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Anticipating the long-term effect of online learning in control

Alexandre Capone and Sandra Hirche

Abstract— Control schemes that learn using measurement
data collected online are increasingly promising for the control
of complex and uncertain systems. However, in most approaches
of this kind, learning is viewed as a side effect that passively
improves control performance, e.g., by updating a model of the
system dynamics. Determining how improvements in control
performance due to learning can be actively exploited in the
control synthesis is still an open research question. In this
paper, we present AntLer, a design algorithm for learning-
based control laws that anticipates learning, i.e., that takes
the impact of future learning in uncertain dynamic settings
explicitly into account. AntLer expresses system uncertainty
using a non-parametric probabilistic model. Given a cost
function that measures control performance, AntLer chooses
the control parameters such that the expected cost of the closed-
loop system is minimized approximately. We show that AntLer
approximates an optimal solution arbitrarily accurately with
probability one. Furthermore, we apply AntLer to a nonlinear
system, which yields better results compared to the case where
learning is not anticipated.

I. INTRODUCTION

Control design often requires an accurate model of the sys-

tem dynamics. However, obtaining a mathematical model is

often prohibitive due to system intricacy or lack of expertise.

Moreover, erroneously assuming that a model is correct can

lead to poor control performance. These issues have been

increasingly addressed by employing online learning-based

strategies, i.e., algorithms that employ system measurements

collected online to improve control performance. This is

typically achieved either by learning a model of the system,

e.g., with Bayesian modeling tools [1]–[7], or by directly

learning the optimal control law, e.g., by applying online

reinforcement learning [8]. Despite belonging to the broader

category of adaptive control, the intricacy of online learning-

based control algorithms often does not allow a formal

assessment of the resulting control performance, as opposed

to many classical adaptive control strategies [9], [10].

Even though online learning-based approaches adapt over

time using measurement data, they often include parameters

that are data-independent, i.e., parameters that are fixed a

priori and do not depend on the collected data. Examples

include control gains [1], [6], [11] and safety-relevant pa-

rameters [4], [12]. Most of these methods choose the data-

independent parameters such that system safety and stability

is guaranteed after an arbitrary model update [4], [6], [12],

while others omit guarantees altogether [1]–[3], [7], [8],
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[11]. Hence, although learning is an integral part of the

control loop, much the same as the control law itself, it only

improves the control law in a passive fashion. In other words,

the control law is not designed with future learning in mind.

This can cause the control to be overly conservative, leading

to excessively costly state trajectories.

Efficiently choosing data-independent parameters in a

learning-based setting requires accurately assessing how the

control law will perform, which is generally achieved by

leveraging any prior knowledge about the system. To this

end, we introduce a novel algorithm for optimizing data-

independent parameters that quantifies how system uncer-

tainty is expected to be reduced over time due to learning.

In other words, the proposed algorithm anticipates the impact

that online learning will have on future control performance.

Within the control community, the idea of anticipating

and exploiting learning effects in control design has been

explored in the form of dual control [13], [14]. So far, dual

control has been investigated mostly within the context of

structured models with parametric uncertainties, with few

exceptions [15], [16]. However, [16] requires the true system

to be affine in the control, and both [16] and [15] employ

approximations that yield no theoretical guarantees. Hence,

developing a general method that provably approximates

data-independent parameters arbitrarily accurately remains

an open research question.

In this paper, we present AntLer (anticipating learning),

a sampling-based algorithm that approximates optimal data-

independent parameters of online learning-based control laws

in uncertain settings. Our approach accounts for a broad

class of model uncertainties by using a probabilistic Gaussian

process model. Given a cost function that quantifies control

performance over a finite-time horizon, AntLer is able to

express the expected cost for an online learning-based control

law. Minimizing the resulting expression with respect to the

control law’s data-independent parameters corresponds to a

stochastic optimal control problem, which AntLer solves ap-

proximately using sample average approximation. AntLer is

applicable to a wide class of dynamical systems that include

an additive uncertainty, as well as process noise. We show

that, under reasonable assumptions, AntLer approximates the

optimal solution arbitrarily accurately given a large enough

number of samples.

The remainder of this paper is organized as follows.

Section II describes the general problem setting and the

assumptions used in this paper. In Section III the probabilistic

approach used to quantify model uncertainty is discussed.

Section IV contains our main result. Therein, we introduce

the AntLer algorithm and provide a corresponding theoretical
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analysis. In Section V AntLer is applied to a numerical

system. We then provide some concluding remarks in Sec-

tion VI.

Notation: Let N denote the natural numbers, R the real

numbers, and R+ the non-negative real numbers. We employ

bold lowercase and uppercase letters to denote vectors and

matrices, respectively. For µ, σ ∈ R+, a normal distribution

with mean µ and variance σ2 is denoted as N (µ, σ2).
For d ∈ N, we denote the space of continuously differentiable

functions on R
d as C1(Rd), and the d-dimensional identity

matrix as Id. Moreover, for matrices A,B ∈ R
d×d, we

use [A,B] to denote the horizontal concatenation of A

followed by B. The entry in the i-th row and j-th column

of A is denoted by [A]ij . The symbol ∪ denotes the union

of two sets. We use Ea1,...,ad
[ · ] to denote the expected

value operator with respect to the probability distribution of

the random variables a1, . . . ,ad ∈ R
d.

II. PROBLEM STATEMENT

We consider a discrete-time system of the form

xt+1 = f(xt,ut) + g(xt,ut) +wt

=: f(x̃t) + g(x̃t) +wt

(1)

where xt ∈ X ⊆ R
Nx and ut ∈ U ⊆ R

Nu are the system’s

state vector and control vector at the t-th time step, respec-

tively. The initial state x0 ∈ X is assumed to be fixed and

known. The vector of augmented states x̃t := (xt,ut) ∈ X̃ ,

where X̃ := X × U , concatenates the state vector xt and the

vector of control inputs ut, and is henceforth employed for

the sake of simplicity. The system is disturbed by multi-

variate normally distributed process noise wt ∼ N (0,Σ2
w).

Here Σw = diag(σw1
, . . . , σwNx

) is a nonnegative diagonal

matrix, which we assume to know. The function f ∈ C1(X̃ ),
corresponds to the prior model of the system dynamics,

whereas g ∈ C1(X̃ ) is unknown and is assumed to be drawn

from a Gaussian process (GP). This is described thoroughly

in Section III.

Remark 1: In this paper, we assume that x0 is fixed and

known solely to avoid cumbersome notation. The algorithm

proposed in this work extends straightforwardly to the more

general case where only the probability distribution of x0 is

known.

Remark 2: This constellation can be assumed for a

wide variety of settings. For example, if no prior system

knowledge is available, then this is reflected by choos-

ing f(xt,ut) = xt.

We assume that a parametric online learning-based con-

trol law of the form u : Γ×Θ ×X 7→ U is employed to

control (1), where Θ denotes the space of data-independent

control parameters, and Γ := {{x̃0, . . . , x̃t} ∈ X̃ t | t ∈ N}
is the set of all finite subsets of X̃ . At every time step,

the control law u(·, ·, ·) takes as arguments the system

measurement data Dt = {x̃0, . . . , x̃t−1} ∈ Γ collected up to

time step t, the data-independent control parameters ϑ ∈ Θ,

and the current state xt. The collected data Dt is employed

to update the control law at every time step, e.g., by learning

a model of the system. The control parameters ϑ correspond

to the data-independent components of the control law, e.g.,

multiplicative scalars used to scale confidence regions and

thereby guarantee operational safety [17], or linear feed-

back gains [6]. This formulation encompasses most discrete-

time online learning-based control strategies. We henceforth

write ut(ϑ) := u(Dt,ϑ,xt) to denote the online learning-

based control law at time step t.
Remark 3: In order to anticipate the effect of online

learning, we aim to predict which data set Dt will be

collected over time and how it will affect the overall control

performance. As a baseline, we consider the case where

predictions are carried out without anticipating learning,

which amounts to predicting the closed-loop behavior under

the data-independent counterpart u0
t (ϑ) := u(D0,ϑ,xt).

Here we assume D0 := {} without loss of generality. In

Section V, we compare predictions made with both control

laws using a simple example.

Remark 4: The method presented in this paper extends

straightforwardly to a setting where the system measure-

ments Dt used to update the control law are corrupted

by normally distributed observation noise. However, for

notational convenience, we focus solely on the case without

observation noise.

Our goal is to minimize a finite horizon cost function

C(ϑ) := Ex̃1,...,x̃T

[

T
∑

t=0

ct(xt,ut(ϑ))

]

(2)

over the data-independent control parameters ϑ,

where ct : X̃ 7→ R+ are continuously differentiable

functions that express the immediate cost. The probability

distribution of x̃1, . . . , x̃T captures both the effect of process

noise wt, as well as the model uncertainty g(·). This is

discussed in Section III. We denote the minimal value

of (2) as C∗ := minϑ∈Θ C(ϑ) and the corresponding set of

minimizing parameters as Θ∗ := {ϑ ∈ Θ | C(ϑ) = C∗}.

If no assumptions about the online learning-based control

law ut(·) are made, then it is generally impossible to reliably

predict the closed-loop behavior of (1). Hence, we need

to impose some restrictions on the type of control law

considered.

Assumption 1: There exists a compact subset Θ̃ ⊆ Θ,

such that
∑T

t=0 ct(xt,ut(ϑ)) > C∗ holds for all ϑ ∈ Θ \ Θ̃
and arbitrary x0, . . . ,xT ∈ X .

Assumption 1 is less restrictive than assuming that Θ is

compact, which is often the case in learning-based applica-

tions, e.g., in settings where safety-relevant constraints are an

issue [18], [19]. Furthermore, Assumption 1 does not impose

strong limitations in practice, as Θ̃ may still be very large.

In order to be able to find a minimizer ϑ∗ ∈ Θ∗ of (2), we

additionally require the control law u(·, ·, ·) to satisfy some

regularity conditions. In this paper, we restrict the control law

to the broad and practically relevant class of continuously

differentiable functions, as described in the following.

Assumption 2: The control law u(Dt,ϑ,xt) is continu-

ously differentiable with respect to its arguments, where

continuous differentiability with respect to the data is defined



as follows. For every fixed D ∈ Γ, xt ∈ X and ϑ ∈ Θ, the

function

uD,ϑ,xt
(x̃) := u(D ∪ x̃,ϑ,xt)

is continuously differentiable with respect to x̃ for all x̃ ∈ X̃ .

Many commonplace control laws are continuously differ-

entiable with respect to the state xt and parameters ϑ ∈ Θ,

e.g., linear feedback gains and neural networks. Furthermore,

control update rules are often continuously differentiable

with respect to the data, e.g., if a model of the system is

learned online [5].

III. PROBABILISTIC SYSTEM MODEL

In this section, we provide a brief introduction to GPs,

and describe how we use them to capture model uncertainty

and predict control performance.

A. Predictions using Gaussian processes

In order to assess how the learning-based control law

will perform in an uncertain environment, we require a

probabilistic model that expresses model uncertainty given

prior system measurements. To this end, we model (1) using

a Gaussian process (GP), a probabilistic modeling tool that

captures model uncertainty. We opt to employ GPs in this

work because they often exhibit good generalization behavior

in practice. However, we note that other probabilistic mod-

eling frameworks can be employed, e.g., Bayesian neural

networks.

We introduce GPs for the case where the state is a scalar,

i.e., Nx = 1, and then explain how one-dimensional GPs

are extended to the multivariate case. A GP is a collection

of dependent random variables, for which any finite subset

is jointly normally distributed [20]. It is fully specified by

a mean function m : X̃ 7→ R and a positive definite kernel

function k : X̃ × X̃ 7→ R. In this paper, since our prior

knowledge is captured by f(·), we set m ≡ 0 without loss

of generality [20]. The kernel k(·, ·) is a similarity measure

for evaluations of g(·), and encodes function properties such

as smoothness and periodicity. Throughout this paper, we

assume that the kernel k(·, ·) is continuously differentiable,

which reflects the assumption that g(·) is continuously dif-

ferentiable [20]. Given m(·) and k(·, ·), we denote a GP

by GP(m, k). By modeling an unknown function g(·) with

a GP, we implicitly assume that any finite set of func-

tion evaluations yDt
:= (g(x̃0), . . . , g(x̃t−1)) at arbitrary

points Dt := {x̃0, . . . , x̃t−1} is jointly normally distributed,

yDt
∼ N (0,KDt

) , (3)

where the entries of the covariance matrix KDt
are given

by [KDt
]ij = k(x̃i−1, x̃j−1), i, j = 1, . . . , t.

Using (3), we are able to condition the GP on any

measurements taken prior to the control design. In the

following, for the sake of notational simplicity, we assume

that no prior measurement data is available, and describe

how to recursively draw and condition the GP on samples.

However, conditioning the GP on system measurement data

is identical to conditioning on samples up to an additive term

that represents noise covariance [20].

In order to predict the control performance of ut(·), we

aim to draw sample trajectories that satisfy (3). We hence-

forth distinguish sample evaluations of the GP model, which

are drawn using (3), from evaluations of the true system (1)

by denoting samples using the superscript s. A sample

system trajectory is computed by sequentially sampling from

the one-step prediction of the unknown dynamics at time

step t

gs(x̃s
t ) ∼ N

(

µs
t (x̃

s
t ) , (σ

s
t (x̃

s
t ))

2
)

, (4)

and subsequently computing the next sample state

x̃s
t+1 =

(

xs
t+1, u

s
t (ϑ)

)

:=
(

xs
t+1, u(D

s
t ,ϑ, x

s
t+1)

)

,

xs
t+1 =f(x̃s

t ) + gst (x̃
s
t ) + ws

t ,
(5)

where Ds
t := {x̃s

0, . . . , x̃
s
t−1} and ws

t ∼ N (0, σw). Here

x̃s
0 := (x0,u0(ϑ)) is introduced for simplicity of exposition.

The mean and variance of (4) are computed using

µs
t (x̃

s
t ) :=µ

(

x̃s
t |D

s
t ,yDs

t

)

= kT (x̃s
t )K

−1
Ds

t

yT
Ds

t
(6)

(σs
t (x̃

s
t ))

2 :=σ2
(

x̃s
t |D

s
t ,yDs

t

)

=k (x̃s
t , x̃

s
t )− kT (x̃s

t )K
−1
Ds

t

k (x̃s
t ) ,

(7)

respectively. Here the vector

yDs

t
:= (gs(x̃s

0), . . . , g
s(x̃s

t−1)) (8)

concatenates previously drawn sample states x̃s
i ∈ Ds

t , and

k (x̃s
t ) =

(

k(x̃s
0, x̃

s
t ), . . . , k(x̃s

t−1, x̃
s
t )
)T

(9)

consists of kernel evaluations at x̃s
t and x̃s

i ∈ Ds
t .

Remark 5: Here we abuse notation slightly by employ-

ing gs(·) to refer to a function sampled from the GP. As can

be seen from (6)-(9), gs(·) depends on previously sampled

function evaluations. In fact, a sample function evaluation is

computed as

gs(xt+1) = µs
t (x̃

s
t ) + σs

t (x̃
s
t ) ζ

s, (10)

where ζs ∈ N (0, 1). In Section IV, we use rigorous notation

by referring to sample function evaluations as in (10).

Remark 6: It is necessary that the GP samples gs(x̃s
t ) and

process noise samples σs
w be drawn separately in order for

the vector yDs

t
to be uniquely defined. This in turn guarantees

that the sampled function gs(·) exhibits deterministic behav-

ior at points where samples were previously drawn [20].

We require this to reflect the fact that g(·) is unknown

but deterministic. Hence, we draw sample trajectories that

satisfy (4) and (5) as

xs
t+1 = f(x̃s

t ) + µs
t (x̃

s
t ) + σs

t (x̃
s
t ) ζ

s
1 + σwζ

s
2 , (11)

where ζs1 , ζ
s
2 ∼ N (0, 1) are sampled separately.

Remark 7: Typically, multiple samples can be drawn from

the same GP simultaneously [20]. However, since we are

interested in samples that satisfy the system dynamics, we

need to draw a sample and compute the resulting state

sequentially.



In the case where the state is multidimensional, we model

each state transition using a separate GP, i.e.,

xs
t+1 ∼ N

(

f(x̃s
t ) + µs

t (x̃
s
t ), (Σ

s
t (x̃

s
t ))

2 +Σ
2
w

)

, (12)

where

µs
t (x̃

s
t ) :=

(

µ(x̃s
t |y1,Ds

t
), . . . , µ(x̃s

t |yNx,D
s

t
)
)

,

(Σs
t (x̃

s
t ))

2 :=diag
(

σ2(x̃s
t |y1,Ds

t
), . . . , σ2(x̃s

t |yNx,D
s

t
)
)

.

Here yi,Ds

t
:=
(

gsi (x̃
s
0), . . . , gsi (x̃

s
t−1)

)

concatenates sam-

ples of the i-th component of the GP model for ev-

ery i = 1, . . . , Nx.

Remark 8: Modeling each state transition with a separate

GP corresponds to assuming that the state transitions are

conditionally independent. Alternatively, a generalization of

GPs to multiple dimensions is also applicable [20]. However,

the latter approach is significantly more computationally

expensive than the former. Moreover, employing separate

GPs for each state transition function has been shown to

yield good results in practice [21].

Remark 9: For the sake of brevity, we only show here how

to model a multidimensional g(·) using a single kernel k(·, ·)
for all entries of g(·). However, the methods described herein

extend straightforwardly to the case where different kernels

are employed for each entry of g(·).
We assume that the model uncertainty due to the un-

known function g(·) is faithfully captured by a GP with

kernel k(·, ·). Formally, this is stated as follows.

Assumption 3: Let GP(m, k) be a GP with mean m ≡ 0
and known continuously differentiable kernel k(·, ·). Then

the entries of the unknown function g(·) are samples

of GP(m, k), i.e., gi ∼ GP(m, k) holds for i = 1, . . . , Nx.

Choosing an appropriate kernel k(·, ·) requires a priori

knowledge of the system. However, the assumptions required

for choosing a kernel are generally far less restrictive than

for parametric models, since they only pertain to features

such as smoothness and periodicity. Furthermore, in some

cases, error bounds can be obtained if the kernel is poorly

chosen [22].

B. Predicting control performance

Assumption 3 implies that, for a fixed set of parameters ϑ,

the expected state of the true system (1) at an arbitrary time

step t is given by

Ex̃1,...,x̃T
[xt] =

∫

X t

xs
t

t−1
∏

i=0

p(ζs
i )dζ

s
i , (13)

where the integrand is computed recursively using

xs
i+1 =f(x̃s

i ) + µs
i (x̃

s
i ) + [Σs

i (x̃
s
i ) Σw] ζ

s
i , (14)

and p(ζs
i ) = N (0, I2Nx

).
The corresponding cost function is given by

C(ϑ) =
T
∑

t=0

∫

X t

ct(x
s
t ,u

s
t (ϑ))

t−1
∏

i=0

p(ζs
i )dζ

s
i . (15)

Lemma 1: Let Assumptions 2 and 3 hold. Furthermore,

let
∑T

t=0 ct(x
s
t ,u

s
t (ϑ)) be the integrand of (15), where the

states are computed using (14) and ζs
t ∼ N (0, I2Nx

) for

all t. Then both
∑T

t=0 ct(x
s
t ,u

s
t (ϑ)) and (15) are contin-

uously differentiable with respect to ϑ.

Proof: Since k(·, ·), ct(·, ·), us
t (·) are continuously differen-

tiable with respect to their arguments,
∑T

t=0 ct(x
s
t ,u

s
t (ϑ))

is a composition of continuously differentiable functions.

Hence it is continuously differentiable with respect to the

control parameters ϑ. Due to Leibniz’s rule, this implies

that (15) is also continuously differentiable with respect

to ϑ.

IV. SAMPLE AVERAGE APPROXIMATION

Computing the integral (15) is generally intractable.

Hence, we compute an estimate of the minimizer of (15) by

employing a sample average approximation (SAA) of (15),

C(ϑ)≃CM (ϑ,ZM ) :=
1

M

T
∑

t=0

(

M
∑

m=1

ct

(

x
(m)
t ,u

(m)
t (ϑ)

)

)

.

(16)

Here M ∈ N is the number of sample trajectories.

The set ZM :=
{

ζ
(1)
0 , . . . , ζ

(1)
T−1, . . . , ζ

(M)
0 , . . . , ζ

(M)
T−1

}

sub-

sumes MT samples from N (0, I2Nx
), which are treated as

fixed quantities during optimization. The superscript (m)
denotes the m-th sample trajectory, which is computed

recursively as

x
(m)
t+1 =f

(

x̃
(m)
t

)

+ µs
i

(

x̃
(m)
t

)

+
[

Σ
s
i

(

x̃
(m)
t

)

Σw

]

ζ
(m)
t ,

with x̃
(m)
t := (x

(m)
t ,u

(m)
t (ϑ)), D

(m)
t := {x̃

(m)
0 , . . . , x̃

(m)
t−1}.

We denote the minimum of the SAA (16)

as C∗
M := minϑ∈Θ CM (ϑ,ZM ), and the corresponding set

of minimizers as Θ∗
M := {ϑ ∈ Θ | CM (ϑ,ZM ) = C∗

M}.

The steps required to compute a minimizer of (16) yield

the AntLer algorithm, which is presented in Algorithm 1.

Remark 10: Despite being mainly designed with online

learning-based control laws in mind, AntLer can also be

Algorithm 1 Anticipating learning (AntLer)

Input: x0, u(·, ·, ·), T , M , Σw, f(·), ζ
(1)
0 , . . . , ζ

(M)
T−1

Solve

ϑ∗
M =argmin

ϑ

T
∑

t=0

(

1

M

M
∑

m=1

ct

(

x
(m)
t ,u

(m)
t (ϑ)

)

)

s.t. x
(m)
t+1 = f

(

x̃
(m)
t

)

+ µs
i

(

x̃
(m)
t

)

+
[

Σ
s
i

(

x̃
(m)
t

)

Σw

]

ζ
(m)
t

x̃
(m)
t = (x

(m)
t ,u

(m)
t (ϑ))

x̃
(m)
0 = (x0,u0(ϑ))

D
(m)
t = {x̃

(m)
0 , . . . , x̃

(m)
t−1}

∀ t ∈ {0, . . . , T − 1} , m ∈ {1, . . . ,M}

Output: ϑ∗
M



employed in the special case where the control law does

not change based on the data collected online. In such

settings, AntLer becomes similar in principle to model-based

reinforcement learning approaches, e.g., [21].

Remark 11: The algorithm proposed in this paper can also

be applied to the infinite-horizon case, e.g., by implementing

it in a receding horizon fashion. This would generally require

a terminal constraint to be considered, for which probabilistic

guarantees can be derived, e.g., as in [23].

We now aim to prove that a solution ϑ∗
M obtained with

AntLer approximates an optimum ϑ∗ ∈ Θ∗ of the exact

problem arbitrarily accurately for a sufficiently high number

of samples M . To achieve this, we show that both the

approximate and exact cost functions CM (·, ·), C(·), satisfy

some regularity conditions.

Lemma 2: Let Assumptions 1–3 hold, and choose Θ̃ as in

Assumption 1. Then C(·) is finite-valued and continuously

differentiable on Θ̃, and CM (·,ZM ) converges to C(·) with

probability 1 uniformly in Θ̃ as M → ∞.

To prove Lemma 2, we make use of the following result,

which corresponds to [24, Theorem 7.48]:

Lemma 3 ( [24]): Let Θ̃ be a nonempty compact subset

of Θ and suppose that

i) For any ϑ ∈ Θ̃, the function
∑T

t=0 ct(x
s
t ,u

s
t (ϑ))

is continuously differentiable at ϑ for almost every

sample ζ
(m)
T ,

ii) The absolute value of
∑T

t=0 ct(x
s
t ,u

s
t (ϑ)) is upper

bounded by an integrable function on the subset Θ̃,

iii) The samples ζ
(m)
0 , . . . , ζ

(m)
T−1 are i.i.d.

Then C(·) is finite-valued and continuously differentiable

on Θ̃, and CM (·,ZM ) converges to C(·) with probability 1
uniformly in Θ̃ as M → ∞.

Proof of Lemma 2: We show that the conditions of

Lemma 3 hold for the compact subset Θ̃ from Assumption 1.

Since Θ̃ is bounded, Lemma 1 implies

that
∑T

t=0 ct(x
s
t ,u

s
t (ϑ)) satisfies conditions i) and ii)

of Lemma 3. Moreover, the samples ζ
(m)
1 , . . . , ζ

(m)
T are

i.i.d., i.e., condition iii) of Lemma 3 is also satisfied.

Using Lemma 2, we are able prove that Algorithm 1

approximates an optimal solution ϑ∗ ∈ Θ∗ arbitrarily ac-

curately with probability 1 for large enough M . This cor-

responds to our main result, and is stated in the following

theorem.

Theorem 1: Let ζ
(m)
t ∼ N (0, INx

), t ∈ {0, . . . , T − 1},

m ∈ {1, . . . ,∞} be a fixed sequence of random samples.

For every M , let ϑ∗
M denote a vector of approximate

optimal parameters obtained with Algorithm 1 and the sam-

ples ζ
(1)
0 , . . . , ζ

(M)
T−1. Moreover, let Assumptions 1–3 hold.

Then, for every ǫ > 0, there exists an Mǫ ∈ N, such

that |C∗
M − C∗| ≤ ǫ and minϑ∗∈Θ∗‖ϑ∗

M − ϑ∗‖2 ≤ ǫ holds

for all M ≥ Mǫ with probability 1.

We prove Theorem 1 by employing [24, Theorem 5.3],

which we now state.

Lemma 4 ( [24]): Suppose there exists a compact sub-

set Θ̃ ⊆ Θ, such that

i) Θ∗ is non-empty and Θ∗ ⊆ Θ̃,

ii) The function C(ϑ) is finite-valued and continuously

differentiable on Θ̃,

iii) CM (ϑ,ZM ) converges to C(ϑ) with probability 1
as M → ∞, uniformly in ϑ ∈ Θ̃,

iv) With probability 1, for M large enough, the set Θ∗
M is

nonempty and Θ∗
M ⊆ Θ̃.

Then C∗
M→C∗, maxϑ∗

M
∈Θ∗

M
minϑ∗∈Θ∗‖ϑ∗

M − ϑ∗‖2 → 0
holds with probability 1 as M → ∞.

Proof of Theorem 1: We show that the conditions of

Lemma 4 hold for the compact subset Θ̃ from Assumption 1.

Conditions ii) and iii) are satisfied due to Lemma 2. Hence,

it remains to be shown that i) and iv) hold.

We begin by showing that the set Θ∗ is nonempty. To

this end, consider an arbitrary sequence of control param-

eters ϑi, i = 1, . . . ,∞, with limi→∞ C(ϑi) = C∗. Due to

Assumption 1 and the continuity of C(·) (i.e., Lemma 1),

there exists an I ∈ N, such that ϑi ∈ Θ̃ holds for all i ≥ I .

Since ϑ1, . . . ,ϑI are finite-valued, this implies that the

sequence ϑi, i = 1, . . . ,∞ belongs to a compact set. Due to

the Bolzano-Weierstrass theorem, ϑi contains a convergent

subsequence with limit ϑ∗ ∈ Θ̃. Hence, Θ∗ is nonempty

and Θ∗ ⊆ Θ̃, i.e., Condition i) of Lemma 4 is satisfied.

Using the same argument we can show that Θ∗
M is nonempty.

Moreover, Assumption 1 implies that Θ∗
M ⊆ Θ̃ holds for

all ZM , i.e., Condition iv) is satisfied.

Hence, the AntLer algorithm approximates an optimal

vector of data-independent parameters ϑ∗ with arbitrary

accuracy for large enough M with probability 1.

For a control law ut(ϑ) that potentially improves its

performance through online learning, Theorem 1 implies

that AntLer guarantees superior control performance for

large enough M compared to the case where learning is

not anticipated. This is shown by comparing predictions

for ut(·) to predictions for its data independent counter-

part u0
t (·) = (D0, ·,ϑ). We state this formally in the fol-

lowing.

Assumption 4: Let

C0(ϑ) := Ex̃1,...,x̃T

[

T
∑

t=0

ct(xt,u(D0,xt,ϑ))

]

, (17)

be the cost function under the data-independent counter-

part u0
t (ϑ) = u(D0,ϑ,xt), and let C0,∗ := minϑ C0(ϑ) be

its minimum. Then C0,∗ < C∗, where C∗ is the minimum

of (2).

This amounts to assuming that ut(ϑ) potentially improves

its performance as new data is gathered.

Corollary 1: Let Assumptions 1–4 hold, and

let C(·) be given as in (2). Furthermore, let C0,∗

be the optimal cost under the data-independent

counterpart, as given in Assumption 4, and

let ζ
(m)
t ∼ N (0, INx

), t ∈ {0, . . . , T − 1}, m ∈ {1, . . . ,∞},

be a fixed sequence of random samples. For every M ∈ N,

let ϑ∗
M denote the approximate optimal solution obtained

with Algorithm 1 and the samples ζ
(1)
0 , . . . , ζ

(M)
T−1. Then



there exists an M0, such that C(ϑ∗
M ) < C0,∗ holds for

all M ≥ M0 with probability 1.

Proof: This follows directly from Theorem 1.

V. NUMERICAL EXAMPLE

We now illustrate the proposed algorithm using a simple

nonlinear trajectory tracking problem. We demonstrate the

convergence of the approximate optimal parameters com-

puted by AntLer as the number of samples M grows,

and compare the computed parameters and predictions to

those obtained without anticipating learning. Furthermore,

by preforming Monte Carlo simulations of the true system,

we showcase the superior performance of the approximate

optimal parameters compared to the case where learning is

not anticipated.

The source code of the experiments presented in this

section is available at https://git.lsr.ei.tum.de/acapone/antler.

A. System description

We consider the one-dimensional system

xt+1 = f(x̃t) + g(x̃t) + wt, (18)

with initial state x0 = 0, process noise wt ∼ N (0, 0.012),
and state transition functions

f(x̃t) = xt + ut, (19)

g(x̃t) = 0.85 sin(12xt) + x2
t (exp(−0.2x2

t )). (20)

We aim to design an online learning-based control law

that tracks the trajectory xref
t = 4 sin(t/2π) as accurately as

possible, while simultaneously accounting for any potential

tracking errors due to the unknown function g(·). To this end

we choose the control law

ut(ϑ) = −µt(xt)− ϑ1(xt − ϑ2x
ref
t ), (21)

where ϑ1 acts as a control gain, and ϑ2 scales the reference

trajectory and enables to avoid regions of high model un-

certainty. The term µt(xt) is a GP mean, which is updated

online as new data points are collected. We compute µt(xt)
using the same kernel as for AntLer, which we specify in

the sequel. Employing the same kernel both for predictions

and control is reasonable, since we assume that it faithfully

represents the unknown function g(·).
We quantify control performance by employing the cost

function

C(ϑ) =Ex̃1,...,x̃150

[

150
∑

t=0

ct

]

, (22)

where the immediate cost terms ct := (xt − xref
t )2 penalize

deviations from the reference trajectory.

We now describe the kernel used for AntLer predictions

and the online learning-based control law (21). We assume

to know that g(·) depends only on the state xt, and that

it corresponds to a smooth function. This information is

encoded into the GP by employing a squared exponential

kernel that takes only the state as argument, i.e.,

k(x̃i, x̃j) =: k(xi, xj) = σ2
k exp

(

−
(xi − xj)

2

2l

)

, (23)

where the signal variance σ2
k ∈ R+ and length scale l ∈ R+

are obtained by training the GP using log marginal likelihood

optimization [20]. To this end, we assume to have 100
measurements of (18), which were obtained using a control

law that attempts to minimize the distance of the true

system (18) to the origin. Squared exponential kernels are

dense within the space of continuous functions on compact

sets, i.e., they can approximate any continuous function

uniformly and arbitrarily well on compact subsets of X [25].

Moreover, the posterior mean µt(·) of a GP obtained with

a squared exponential kernel exhibits smooth behavior [20].

Hence, (23) is an appropriate choice for this setting.

It can easily be shown that, in a setting where g(xt)
is known, i.e., µt(xt) = g(xt), the system trajectory is

optimal for ϑ1 = ϑ2 = 1. Since the control law (21)

learns g(·) online, it is reasonable to expect that the optimal

parameters ϑ∗ for unknown g(·) lie within a neighborhood

of ϑ1 = ϑ2 = 1, provided that g(·) is learned correctly.

Hence, we assume that the optimal parameters lie within the

compact subset Θ̃ = [−1,−1]× [2, 2]. In the following, we

employ this assumption to restrict the feasible region of the

optimization problem to Θ̃.

B. Approximate optimal solutions using AntLer

We demonstrate the convergence of the approximate opti-

mal solution ϑ∗
M to ϑ∗ as M grows by applying AntLer

using M ∈ {2, 10, 50, 100, 200} samples. Additionally, in

order to illustrate Corollary 1, we make predictions and

optimize the parameters ϑ without anticipating learning, i.e.,

by using the data-independent counterpart of the control

law u0
t (ϑ) = −µ0(xt)− ϑ1(xt − ϑ2x

ref
t ). To optimize the

parameters of u0
t (ϑ), we employ AntLer with M = 200.

We are able to do so, since u0(·) is a special case of

an online learning-based control law. Hence, approximate

optimal parameters can also be obtained using AntLer. For

simplicity of exposition, we henceforth refer to ϑ∗,0 as the

optimum of the data-independent counterpart.

To solve the SAA problem in AntLer, we employ a

gradient-based method with different starting values, which

are sampled from the uniform distribution on Θ̃. A solution

is found after at most 17 gradient-descent steps. In Table I,

we display the approximate optimal parameters ϑ∗
M com-

puted by Antler. In Fig. 1a, we present AntLer predictions

TABLE I: Approximate optimal parameters ϑ∗
M computed

by AntLer for different M .

M 2 10 50 100 200

ϑ
∗

M (0.9, 0.9)T (1.1, 1)T (1, 0.9)T (1, 0.9)T (1, 0.9)T
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(a) Predicted optimum when learning is anticipated.
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(b) Predicted optimum when learning is not anticipated.

Fig. 1: Predicted optima (a) with and (b) without anticipating learning. Both predictions are carried out using AntLer

and M = 200 samples. The top rows show the predicted optimal tracking error xt − xref
t , the bottow rows show

the expected immediate cost E[ct]. (a) Prediction for approximate optimal online learning-based control law ut(ϑ
∗
M ),

where ϑ∗
M = (1, 0.9)T; predicted cost is CM (ϑ∗

M ,ZM ) = 212. (b) Prediction for approximate optimal data-independent

counterpart u0
t (ϑ

0,∗), where ϑ0,∗ = (0.9, 0.2)T; predicted cost is CM (ϑ∗
M ,ZM ) = 731.

for M = 200 and the approximate optimal online learning-

based law ut(ϑ
∗
M ). Furthermore, in Fig. 1b we show predic-

tions for the optimal data-independent counterpart u0
t (ϑ

0,∗).

The value of the approximate optimal parameters

is ϑ∗
M ≈ (1, 0.9)T for all 50 < M < 200. This indicates

that ϑ∗
M has converged to a small neighborhood of the

optimal parameters ϑ∗, as expected from Theorem 1.

AntLer predicts that, by scaling the reference trajectory

with ϑ2 = 0.9, an optimal trade-off is achieved between the

information of the collected data and the error caused by

model uncertainty. In other words, if the control law were to

attempt to fully enforce the reference trajectory, i.e., ϑ2 = 1,

then AntLer predicts that too many measurements need to

be collected before good tracking performance is achieved.

However, if ϑ2 = 0.9 is chosen, then AntLer predicts that the

unknown dynamics will be learned quickly enough to achieve

good tracking performance within the time horizon T = 150.

This becomes apparent in the predictions in Fig. 1a. Therein,

the variance of the state xt and the expected immediate

cost ct under the approximate optimal control law ut(ϑ
∗
M )

decrease over time. After t ≈ 70, they become approximately

zero.

The parameters ϑ0,∗ = (0.9, 0.2)T of the optimal data-

independent counterpart ut(ϑ
0,∗) attempt to keep the system

close to the origin. This is because predictions for u0
t (ϑ) do

not anticipate learning. In other words, they only yield low

tracking errors in regions where model uncertainty is already

low. As measurement data at the origin was collected prior

to the control design, model uncertainty is high in the whole

state space except for a neighborhood of the origin. Hence

the approximate optimal parameters ϑ0,∗ = (0.9, 0.2)T at-

tempt to keep the system within this region. This is reflected

in the predictions in Fig. 1b, where the tracking error exhibits

little variance compared to Fig. 1a.

For M = 200, the predicted cost C(ϑ∗
M ) = 212 under the

approximate optimal control law ut(ϑ
∗
M ) is lower than the

predicted cost C(ϑ0,∗) = 731 under the data-independent

counterpart ut(ϑ
0,∗). Assuming that the GP specified by

the kernel (23) correctly captures the model uncertainty due

to g(·), Corollary 1 implies that control performance will be

superior if ϑ∗
M is applied to the true system instead of ϑ0,∗.

This indeed is the case, as shown in the following.

C. Monte Carlo simulations of true system

The parameters ϑ∗
M = (1, 0.9)T computed by AntLer

for M = 200 are employed to control the true system (18)

in 100 Monte Carlo runs. Moreover, we compare the results

to the Monte Carlo simulation using the optimal parameters

obtained without anticipating learning ϑ0,∗ = (0.9, 0.2)T.

The respective results are shown in Fig. 2a and Fig. 2b.

As shown in Fig. 2a, the variance of the state is high

for ϑ = ϑ∗
M at the beginning of the Monte Carlo simulation.

This is due to the initially unknown system dynamics g(·).
After approximately t = 80, enough measurement data has

been gathered to adequately track the reference trajectory.

Despite differences in overall variance and learning time, the

results agree qualitatively with the AntLer prediction shown

in Fig. 1a, which indicates that the kernel (23) was chosen

adequately.

For ϑ = ϑ0,∗, the variance of the state is very low through-

out the simulation. This is because the parameters ϑ = ϑ0,∗

steer the system to a region of low model uncertainty. These

results are in agreement with the predictions presented in

Fig. 1b.

The average cumulative cost for ϑ = ϑ0,∗ is 859. This

is higher than for ϑ = ϑ∗
M , which achieves an average cost

of 37. This was expected from the AntLer predictions and

Corollary 1.

VI. CONCLUSION

We have presented AntLer, a control design approach that

anticipates the effect of online learning and optimizes data-

independent parameters accordingly. By expressing model
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(a) Parameters optimized by anticipating learning.
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(b) Parameters optimized without anticipating learning.

Fig. 2: Monte Carlo simulations of true system (18) consisting of 100 runs. The top rows show the tracking error xt − xref
t ,

the bottom rows show the average immediate cost E[ct]. (a) True system under approximate optimal online learning-based

control law ut(ϑ
∗
M ), where ϑ∗

M = (1, 0.9)T was obtained by anticipating learning; the average total cost is 37. (b) True

system under ut(ϑ
0,∗), where ϑ0,∗ = (0.9, 0.2)T was obtained without anticipating learning; the average total cost is 859.

uncertainty with a Gaussian process model, we have for-

mulated the parameter optimization problem as a stochastic

optimal control problem, which AntLer solves approximately

using sample average approximation. We have shown that

AntLer approximates an optimal solution arbitrarily accu-

rately with probability one for a sufficiently large number

of samples. We have applied AntLer to a nonlinear system.

The results have shown that model learning is correctly an-

ticipated, which leads to a better choice of control parameters

compared to the case where learning is not anticipated.

In future work, we aim to apply AntLer to complex online

learning-based control laws, such as learning-based model

predictive control and online reinforcement learning.
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