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Naoto Komeno1,∗, Brendan Michael1,∗, Katharina Küchler1,2, Edgar Anarossi1 and Takamitsu Matsubara1

Abstract— Soft robots are challenging to model and control as
inherent non-linearities (e.g., elasticity and deformation), often
requires complex explicit physics-based analytical modelling
(e.g., a priori geometric definitions). While machine learning
can be used to learn non-linear control models in a data-
driven approach, these models often lack an intuitive internal
physical interpretation and representation, limiting dynamical
analysis. To address this, this paper presents an approach
using Koopman operator theory and deep neural networks to
provide a global linear description of the non-linear control
systems. Specifically, by globally linearising dynamics, the
Koopman operator is analyzed using spectral decomposition
to characterises important physics-based interpretations, such
as functional growths and oscillations. Experiments in this
paper demonstrate this approach for controlling non-linear
soft robotics, and shows model outputs are interpretable in
the context of spectral analysis.

I. INTRODUCTION

Linear control theory is well suited to developing in-
terpretable control frameworks, through exploration of the
spectral components, i.e., eigenvectors and eigenvalues, of
the associated dynamical system. Spectral analysis can help
determine system stability [1], or provide additional insight
for techniques such as filtering [2]. However, application to
non-linear systems is ill-suited, due to the absence of a linear
evolution of the dynamics, resulting in sub-optimal solutions
and poor control applications.

In particular, soft robots with non-linear properties
(e.g., elasticity) suffer from difficulties in both modelling
and control (e.g., unpredictable behaviour due to the high
degree of freedom). As such, predictive control often requires
physics based modelling [3], including analytical descrip-
tions of the geometries [4]. However, dynamical analysis
of non-linear systems remains challenging, and is generally
limited to systems with closed-form derivations (e.g., double
pendulums [5]).

As an alternative to analytical modelling, machine learning
can be employed to learn predictive models of the non-linear
dynamical system, solely through observations of the envi-
ronment. While there exists a large body of work exploring
machine learning methods for soft robots [6], a common
limitation is the lack of interpretability and explainability of
models [7]. Specifically, in the context of learning predictive
models for control, black-box machine learning systems [8]
may only locally linearise the dynamics [9], thereby not
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Fig. 1: Stabilization of a flexible polyurethane arm. (a)
Complex non-linear robot dynamics are mapped to set of (b)
linearised latent dynamics (polar co-ordinates), via Koopman
operator theory, becoming amenable to spectral analysis.

capturing intrinsic important global physical properties of
the system. This both limits dynamics analysis of the learnt
model, and reduces confidence in model generalisability.

To address this, this paper proposes an approach to con-
trolling and interpreting non-linear soft robotics by learning
globally linearized dynamics models via Koopman operator
theory [10], and applying this to model predictive controllers.
Specifically, Deep Koopman Networks (DKN) [11] is used
to learn parsimonious dynamics models with control, that
expresses linear dynamics interpretations in the context of
spectral analysis. Prior work applying Koopman theory to
robotics [12]–[15] is limited to improving prediction and
control performance, without considering the interpretability
of the model. This paper presents the first evidence of DKN
in soft robotics for non-linear control with dynamics analysis
contextualised within the linear control domain.

Experiments apply the approach to a soft robot system
(soft inverted pendulum) for both modeling the dynamics,
and stabilisation control. Results show an improved control
performance over standard deep learning for a soft flexible
stabilisation task, and models display clear physical interpre-
tations of the dynamic system.

II. BACKGROUND

Koopman operator theory [10] is a dynamical systems
formulation, that provides a global description of non-linear
dynamics, in terms of the linear evolution of a set of observ-
able functions. Specifically, instead of attempting to model
the non-linear dynamical state space (e.g., positions and
velocities), Koopman operator theory alternatively describes
the dynamical system in terms of the linear evolution of a
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set of state-dependent observable functions, forming a latent
linear dynamical system [16].

A. Koopman operator theory

To present the role of Koopman operator theory in dy-
namical systems analysis, a discrete-time dynamical system
is first formulated:

xn+1 = F(xn), (1)

where n is the time-index, F : X 7→ X is the flow map,
and X is a finite-dimensional metric state-space [16], often
assumed to be a smooth manifold [17] (e.g., Euclidean, X ⊆
RM).

Analysis and modelling of this non-linear F can be chal-
lenging. Instead, a reasonable approach is to find coordinate
transformations to map from the non-linear dynamics to a
latent linear dynamical system. Koopman operator theory
does this by describing the linear evolution of measurement
functions of the non-linear state [17]:

Kg(xn) = g(F(xn)) = g(xn+1), (2)

where Kt is the Koopman operator, an infinite-dimensional
linear operator, acting on a measurement function g of the
system (also known as an observable.). This observable is
a function of the state, i.e., g : X 7→ C, and an infinite
set of observable functions is defined on a Hilbert space
H [17]. This formulation is often referred to as lifting the
state variables from the finite non-linear space, to an infinite-
dimensional linear one. Given all observables, K controls
their evolution, i.e., K : H 7→ H. The Koopman operator is
associated with the non-linear state transformation F through
the composition Kg = g ◦ F,∀g ∈ H [16].

B. Koopman theory with control

Koopman operator theory is also applicable to systems
with control inputs, by describing the dynamics of an ex-
tended state space of the product of X and the space of all
control sequences `(U) [18]. By defining the operator on the
extended space, the Koopman operator remains autonomous
and is equivalent to the operator associated with unforced dy-
namics [19]. Specifically, considering a non-linear dynamical
system with control u ∈ U :

xn+1 = F(xn ,un), (3)

a common generalization is to define the associated Koop-
man operator as evolving an uncontrolled dynamic system
defined by the product F : X ⊗ U 7→ X [18].

As the evolution of X only depends on un , the control
is considered as an additional state variable [16], instead
of requiring all control sequences `(U). As such, similar to
Eq. (2), the Koopman operator is described as [16]:

Kg(xn ,un) = g(F(xn ,un),un+1). (4)

In contrast to linear predictors [18], u is also lifted through
observables g alongside the state x.

Applications of Koopman operator theory to domains with
control are are fast appearing in the literature, and generally

focus on strategies for choosing suitable observable functions
[20] or optimal control [18], [21]. For a general review of
Koopman based control frameworks, please see [22]. With
specific regard to robotics control applications, prior work
has investigated finding observables [23], LQR [12], [15],
[24] or MPC [25]–[27] control, active learning [13], and
shared human-robot control [28].

C. Spectral analysis and finite approximations of the Koop-
man operator

Analysis of this infinite-dimensional linear operator is
challenging. However, finite spectral properties of the opera-
tor are of great importance, as they can outline global prop-
erties of the dynamics [29]. Specifically, K can be spectrally
decomposed into Koopman eigenfunctions φk (.) ∈ H\{0}
[16], with corresponding Koopman eigenvalue λk ∈ C),
which satisfies:

Kφk = φk ◦ F = λkφk . (5)

This Koopman eigenfunction is a linear intrinsic measure-
ment coordinate on which measurements are evolved with a
linear dynamical system [17]. As such, spectral analysis of
this can provide physical intuition of the dynamical system
under investigation.

While there exists a large body of work on finding analyt-
ical representations of eigenfunctions with knowledge of the
dynamical system [16], [20], data-driven approximations are
increasing prevalent. This is due to the complexity and uncer-
tainty in finding eigenfunctions, and the modern increase in
computational power for modelling, and availability of large
datasets.

Generally, approximations are often made using the dy-
namic mode decomposition algorithm [17], [30], whereby
spectral components of a linear transition matrix are es-
timated via matrices of state measurements. Specific im-
plementations that incorporate Koopman operator theory to
handle non-linear transitions include dictionary [31] or deep
learning [32] for finding observables or eigenfunctions [11],
or utilizing approaches such as time-delay embeddings [33].

III. APPROACH

A. Deep Koopman Network

A promising approach to learning the linearisation via
eigenfunctions and the latent linear dynamics Eq. (5) for
autonomous uncontrolled systems, is the Deep Koopman
Network (DKN) approach [11]. In this, a deep autoen-
coder framework is used to find intrinsic latent coordinates
y = φ(x) approximating the Koopman eigenfunctions
φ : RM 7→ RP , and associated linear dynamical system
yn+1 = Kyn . This is achieved by using an autoencoder to
learn an encoder φ and decoder φ−1, and inner layers to
learn the linear dynamics K. To learn parsimonious models,
continuous spectra dynamics are captured by parameterising
K by an auxiliary layer, predicting eigenvalues as a function
of y.

An intuitive design constraint for DKN, is to learn la-
tent coordinates y which have complex radial symmetry



[11], as exponentials can be seen as eigenfunctions of a
differential operator [34]. As such, for each eigenfunction
φk , the associated eigenvalue is given as a complex pair,
representing circular motion in the latent space. Specifically,
λk = µk ± iωk , where µk denotes the growth/decay, and
ωk the oscillation, and for each complex eigenvalue pair
an associated linear operator K with sampling time ∆t is
formed as:

K(µk , ωk ) = exp(µk∆t)

[
cos(ωk∆t) − sin(ωk∆t)
sin(ωk∆t) cos(ωk∆t)

]
.

(6)
Given this design constraint, φ, φ−1, and K are learnt using
measurement data.

Here, we regard control input u as one of the state
variables for non-linear control systems so that DKN
learns non-linear control dynamics. Previous studies us-
ing deep-learning-based learning of Koopman operators
[14], [15] sacrifice interpretability by assuming bi-linear
systems for Eq. (3) to achieve optimal control, but our
approach realizes both interpretability and controllability.
For the latent coordinates y = φ([x,u]), datasets are
given in the DMD format of delayed snapshot matrices
[17] X = [[x0,u0], . . . , [xN−1,uN−1]] and outputs X′ =
[[x1,u1], . . . , [xN ,uN ]]. Eigenfunctions and linear dynamics
are learnt by minimising a set of loss functions: (i) Recon-
struction loss: ||xn−φ−1(φ([xn ,un ]))||, (ii) Linear dynam-
ics loss: ||φ([xn+1,un+1]) − K(φ([xn ,un ]))||, (iii) Nex-
t-step prediction loss: ||xn+1 − φ−1(K(φ([xn ,un ])))||. In
this paper, all components in xn are assumed to be mea-
surable. For specific details regarding implementation and
learning (including initialisations, regularisations and hyper-
parameters), see [11].

B. Sampling-based model predictive control

Given this predictive model of the dynamics, a reason-
able approach to controlling a system to a desired state is
via a model-based controller. In this study, even in linear
latent space, control inputs are given as non-linear system
state variables Eq. (4). As such, standard linear optimal
control (e.g., LQR) applied in previous studies [12], [14],
[15], [24] is inapplicable. Instead, sampling-based nonlinear
model predictive control (MPC) is employed to overcome
the control non-linearities. This is applied as a model-based
control method in nonlinear observation space.

Specifically, MPC uses the approximation of Eq. (3) from
learnt DKN components §III-A, in combination with a given
control input at each time step, to predict the future state.
To determine the optimal control to reach the desired target
state, a minimization problem is formulated with a cost
c computed as the difference between the predicted state
and the target state xtarget. Given this cost, sampling-
based optimization using the cross-entropy method (CEM)
[35] is performed. The optimization problem for MPC is
formulated:

ut = arg min
ut

∑
i=t+1,...,tp

ci(xi,xtarget), (7)

where tp is prediction horizon to determine the action that
will bring the prediction result closest to the target state.

IV. SIMULATION

To evaluate the proposed approach for learning non-linear
dynamics models that explain intuitive physical aspects,
experiments are presented to explore the application of DKN
with control. This evaluation is comprised of three con-
stituent parts: (i) learning dynamics of a non-linear system
under control, (ii) analysing the learnt Koopman outputs
to elucidate an intuitive understanding of the system, and
(iii) applying predictive control.

A. Simulation experiments

Initially, an experiment is presented to learn and analyse
the dynamics of a non-linear rigid pendulum, similar to
that proposed in [11]. While a relatively mundane system,
the non-linear pendulum is challenging to model within a
parsimonious framework, due to it exhibiting a continuous
eigenvalue spectrum (e.g., differing oscillation frequency de-
pendant on dynamical state) which often requires a harmonic
expansion estimation.

The dynamics of the pendulum under control [36] is en-
tirely described by the three dimensional state x = [q, q̇, u]ᵀ,
where q is the joint angle, q̇ the joint velocity, and u
the applied torque. The equations of motion for the rigid
pendulum is given as:

ẋ = [q̇, q̈]ᵀ, (8)

where angular acceleration q̈ is:

q̈ =
g

l
sin(q) +

(u− υq̇)
(ml)

2 , (9)

with gravity g, rod length l, mass m and viscous friction υ.
The aim of this experiment is to learn a predictive model of
Eq. (8) and Eq. (9), through observations of q, q̇, and u.

B. Generating data

Trajectories of motion are generated as samples from
which to learn dynamics models. For this, Eq. (9) is solved
for T∫ time-steps with a forth-order Runge-Kutta method.
From these T∫ timesteps, T are taken to form a trajectory
matrix Xn ∈ R3×T = [xᵀ

0 , . . . ,x
ᵀ
T ]. Trajectory matrices

are reshaped into a delay-embedding vector [37], resulting
in a sample xn ∈ R3T . To generate datasets, this process
is repeated with random initialisations of q, q̇ and u, to
form the training dataset XA ∈ R3T×A, validation dataset
XB ∈ R3T×B and evaluation dataset XC ∈ R3T×C . In the
simulation experiment υ = 0, g = −1 and m, l = 1.

Using the Deep Koopman framework §III-A, a neural
network architecture is learnt. For specific details on gen-
erating data, and architecture implementation details, please
see Appendix.

C. Rigid pendulum (no control)

For an initial experiment, the dynamics of a rigid pendu-
lum without any control input is learnt. This is similar to



Fig. 2: DKN: Rigid pendulum without control (left), and with PD control (right). a) Phase space with exemplar trajectories
with initial states (No control: xa = [π−0.1, 0] , xb = [π2 , 0], and xc = [ π18 , 0], PD Control: xa = [−π+0.1, 0] , xb = [0, 0],
and xc = [π − 0.1, 0]), b) Latent space, c,e) Single eigenfunction with real and imaginary axes mapped independently, d)
Eigenfunction growth µ, f) Eigenvalue frequency ω, g) Hamiltonian energy and, h) Eigenvalue frequency over time.

the experiments described in [11], and aims to elucidate the
interpretation process of the Koopman outputs.

The results for learning the dynamics with DKN are shown
in Fig. 2 (left). In this, it is seen that as in [11], trajectories
in the input phase space Fig. 2 (left) (a) are mapped via
a single complex conjugate pair of learnt eigenfunctions,
to a latent-space that is linear in polar coordinates Fig. 2
(left) (b). Specifically, this demonstrates that the system is
globally linearised within the Koopman framework. Addi-
tionally, by using the auxiliary network to parameterise the
learnt dynamics by a continuous spectra of eigenvalues, a
continuous range of oscillatory frequencies is also captured
by the model, thereby capturing the continuous eigenvalue
spectrum. This is seen in the latent space (Fig. 2 (left) (f)),
where the continuous spectra captures an intuitive physical
characteristic of the pendulum, that being the frequency of
oscillation is dependent on the position in the phase space.
Specifically, this shows the eigenvalue frequency decreases
the further from the centre, i.e., the period of the swing
increases the further from the stable equilibrium position.
In the context of the pendulum, this expressed as a high
frequency oscillation at small angles, and low frequency
oscillation at higher angles (Fig. 2 (left) (h)). Additionally,
characteristics such as the Hamiltonian energy [11] can be
expressed function of the phase space (Fig. 2 (left) (g)).
In the context of the pendulum this captures the kinetic
and potential energy of the pendulum at top of the swing.
As such, the model captures interesting inherent physical
properties of the underlying dynamical system.

D. Rigid pendulum (PD control)

A subsequent experiment evaluates the performance of
dynamics learning with DKN, for systems with control
input. In this experiment, trajectories of motion are generated
according to §IV-B, with control given by a standard PD
controller:

u = −Kp(qtarget − q) +Kdq̇, (10)

where qtarget = π is the target, and Kp = 10, Kd = 3 are
coefficients for the proportional and derivative terms.

In this experiment, trajectories of motion are generated for
T∫ = 300 timesteps, to reach the target. Trajectories are then
split into segments of length T = 50.

Results for this experiment are seen in Fig. 2 (right). In
this it is seen similar to §IV-C, a single complex eigenfunc-
tion characterises the behaviour of the dynamical system.
Specifically, the frequency increases around the unstable
equilibrium position Fig. 2 (right) (f), resulting in high
frequency oscillations when the pendulum stabilises Fig. 2
(right) (h) due to the PD gain terms. As such, it is clear that
the learnt model both captures dynamics under control, and
the induced PD controller dynamics.

V. EXPERIMENT

A. Soft inverted pendulum

Experiments in §IV demonstrate that DKN can be applied
to non-linear dynamical systems under control, to obtain in-
tuitive outputs that can be used to help explain characteristic
behaviours.

Given this, a further evaluation is performed exploring
the application of this method to a more challenging sce-
nario, stabilisation of a soft inverted pendulum in a real-
environment. In the context of dynamical systems, modelling
this introduces the additional challenges of both system com-
plexity (e.g., modelling non-linear elasticity and hysteresis),
as well as accounting for real-world environmental noise and
variations (e.g., air-flow, vibrations).

An overview of soft inverted pendulum elasticity is shown
in Fig. 1, using an environment as shown in Fig. 3. In
this, a soft inverted pendulum made from polyurethane foam
(JIS ASKER C < 1, 30 × 100 × 700 mm) is rotated at
the base by a robot arm (Universal Robots Inc.: UR5).
The softness induces non-linear dynamics in the system,
and can be represented as a type of non-linear spring with
dynamics given by the Duffing equation [38], [39]. This
system has a dual-well potential, with one stable equilibrium
point on either side (e.g., Fig. 3 demonstrates left-sided rest),
and requires nonlinear control to reach a balanced unstable
equilibrium point.



Fig. 3: The environment of the soft inverted pendulum

In these experiments, it is assumed that the dynamics can
be described by the state variable x = [θ, θ̇, q]T , where θ is
the angle of pendulum, θ̇ the angular velocity of pendulum
and q is the joint angle of robot. The control input u = q̇ is
the joint velocity of robot. Due to the hysteresis of elasticity,
it is assumed that this experimental setup requires memory.
As such, models use T = 50 time-steps as historical input,
to learn the embedding and its associated linear dynamical
system.

B. Experimental setting

The experimental setup is shown in Fig. 3, where the
polyurethane foam prism is attached to the robot end-
effector, with the center of the end-effector defined as the
origin and the distance from the end of the pendulum given
as 580mm. To measure the system state, recurrent reflection
markers are attached to the end of the pendulum, and its
position p(xt, yt) is measured with a motion capture camera
(OptiTrack: Flex13, sampling frequency 120 Hz) to obtain
the pendulum angle θ. The angular velocity θ̇ is calculated
by approximate differentiation.

θt = arctan
yt
xt

(11)

θ̇t =
θt − θt−1

dt
(12)

The state of the robot [q, q̇] is obtained and controlled directly
through the robot’s internal controller.

C. Data collection

To generate trajectories of motion for dynamics learning,
time series data of the soft inverted pendulum system is
collected using a PD control:

u = −Kp(θtarget − θ) +Kdθ̇. (13)

This controller acts as an exciter, to capture the dynamics
of the soft pendulum, which is a non-autonomous system.
Since PD control is a linear controller, the gain KP ,KD

and target position θtarget are varied to explore the nonlinear
state space, as detailed in Table I. Specifically, these values

TABLE I: Details of PD controller for data collection

Controller PD1 PD2 PD3 PD4
Kp 0.3 0.3 0.1 0.1
Kd 0.1 0.2 0.2 0.3

θtarget 0,±0.8 0,±0.1 0,±0.8 0,±0.8

Fig. 4: DKN one complex eigenfunction of the soft in-
verted pendulum: a) Phase space with different behaviour
trajectories (for gains in Table I), b) Latent space, c,e)
Single eigenfunction with real and imaginary axes mapped
independently, d) Eigenfunction growth µ, f) Eigenvalue
frequency ω, g) Hamiltonian energy.

are chosen to generate a range of trajectories that vary
between conservative trajectories that are stationary at the
target point over time and unstable trajectories that oscillate
by overshooting to the stable equilibrium point.

Data is collected for 30 minutes for each gain and target
setting, with a control frequency of 20 Hz.

D. Dynamics analysis

To learn and analyse the dynamics of the soft pendulum,
a DKN network is learnt following the procedure described
in §III-A, with training details given in Appendix.

1) One Complex Eigenfunction: As an initial experiment,
the dynamics are learnt using DKN with a single complex
eigenfunction (as in §IV). The results for this are seen
in Fig. 4. In this, it is seen that the input phase space,
Fig. 4(a), is comprised of different behavioural trajectories,
due to the variations of the controller gains inducing differing
oscillation periods.

As a first observation, it is seen that this variation in
behaviour is similarly observed in the latent complex eigen-
function space (Fig. 4(b)). Specifically, input trajectories
from PD1 (black), which have a longer travelling distance
and contains oscillation at the dual wells, are successfull
unwound and mapped to the polar latent space. This high-
lights that complex behaviours in the phase space can be
mapped via to the eigenfunctions to a linear space. Similarly,
trajectories from the other gains are also mapped, with
decreasing radious from the centre. As such, the different
behaviours have been discretised into disparate regions of
the eigenfunction latent space.

To explore this in the context of gaining intuative under-
standing of the system, Fig. 4(f), shows the frequency of



Fig. 5: DKN nine complex eigenfunctions of the soft
inverted pendulum: Latent coordinates for each complex
eigenfunction, for exemplar trajectories given by gains in
Table I

oscillation in the latent space. In this, the frequency varies as
a function of the phase space, oscillating at high frequencies
as the pendulum converges to the stabilisation point (due to
the gain parameters). Additionally, as seen in Fig. 4(h), the
energy of the system can be extracted from the model via the
magnitude of the eigenfunctions. In this, it is seen that for the
stabilisation trajectory (PD controller with strongest gains,
red) the highest energy corresponds to the initial change in
velocity.

On the other hand, µ, which indicates the divergence and
convergence of the oscillations in Fig. 4(d), takes a very
small negative value, just like the rigid pendulum in Fig. 2.
This suggests that DKN with a single eigenfunction learns
only the steady oscillations caused by the PD controller, and
the stabilization dynamics of the soft pendulum up to the
equilibrium point is not captured.

2) Nine Complex Eigenfunctions: In order to learn the
full dynamics, up to and including equilibrium stabilization,
the experiment in §V-D.1 is repeated with a greater number
of complex eigenfunctions. Specifically, nine eigenfunctions
are chosen to capture a more expansive range of dynamic
components.

The results for this increased number of eigenfunctions is
seen in Fig. 5. In this, it is seen that unique configurations
are captured for each pair. However, in contrast to the
experiments in Fig. 5, both µ and ω are learnt as discrete,
non-continous values for each eigenfunction. In the context
of dynamical systems analysis, this means that the learnt
dynamical system can be expressed as a combination of
nine fixed oscillatory behaviours, possibly corresponding to
mechanical properties of the system.

E. Model predictive control

A further investigation is performed to assess the applica-
bility of the learnt DKN models to control problems. In this,
the performance is tested through MPC with CEM Eq. (7).
CEM is performed with the cost function:

c(x,xtarget) = w1θ
2 + w2θ̇

2, (14)

where w1 and w2 are cost weights for pendulum angle
and angular velocity, and the target state xtarget is set as
[θtarget, θ̇target] = [0, 0].

Trajectories of data are obtained for 30 seconds, for
5 samples of each PD model. The control frequency is
fixed at 20 Hz, and the predictive horizon tp and the cost
weights [w1, w2] are hand-tuned. They are evaluated for their
transition and summation of the error (the cost when the
weights are all one) as the achievement of control. For video
results, please see our YouTube channel 1.

In comparison to the DKN method, a fully connected
network (FCN) is simultaneously learnt using the same
dataset. The FCN is formed of an encoder, decoder and latent
inner hidden layers of the same network size as DKN. As
such, this is a reasonable equivalent network, that lacks only
the inherent linearisation of DKN.

Results for reaching the target with MPC are given in
Fig. 6 (top), for the case of T = 1 (i.e., no history). In
this, it is seen that for DKN, the error between the tip
position and target oscillates immediately from the start and
is unable to stabilize for most of the time. In comparison,
FCN maintains a reduced error during initial movement, but
likewise destabilises and exhibits oscillatory behaviour. This
is not unexpected, as due to the hysteresis of the system,
historical measurements are imperative for uniquely defining
the state, and failure to include this input information results
in overall poor controllers. The average error and variation
of each modelling approach is shown in Fig. 7.

In comparison, by including T = 50 historical measure-
ments as part of the learning and prediction process, Fig. 6
(bottom) shows that DKN displays a small error during
runtime, immediately moving the soft pendulum tip close to
the target, and maintaining stabilisation with only small error.
However, including these historical measurements in FCN,
does not significantly improve performance, and displays
a worse stabilization performance than the T = 1 case.
One possible reason for this, is that the complexity of
modelling the relationship between such a large history,
and the next step, is too high-dimensional for such a small
network. However, as DKN learns both the embedding and
the associated linear dynamical system, it can exploit the
implicit linear bias to learn small, parsimonious models that
capture the actual physics-based dynamics.

VI. DISCUSSION

This paper presents an approach to controlling and in-
terpreting non-linear soft robotics, by learning globally
linearized dynamics models. While previous studies have

1https://youtu.be/BeXtHMoSSwM

https://youtu.be/BeXtHMoSSwM


Fig. 6: Error in soft pendulum tip position during stabiliza-
tion.

Fig. 7: Mean sum of errors between soft pendulum position
and target, with standard deviation of each method over
timesteps.

applied Koopman operator theory to control soft robotics,
the approach in this paper explicitly analyses learnt spectral
outputs to gain intuitive understanding of the systems under
investigation. In combination with MPC, models are applied
to control applications, resulting in models that outperform
equivalent scale deep networks, due to the inherent parsi-
monious latent representation of dynamics. As future work,
the approach will be applied to more complex soft robotics
tasks, including incorporating vision for object handling.
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APPENDIX

Data collection

• Pendulum
(no control)

Pendulum
(PD control) Soft pendulum

T 50 50 50
dt 0.02 0.01 0.05

q0 range [-3.1,3.1] [-3.1,3.1] [-1.5,1.5]
q̇0 range [-2,2] [-2,2] [-2,2]

# Training 15000 15950 100763
# Validation 1000 1450 28791
# Evaluation 3000 2900 14394
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