feasible parameter set to be all speeds
less than 25.5 m/s. Observe that this is about 60% over the
posted speed limit of 15.6 m/s (35 mph).

For the remaining specifications, we found a multi-
dimensional Pareto frontier to represent the boundary of the
feasible parameter set as in [10], [14]. These frontiers are
illustrated in Figure 4.

C. Falsification Results

The falsification routine as described in Section III-C
requires a parameter set, P; hence we sample parameters
from the Pareto frontier in Figure 4 in order to ensure we
obtain good coverage and diversity in the falsifying traces.

The falsification problem requires classes of input sig-
nals, which are used together with a dynamical model to
create falsifying traces. In this work, we consider piece-
wise constant signals of duration 0.5 seconds; during each
constant segment, the input can assume a value within the
set U = [−6,3] m/s2. The simulation horizon is three seconds
and thus the input signal contains six control points.

Figure 5a illustrates a falsifying trajectory of the red light
specification

φR(19.5,7.5,10) =�[0,T ]((sT L(t) = R)∧ (dx(t)< 19.5)
∧(tel(t)> 7.5)→ (vx(t)< 10)).

Here, the HV simply maintains its speed when approaching
the intersection, and thus violates the spec on “HV should
lower its speed as it approaches the intersection”. Figure 5b
shows the robust satisfaction of

(sT L(t) = R)∧ (dx(t)< 19.5)∧ (tel(t)> 7.5)→ (vx(t)< 10)

which is the portion of φR(19.5,7.5,10) within the “always”.
Observe that the violation given in Figure 5 is almost

trivial. To avoid only generating such trivially falsifying
traces, we use the following strategy: (1) Use CMA-ES



(a) Green light specification: As δ increases, i.e. the HV is farther
from the intersection, the lower bound on velocity, ν , also increases;
therefore, if the HV is far away from the intersection, it should drive
fast. Furthermore, as τ , the lower bound on tel , increases, ν also
increases; therefore, after the traffic light turns green for some time,
all the through traffic should not move too slowly.

(b) Yellow light specification: If the HV is near the intersection,
i.e. δ0 is small, and it is traveling with a high speed, i.e. ν0 is
large, when the traffic light turns yellow and it is had enough time
to register this change, i.e. tel > 0.5, then in the following three
seconds, the HV will try to pass, i.e. its speed will never drop below
a high value of ν . On the other hand, when the vehicle is far away
and traveling slowly, i.e. δ0 is large and ν0 is small, then it will
decelerate in anticipation of the impending red light. Interestingly,
we can observe the transition from where ν changes from a high
to low value as a function of the distance to intersection and speed
at the time when the HV registered the light change. These results
are fairly intuitive.

(c) Red light specification: As δ decreases, the upper bound on
velocity, ν decreases, meaning vehicles tend to slow down when
close to the intersection; This trend is similar across all τ .

Fig. 4: Validity frontiers for traffic light specifications

solver instead of the Nelder-Mead method; (2) Apply a
difference metric criterion to select diverse falsifying traces;
(3) Accept traces with sub-optimal robustness violation.

Experimental results showed that the CMA-ES solver

produced more diverse input signals resulting in specification
violation than the simplex-based Nelder-Mead method [17].
The difference criterion involved checking that the Euclidean
distance between two candidate falsifying inputs was suffi-
ciently large to avoid repetition of the same signals. And
finally, accepting sub-optimal robustness violations allowed
for generating counterexamples closer to the expected bound-
ary between “human” and “non-human” behavior.

Using this strategy together with the falsification method
described previously, we found 170 falsifying traces for (4);
7,068 falsifying traces for (5); 21,784 falsifying traces for
(6); and 2,926 falsifying traces for (7). Note that additional
falsifying traces can be generated by increasing the maxi-
mum iterations allowed for the solver.

(a) A falsifying trace of the red
light specification

(b) Robust satisfaction along the
trace

Fig. 5: An example of falsification of the STL formula
φR(19.5,7.5,10)

D. Classification Results

In our initial treatment of the classification problem, we
construct individual classifiers for each state of the traffic
light to address the hybrid nature of this system. Further-
more, we take measures to make the classification task
more computationally tractable by sub-sampling the training
examples and omitting the queue length (lq). Elimination of
the queue length from this initial analysis is justified for the
green traffic light state because the queue length is always
zero; additionally, our specification for the red traffic light
does not incorporate the queue length and consequently, the
queue length does not factor into deciding whether or not
a trace falsifies or satisfies the specification. Sub-sampling
the traces from 10 Hz to 2 Hz reduces the trace sizes by 5
times. The number of sub-sampled traces (both positive and
negative traces) are roughly 11,000 for sT L = G, and 6,000
for sT L = R. Finally, 70% and 30% of the sub-sampled traces
were each used as the training and the testing sets.

An overview of the individual classifiers is given in the
following:

• Green traffic light classification: negative examples are
traces found to violate (5) and the features considered
are X(t) = [dx(t),vx(t), tel(t),u(t)]. For MLP classifiers,
the input to the classifier is a flattened sequence, ξ (t) =
[X(t − 3.0),X(t − 2.5), ...,X(t)] and the input to the
RNN classifier is the sequence of X(t).



• Red traffic light classification: negative examples are
traces found to violate (7). Since lq is not considered
in the spec, we omit it from this analysis. The resulting
features are X(t) = [d(t),v(t),Tel(t),a(t)]. Inputs to the
MLP and RNN classifiers are the same as those of the
green classifier.

Herein, we have only constructed classifiers for the green and
the red traffic lights, leaving treatment of the yellow light as
future work for the following reason: the duration of the
yellow light is short, and transitions between green/yellow
and yellow/red are important and can indeed take place
during the considered horizon. However, currently the neg-
ative training example are generated with a constant traffic
light state and thus the transitions themselves are not well
captured; furthermore, there are very few positive training
examples for a yellow traffic light.

The MLP is modeled with a dense layer with 28 hidden
units, ReLu activation, and soft-max function at the end of
the network. The RNN is modeled with a recurrent layer
containing 36 hidden units, ReLu activation, and soft-max
function at the end of the network. We used categorical cross
entropy as our loss function, and the ADAM optimizer.

Table II summarizes the (converged) accuracy of the two
classifiers when tested on a test set.

sT L = G sT L = R
MLP RNN MLP RNN
99.4 99.8 99.7 99.9

TABLE II: Comparison of MLP and RNN for different traffic
light states

We speculate that one reason for the extremely high
accuracy is that the classification was too easy or trivial
for much of the data. This indicates that perhaps the fal-
sified trajectories were too far away from the true boundary
between the “human” and “non-human” classes. Possible
rectifications to this issue are addressed in Section VI.

(a) (b)

Fig. 6: Examples of the resulting bound on HV acceleration

We examine the generated bound on HV acceleration for
some cases where the classifier was effective at reducing
uncertainty. Next, we briefly describe the querying process

for computing the the set of “human” accelerations given a
classifier. For a vector of states and inputs in the horizon,

ξ0 = [x(0),x(1), ...x(T ),u(0),u(1)...u(T −1)]T ,

we sweep the next input signal across the entire range of
acceleration to form {ui(T )},where i = 1,2,3...; each ui(T )
is used to complete a vector

ξ
i
0 = [ξ T

0 ,ui(T )]T .

Next, the ξ i
0 are passed into the classifier. Finally, “human”

inputs are defined to be:

{ui(T ) | pH(ξ
i
0)≥ 0.5}.

In Figures 6a and 6b, we plot two 3-second traces ex-
tracted from human naturalistic driving data. For each trace,
the lower bound on next acceleration input u(T ) is estimated
using the querying routine above. The yellow circle marks
the estimated input based on the physical acceleration limit
of the HV, which is always−10 m/s2; the red circle marks the
estimated lower bound of acceleration from the classification
method, while the green circle shows the actual acceleration
undertaken by the HV. The proposed method shows a tighter
acceleration bound in comparison to physical limits in both
cases while remaining below the actual acceleration, i.e.
being conservative. In case (a), the HV is already moving
at a low speed, so it is intuitive that it will not suddenly
conduct full brake; in case (b), the HV accelerates from a
low speed, so it is unlikely to suddenly brake at the next
instant. However, we also observed that the bound from the
proposed method is still very conservative, as braking with
acceleration around−5 m/s2 can be already perceived as hard
brake; moreover, the method does not always give tighter
bound than the physical limit.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a framework to construct a
data-driven bound on human driver behavior that allows for
verifying whether a given trajectory originates from a human
driver. Our results and contributions are summarized below:
• Generation of data-driven bounds on HV acceleration.

From the perspective of control synthesis, the benefit
of tighter bounds on human action is less uncertainty
about the disturbance.

• Synthesis of reasonable specifications for HV behavior.
• Generation of “non-human behavior” as falsifying traces

of STL formulae.
• Construction of classifiers to distinguish between human

and non-human driving traces.
This work is a first step in using falsification-based gen-

eration of negative training examples. Consequently, many
avenues should be explored to improve the performance of
the proposed framework. In particular, the classifier gave
useful results for some traces, but failed to restrict the bound
on human acceleration for many others. This is likely due to
the high dimensionality of the problem, since our approach
seeks to leverage information over a time horizon. Further-
more, only a subsets of the 556 trajectories were considered



for a given specification. Consequently, the training set may
be insufficient. Thus possible future approaches may include
seeking a larger data set or shortening the time horizon to
reduce problem dimensionality.

Additionally, negative training examples were generated
by considering piece-wise constant input signals, which often
featured large differences between constant segments. For
instance, an input signal could be constant at −6 m/s2 during
the [0,0.5) s interval before changing to 3 m/s2 during
the [0.5,1) s interval. However, HV accelerations do not
feature such excursions. Consequently, it is possible that
many of the generated negative training examples were very
far from positive training examples in the feature space
of the classification problem. Therefore, a well-performing
classifier may indeed find the boundary to be very close to
the negative training examples and as a result, deem many
actions that intuitively appear to be non-human as human.
A potential remedy that will be considered in future work is
attempt falsification using a class of smooth input signals and
again accept traces with sub-optimal robustness violations.
If the resulting negative training examples are closer to the
positive training examples in the feature space, then we can
expect a well-performing classifier to be more discerning
between human and non-human behavior. To address the risk
of potentially over-fitting to the observed data, the iterative
method introduced briefly in Section IV may be of value. The
core idea is to follow the procedure of Section IV to generate
a nominal classifier, and then sample this classifier near
its boundary points to augment the set of positive training
examples, X+, before repeating the procedure of Section
IV. By augmenting X+, we speculate that the parameter
synthesis method will find a larger feasible parameter domain
and consequently “push out” the classifier towards more
negative training examples.

In addition to reducing uncertainty by determining tighter
bounds on human action, it is also important to have a
notion of uncertainty quantification. A classifier based upon
convex programming principles can offer this quality through
the notion of an upper limit on the probability of a new
observation violating the constructed input bound [6], [18].
However, the approach of [6] considered stationary points
as opposed to the time series considered here, which add
additional complexity.

Finally, re-visiting the motivation of this work, we believe
our framework can be applied to the synthesis of safe &
optimal controllers and the identification of corner cases for
controller evaluation. The critical ingredient in achieving this
objective will be computing reachable sets using the state-
dependent disturbance bounds induced by our approach.
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