
Risk-aware stochastic control of a sailboat

MingYi Wang1, Natasha Patnaik2, Anne Somalwar3, Jingyi Wu4, and Alexander Vladimirsky5

Abstract— Sailboat path-planning is a natural hybrid control
problem (due to continuous steering and occasional “tack-
switching” maneuvers), with the actual path-to-target greatly
affected by stochastically evolving wind conditions. Previous
studies have focused on finding risk-neutral policies that min-
imize the expected time of arrival. In contrast, we present
a robust control approach, which maximizes the probability
of arriving before a specified deadline/threshold. Our numer-
ical method recovers the optimal risk-aware (and threshold-
specific) policies for all initial sailboat positions and a broad
range of thresholds simultaneously. This is accomplished by
solving two quasi-variational inequalities based on second-
order Hamilton-Jacobi-Bellman (HJB) PDEs with degenerate
parabolicity. Monte-Carlo simulations show that risk-awareness
in sailing is particularly useful when a carefully calculated bet
on the evolving wind direction might yield a reduction in the
number of tack-switches.

I. INTRODUCTION

Sail-boat racing is one of the many areas where game-
theoretic and control-theoretic tools are valuable in improv-
ing the competitive performance. The uncertainty in weather
patterns gives rise to hybrid stochastic control models with
many reasonable choices of performance measures to op-
timize. The previously developed methods have focused on
risk-neutral optimization (e.g., minimizing the expected time
to destination) [1], [2], [3]. In contrast, here we focus on
maximizing the probability of desirable outcomes (e.g., ar-
riving prior to a specified deadline). Our risk-aware approach
addresses a notion of robustness very different from the tradi-
tional H∞ control [4] and has important advantages for many
applications. Indeed, it has been already successfully used in
piecewise-deterministic Markov processes [5] and in bang-
bang stochastic control models of adaptive drug therapies [6].
Unlike the typical risk-averse approaches [7], the method
that we develop here for the hybrid control setting allows
finding the optimal control policies for a large set of starting
sailboat positions and a range of deadlines simultaneously.
This is accomplished in the general framework of dynamic
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programming and requires solving a pair of quasi-variational
inequalities on a 3D computational domain.

The hybrid nature of this problem is due to “tacking”: to
travel upwind, sailors must use a zigzag pattern, periodically
swinging the bow to the other side of the wind. Each
such “tack-switch” incurs a significant slow down while
the wind pushes against the boat. We adopt a commonly
used simplified model which assumes that the boat’s velocity
vector can be changed instantaneously (choosing among all
directions available in its current tack) but a switch to the
opposite tack incurs a fixed time-penalty.

Optimization of sailboat routing is a topic of increasing
mathematical interest. In [8] the task of minimizing the
expected time to target was considered in a discrete setting,
with a discrete-time Markov chain modeling occasional
changes in weather conditions. The idea was extended to
continuous-time Markov chains in [9], with a tack-switching
curve defined in the state space to encode the optimal policy.
In [1], this switching curve was found using dynamic pro-
gramming for indefinite-horizon hybrid control problems, but
under the assumption that the wind direction stays constant
for the duration of each tack switch. In [3], it was shown how
this assumption can be avoided, yielding an improvement in
control policies.

We start by introducing the hybrid dynamics in Section
II, and describe both the risk-neutral and risk-aware optimal
control problems in Section III. Our numerical approach
to the latter is presented in Section IV, followed by the
summary of computational experiments in Section V. We
conclude by listing directions for future work in Section VI.

II. SYSTEM DYNAMICS

Following [1], [3], we assume the strength of the wind is
fixed but its direction (measured counterclockwise from the
y-axis) undergoes a Brownian drift/diffusion process:

dϕ = adt+ σdB, (1)

where ϕ(t) denotes the current upwind direction, a is a
constant drift, σ is the diffusion coefficient, and B is a
standard Brownian motion. The state of the system can be
represented as (x, y, q, ϕ), where x and y encode the boat’s
current position, while q ∈ {1, 2} is its current “tack”, which
determines the range of available steering directions. Our
continuous control is the steering angle, u ∈ [0, π], measured
relative to the wind. In the starboard tack (q = 1), u is
measured counterclockwise from the upwind direction, while
in the port tack (q = 2) it is measured clockwise; so, the
boat’s direction of motion relative to upwind is (−1)qu. The
boat’s angle-dependent speed f(u) is encoded in the speed
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(a) The polar speed plot f(u) used in this work (the
same as Fig. 1(a) in [3]). Note that f = 0 at u = 0◦.
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(b) System setups in the polar coordinate centered at D for different tacks.

Fig. 1. System dynamics relative to the wind and relative to the target D.

profile (often called the “polar”), which is determined by
the geometry of each specific boat. Fig. 1(a) shows a typical
polar used in all numerical tests here and in [3]. With these
assumptions, the boat’s dynamics is described by

dx = −f(u) sin(ϕ− (−1)qu)dt, (2)
dy = f(u) cos(ϕ− (−1)qu)dt. (3)

For the sake of computational efficiency, we adopt a dimen-
sional reduction of (1)-(3) suitable when aiming for a circular
target D in a domain with no obstacles [3]. Assuming a target
at the origin, r =

√
x2 + y2 represents the boat’s distance to

the center of D, while θ = ϕ+ atan2(−x,−y) encodes the
upwind direction measured counterclockwise from the line
connecting the boat to the center of D; see Fig. 1(b). This
results in the system dynamics:

dr = −f(u) cos(θ − (−1)qu) dt,

dθ =

[
f(u)

r
sin(θ − (−1)qu) + a

]
dt+ σdB. (4)

Whenever we focus on the deterministic portion of dynamics,
we will use rd(θ, q, u) and θd(r, θ, q, u; a) to denote the
respective factors multiplying dt in the above equations.

III. STOCHASTIC OPTIMAL CONTROL

Let ξ(t) = (r(t), θ(t)) denote the continuous component
of system state at the time t. We define Ω := [0, Rmax] ×
[0, 2π) × {1, 2} as the full state space (with the last com-
ponent encoding the tack q). We will further use q̃ = 3− q
to refer to “the opposite tack” and Υ := [0, π] ∪ {▲} to
define the policy domain (the prescribed steering angle or
the special tack-switch action ▲).

Given a starting configuration of the boat (ξ(0) =
ξ̂, q(0) = q̂) and a feedback control policy µ : Ω → Υ,
the main quantity of interest is the random time to target
Tµ(ξ̂, q̂) = inf{t > 0 | ξ(t) ∈ D, ξ(0) = ξ̂, q(0) = q̂}
based on that µ. Due to the hybrid nature mentioned in
section II, Tµ(ξ̂, q̂) is the sum of the time spent in both

steering and tack-switching. A typical risk-neutral approach
is to define the value function as v(ξ̂, q̂) = infµ E[Tµ(ξ̂, q̂)],
which can be then recovered by solving a system of
quasi-variational HJB-type inequalities. Assuming each tack-
switch takes a fixed time C and the boat stays in place
(f(u) = 0) while switching, as shown in [3] this leads to

max

{
H(r, θ, q,∇v)− σ2

2

∂2v

∂θ2
, v −N v − C

}
= 0, (5)

where ∇v = (∂v∂r ,
∂v
∂θ ) and the Hamiltonian is

H(r, θ, q,p) = max
u

(−rd(θ, q, u)p1 − θd(r, θ, q, u; a)p2)−1.
(6)

In (5), we take the maximum over two alternative courses of
action. The first clause corresponds to the system states, from
which it is optimal to continue in the current tack and the
maximization in (6) selects the optimal steering angle. On the
other hand, in the second clause N v encodes the expected
remaining time-to-target if we switch to the opposite tack;
i.e., N v(r̂, θ̂, q) = E[v(r̂, θ(C), q̃) | θ(0) = θ̂, f = 0]. If we
define ψr,q(z) = v(r, z, q̃) and

Gθ [ψ] =
1

σ
√
2πC

∫ ∞

−∞
e−

(z−θ−aC)2

2Cσ2 ψ(z) dz, (7)

then this switching operator can be conveniently evaluated
as N v(r, θ, q) = Gθ

[
ψr,q

]
. Since the part of Ω on which

it is better to switch tacks is a priori unknown, this is a
problem with a free boundary. The optimal feedback policy
µ∗ (found by solving (5) with the boundary condition v = 0
on D × {1, 2}) captures both the optimal switching states
and the optimal steering angles [3].

Despite its frequent use, the risk-neutral planning has
a significant drawback: it is indifferent to the level of
variability in the distribution of times to target. The resulting
µ∗ might be impractical if the risk of significantly exceeding
E [Tµ∗ ] is high (e.g., in right-heavy-tailed distributions). To
address this, we change the perspective and search for a
policy α that maximizes the probability of reaching the target



before a specified deadline ŝ. We refer to such α as a risk-
aware (or, more precisely, as an ŝ-threshold-aware) policy.

Letting Ωs̄ = Ω× [0, s̄], we define our new value function

w(ξ̂, q̂, ŝ) = sup
α

P
(
Tα(ξ̂, q̂) ≤ ŝ

)
, 0 ≤ ŝ ≤ s̄. (8)

The supremum is taken over all measurable threshold-aware
feedback policies α : Ωs̄ → Υ, (r, θ, q, s)→ α(r, θ, q, s). If
we treat s(0) = ŝ as an initial budget, then the remaining
time budget s(t) is strictly decreasing along the path-to-target
as t increases (ṡ(t) = −1 while continuously steering and a
negative jump of C units of time when switching tack).

Consequently, the Stochastic Dynamic Programming Prin-
ciple [10] yields an s-dependent quasi-variational inequality

w(ξ̂, q̂, ŝ) = max

{
sup
u
Eu,τw(ξ̂, q̂, ŝ), ECw(ξ̂, q̂, ŝ)

}
+o(τ),

(9)
where

Eu,τ w(ξ̂, q̂, ŝ) = Eu,τ [w(ξ(τ), q̂, ŝ− τ) | ξ̂, ŝ], (10)

E
C
w(ξ̂, q̂, ŝ) = E

C
[w(ξ(C), q̃, ŝ− C) | ξ̂, ŝ, f = 0]. (11)

Similarly to the structure of (5), Eu,τw refers to the best
probability of reaching the target before the deadline if we
stay on the current tack for a small time τ while E

C
w is the

best probability if we immediately switch tacks.
From the stochastic Taylor expansion of Eqn. (9), one

can show that, if w(r, θ, q, s) is sufficiently smooth, it must
satisfy

max

{
max

u∈[0,π]

(
∇w⊤ξd +

σ2

2

∂2w

∂θ2
− ∂w

∂s

)
, E

C
w − w

}
= 0,

(12)

where ∇w = (∂w/∂r, ∂w/∂θ) and ξd(r, θ, q, u) =(
rd(θ, q, u), θd(r, θ, q, u; a)

)
.

As in the risk-neutral case, if we define ψr,q,s(z) =
w(r, z, q̃, s−C), then E

C
w(r, θ, q, s) = Gθ[ψr,q,s] following

the definition of operator (7). Note that, in general, the value
function does not have to be be smooth or even continuous.
Nonetheless, even a discontinuous value function can be
often interpreted as a unique discontinuous viscosity solution
of a HJB PDE [11, Chapter 5], which allows recovering the
optimal feedback policy α∗(r, θ, q, s) as an argmax of (12).

IV. NUMERICAL IMPLEMENTATION

A. Semi-Lagrangian Discretization

We approximate the solution to (12) for both tacks si-
multaneously using a semi-Lagrangian discretization [12]
on a uniform rectangular grid over the (r, θ, s) space.
I.e., (ri, θj , sk) = (i∆r, j∆θ, k∆s), where ∆r =
Rmax/Nr, ∆r = 2π/Nθ, ∆s = s̄/Ns, while i =
0, ..., Nr, j = 1, ..., Nθ (due to periodic boundary con-
ditions), and k = 0, ..., Ns. We will use W k,q

i,j ≈
w(ri, θj , q, sk) to denote the discretized approximate solution
at (ri, θj , q, sk). Recall from section III that s(t) is strictly
decreasing along the path-to-target. We can thus causally
march from smaller s to larger s and compute the value

function from s = 0 to s = s̄ in a single sweep. In particular,
we choose τ = ∆s when solving Eqn. (10) so that we can
march from the sk−1-slice to the sk-slice. The expectations
in both (10) and (11) can be approximated using Gauss-
Hermite quadratures (GHQ), but the details are somewhat
different due to the contrast in elapsed times.

To approximate Eu,τ , we use a first-order weak approxima-
tion [13], [14] of the distribution of the Brownian increment
∆Bτ for τ time units. Starting from any gridpoint (ri, θj , sk)
and using any admissible steering angle u, we consider two
possible locations of ξ(τ, u) in the sk−1-slice:

ξ±i,j,u = (ri + τrd(u), θj + τθd(u)± σ
√
τ).

Averaging the value function at these points is equivalent to
a two-node GHQ approximation of (10); i.e.,

Mu,τW
k,q
i,j =

1

2

(
W k−1,q

(
ξ+i,j,u

)
+W k−1,q

(
ξ−i,j,u

) )
.

(13)
Since these ξ±i,j,u are usually not gridpoints, we implement
(13) by using a bi-cubic ENO interpolation [15] with a 2π-
periodicity in θ. We adopt a two stage process for finding
the optimal u∗ that maximizes Mu,τ : first, we perform a
direct comparison over a grid of angle values U and identify
an interval containing the best u⋆ ∈ U ; we then perform a
Golden Section Search (GSS) over that interval to obtain a
more accurate approximation of u∗.

The accuracy of (13) improves under grid refinement1

since the diffusion time τ = ∆s → 0. Finding a good
approximation for E

C
is a bit harder since the diffusion time

C is constant. To address this, one can use a higher order
accurate GHQ; e.g., our implementation uses a version with
3 GH nodes

ηj,m = θj + aC + σ
√
2Cxm, m ∈ {1, 2, 3}, (14)

where xm are the roots to the 3rd Hermite polynomial.
Assuming that sk ≥ C, we use

M
C
W k,q

i,j =
1√
π

3∑
m=1

γmW (ri, ηj,m, q̃, sk − C) , (15)

where γm’s are the weights of the third GHQ. We choose
∆s to be a fraction of C, ensuring that sk−C = sl for some
l < k. But ηj,m are usually not multiples of ∆θ and we use
a 1D periodic cubic ENO interpolation to evaluate (15).

The grid value is then computed as

W k,q
i,j = max

(
Mu∗,τW

k,q
i,j , MC

W k,q
i,j

)
,

and we recover the optimal steering/switching policy
α∗(ri, θj , q, sk) as a by-product. Our full method is sum-
marized in Algorithm 1 using the target radius RD, the

1Under mild technical conditions, semi-Lagrangian schemes have been
proven to converge to the discontinuous viscosity solution of first-order
HJB PDEs on every compact set away from discontinuity [16], [17]. For
the second-order HJBs, the method closest to ours has been studied (with
rigorous error estimates) in [18] but without hybrid dynamics or degenerate
parabolicity. While our setting is more general, the numerical results in
Section V and online repository provide strong evidence of convergence.
A rigorous proof of numerical convergence to the discontinuous viscosity
solution of PDE (12) remains an open problem to be addressed in the future.



maximum sailboat speed fmax, and
Ξ = {(i∆r, j∆θ) | i = 0, . . . , Nr, j = 0, . . . , Nθ},

Algorithm 1: Risk-aware value function computation

for sk = k∆s, k = 0, 1, . . . Ns do
for every ξi,j ∈ Ξ and q ∈ {1, 2} do

if (ri −RD)/fmax > sk then
W k,q

i,j ← 0;
else

W k,q
i,j ← maxuMu,τ ;

if s ≥ C then
W k,q

i,j ← max
(
W k,q

i,j , MC
W k,q

i,j

)
;

B. Trajectory synthesis and ECDF generation

The above PDE solution process yields the optimal
threshold-aware policy in feedback form, with the optimal
action α∗(ri, θj , q, sk) stored at each gridpoint in Ξ and for
a range of deadlines (k = 0, ..., Ns). To recover a sample
path-to-target from any specific initial configuration (r̂, θ̂, q̂)
and the intended deadline ŝ, we use Euler-Maruyama scheme
[14] with a fixed time step ∆t on Eqns. (4) . At each time
step, we normally use the optimal steering/switching action
from the policy recorded for the nearest gridpoint. But the
threshold-aware control formulation leaves two ambiguities
that have to be resolved in the implementation. First, if
w(r̂, θ̂, q̂, ŝ) = 1, the current ŝ may be more than sufficient
to reach the target with probability one and the actions
taken until the remaining time budget s becomes “barely
sufficient” are not important. To address this, we use a
“Deadline-Upgrade” approach, decreasing the initial time-
budget to ŝ = min

{
sk | w(r̂, θ̂, q̂, sk) = 1

}
. Second, if

during a simulation the sailor is unlucky and later finds
herself with w(r̂, θ̂, q̂, ŝ) = 0, the PDE provides no guidance
on what to do after that (since she will now definitely miss
the original deadline). Rather than dismiss such simulations
as complete failure, from there on we simply apply the risk-
neutral policy µ∗ recovered from Eqn. (5).

Empirical cumulative distribution function (ECDF) for
both α∗ and µ∗ are obtained through Monte Carlo simu-
lations, with sample paths generated starting from a specific
(r̂, θ̂, q̂, ŝ) under different realizations of wind evolution. The
ECDFs for the total time-to-target are obtained through the
the Kaplan-Meier estimate [19] using the MATLAB’s built-in
function ecdf().

V. NUMERICAL EXPERIMENTS

We use several examples to compare the performance of
risk-aware and risk-neutral policies. In all cases, the value
functions are computed on a 1601 × 1601 × 2 grid for
(r, θ, q) ∈ [0, 2]×[0, 2π]×{1, 2}. When solving (12), we use
∆s = 0.025 for any preset maximum deadline s̄. The other
parameter values are RD = 0.1, C = 2, and fmax = 0.05.
All ECDFs are built through Monte Carlo simulations (see
section IV-B) with 105 samples and ∆t = 0.005.

We illustrate our s-dependent risk-aware policies for a
wind with zero drift (a = 0) and small diffusivity (σ =
0.05). In Fig. 2(a,c), we show some representative s-slices
of the risk-aware optimal policies α∗ and the corresponding
value function w for the starboard tack2 (i.e., the optimal
probability of reaching D in less than s units of time if we
start with q = 1 and use α∗). In Fig. 2(a), colors indicate
the optimal steering angle u∗ in the current tack, while the
complement (left blank) shows all the (r, θ) configurations at
which the immediate tack-switch ▲ is optimal. We observe
that α∗ is strongly s-dependent and significantly differs
from the risk-neutral optimal policy µ∗ shown in Fig. 2(b).
The arrows in Fig. 2(a,c) indicate the natural progression
when threshold-aware policies are used in practice: once we
start with a particular deadline ŝ, our initial time-budget3

s(0) = ŝ is progressively decreasing, making it necessary
to use α∗ from the lower s-slices. This decrease is gradual
(ṡ(t) = −1) while we are steering, but becomes abrupt
whenever we decide to tack-switch at some time t▲; i.e.,
s(t) = s(t▲)− C, ∀t ∈ (t▲, t▲ + C].

Since α∗ is somewhat more complicated to implement in
practice, it is reasonable to ask whether it is significantly
better (in meeting the desired deadlines) than the risk-neutral
µ∗. For any specific starting configuration, the answer can
be found by comparing the ECDF of µ∗ with the risk-aware
value function w plotted across the range of s values. The
graph of w will be always above, though often this differ-
ence is minimal, making the use of µ∗ a preferred option.
However, in many cases the gap between the two graphs will
be more significant for a specific range of s values. This is
illustrated in Fig. 3(a) for (r̂, θ̂, q̂) = (1.93, 0.56, 1). If we
are interested in some deadline between ŝ = 52 and ŝ = 57,
the threshold-aware policies provide a noticeable advantage.
For example, our α56

∗ (red in Fig. 3(b)) increases P(T ≤ 56)
from 52.5% to 58.9%, while our α53

∗ (green in Fig. 3(b))
yields a 10.6% improvement in P(T ≤ 53) while increasing
E[T ] by less than 2.8%.

It is also revealing to examine sample trajectories resulting
from each of these policies (shown in Fig. 3(c) for a
particular random realization of wind evolution). According
to µ∗, the boat starts in the “wrong” tack, and thus needs
to switch immediately, with another tack-switch (back to
q = 1) almost always needed later to reach D. This strategy
produces the best E[T ], but makes it hard to reach the target
much earlier and does not hedge against the bad outcomes
(e.g., Tµ∗ > 58 in more that 33% of simulations). In contrast,
the threshold-aware policies make a calculated bet (that the
wind direction will soon change to help us), stay with the
original q = 1 at first, and reach D with only one tack-switch.

Larger improvements can be similarly realized with a non-
zero wind-drift, particularly when the chosen deadlines are
fairly aggressive (in the left tail of Tµ∗ PDF). In Fig. 4(a) we

2In the interest of reproducibility, our full source code, additional exam-
ples, and movies (for both tacks) will be available from
https://eikonal-equation.github.io/Threshold-Aware-Sailing-Public.

3In the following discussion, we use the superscript (αŝ
∗) to refer to a

version of policy α∗ implemented with a specific initial time-budget ŝ.

https://eikonal-equation.github.io/Threshold-Aware-Sailing-Public


(a) (b)

(c)

Fig. 2. Representative s-slices of risk-aware policy, their corresponding optimal probability of reaching the target D, and the risk-neutral policy:
(a) risk-aware optimal policy α∗; (b) risk-neutral optimal policy µ∗; (c) optimal probability of reaching D associated with (a). All shown for the starboard
tack q = 1 only and in relative (r, θ) coordinates. In all figures, the target D is shown as a magenta disk in the center. In (a) and (b), it is optimal to
switch to q = 2 from wherever the space is left blank. Otherwise, it is optimal to stay with q = 1 and the best steering angle is shown in color (with the
same colorbar used in both subfigures).

(a) (b) (c)

Fig. 3. Sailing against the wind: a comparison between the risk-aware and risk-neutral approaches with (a = 0, σ = 0.05) starting from
(r̂, θ̂, q̂) = (1.93, 0.56, 1) Subfigures: (a) ECDF (empirical cumulative distribution function) generated with the optimal risk-neutral policy µ∗ (solid blue)
vs. the s-dependent risk-aware optimal probability of success w(r̂, θ̂, q̂, s) (dash-dotted orange); (b) ECDFs of the random total time to target generated
with different polices; (c) Sample sailboat trajectories in the absolute xy-coordinates generated with different polices under the same random wind path.
The target set is plotted as a magenta disk at the top, and top-left dark green arrow encodes the initial wind direction ϕ(0) = 0. Trajectory colors
correspond to the polices used to generate ECDFs in (b). The colored dots indicate the tack-switching points for respective trajectories. Observed sample
means for the arrival time T are 54.46, 55.57, and 55.95 for the policies µ∗, α53

∗ , and α56
∗ respectively. Arrival times for the specific trajectories in (c)

are 56.55 (blue), 53.54 (green), and 54.07 (red).

show such an example with (a = 0.05, σ = 0.05). Unlike
in Fig. 3, here the initial direction of the wind is largely
toward the target, but we are in the wrong initial tack to
fully take advantage of this. The risk-neutral µ∗ prescribes
an immediate tack-switch followed by another one a bit later
and yields a low P(T ≤ 42) ≈ 5.8%. In contrast, the
threshold-aware α42

∗ recognizes, based on the sign of a, that
the wind is likely to change in the right direction soon and (in
the specific wind-evolution example presented in the bottom

row of Fig. 4(a)) manages to reach D without any tack-
switches at all. The result of this calculated bet is to almost
triple P(T ≤ 42) to 17.2% and make the tack-switches
far less common. Even more dramatic improvements can
be obtained when the drift is stronger. In Fig. 4(b) with
(a = 0.15, σ = 0.05), the threshold-aware policy boosts
P(T ≤ 43.5) from 8.8% to 26.6%, largely by reducing the
number of tack-switches (in most cases, from 3 switches
under µ∗ to only 1 under α43.5

∗ ).



(a) (b)

Fig. 4. Exploiting the wind-drift: (a) (a = 0.05, σ = 0.05); (b) (a =
0.15, σ = 0.05). Top Row: ECDF for µ∗ (solid blue), the s-dependent
risk-aware optimal probability of success w(r̂, θ̂, q̂) (dash-dotted orange),
and ECDF for αŝ

∗ (solid green). In (a), (r̂, θ̂, q̂) = (1.80, 2.67, 1) and
ŝ = 42. The sample means for µ∗ and αŝ

∗ are 43.83 and 44.30. In (b),
(r̂, θ̂, q̂) = (1.80, 2.01, 1) and ŝ = 43.5. The sample means for µ∗ and αŝ

∗
are 43.93 and 43.97. Bottom Row: Two representative paths generated with
the same wind evolution (with colors corresponding to respective policies in
the top row). The dark green arrow encodes the initial wind direction. Time-
to-target: (a) blue: 42.23, green: 41.44 ; (b) blue: 43.12, green: 42.98. In
(a) µ∗ led to 2 tack-switches in 99.9% of simulations, while α∗ required
none in 99.1% of cases with 2 switches needed in all others. In (b) µ∗ led
to 3 tack-switches in 99.9% of simulations (with others requiring 4), while
α∗ required 1 switch in 99.9% of cases with 2 switches needed in the rest.

We end this section with two caveats. First, it is usually
impossible to optimize the entire CDF of the arrival time. As
should be clear from Fig. 3(b), a policy increasing P(T ≤
ŝ1) might be decreasing P(T ≤ ŝ2) even compared to a
risk-neutral µ∗. Typically, each αŝ

∗ is only optimal for its
particular threshold/deadline ŝ. This is why we do not use the
usual nomenclature of risk-aversion [7] and instead describe
or methods as risk (or threshold) aware. Second, our decision
to revert to µ∗ in the “unlucky” α∗-based simulations (once
the time-budget is reduced to zero) is fairly arbitrary and
one can certainly use other approaches instead. However, this
choice does not affect P

(
Tαŝ

∗
≤ s̃

)
for any s̃ ≤ ŝ; thus, the

primary goal of threshold-aware policies is still achieved.

VI. CONCLUSION

We have introduced a robust (risk/deadline-aware) ap-
proach to controlling a sailboat in stochastically evolving
wind conditions. The efficiency of our approach hinges on
the numerical method for a pair of quasi-variational HJB-
type inequalities, which yield deadline-aware policies for all
initial configurations and a broad range of deadlines simulta-
neously. Numerical experiments demonstrate the advantages
of these policies over the traditional risk-neutral approach
[3], particularly when it is possible to reduce the number of
likely tack-switches.

Several extensions will obviously increase the impact of
this approach in the future. Solving the problem in absolute

coordinates will allow for a better modeling of the domain
geometry (e.g., accounting for obstacles and other target
shapes). Incorporating more realistic wind models and more
detailed boat dynamics will be clearly of interest to practi-
tioners. Similarly, stochastic differential games might be used
to reflect the competitive aspect of sailing races [2]. [E.g.,
if Ti is a (random) arrival time of the i-th competitor, one
could try to maximize P (T ≤ mini Ti) .] In addition, it will
be important to explore multi-objective versions (e.g., Pareto-
optimal tradeoffs between E[T ] and P (T ≤ ŝ)) and compare
our approach with risk-averse methods that minimize the
“Conditional Value at Risk” [7].

Finally, we hope that a similar threshold-aware approach
will prove to be useful in many indefinite-horizon hybrid
control applications unrelated to sailing.

REFERENCES

[1] R. Ferretti and A. Festa, “Optimal route planning for sailing boats: A
hybrid formulation,” Journal of Optimization Theory and Applications,
vol. 181, no. 3, pp. 1015–1032, 2019.

[2] S. Cacace, R. Ferretti, and A. Festa, “Stochastic hybrid differential
games and match race problems,” Applied Mathematics and Compu-
tation, vol. 372, p. 124966, 2020.

[3] C. Miles and A. Vladimirsky, “Stochastic optimal control of a sail-
boat,” IEEE Control Systems Letters, vol. 6, pp. 2048–2053, 2021.
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