
WebAssembly Specification
Release 1.1

WebAssembly Community Group
Andreas Rossberg (editor)

Mar 31, 2021

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Overview . 3

2 Structure 5
2.1 Conventions . 5
2.2 Values . 7
2.3 Types . 8
2.4 Instructions . 10
2.5 Modules . 15

3 Validation 21
3.1 Conventions . 21
3.2 Types . 23
3.3 Instructions . 26
3.4 Modules . 36

4 Execution 43
4.1 Conventions . 43
4.2 Runtime Structure . 45
4.3 Numerics . 52
4.4 Instructions . 71
4.5 Modules . 91

5 Binary Format 103
5.1 Conventions . 103
5.2 Values . 105
5.3 Types . 106
5.4 Instructions . 107
5.5 Modules . 113

6 Text Format 119
6.1 Conventions . 119
6.2 Lexical Format . 121
6.3 Values . 123
6.4 Types . 125
6.5 Instructions . 126
6.6 Modules . 133

7 Appendix 141
7.1 Embedding . 141

i

7.2 Implementation Limitations . 148
7.3 Validation Algorithm . 151
7.4 Custom Sections . 154
7.5 Soundness . 156

Index 165

ii

CHAPTER 1

Introduction

1.1 Introduction

WebAssembly (abbreviated Wasm2) is a safe, portable, low-level code format designed for efficient execution and
compact representation. Its main goal is to enable high performance applications on the Web, but it does not make
any Web-specific assumptions or provide Web-specific features, so it can be employed in other environments as
well.

WebAssembly is an open standard developed by a W3C Community Group1.

This document describes version 1.1 of the core WebAssembly standard. It is intended that it will be superseded
by new incremental releases with additional features in the future.

1.1.1 Design Goals

The design goals of WebAssembly are the following:

• Fast, safe, and portable semantics:

– Fast: executes with near native code performance, taking advantage of capabilities common to all
contemporary hardware.

– Safe: code is validated and executes in a memory-safe3, sandboxed environment preventing data cor-
ruption or security breaches.

– Well-defined: fully and precisely defines valid programs and their behavior in a way that is easy to
reason about informally and formally.

– Hardware-independent: can be compiled on all modern architectures, desktop or mobile devices and
embedded systems alike.

– Language-independent: does not privilege any particular language, programming model, or object
model.

– Platform-independent: can be embedded in browsers, run as a stand-alone VM, or integrated in other
environments.

2 A contraction of “WebAssembly”, not an acronym, hence not using all-caps.
1 https://www.w3.org/community/webassembly/
3 No program can break WebAssembly’s memory model. Of course, it cannot guarantee that an unsafe language compiling to WebAssem-

bly does not corrupt its own memory layout, e.g. inside WebAssembly’s linear memory.

1

https://www.w3.org/community/webassembly/

WebAssembly Specification, Release 1.1

– Open: programs can interoperate with their environment in a simple and universal manner.

• Efficient and portable representation:

– Compact: has a binary format that is fast to transmit by being smaller than typical text or native code
formats.

– Modular: programs can be split up in smaller parts that can be transmitted, cached, and consumed
separately.

– Efficient: can be decoded, validated, and compiled in a fast single pass, equally with either just-in-time
(JIT) or ahead-of-time (AOT) compilation.

– Streamable: allows decoding, validation, and compilation to begin as soon as possible, before all data
has been seen.

– Parallelizable: allows decoding, validation, and compilation to be split into many independent parallel
tasks.

– Portable: makes no architectural assumptions that are not broadly supported across modern hardware.

WebAssembly code is also intended to be easy to inspect and debug, especially in environments like web browsers,
but such features are beyond the scope of this specification.

1.1.2 Scope

At its core, WebAssembly is a virtual instruction set architecture (virtual ISA). As such, it has many use cases
and can be embedded in many different environments. To encompass their variety and enable maximum reuse,
the WebAssembly specification is split and layered into several documents.

This document is concerned with the core ISA layer of WebAssembly. It defines the instruction set, binary
encoding, validation, and execution semantics, as well as a textual representation. It does not, however, define
how WebAssembly programs can interact with a specific environment they execute in, nor how they are invoked
from such an environment.

Instead, this specification is complemented by additional documents defining interfaces to specific embedding
environments such as the Web. These will each define a WebAssembly application programming interface (API)
suitable for a given environment.

1.1.3 Security Considerations

WebAssembly provides no ambient access to the computing environment in which code is executed. Any inter-
action with the environment, such as I/O, access to resources, or operating system calls, can only be performed
by invoking functions provided by the embedder and imported into a WebAssembly module. An embedder can
establish security policies suitable for a respective environment by controlling or limiting which functional capa-
bilities it makes available for import. Such considerations are an embedder’s responsibility and the subject of API
definitions for a specific environment.

Because WebAssembly is designed to be translated into machine code running directly on the host’s hardware, it
is potentially vulnerable to side channel attacks on the hardware level. In environments where this is a concern,
an embedder may have to put suitable mitigations into place to isolate WebAssembly computations.

2 Chapter 1. Introduction

WebAssembly Specification, Release 1.1

1.1.4 Dependencies

WebAssembly depends on two existing standards:

• IEEE 754-20194, for the representation of floating-point data and the semantics of respective numeric op-
erations.

• Unicode5, for the representation of import/export names and the text format.

However, to make this specification self-contained, relevant aspects of the aforementioned standards are defined
and formalized as part of this specification, such as the binary representation and rounding of floating-point values,
and the value range and UTF-8 encoding of Unicode characters.

Note: The aforementioned standards are the authoritative source of all respective definitions. Formalizations
given in this specification are intended to match these definitions. Any discrepancy in the syntax or semantics
described is to be considered an error.

1.2 Overview

1.2.1 Concepts

WebAssembly encodes a low-level, assembly-like programming language. This language is structured around the
following concepts.

Values WebAssembly provides only four basic value types. These are integers and IEEE 754-20196 numbers,
each in 32 and 64 bit width. 32 bit integers also serve as Booleans and as memory addresses. The usual
operations on these types are available, including the full matrix of conversions between them. There is
no distinction between signed and unsigned integer types. Instead, integers are interpreted by respective
operations as either unsigned or signed in two’s complement representation.

Instructions The computational model of WebAssembly is based on a stack machine. Code consists of sequences
of instructions that are executed in order. Instructions manipulate values on an implicit operand stack7 and
fall into two main categories. Simple instructions perform basic operations on data. They pop arguments
from the operand stack and push results back to it. Control instructions alter control flow. Control flow
is structured, meaning it is expressed with well-nested constructs such as blocks, loops, and conditionals.
Branches can only target such constructs.

Traps Under some conditions, certain instructions may produce a trap, which immediately aborts execution.
Traps cannot be handled by WebAssembly code, but are reported to the outside environment, where they
typically can be caught.

Functions Code is organized into separate functions. Each function takes a sequence of values as parameters and
returns a sequence of values as results.8 Functions can call each other, including recursively, resulting in an
implicit call stack that cannot be accessed directly. Functions may also declare mutable local variables that
are usable as virtual registers.

Tables A table is an array of opaque values of a particular element type. It allows programs to select such
values indirectly through a dynamic index operand. Currently, the only available element type is an untyped
function reference. Thereby, a program can call functions indirectly through a dynamic index into a table.
For example, this allows emulating function pointers by way of table indices.

Linear Memory A linear memory is a contiguous, mutable array of raw bytes. Such a memory is created with an
initial size but can be grown dynamically. A program can load and store values from/to a linear memory at

4 https://ieeexplore.ieee.org/document/8766229
5 http://www.unicode.org/versions/latest/
6 https://ieeexplore.ieee.org/document/8766229
7 In practice, implementations need not maintain an actual operand stack. Instead, the stack can be viewed as a set of anonymous registers

that are implicitly referenced by instructions. The type system ensures that the stack height, and thus any referenced register, is always known
statically.

8 In the current version of WebAssembly, there may be at most one result value.

1.2. Overview 3

https://ieeexplore.ieee.org/document/8766229
http://www.unicode.org/versions/latest/
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 1.1

any byte address (including unaligned). Integer loads and stores can specify a storage size which is smaller
than the size of the respective value type. A trap occurs if an access is not within the bounds of the current
memory size.

Modules A WebAssembly binary takes the form of a module that contains definitions for functions, tables, and
linear memories, as well as mutable or immutable global variables. Definitions can also be imported,
specifying a module/name pair and a suitable type. Each definition can optionally be exported under one
or more names. In addition to definitions, modules can define initialization data for their memories or
tables that takes the form of segments copied to given offsets. They can also define a start function that is
automatically executed.

Embedder A WebAssembly implementation will typically be embedded into a host environment. This environ-
ment defines how loading of modules is initiated, how imports are provided (including host-side definitions),
and how exports can be accessed. However, the details of any particular embedding are beyond the scope
of this specification, and will instead be provided by complementary, environment-specific API definitions.

1.2.2 Semantic Phases

Conceptually, the semantics of WebAssembly is divided into three phases. For each part of the language, the
specification specifies each of them.

Decoding WebAssembly modules are distributed in a binary format. Decoding processes that format and con-
verts it into an internal representation of a module. In this specification, this representation is modelled by
abstract syntax, but a real implementation could compile directly to machine code instead.

Validation A decoded module has to be valid. Validation checks a number of well-formedness conditions to
guarantee that the module is meaningful and safe. In particular, it performs type checking of functions and
the instruction sequences in their bodies, ensuring for example that the operand stack is used consistently.

Execution Finally, a valid module can be executed. Execution can be further divided into two phases:

Instantiation. A module instance is the dynamic representation of a module, complete with its own state
and execution stack. Instantiation executes the module body itself, given definitions for all its imports. It
initializes globals, memories and tables and invokes the module’s start function if defined. It returns the
instances of the module’s exports.

Invocation. Once instantiated, further WebAssembly computations can be initiated by invoking an exported
function on a module instance. Given the required arguments, that executes the respective function and
returns its results.

Instantiation and invocation are operations within the embedding environment.

4 Chapter 1. Introduction

CHAPTER 2

Structure

2.1 Conventions

WebAssembly is a programming language that has multiple concrete representations (its binary format and the
text format). Both map to a common structure. For conciseness, this structure is described in the form of an
abstract syntax. All parts of this specification are defined in terms of this abstract syntax.

2.1.1 Grammar Notation

The following conventions are adopted in defining grammar rules for abstract syntax.

• Terminal symbols (atoms) are written in sans-serif font: i32, end.

• Nonterminal symbols are written in italic font: valtype, instr .

• 𝐴𝑛 is a sequence of 𝑛 ≥ 0 iterations of 𝐴.

• 𝐴* is a possibly empty sequence of iterations of 𝐴. (This is a shorthand for 𝐴𝑛 used where 𝑛 is not relevant.)

• 𝐴+ is a non-empty sequence of iterations of 𝐴. (This is a shorthand for 𝐴𝑛 where 𝑛 ≥ 1.)

• 𝐴? is an optional occurrence of 𝐴. (This is a shorthand for 𝐴𝑛 where 𝑛 ≤ 1.)

• Productions are written sym ::= 𝐴1 | . . . | 𝐴𝑛.

• Large productions may be split into multiple definitions, indicated by ending the first one with explicit
ellipses, sym ::= 𝐴1 | . . ., and starting continuations with ellipses, sym ::= . . . | 𝐴2.

• Some productions are augmented with side conditions in parentheses, “(if condition)”, that provide a
shorthand for a combinatorial expansion of the production into many separate cases.

• If the same meta variable or non-terminal symbol appears multiple times in a production, then all those
occurrences must have the same instantiation. (This is a shorthand for a side condition requiring multiple
different variables to be equal.)

5

WebAssembly Specification, Release 1.1

2.1.2 Auxiliary Notation

When dealing with syntactic constructs the following notation is also used:

• 𝜖 denotes the empty sequence.

• |𝑠| denotes the length of a sequence 𝑠.

• 𝑠[𝑖] denotes the 𝑖-th element of a sequence 𝑠, starting from 0.

• 𝑠[𝑖 : 𝑛] denotes the sub-sequence 𝑠[𝑖] . . . 𝑠[𝑖 + 𝑛− 1] of a sequence 𝑠.

• 𝑠 with [𝑖] = 𝐴 denotes the same sequence as 𝑠, except that the 𝑖-th element is replaced with 𝐴.

• 𝑠 with [𝑖 : 𝑛] = 𝐴𝑛 denotes the same sequence as 𝑠, except that the sub-sequence 𝑠[𝑖 : 𝑛] is replaced with
𝐴𝑛.

• concat(𝑠*) denotes the flat sequence formed by concatenating all sequences 𝑠𝑖 in 𝑠*.

Moreover, the following conventions are employed:

• The notation 𝑥𝑛, where 𝑥 is a non-terminal symbol, is treated as a meta variable ranging over respective
sequences of 𝑥 (similarly for 𝑥*, 𝑥+, 𝑥?).

• When given a sequence 𝑥𝑛, then the occurrences of 𝑥 in a sequence written (𝐴1 𝑥 𝐴2)𝑛 are assumed to
be in point-wise correspondence with 𝑥𝑛 (similarly for 𝑥*, 𝑥+, 𝑥?). This implicitly expresses a form of
mapping syntactic constructions over a sequence.

Productions of the following form are interpreted as records that map a fixed set of fields field𝑖 to “values” 𝐴𝑖,
respectively:

r ::= {field1 𝐴1, field2 𝐴2, . . . }

The following notation is adopted for manipulating such records:

• 𝑟.field denotes the contents of the field component of 𝑟.

• 𝑟 with field = 𝐴 denotes the same record as 𝑟, except that the contents of the field component is replaced
with 𝐴.

• 𝑟1 ⊕ 𝑟2 denotes the composition of two records with the same fields of sequences by appending each
sequence point-wise:

{field1 𝐴*
1, field2 𝐴

*
2, . . . } ⊕ {field1 𝐵*

1 , field2 𝐵
*
2 , . . . } = {field1 𝐴*

1 𝐵
*
1 , field2 𝐴

*
2 𝐵

*
2 , . . . }

•
⨁︀

𝑟* denotes the composition of a sequence of records, respectively; if the sequence is empty, then all fields
of the resulting record are empty.

The update notation for sequences and records generalizes recursively to nested components accessed by “paths”
pth ::= ([. . .] | .field)+:

• 𝑠 with [𝑖] pth = 𝐴 is short for 𝑠 with [𝑖] = (𝑠[𝑖] with pth = 𝐴).

• 𝑟 with field pth = 𝐴 is short for 𝑟 with field = (𝑟.field with pth = 𝐴).

where 𝑟 with .field = 𝐴 is shortened to 𝑟 with field = 𝐴.

2.1.3 Vectors

Vectors are bounded sequences of the form 𝐴𝑛 (or 𝐴*), where the 𝐴 can either be values or complex constructions.
A vector can have at most 232 − 1 elements.

vec(𝐴) ::= 𝐴𝑛 (if 𝑛 < 232)

6 Chapter 2. Structure

WebAssembly Specification, Release 1.1

2.2 Values

WebAssembly programs operate on primitive numeric values. Moreover, in the definition of programs, immutable
sequences of values occur to represent more complex data, such as text strings or other vectors.

2.2.1 Bytes

The simplest form of value are raw uninterpreted bytes. In the abstract syntax they are represented as hexadecimal
literals.

byte ::= 0x00 | . . . | 0xFF

Conventions

• The meta variable 𝑏 ranges over bytes.

• Bytes are sometimes interpreted as natural numbers 𝑛 < 256.

2.2.2 Integers

Different classes of integers with different value ranges are distinguished by their bit width 𝑁 and by whether they
are unsigned or signed.

u𝑁 ::= 0 | 1 | . . . | 2𝑁−1
s𝑁 ::= −2𝑁−1 | . . . | −1 | 0 | 1 | . . . | 2𝑁−1−1
i𝑁 ::= u𝑁

The latter class defines uninterpreted integers, whose signedness interpretation can vary depending on context. In
the abstract syntax, they are represented as unsigned values. However, some operations convert them to signed
based on a two’s complement interpretation.

Note: The main integer types occurring in this specification are u32 , u64 , s32 , s64 , i8 , i16 , i32 , i64 . However,
other sizes occur as auxiliary constructions, e.g., in the definition of floating-point numbers.

Conventions

• The meta variables 𝑚,𝑛, 𝑖 range over integers.

• Numbers may be denoted by simple arithmetics, as in the grammar above. In order to distinguish arithmetics
like 2𝑁 from sequences like (1)𝑁 , the latter is distinguished with parentheses.

2.2.3 Floating-Point

Floating-point data represents 32 or 64 bit values that correspond to the respective binary formats of the IEEE
754-20199 standard (Section 3.3).

Every value has a sign and a magnitude. Magnitudes can either be expressed as normal numbers of the form
𝑚0.𝑚1𝑚2 . . .𝑚𝑀 ·2𝑒, where 𝑒 is the exponent and 𝑚 is the significand whose most signifcant bit 𝑚0 is 1, or as a
subnormal number where the exponent is fixed to the smallest possible value and 𝑚0 is 0; among the subnormals
are positive and negative zero values. Since the significands are binary values, normals are represented in the form
(1 + 𝑚 · 2−𝑀) · 2𝑒, where 𝑀 is the bit width of 𝑚; similarly for subnormals.

9 https://ieeexplore.ieee.org/document/8766229

2.2. Values 7

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 1.1

Possible magnitudes also include the special values ∞ (infinity) and nan (NaN, not a number). NaN values have a
payload that describes the mantissa bits in the underlying binary representation. No distinction is made between
signalling and quiet NaNs.

f𝑁 ::= +f Nmag | −f Nmag
f Nmag ::= (1 + u𝑀 · 2−𝑀) · 2𝑒 (if −2𝐸−1 + 2 ≤ 𝑒 ≤ 2𝐸−1 − 1)

| (0 + u𝑀 · 2−𝑀) · 2𝑒 (if 𝑒 = −2𝐸−1 + 2)
| ∞
| nan(𝑛) (if 1 ≤ 𝑛 < 2𝑀)

where 𝑀 = signif(𝑁) and 𝐸 = expon(𝑁) with

signif(32) = 23 expon(32) = 8
signif(64) = 52 expon(64) = 11

A canonical NaN is a floating-point value ±nan(canon𝑁) where canon𝑁 is a payload whose most significant bit
is 1 while all others are 0:

canon𝑁 = 2signif(𝑁)−1

An arithmetic NaN is a floating-point value ±nan(𝑛) with 𝑛 ≥ canon𝑁 , such that the most significant bit is 1
while all others are arbitrary.

Note: In the abstract syntax, subnormals are distinguished by the leading 0 of the significand. The exponent
of subnormals has the same value as the smallest possible exponent of a normal number. Only in the binary
representation the exponent of a subnormal is encoded differently than the exponent of any normal number.

Conventions

• The meta variable 𝑧 ranges over floating-point values where clear from context.

2.2.4 Names

Names are sequences of characters, which are scalar values as defined by Unicode10 (Section 2.4).

name ::= char* (if |utf8(char*)| < 232)
char ::= U+00 | . . . | U+D7FF | U+E000 | . . . | U+10FFFF

Due to the limitations of the binary format, the length of a name is bounded by the length of its UTF-8 encoding.

Convention

• Characters (Unicode scalar values) are sometimes used interchangeably with natural numbers 𝑛 < 1114112.

2.3 Types

Various entities in WebAssembly are classified by types. Types are checked during validation, instantiation, and
possibly execution.

10 http://www.unicode.org/versions/latest/

8 Chapter 2. Structure

http://www.unicode.org/versions/latest/

WebAssembly Specification, Release 1.1

2.3.1 Value Types

Value types classify the individual values that WebAssembly code can compute with and the values that a variable
accepts.

valtype ::= i32 | i64 | f32 | f64

The types i32 and i64 classify 32 and 64 bit integers, respectively. Integers are not inherently signed or unsigned,
their interpretation is determined by individual operations.

The types f32 and f64 classify 32 and 64 bit floating-point data, respectively. They correspond to the respective
binary floating-point representations, also known as single and double precision, as defined by the IEEE 754-
201911 standard (Section 3.3).

Conventions

• The meta variable 𝑡 ranges over value types where clear from context.

• The notation |𝑡| denotes the bit width of a value type. That is, |i32| = |f32| = 32 and |i64| = |f64| = 64.

2.3.2 Result Types

Result types classify the result of executing instructions or functions, which is a sequence of values written with
brackets.

resulttype ::= [vec(valtype)]

2.3.3 Function Types

Function types classify the signature of functions, mapping a vector of parameters to a vector of results. They are
also used to classify the inputs and outputs of instructions.

functype ::= resulttype → resulttype

2.3.4 Limits

Limits classify the size range of resizeable storage associated with memory types and table types.

limits ::= {min u32 ,max u32 ?}

If no maximum is given, the respective storage can grow to any size.

2.3.5 Memory Types

Memory types classify linear memories and their size range.

memtype ::= limits

The limits constrain the minimum and optionally the maximum size of a memory. The limits are given in units of
page size.

11 https://ieeexplore.ieee.org/document/8766229

2.3. Types 9

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 1.1

2.3.6 Table Types

Table types classify tables over elements of element types within a size range.

tabletype ::= limits elemtype
elemtype ::= funcref

Like memories, tables are constrained by limits for their minimum and optionally maximum size. The limits are
given in numbers of entries.

The element type funcref is the infinite union of all function types. A table of that type thus contains references to
functions of heterogeneous type.

Note: In future versions of WebAssembly, additional element types may be introduced.

2.3.7 Global Types

Global types classify global variables, which hold a value and can either be mutable or immutable.

globaltype ::= mut valtype
mut ::= const | var

2.3.8 External Types

External types classify imports and external values with their respective types.

externtype ::= func functype | table tabletype | mem memtype | global globaltype

Conventions

The following auxiliary notation is defined for sequences of external types. It filters out entries of a specific kind
in an order-preserving fashion:

• funcs(externtype*) = [functype | (func functype) ∈ externtype*]

• tables(externtype*) = [tabletype | (table tabletype) ∈ externtype*]

• mems(externtype*) = [memtype | (mem memtype) ∈ externtype*]

• globals(externtype*) = [globaltype | (global globaltype) ∈ externtype*]

2.4 Instructions

WebAssembly code consists of sequences of instructions. Its computational model is based on a stack machine
in that instructions manipulate values on an implicit operand stack, consuming (popping) argument values and
producing or returning (pushing) result values.

In addition to dynamic operands from the stack, some instructions also have static immediate arguments, typically
indices or type annotations, which are part of the instruction itself.

Some instructions are structured in that they bracket nested sequences of instructions.

The following sections group instructions into a number of different categories.

10 Chapter 2. Structure

WebAssembly Specification, Release 1.1

2.4.1 Numeric Instructions

Numeric instructions provide basic operations over numeric values of specific type. These operations closely
match respective operations available in hardware.

nn,mm ::= 32 | 64
sx ::= u | s
instr ::= inn.const inn | fnn.const f nn

| inn.iunop | fnn.funop
| inn.ibinop | fnn.fbinop
| inn.itestop
| inn.irelop | fnn.frelop
| inn.extend8_s | inn.extend16_s | i64.extend32_s
| i32.wrap_i64 | i64.extend_i32_sx | inn.trunc_fmm_sx
| inn.trunc_sat_fmm_sx
| f32.demote_f64 | f64.promote_f32 | fnn.convert_imm_sx
| inn.reinterpret_fnn | fnn.reinterpret_inn
| . . .

iunop ::= clz | ctz | popcnt
ibinop ::= add | sub | mul | div_sx | rem_sx

| and | or | xor | shl | shr_sx | rotl | rotr
funop ::= abs | neg | sqrt | ceil | floor | trunc | nearest
fbinop ::= add | sub | mul | div | min | max | copysign
itestop ::= eqz
irelop ::= eq | ne | lt_sx | gt_sx | le_sx | ge_sx
frelop ::= eq | ne | lt | gt | le | ge

Numeric instructions are divided by value type. For each type, several subcategories can be distinguished:

• Constants: return a static constant.

• Unary Operations: consume one operand and produce one result of the respective type.

• Binary Operations: consume two operands and produce one result of the respective type.

• Tests: consume one operand of the respective type and produce a Boolean integer result.

• Comparisons: consume two operands of the respective type and produce a Boolean integer result.

• Conversions: consume a value of one type and produce a result of another (the source type of the conversion
is the one after the “_”).

Some integer instructions come in two flavors, where a signedness annotation sx distinguishes whether the
operands are to be interpreted as unsigned or signed integers. For the other integer instructions, the use of two’s
complement for the signed interpretation means that they behave the same regardless of signedness.

Conventions

Occasionally, it is convenient to group operators together according to the following grammar shorthands:

unop ::= iunop | funop | extend𝑁_s
binop ::= ibinop | fbinop
testop ::= itestop
relop ::= irelop | frelop
cvtop ::= wrap | extend | trunc | trunc_sat | convert | demote | promote | reinterpret

2.4. Instructions 11

WebAssembly Specification, Release 1.1

2.4.2 Parametric Instructions

Instructions in this group can operate on operands of any value type.

instr ::= . . .
| drop
| select

The drop instruction simply throws away a single operand.

The select instruction selects one of its first two operands based on whether its third operand is zero or not.

2.4.3 Variable Instructions

Variable instructions are concerned with access to local or global variables.

instr ::= . . .
| local.get localidx
| local.set localidx
| local.tee localidx
| global.get globalidx
| global.set globalidx

These instructions get or set the values of variables, respectively. The local.tee instruction is like local.set but also
returns its argument.

2.4.4 Table Instructions

Instructions in this group are concerned with tables table.

instr ::= . . .
| table.copy
| table.init elemidx
| elem.drop elemidx

The table.copy instruction copies elements from a source table region to a possibly overlapping destination region.
The table.init instruction copies elements from a passive element segment into a table. The elem.drop instruction
prevents further use of a passive element segment. This instruction is intended to be used as an optimization hint.
After an element segment is dropped its elements can no longer be retrieved, so the memory used by this segment
may be freed.

Note: In the current version of WebAssembly, all table instructions implicitly operate on table index 0. This
restriction may be lifted in future versions.

12 Chapter 2. Structure

WebAssembly Specification, Release 1.1

2.4.5 Memory Instructions

Instructions in this group are concerned with linear memory.

memarg ::= {offset u32 , align u32}
instr ::= . . .

| inn.load memarg | fnn.load memarg
| inn.store memarg | fnn.store memarg
| inn.load8_sx memarg | inn.load16_sx memarg | i64.load32_sx memarg
| inn.store8 memarg | inn.store16 memarg | i64.store32 memarg
| memory.size
| memory.grow
| memory.fill
| memory.copy
| memory.init dataidx
| data.drop dataidx

Memory is accessed with load and store instructions for the different value types. They all take a memory immedi-
ate memarg that contains an address offset and the expected alignment (expressed as the exponent of a power of
2). Integer loads and stores can optionally specify a storage size that is smaller than the bit width of the respective
value type. In the case of loads, a sign extension mode sx is then required to select appropriate behavior.

The static address offset is added to the dynamic address operand, yielding a 33 bit effective address that is the
zero-based index at which the memory is accessed. All values are read and written in little endian12 byte order. A
trap results if any of the accessed memory bytes lies outside the address range implied by the memory’s current
size.

Note: Future version of WebAssembly might provide memory instructions with 64 bit address ranges.

The memory.size instruction returns the current size of a memory. The memory.grow instruction grows memory
by a given delta and returns the previous size, or −1 if enough memory cannot be allocated. Both instructions
operate in units of page size.

The memory.fill instruction sets all values in a region to a given byte. The memory.copy instruction copies data
from a source memory region to a possibly overlapping destination region. The memory.init instruction copies
data from a passive data segment into a memory. The data.drop instruction prevents further use of a passive data
segment. This instruction is intended to be used as an optimization hint. After a data segment is dropped its data
can no longer be retrieved, so the memory used by this segment may be freed.

Note: In the current version of WebAssembly, all memory instructions implicitly operate on memory index 0.
This restriction may be lifted in future versions.

12 https://en.wikipedia.org/wiki/Endianness#Little-endian

2.4. Instructions 13

https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 1.1

2.4.6 Control Instructions

Instructions in this group affect the flow of control.

blocktype ::= typeidx | valtype?
instr ::= . . .

| nop
| unreachable
| block blocktype instr* end
| loop blocktype instr* end
| if blocktype instr* else instr* end
| br labelidx
| br_if labelidx
| br_table vec(labelidx) labelidx
| return
| call funcidx
| call_indirect typeidx

The nop instruction does nothing.

The unreachable instruction causes an unconditional trap.

The block, loop and if instructions are structured instructions. They bracket nested sequences of instructions,
called blocks, terminated with, or separated by, end or else pseudo-instructions. As the grammar prescribes, they
must be well-nested.

A structured instruction can consume input and produce output on the operand stack according to its annotated
block type. It is given either as a type index that refers to a suitable function type, or as an optional value type
inline, which is a shorthand for the function type [] → [valtype?].

Each structured control instruction introduces an implicit label. Labels are targets for branch instructions that
reference them with label indices. Unlike with other index spaces, indexing of labels is relative by nesting depth,
that is, label 0 refers to the innermost structured control instruction enclosing the referring branch instruction,
while increasing indices refer to those farther out. Consequently, labels can only be referenced from within the
associated structured control instruction. This also implies that branches can only be directed outwards, “breaking”
from the block of the control construct they target. The exact effect depends on that control construct. In case of
block or if it is a forward jump, resuming execution after the matching end. In case of loop it is a backward jump
to the beginning of the loop.

Note: This enforces structured control flow. Intuitively, a branch targeting a block or if behaves like a break
statement in most C-like languages, while a branch targeting a loop behaves like a continue statement.

Branch instructions come in several flavors: br performs an unconditional branch, br_if performs a conditional
branch, and br_table performs an indirect branch through an operand indexing into the label vector that is an
immediate to the instruction, or to a default target if the operand is out of bounds. The return instruction is a
shortcut for an unconditional branch to the outermost block, which implicitly is the body of the current function.
Taking a branch unwinds the operand stack up to the height where the targeted structured control instruction was
entered. However, branches may additionally consume operands themselves, which they push back on the operand
stack after unwinding. Forward branches require operands according to the output of the targeted block’s type,
i.e., represent the values produced by the terminated block. Backward branches require operands according to the
input of the targeted block’s type, i.e., represent the values consumed by the restarted block.

The call instruction invokes another function, consuming the necessary arguments from the stack and returning
the result values of the call. The call_indirect instruction calls a function indirectly through an operand indexing
into a table. Since tables may contain function elements of heterogeneous type funcref, the callee is dynamically
checked against the function type indexed by the instruction’s immediate, and the call aborted with a trap if it does
not match.

Note: In the current version of WebAssembly, call_indirect implicitly operates on table index 0. This restriction

14 Chapter 2. Structure

WebAssembly Specification, Release 1.1

may be lifted in future versions.

2.4.7 Expressions

Function bodies, initialization values for globals, and offsets of element or data segments are given as expressions,
which are sequences of instructions terminated by an end marker.

expr ::= instr* end

In some places, validation restricts expressions to be constant, which limits the set of allowable instructions.

2.5 Modules

WebAssembly programs are organized into modules, which are the unit of deployment, loading, and compilation.
A module collects definitions for types, functions, tables, memories, and globals. In addition, it can declare
imports and exports and provide initialization in the form of data and element segments, or a start function.

module ::= { types vec(functype),
funcs vec(func),
tables vec(table),
mems vec(mem),
globals vec(global),
elems vec(elem),
datas vec(data),
start start?,
imports vec(import),
exports vec(export) }

Each of the vectors – and thus the entire module – may be empty.

2.5.1 Indices

Definitions are referenced with zero-based indices. Each class of definition has its own index space, as distin-
guished by the following classes.

typeidx ::= u32
funcidx ::= u32
tableidx ::= u32
memidx ::= u32
globalidx ::= u32
elemidx ::= u32
dataidx ::= u32
localidx ::= u32
labelidx ::= u32

The index space for functions, tables, memories and globals includes respective imports declared in the same
module. The indices of these imports precede the indices of other definitions in the same index space.

Element indices reference element segments and data indices reference data segments.

The index space for locals is only accessible inside a function and includes the parameters of that function, which
precede the local variables.

Label indices reference structured control instructions inside an instruction sequence.

2.5. Modules 15

WebAssembly Specification, Release 1.1

Conventions

• The meta variable 𝑙 ranges over label indices.

• The meta variables 𝑥, 𝑦 range over indices in any of the other index spaces.

• The notation idx(𝐴) denotes the set of indices from index space idx occurring free in 𝐴.

Note: For example, if instr* is (data.drop 𝑥)(memory.init 𝑦), then dataidx(instr*) = {𝑥, 𝑦}.

2.5.2 Types

The types component of a module defines a vector of function types.

All function types used in a module must be defined in this component. They are referenced by type indices.

Note: Future versions of WebAssembly may add additional forms of type definitions.

2.5.3 Functions

The funcs component of a module defines a vector of functions with the following structure:

func ::= {type typeidx , locals vec(valtype), body expr}

The type of a function declares its signature by reference to a type defined in the module. The parameters of the
function are referenced through 0-based local indices in the function’s body; they are mutable.

The locals declare a vector of mutable local variables and their types. These variables are referenced through local
indices in the function’s body. The index of the first local is the smallest index not referencing a parameter.

The body is an instruction sequence that upon termination must produce a stack matching the function type’s
result type.

Functions are referenced through function indices, starting with the smallest index not referencing a function
import.

2.5.4 Tables

The tables component of a module defines a vector of tables described by their table type:

table ::= {type tabletype}

A table is a vector of opaque values of a particular table element type. The min size in the limits of the table type
specifies the initial size of that table, while its max, if present, restricts the size to which it can grow later.

Tables can be initialized through element segments.

Tables are referenced through table indices, starting with the smallest index not referencing a table import. Most
constructs implicitly reference table index 0.

Note: In the current version of WebAssembly, at most one table may be defined or imported in a single module,
and all constructs implicitly reference this table 0. This restriction may be lifted in future versions.

16 Chapter 2. Structure

WebAssembly Specification, Release 1.1

2.5.5 Memories

The mems component of a module defines a vector of linear memories (or memories for short) as described by
their memory type:

mem ::= {type memtype}

A memory is a vector of raw uninterpreted bytes. The min size in the limits of the memory type specifies the
initial size of that memory, while its max, if present, restricts the size to which it can grow later. Both are in units
of page size.

Memories can be initialized through data segments.

Memories are referenced through memory indices, starting with the smallest index not referencing a memory
import. Most constructs implicitly reference memory index 0.

Note: In the current version of WebAssembly, at most one memory may be defined or imported in a single
module, and all constructs implicitly reference this memory 0. This restriction may be lifted in future versions.

2.5.6 Globals

The globals component of a module defines a vector of global variables (or globals for short):

global ::= {type globaltype, init expr}

Each global stores a single value of the given global type. Its type also specifies whether a global is immutable or
mutable. Moreover, each global is initialized with an init value given by a constant initializer expression.

Globals are referenced through global indices, starting with the smallest index not referencing a global import.

2.5.7 Element Segments

The initial contents of a table is uninitialized. Element segments can be used to initialize a subrange of a table
from a static vector of elements.

The elems component of a module defines a vector of element segments. Each element segment defines an element
type and a corresponding list of element expressions.

Element segments have a mode that identifies them as either passive or active. A passive element segment’s
elements can be copied to a table using the table.init instruction. An active element segment copies its elements
into a table during instantiation, as specified by a table index and a constant expression defining an offset into that
table.

elem ::= {type elemtype, init vec(elemexpr),mode elemmode}
elemmode ::= passive

| active {table tableidx , offset expr}
elemexpr ::= ref.null end

| (ref.func funcidx) end

The offset is given by a constant expression.

Element segments are referenced through element indices.

Note: In the current version of WebAssembly, at most one table is allowed in a module. Consequently, the only
valid tableidx is 0.

2.5. Modules 17

WebAssembly Specification, Release 1.1

2.5.8 Data Segments

The initial contents of a memory are zero bytes. Data segments can be used to initialize a range of memory from
a static vector of bytes.

The datas component of a module defines a vector of data segments.

Like element segments, data segments have a mode that identifies them as either passive or active. A passive data
segment’s contents can be copied into a memory using the memory.init instruction. An active data segment copies
its contents into a memory during instantiation, as specified by a memory index and a constant expression defining
an offset into that memory.

data ::= {init vec(byte),mode datamode}
datamode ::= passive

| active {memory memidx , offset expr}

Data segments are referenced through data indices.

Note: In the current version of WebAssembly, at most one memory is allowed in a module. Consequently, the
only valid memidx is 0.

2.5.9 Start Function

The start component of a module declares the function index of a start function that is automatically invoked when
the module is instantiated, after tables and memories have been initialized.

start ::= {func funcidx}

Note: The start function is intended for initializing the state of a module. The module and its exports are not
accessible before this initialization has completed.

2.5.10 Exports

The exports component of a module defines a set of exports that become accessible to the host environment once
the module has been instantiated.

export ::= {name name, desc exportdesc}
exportdesc ::= func funcidx

| table tableidx
| mem memidx
| global globalidx

Each export is labeled by a unique name. Exportable definitions are functions, tables, memories, and globals,
which are referenced through a respective descriptor.

Conventions

The following auxiliary notation is defined for sequences of exports, filtering out indices of a specific kind in an
order-preserving fashion:

• funcs(export*) = [funcidx | func funcidx ∈ (export .desc)*]

• tables(export*) = [tableidx | table tableidx ∈ (export .desc)*]

• mems(export*) = [memidx | mem memidx ∈ (export .desc)*]

• globals(export*) = [globalidx | global globalidx ∈ (export .desc)*]

18 Chapter 2. Structure

WebAssembly Specification, Release 1.1

2.5.11 Imports

The imports component of a module defines a set of imports that are required for instantiation.

import ::= {module name, name name, desc importdesc}
importdesc ::= func typeidx

| table tabletype
| mem memtype
| global globaltype

Each import is labeled by a two-level name space, consisting of a module name and a name for an entity within
that module. Importable definitions are functions, tables, memories, and globals. Each import is specified by a
descriptor with a respective type that a definition provided during instantiation is required to match.

Every import defines an index in the respective index space. In each index space, the indices of imports go before
the first index of any definition contained in the module itself.

Note: Unlike export names, import names are not necessarily unique. It is possible to import the same
module/name pair multiple times; such imports may even have different type descriptions, including different
kinds of entities. A module with such imports can still be instantiated depending on the specifics of how an em-
bedder allows resolving and supplying imports. However, embedders are not required to support such overloading,
and a WebAssembly module itself cannot implement an overloaded name.

2.5. Modules 19

WebAssembly Specification, Release 1.1

20 Chapter 2. Structure

CHAPTER 3

Validation

3.1 Conventions

Validation checks that a WebAssembly module is well-formed. Only valid modules can be instantiated.

Validity is defined by a type system over the abstract syntax of a module and its contents. For each piece of abstract
syntax, there is a typing rule that specifies the constraints that apply to it. All rules are given in two equivalent
forms:

1. In prose, describing the meaning in intuitive form.

2. In formal notation, describing the rule in mathematical form.13

Note: The prose and formal rules are equivalent, so that understanding of the formal notation is not required
to read this specification. The formalism offers a more concise description in notation that is used widely in
programming languages semantics and is readily amenable to mathematical proof.

In both cases, the rules are formulated in a declarative manner. That is, they only formulate the constraints, they do
not define an algorithm. The skeleton of a sound and complete algorithm for type-checking instruction sequences
according to this specification is provided in the appendix.

3.1.1 Contexts

Validity of an individual definition is specified relative to a context, which collects relevant information about the
surrounding module and the definitions in scope:

• Types: the list of types defined in the current module.

• Functions: the list of functions declared in the current module, represented by their function type.

• Tables: the list of tables declared in the current module, represented by their table type.

• Memories: the list of memories declared in the current module, represented by their memory type.

• Globals: the list of globals declared in the current module, represented by their global type.

13 The semantics is derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan Gohman, Luke
Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssembly14. Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

14 https://dl.acm.org/citation.cfm?doid=3062341.3062363

21

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 1.1

• Element Segments: the list of element segments declared in the current module, each represented by an ok
entry.

• Data Segments: the list of data segments declared in the current module, each represented by an ok entry.

• Locals: the list of locals declared in the current function (including parameters), represented by their value
type.

• Labels: the stack of labels accessible from the current position, represented by their result type.

• Return: the return type of the current function, represented as an optional result type that is absent when no
return is allowed, as in free-standing expressions.

In other words, a context contains a sequence of suitable types for each index space, describing each defined entry
in that space. Locals, labels and return type are only used for validating instructions in function bodies, and are
left empty elsewhere. The label stack is the only part of the context that changes as validation of an instruction
sequence proceeds.

More concretely, contexts are defined as records 𝐶 with abstract syntax:

𝐶 ::= { types functype*,
funcs functype*,
tables tabletype*,
mems memtype*,
globals globaltype*,
elems ok*,
datas ok*,
locals valtype*,
labels resulttype*,
return resulttype? }

In addition to field access written 𝐶.field the following notation is adopted for manipulating contexts:

• When spelling out a context, empty fields are omitted.

• 𝐶, field𝐴* denotes the same context as 𝐶 but with the elements 𝐴* prepended to its field component se-
quence.

Note: We use indexing notation like 𝐶.labels[𝑖] to look up indices in their respective index space in the context.
Context extension notation 𝐶, field𝐴 is primarily used to locally extend relative index spaces, such as label in-
dices. Accordingly, the notation is defined to append at the front of the respective sequence, introducing a new
relative index 0 and shifting the existing ones.

3.1.2 Prose Notation

Validation is specified by stylised rules for each relevant part of the abstract syntax. The rules not only state
constraints defining when a phrase is valid, they also classify it with a type. The following conventions are
adopted in stating these rules.

• A phrase 𝐴 is said to be “valid with type 𝑇 ” if and only if all constraints expressed by the respective rules
are met. The form of 𝑇 depends on what 𝐴 is.

Note: For example, if 𝐴 is a function, then 𝑇 is a function type; for an 𝐴 that is a global, 𝑇 is a global type;
and so on.

• The rules implicitly assume a given context 𝐶.

• In some places, this context is locally extended to a context 𝐶 ′ with additional entries. The formulation
“Under context 𝐶 ′, . . . statement . . . ” is adopted to express that the following statement must apply under
the assumptions embodied in the extended context.

22 Chapter 3. Validation

WebAssembly Specification, Release 1.1

3.1.3 Formal Notation

Note: This section gives a brief explanation of the notation for specifying typing rules formally. For the interested
reader, a more thorough introduction can be found in respective text books.15

The proposition that a phrase 𝐴 has a respective type 𝑇 is written 𝐴 : 𝑇 . In general, however, typing is dependent
on a context 𝐶. To express this explicitly, the complete form is a judgement 𝐶 ⊢ 𝐴 : 𝑇 , which says that 𝐴 : 𝑇
holds under the assumptions encoded in 𝐶.

The formal typing rules use a standard approach for specifying type systems, rendering them into deduction rules.
Every rule has the following general form:

premise1 premise2 . . . premise𝑛
conclusion

Such a rule is read as a big implication: if all premises hold, then the conclusion holds. Some rules have no
premises; they are axioms whose conclusion holds unconditionally. The conclusion always is a judgment 𝐶 ⊢ 𝐴 :
𝑇 , and there is one respective rule for each relevant construct 𝐴 of the abstract syntax.

Note: For example, the typing rule for the i32.add instruction can be given as an axiom:

𝐶 ⊢ i32.add : [i32 i32] → [i32]

The instruction is always valid with type [i32 i32] → [i32] (saying that it consumes two i32 values and produces
one), independent of any side conditions.

An instruction like local.get can be typed as follows:

𝐶.locals[𝑥] = 𝑡

𝐶 ⊢ local.get 𝑥 : [] → [𝑡]

Here, the premise enforces that the immediate local index 𝑥 exists in the context. The instruction produces a value
of its respective type 𝑡 (and does not consume any values). If 𝐶.locals[𝑥] does not exist then the premise does not
hold, and the instruction is ill-typed.

Finally, a structured instruction requires a recursive rule, where the premise is itself a typing judgement:

𝐶 ⊢ blocktype : [𝑡*1] → [𝑡*2] 𝐶, label [𝑡*2] ⊢ instr* : [𝑡*1] → [𝑡*2]

𝐶 ⊢ block blocktype instr* end : [𝑡*1] → [𝑡*2]

A block instruction is only valid when the instruction sequence in its body is. Moreover, the result type must
match the block’s annotation blocktype. If so, then the block instruction has the same type as the body. Inside the
body an additional label of the corresponding result type is available, which is expressed by extending the context
𝐶 with the additional label information for the premise.

3.2 Types

Most types are universally valid. However, restrictions apply to limits, which must be checked during validation.
Moreover, block types are converted to plain function types for ease of processing.

15 For example: Benjamin Pierce. Types and Programming Languages16. The MIT Press 2002
16 https://www.cis.upenn.edu/~bcpierce/tapl/

3.2. Types 23

https://www.cis.upenn.edu/~bcpierce/tapl/

WebAssembly Specification, Release 1.1

3.2.1 Limits

Limits must have meaningful bounds that are within a given range.

{min 𝑛,max 𝑚?}

• The value of 𝑛 must not be larger than 𝑘.

• If the maximum 𝑚? is not empty, then:

– Its value must not be larger than 𝑘.

– Its value must not be smaller than 𝑛.

• Then the limit is valid within range 𝑘.

𝑛 ≤ 𝑘 (𝑚 ≤ 𝑘)? (𝑛 ≤ 𝑚)?

⊢ {min 𝑛,max 𝑚?} : 𝑘

3.2.2 Block Types

Block types may be expressed in one of two forms, both of which are converted to plain function types by the
following rules.

typeidx

• The type 𝐶.types[typeidx] must be defined in the context.

• Then the block type is valid as function type 𝐶.types[typeidx].

𝐶.types[typeidx] = functype

𝐶 ⊢ typeidx : functype

[valtype?]

• The block type is valid as function type [] → [valtype?].

𝐶 ⊢ [valtype?] : [] → [valtype?]

3.2.3 Function Types

Function types are always valid.

[𝑡𝑛1] → [𝑡𝑚2]

• The function type is valid.

⊢ [𝑡*1] → [𝑡*2] ok

24 Chapter 3. Validation

WebAssembly Specification, Release 1.1

3.2.4 Table Types

limits elemtype

• The limits limits must be valid within range 232.

• Then the table type is valid.

⊢ limits : 232

⊢ limits elemtype ok

3.2.5 Memory Types

limits

• The limits limits must be valid within range 216.

• Then the memory type is valid.

⊢ limits : 216

⊢ limits ok

3.2.6 Global Types

mut valtype

• The global type is valid.

⊢ mut valtype ok

3.2.7 External Types

func functype

• The function type functype must be valid.

• Then the external type is valid.

⊢ functype ok
⊢ func functype ok

table tabletype

• The table type tabletype must be valid.

• Then the external type is valid.

⊢ tabletype ok
⊢ table tabletype ok

3.2. Types 25

WebAssembly Specification, Release 1.1

mem memtype

• The memory type memtype must be valid.

• Then the external type is valid.

⊢ memtype ok
⊢ mem memtype ok

global globaltype

• The global type globaltype must be valid.

• Then the external type is valid.

⊢ globaltype ok
⊢ global globaltype ok

3.3 Instructions

Instructions are classified by function types [𝑡*1] → [𝑡*2] that describe how they manipulate the operand stack.
The types describe the required input stack with argument values of types 𝑡*1 that an instruction pops off and the
provided output stack with result values of types 𝑡*2 that it pushes back.

Note: For example, the instruction i32.add has type [i32 i32] → [i32], consuming two i32 values and producing
one.

Typing extends to instruction sequences instr*. Such a sequence has a function type [𝑡*1] → [𝑡*2] if the accumulative
effect of executing the instructions is consuming values of types 𝑡*1 off the operand stack and pushing new values
of types 𝑡*2.

For some instructions, the typing rules do not fully constrain the type, and therefore allow for multiple types. Such
instructions are called polymorphic. Two degrees of polymorphism can be distinguished:

• value-polymorphic: the value type 𝑡 of one or several individual operands is unconstrained. That is the case
for all parametric instructions like drop and select.

• stack-polymorphic: the entire (or most of the) function type [𝑡*1] → [𝑡*2] of the instruction is uncon-
strained. That is the case for all control instructions that perform an unconditional control transfer, such as
unreachable, br, br_table, and return.

In both cases, the unconstrained types or type sequences can be chosen arbitrarily, as long as they meet the
constraints imposed for the surrounding parts of the program.

Note: For example, the select instruction is valid with type [𝑡 𝑡 i32] → [𝑡], for any possible value type 𝑡.
Consequently, both instruction sequences

(i32.const 1) (i32.const 2) (i32.const 3) select

and

(f64.const 1.0) (f64.const 2.0) (i32.const 3) select

are valid, with 𝑡 in the typing of select being instantiated to i32 or f64, respectively.

The unreachable instruction is valid with type [𝑡*1] → [𝑡*2] for any possible sequences of value types 𝑡*1 and 𝑡*2.
Consequently,

unreachable i32.add

26 Chapter 3. Validation

WebAssembly Specification, Release 1.1

is valid by assuming type [] → [i32 i32] for the unreachable instruction. In contrast,

unreachable (i64.const 0) i32.add

is invalid, because there is no possible type to pick for the unreachable instruction that would make the sequence
well-typed.

3.3.1 Numeric Instructions

𝑡.const 𝑐

• The instruction is valid with type [] → [𝑡].

𝐶 ⊢ 𝑡.const 𝑐 : [] → [𝑡]

𝑡.unop

• The instruction is valid with type [𝑡] → [𝑡].

𝐶 ⊢ 𝑡.unop : [𝑡] → [𝑡]

𝑡.binop

• The instruction is valid with type [𝑡 𝑡] → [𝑡].

𝐶 ⊢ 𝑡.binop : [𝑡 𝑡] → [𝑡]

𝑡.testop

• The instruction is valid with type [𝑡] → [i32].

𝐶 ⊢ 𝑡.testop : [𝑡] → [i32]

𝑡.relop

• The instruction is valid with type [𝑡 𝑡] → [i32].

𝐶 ⊢ 𝑡.relop : [𝑡 𝑡] → [i32]

𝑡2.cvtop_𝑡1_sx ?

• The instruction is valid with type [𝑡1] → [𝑡2].

𝐶 ⊢ 𝑡2.cvtop_𝑡1_sx ? : [𝑡1] → [𝑡2]

3.3. Instructions 27

WebAssembly Specification, Release 1.1

3.3.2 Parametric Instructions

drop

• The instruction is valid with type [𝑡] → [], for any value type 𝑡.

𝐶 ⊢ drop : [𝑡] → []

select

• The instruction is valid with type [𝑡 𝑡 i32] → [𝑡], for any value type 𝑡.

𝐶 ⊢ select : [𝑡 𝑡 i32] → [𝑡]

Note: Both drop and select are value-polymorphic instructions.

3.3.3 Variable Instructions

local.get 𝑥

• The local 𝐶.locals[𝑥] must be defined in the context.

• Let 𝑡 be the value type 𝐶.locals[𝑥].

• Then the instruction is valid with type [] → [𝑡].

𝐶.locals[𝑥] = 𝑡

𝐶 ⊢ local.get 𝑥 : [] → [𝑡]

local.set 𝑥

• The local 𝐶.locals[𝑥] must be defined in the context.

• Let 𝑡 be the value type 𝐶.locals[𝑥].

• Then the instruction is valid with type [𝑡] → [].

𝐶.locals[𝑥] = 𝑡

𝐶 ⊢ local.set 𝑥 : [𝑡] → []

local.tee 𝑥

• The local 𝐶.locals[𝑥] must be defined in the context.

• Let 𝑡 be the value type 𝐶.locals[𝑥].

• Then the instruction is valid with type [𝑡] → [𝑡].

𝐶.locals[𝑥] = 𝑡

𝐶 ⊢ local.tee 𝑥 : [𝑡] → [𝑡]

28 Chapter 3. Validation

WebAssembly Specification, Release 1.1

global.get 𝑥

• The global 𝐶.globals[𝑥] must be defined in the context.

• Let mut 𝑡 be the global type 𝐶.globals[𝑥].

• Then the instruction is valid with type [] → [𝑡].

𝐶.globals[𝑥] = mut 𝑡

𝐶 ⊢ global.get 𝑥 : [] → [𝑡]

global.set 𝑥

• The global 𝐶.globals[𝑥] must be defined in the context.

• Let mut 𝑡 be the global type 𝐶.globals[𝑥].

• The mutability mut must be var.

• Then the instruction is valid with type [𝑡] → [].

𝐶.globals[𝑥] = var 𝑡

𝐶 ⊢ global.set 𝑥 : [𝑡] → []

3.3.4 Table Instructions

table.copy

• The table 𝐶.tables[0] must be defined in the context.

• Then the instruction is valid with type [i32 i32 i32] → [].

𝐶.tables[0] = tabletype

𝐶 ⊢ table.copy : [i32 i32 i32] → []

table.init 𝑥

• The table 𝐶.tables[0] must be defined in the context.

• The element segment 𝐶.elems[𝑥] must be defined in the context.

• Then the instruction is valid with type [i32 i32 i32] → [].

𝐶.tables[0] = tabletype 𝐶.elems[𝑥] = ok
𝐶 ⊢ table.init 𝑥 : [i32 i32 i32] → []

elem.drop 𝑥

• The element segment 𝐶.elems[𝑥] must be defined in the context.

• Then the instruction is valid with type [] → [].

𝐶.elems[𝑥] = ok
𝐶 ⊢ elem.drop 𝑥 : [] → []

3.3. Instructions 29

WebAssembly Specification, Release 1.1

3.3.5 Memory Instructions

𝑡.load memarg

• The memory 𝐶.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than the bit width of 𝑡 divided by 8.

• Then the instruction is valid with type [i32] → [𝑡].

𝐶.mems[0] = memtype 2memarg.align ≤ |𝑡|/8

𝐶 ⊢ 𝑡.load memarg : [i32] → [𝑡]

𝑡.load𝑁_sx memarg

• The memory 𝐶.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than 𝑁/8.

• Then the instruction is valid with type [i32] → [𝑡].

𝐶.mems[0] = memtype 2memarg.align ≤ 𝑁/8

𝐶 ⊢ 𝑡.load𝑁_sx memarg : [i32] → [𝑡]

𝑡.store memarg

• The memory 𝐶.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than the bit width of 𝑡 divided by 8.

• Then the instruction is valid with type [i32 𝑡] → [].

𝐶.mems[0] = memtype 2memarg.align ≤ |𝑡|/8

𝐶 ⊢ 𝑡.store memarg : [i32 𝑡] → []

𝑡.store𝑁 memarg

• The memory 𝐶.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than 𝑁/8.

• Then the instruction is valid with type [i32 𝑡] → [].

𝐶.mems[0] = memtype 2memarg.align ≤ 𝑁/8

𝐶 ⊢ 𝑡.store𝑁 memarg : [i32 𝑡] → []

memory.size

• The memory 𝐶.mems[0] must be defined in the context.

• Then the instruction is valid with type [] → [i32].

𝐶.mems[0] = memtype

𝐶 ⊢ memory.size : [] → [i32]

30 Chapter 3. Validation

WebAssembly Specification, Release 1.1

memory.grow

• The memory 𝐶.mems[0] must be defined in the context.

• Then the instruction is valid with type [i32] → [i32].

𝐶.mems[0] = memtype

𝐶 ⊢ memory.grow : [i32] → [i32]

memory.fill

• The memory 𝐶.mems[0] must be defined in the context.

• Then the instruction is valid with type [i32 i32 i32] → [].

𝐶.mems[0] = memtype

𝐶 ⊢ memory.fill : [i32 i32 i32] → []

memory.copy

• The memory 𝐶.mems[0] must be defined in the context.

• Then the instruction is valid with type [i32 i32 i32] → [].

𝐶.mems[0] = memtype

𝐶 ⊢ memory.copy : [i32 i32 i32] → []

memory.init 𝑥

• The memory 𝐶.mems[0] must be defined in the context.

• The data segment 𝐶.datas[𝑥] must be defined in the context.

• Then the instruction is valid with type [i32 i32 i32] → [].

𝐶.mems[0] = memtype 𝐶.datas[𝑥] = ok
𝐶 ⊢ memory.init 𝑥 : [i32 i32 i32] → []

data.drop 𝑥

• The data segment 𝐶.datas[𝑥] must be defined in the context.

• Then the instruction is valid with type [] → [].

𝐶.datas[𝑥] = ok
𝐶 ⊢ data.drop 𝑥 : [] → []

3.3.6 Control Instructions

nop

• The instruction is valid with type [] → [].

𝐶 ⊢ nop : [] → []

3.3. Instructions 31

WebAssembly Specification, Release 1.1

unreachable

• The instruction is valid with type [𝑡*1] → [𝑡*2], for any sequences of value types 𝑡*1 and 𝑡*2.

𝐶 ⊢ unreachable : [𝑡*1] → [𝑡*2]

Note: The unreachable instruction is stack-polymorphic.

block blocktype instr* end

• The block type must be valid as some function type [𝑡*1] → [𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with the result type [𝑡*2] prepended to the labels vector.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with type [𝑡*1] → [𝑡*2].

• Then the compound instruction is valid with type [𝑡*1] → [𝑡*2].

𝐶 ⊢ blocktype : [𝑡*1] → [𝑡*2] 𝐶, labels [𝑡*2] ⊢ instr* : [𝑡*1] → [𝑡*2]

𝐶 ⊢ block blocktype instr* end : [𝑡*1] → [𝑡*2]

Note: The notation 𝐶, labels [𝑡*] inserts the new label type at index 0, shifting all others.

loop blocktype instr* end

• The block type must be valid as some function type [𝑡*1] → [𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with the result type [𝑡*1] prepended to the labels vector.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with type [𝑡*1] → [𝑡*2].

• Then the compound instruction is valid with type [𝑡*1] → [𝑡*2].

𝐶 ⊢ blocktype : [𝑡*1] → [𝑡*2] 𝐶, labels [𝑡*1] ⊢ instr* : [𝑡*1] → [𝑡*2]

𝐶 ⊢ loop blocktype instr* end : [𝑡*1] → [𝑡*2]

Note: The notation 𝐶, labels [𝑡*] inserts the new label type at index 0, shifting all others.

if blocktype instr*1 else instr*2 end

• The block type must be valid as some function type [𝑡*1] → [𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with the result type [𝑡*2] prepended to the labels vector.

• Under context 𝐶 ′, the instruction sequence instr*1 must be valid with type [𝑡*1] → [𝑡*2].

• Under context 𝐶 ′, the instruction sequence instr*2 must be valid with type [𝑡*1] → [𝑡*2].

• Then the compound instruction is valid with type [𝑡*1 i32] → [𝑡*2].

𝐶 ⊢ blocktype : [𝑡*1] → [𝑡*2] 𝐶, labels [𝑡*2] ⊢ instr*1 : [𝑡*1] → [𝑡*2] 𝐶, labels [𝑡*2] ⊢ instr*2 : [𝑡*1] → [𝑡*2]

𝐶 ⊢ if blocktype instr*1 else instr
*
2 end : [𝑡*1 i32] → [𝑡*2]

Note: The notation 𝐶, labels [𝑡*] inserts the new label type at index 0, shifting all others.

32 Chapter 3. Validation

WebAssembly Specification, Release 1.1

br 𝑙

• The label 𝐶.labels[𝑙] must be defined in the context.

• Let [𝑡*] be the result type 𝐶.labels[𝑙].

• Then the instruction is valid with type [𝑡*1 𝑡
*] → [𝑡*2], for any sequences of value types 𝑡*1 and 𝑡*2.

𝐶.labels[𝑙] = [𝑡*]

𝐶 ⊢ br 𝑙 : [𝑡*1 𝑡
*] → [𝑡*2]

Note: The label index space in the context 𝐶 contains the most recent label first, so that 𝐶.labels[𝑙] performs a
relative lookup as expected.

The br instruction is stack-polymorphic.

br_if 𝑙

• The label 𝐶.labels[𝑙] must be defined in the context.

• Let [𝑡*] be the result type 𝐶.labels[𝑙].

• Then the instruction is valid with type [𝑡* i32] → [𝑡*].

𝐶.labels[𝑙] = [𝑡*]

𝐶 ⊢ br_if 𝑙 : [𝑡* i32] → [𝑡*]

Note: The label index space in the context 𝐶 contains the most recent label first, so that 𝐶.labels[𝑙] performs a
relative lookup as expected.

br_table 𝑙* 𝑙𝑁

• The label 𝐶.labels[𝑙𝑁] must be defined in the context.

• Let [𝑡*] be the result type 𝐶.labels[𝑙𝑁].

• For all 𝑙𝑖 in 𝑙*, the label 𝐶.labels[𝑙𝑖] must be defined in the context.

• For all 𝑙𝑖 in 𝑙*, 𝐶.labels[𝑙𝑖] must be [𝑡*].

• Then the instruction is valid with type [𝑡*1 𝑡
* i32] → [𝑡*2], for any sequences of value types 𝑡*1 and 𝑡*2.

(𝐶.labels[𝑙] = [𝑡*])* 𝐶.labels[𝑙𝑁] = [𝑡*]

𝐶 ⊢ br_table 𝑙* 𝑙𝑁 : [𝑡*1 𝑡
* i32] → [𝑡*2]

Note: The label index space in the context 𝐶 contains the most recent label first, so that 𝐶.labels[𝑙𝑖] performs a
relative lookup as expected.

The br_table instruction is stack-polymorphic.

3.3. Instructions 33

WebAssembly Specification, Release 1.1

return

• The return type 𝐶.return must not be absent in the context.

• Let [𝑡*] be the result type of 𝐶.return.

• Then the instruction is valid with type [𝑡*1 𝑡
*] → [𝑡*2], for any sequences of value types 𝑡*1 and 𝑡*2.

𝐶.return = [𝑡*]

𝐶 ⊢ return : [𝑡*1 𝑡
*] → [𝑡*2]

Note: The return instruction is stack-polymorphic.

𝐶.return is absent (set to 𝜖) when validating an expression that is not a function body. This differs from it being
set to the empty result type ([𝜖]), which is the case for functions not returning anything.

call 𝑥

• The function 𝐶.funcs[𝑥] must be defined in the context.

• Then the instruction is valid with type 𝐶.funcs[𝑥].

𝐶.funcs[𝑥] = [𝑡*1] → [𝑡*2]

𝐶 ⊢ call 𝑥 : [𝑡*1] → [𝑡*2]

call_indirect 𝑥

• The table 𝐶.tables[0] must be defined in the context.

• Let limits elemtype be the table type 𝐶.tables[0].

• The element type elemtype must be funcref.

• The type 𝐶.types[𝑥] must be defined in the context.

• Let [𝑡*1] → [𝑡*2] be the function type 𝐶.types[𝑥].

• Then the instruction is valid with type [𝑡*1 i32] → [𝑡*2].

𝐶.tables[0] = limits funcref 𝐶.types[𝑥] = [𝑡*1] → [𝑡*2]

𝐶 ⊢ call_indirect 𝑥 : [𝑡*1 i32] → [𝑡*2]

3.3.7 Instruction Sequences

Typing of instruction sequences is defined recursively.

Empty Instruction Sequence: 𝜖

• The empty instruction sequence is valid with type [𝑡*] → [𝑡*], for any sequence of value types 𝑡*.

𝐶 ⊢ 𝜖 : [𝑡*] → [𝑡*]

34 Chapter 3. Validation

WebAssembly Specification, Release 1.1

Non-empty Instruction Sequence: instr* instr𝑁

• The instruction sequence instr* must be valid with type [𝑡*1] → [𝑡*2], for some sequences of value types 𝑡*1
and 𝑡*2.

• The instruction instr𝑁 must be valid with type [𝑡*] → [𝑡*3], for some sequences of value types 𝑡* and 𝑡*3.

• There must be a sequence of value types 𝑡*0, such that 𝑡*2 = 𝑡*0 𝑡
*.

• Then the combined instruction sequence is valid with type [𝑡*1] → [𝑡*0 𝑡
*
3].

𝐶 ⊢ instr* : [𝑡*1] → [𝑡*0 𝑡
] 𝐶 ⊢ instr𝑁 : [𝑡] → [𝑡*3]

𝐶 ⊢ instr* instr𝑁 : [𝑡*1] → [𝑡*0 𝑡
*
3]

3.3.8 Expressions

Expressions expr are classified by result types of the form [𝑡*].

instr* end

• The instruction sequence instr* must be valid with type [] → [𝑡*], for some result type [𝑡*].

• Then the expression is valid with result type [𝑡*].

𝐶 ⊢ instr* : [] → [𝑡*]

𝐶 ⊢ instr* end : [𝑡*]

Constant Expressions

• In a constant expression instr* end all instructions in instr* must be constant.

• A constant instruction instr must be:

– either of the form 𝑡.const 𝑐,

– or of the form global.get 𝑥, in which case 𝐶.globals[𝑥] must be a global type of the form const 𝑡.

(𝐶 ⊢ instr const)*

𝐶 ⊢ instr* end const

𝐶 ⊢ 𝑡.const 𝑐 const
𝐶.globals[𝑥] = const 𝑡

𝐶 ⊢ global.get 𝑥 const

Note: Currently, constant expressions occurring as initializers of globals are further constrained in that contained
global.get instructions are only allowed to refer to imported globals. This is enforced in the validation rule for
modules by constraining the context 𝐶 accordingly.

The definition of constant expression may be extended in future versions of WebAssembly.

3.3. Instructions 35

WebAssembly Specification, Release 1.1

3.4 Modules

Modules are valid when all the components they contain are valid. Furthermore, most definitions are themselves
classified with a suitable type.

3.4.1 Functions

Functions func are classified by function types of the form [𝑡*1] → [𝑡*2].

{type 𝑥, locals 𝑡*, body expr}

• The type 𝐶.types[𝑥] must be defined in the context.

• Let [𝑡*1] → [𝑡*2] be the function type 𝐶.types[𝑥].

• Let 𝐶 ′ be the same context as 𝐶, but with:

– locals set to the sequence of value types 𝑡*1 𝑡
*, concatenating parameters and locals,

– labels set to the singular sequence containing only result type [𝑡*2].

– return set to the result type [𝑡*2].

• Under the context 𝐶 ′, the expression expr must be valid with type [𝑡*2].

• Then the function definition is valid with type [𝑡*1] → [𝑡*2].

𝐶.types[𝑥] = [𝑡*1] → [𝑡*2] 𝐶, locals 𝑡*1 𝑡
*, labels [𝑡*2], return [𝑡*2] ⊢ expr : [𝑡*2]

𝐶 ⊢ {type 𝑥, locals 𝑡*, body expr} : [𝑡*1] → [𝑡*2]

3.4.2 Tables

Tables table are classified by table types.

{type tabletype}

• The table type tabletype must be valid.

• Then the table definition is valid with type tabletype .

⊢ tabletype ok
𝐶 ⊢ {type tabletype} : tabletype

3.4.3 Memories

Memories mem are classified by memory types.

36 Chapter 3. Validation

WebAssembly Specification, Release 1.1

{type memtype}

• The memory type memtype must be valid.

• Then the memory definition is valid with type memtype .

⊢ memtype ok
𝐶 ⊢ {type memtype} : memtype

3.4.4 Globals

Globals global are classified by global types of the form mut 𝑡.

{type mut 𝑡, init expr}

• The global type mut 𝑡 must be valid.

• The expression expr must be valid with result type [𝑡].

• The expression expr must be constant.

• Then the global definition is valid with type mut 𝑡.

⊢ mut 𝑡 ok 𝐶 ⊢ expr : [𝑡] 𝐶 ⊢ expr const
𝐶 ⊢ {type mut 𝑡, init expr} : mut 𝑡

3.4.5 Element Segments

Element segments elem are not classified by any type but merely checked for well-formedness.

{type 𝑒𝑡, init 𝑒*,mode elemmode}

• For each 𝑒𝑖 in 𝑒*,

– The element expression 𝑒𝑖 must be valid.

• The element mode elemmode must be valid.

• Then the element segment is valid.

(𝐶 ⊢ 𝑒 ok)* 𝐶; et ⊢ elemmode ok
𝐶 ⊢ {type 𝑒𝑡, init 𝑒*,mode elemmode} ok

elemexpr

• An element expression must be:

– either of the form ref.null end,

– or of the form (ref.func 𝑥) end, in which case 𝐶.funcs[𝑥] must be defined in the context.

𝐶 ⊢ ref.null end ok
𝐶.funcs[𝑥] = functype

𝐶 ⊢ (ref.func 𝑥) end ok

3.4. Modules 37

WebAssembly Specification, Release 1.1

passive

• The element mode is valid.

𝐶; et ⊢ passive ok

active {table 𝑥, offset expr}

• The table 𝐶.tables[𝑥] must be defined in the context.

• Let limits elemtype be the table type 𝐶.tables[𝑥].

• The element type et of the segment must match elemtype.

• The expression expr must be valid with result type [i32].

• The expression expr must be constant.

• Then the element mode is valid.
𝐶.tables[𝑥] = limits elemtype et = elemtype 𝐶 ⊢ expr : [i32] 𝐶 ⊢ expr const

𝐶; et ⊢ active {table 𝑥, offset expr} ok

3.4.6 Data Segments

Data segments data are not classified by any type but merely checked for well-formedness.

{init 𝑏*,mode datamode}

• The data mode datamode must be valid.

• Then the data segment is valid.

𝐶 ⊢ datamode ok
𝐶 ⊢ {init 𝑏*,mode datamode} ok

passive

• The data mode is valid.

𝐶 ⊢ passive ok

active {memory 𝑥, offset expr}

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The expression expr must be valid with result type [i32].

• The expression expr must be constant.

• Then the data mode is valid.
𝐶.mems[𝑥] = limits 𝐶 ⊢ expr : [i32] 𝐶 ⊢ expr const

𝐶 ⊢ active {memory 𝑥, offset expr} ok

38 Chapter 3. Validation

WebAssembly Specification, Release 1.1

3.4.7 Start Function

Start function declarations start are not classified by any type.

{func 𝑥}

• The function 𝐶.funcs[𝑥] must be defined in the context.

• The type of 𝐶.funcs[𝑥] must be [] → [].

• Then the start function is valid.
𝐶.funcs[𝑥] = [] → []

𝐶 ⊢ {func 𝑥} ok

3.4.8 Exports

Exports export and export descriptions exportdesc are classified by their external type.

{name name, desc exportdesc}

• The export description exportdesc must be valid with external type externtype.

• Then the export is valid with external type externtype.

𝐶 ⊢ exportdesc : externtype

𝐶 ⊢ {name name, desc exportdesc} : externtype

func 𝑥

• The function 𝐶.funcs[𝑥] must be defined in the context.

• Then the export description is valid with external type func 𝐶.funcs[𝑥].

𝐶.funcs[𝑥] = functype

𝐶 ⊢ func 𝑥 : func functype

table 𝑥

• The table 𝐶.tables[𝑥] must be defined in the context.

• Then the export description is valid with external type table 𝐶.tables[𝑥].

𝐶.tables[𝑥] = tabletype

𝐶 ⊢ table 𝑥 : table tabletype

mem 𝑥

• The memory 𝐶.mems[𝑥] must be defined in the context.

• Then the export description is valid with external type mem 𝐶.mems[𝑥].

𝐶.mems[𝑥] = memtype

𝐶 ⊢ mem 𝑥 : mem memtype

3.4. Modules 39

WebAssembly Specification, Release 1.1

global 𝑥

• The global 𝐶.globals[𝑥] must be defined in the context.

• Then the export description is valid with external type global 𝐶.globals[𝑥].

𝐶.globals[𝑥] = globaltype

𝐶 ⊢ global 𝑥 : global globaltype

3.4.9 Imports

Imports import and import descriptions importdesc are classified by external types.

{module name1, name name2, desc importdesc}

• The import description importdesc must be valid with type externtype .

• Then the import is valid with type externtype.

𝐶 ⊢ importdesc : externtype

𝐶 ⊢ {module name1, name name2, desc importdesc} : externtype

func 𝑥

• The function 𝐶.types[𝑥] must be defined in the context.

• Let [𝑡*1] → [𝑡*2] be the function type 𝐶.types[𝑥].

• Then the import description is valid with type func [𝑡*1] → [𝑡*2].

𝐶.types[𝑥] = [𝑡*1] → [𝑡*2]

𝐶 ⊢ func 𝑥 : func [𝑡*1] → [𝑡*2]

table tabletype

• The table type tabletype must be valid.

• Then the import description is valid with type table tabletype .

⊢ tabletype ok
𝐶 ⊢ table tabletype : table tabletype

mem memtype

• The memory type memtype must be valid.

• Then the import description is valid with type mem memtype .

⊢ memtype ok
𝐶 ⊢ mem memtype : mem memtype

40 Chapter 3. Validation

WebAssembly Specification, Release 1.1

global globaltype

• The global type globaltype must be valid.

• Then the import description is valid with type global globaltype.

⊢ globaltype ok
𝐶 ⊢ global globaltype : global globaltype

3.4.10 Modules

Modules are classified by their mapping from the external types of their imports to those of their exports.

A module is entirely closed, that is, its components can only refer to definitions that appear in the module itself.
Consequently, no initial context is required. Instead, the context 𝐶 for validation of the module’s content is
constructed from the definitions in the module.

• Let module be the module to validate.

• Let 𝐶 be a context where:

– 𝐶.types is module.types,

– 𝐶.funcs is funcs(it*) concatenated with ft*, with the import’s external types it* and the internal
function types ft* as determined below,

– 𝐶.tables is tables(it*) concatenated with tt*, with the import’s external types it* and the internal
table types tt* as determined below,

– 𝐶.mems is mems(it*) concatenated with mt*, with the import’s external types it* and the internal
memory types mt* as determined below,

– 𝐶.globals is globals(it*) concatenated with gt*, with the import’s external types it* and the internal
global types gt* as determined below,

– 𝐶.elems is ok𝑁𝑒 , where 𝑁𝑒 is the length of the vector module.elems,

– 𝐶.datas is ok𝑁𝑑 , where 𝑁𝑑 is the length of the vector module.datas,

– 𝐶.locals is empty,

– 𝐶.labels is empty,

– 𝐶.return is empty.

• Let 𝐶 ′ be the context where 𝐶 ′.globals is the sequence globals(it*) and all other fields are empty.

• Under the context 𝐶:

– For each functype𝑖 in module.types, the function type functype𝑖 must be valid.

– For each func𝑖 in module.funcs, the definition func𝑖 must be valid with a function type ft 𝑖.

– For each table𝑖 in module.tables, the definition table𝑖 must be valid with a table type tt 𝑖.

– For each mem𝑖 in module.mems, the definition mem𝑖 must be valid with a memory type mt 𝑖.

– For each global 𝑖 in module.globals:

* Under the context 𝐶 ′, the definition global 𝑖 must be valid with a global type gt 𝑖.

– For each elem𝑖 in module.elems, the segment elem𝑖 must be valid.

– For each data𝑖 in module.datas, the segment data𝑖 must be valid.

– If module.start is non-empty, then module.start must be valid.

– For each import 𝑖 in module.imports, the segment import 𝑖 must be valid with an external type it 𝑖.

– For each export 𝑖 in module.exports, the segment export 𝑖 must be valid with external type et 𝑖.

3.4. Modules 41

WebAssembly Specification, Release 1.1

• The length of 𝐶.tables must not be larger than 1.

• The length of 𝐶.mems must not be larger than 1.

• All export names export 𝑖.name must be different.

• Let ft* be the concatenation of the internal function types ft 𝑖, in index order.

• Let tt* be the concatenation of the internal table types tt 𝑖, in index order.

• Let mt* be the concatenation of the internal memory types mt 𝑖, in index order.

• Let gt* be the concatenation of the internal global types gt 𝑖, in index order.

• Let it* be the concatenation of external types it 𝑖 of the imports, in index order.

• Let et* be the concatenation of external types et 𝑖 of the exports, in index order.

• Then the module is valid with external types it* → et*.

(⊢ functype ok)* (𝐶 ⊢ func : ft)* (𝐶 ⊢ table : tt)* (𝐶 ⊢ mem : mt)* (𝐶 ′ ⊢ global : gt)*

(𝐶 ⊢ elem ok)𝑁𝑒 (𝐶 ⊢ data ok)𝑁𝑑 (𝐶 ⊢ start ok)? (𝐶 ⊢ import : it)* (𝐶 ⊢ export : et)*

ift* = funcs(it*) itt* = tables(it*) imt* = mems(it*) igt* = globals(it*)

𝐶 = {types functype*, funcs ift* ft*, tables itt* tt*,mems imt* mt*, globals igt* gt*, elems ok𝑁𝑒 , datas ok𝑁𝑑}
𝐶 ′ = {globals igt*} |𝐶.tables| ≤ 1 |𝐶.mems| ≤ 1 (export .name)* disjoint

⊢ {types functype*, funcs func*, tables table*,mems mem*, globals global*,
elems elem*, datas data*, start start?, imports import*, exports export*} : it* → et*

Note: Most definitions in a module – particularly functions – are mutually recursive. Consequently, the definition
of the context 𝐶 in this rule is recursive: it depends on the outcome of validation of the function, table, memory,
and global definitions contained in the module, which itself depends on 𝐶. However, this recursion is just a
specification device. All types needed to construct 𝐶 can easily be determined from a simple pre-pass over the
module that does not perform any actual validation.

Globals, however, are not recursive. The effect of defining the limited context 𝐶 ′ for validating the module’s
globals is that their initialization expressions can only access imported globals and nothing else.

Note: The restriction on the number of tables and memories may be lifted in future versions of WebAssembly.

42 Chapter 3. Validation

CHAPTER 4

Execution

4.1 Conventions

WebAssembly code is executed when instantiating a module or invoking an exported function on the resulting
module instance.

Execution behavior is defined in terms of an abstract machine that models the program state. It includes a stack,
which records operand values and control constructs, and an abstract store containing global state.

For each instruction, there is a rule that specifies the effect of its execution on the program state. Furthermore,
there are rules describing the instantiation of a module. As with validation, all rules are given in two equivalent
forms:

1. In prose, describing the execution in intuitive form.

2. In formal notation, describing the rule in mathematical form.17

Note: As with validation, the prose and formal rules are equivalent, so that understanding of the formal notation
is not required to read this specification. The formalism offers a more concise description in notation that is used
widely in programming languages semantics and is readily amenable to mathematical proof.

4.1.1 Prose Notation

Execution is specified by stylised, step-wise rules for each instruction of the abstract syntax. The following
conventions are adopted in stating these rules.

• The execution rules implicitly assume a given store 𝑆.

• The execution rules also assume the presence of an implicit stack that is modified by pushing or popping
values, function elements, labels, and frames.

• Certain rules require the stack to contain at least one frame. The most recent frame is referred to as the
current frame.

17 The semantics is derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan Gohman, Luke
Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssembly18. Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

18 https://dl.acm.org/citation.cfm?doid=3062341.3062363

43

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 1.1

• Both the store and the current frame are mutated by replacing some of their components. Such replacement
is assumed to apply globally.

• The execution of an instruction may trap, in which case the entire computation is aborted and no further
modifications to the store are performed by it. (Other computations can still be initiated afterwards.)

• The execution of an instruction may also end in a jump to a designated target, which defines the next
instruction to execute.

• Execution can enter and exit instruction sequences that form blocks.

• Instruction sequences are implicitly executed in order, unless a trap or jump occurs.

• In various places the rules contain assertions expressing crucial invariants about the program state.

4.1.2 Formal Notation

Note: This section gives a brief explanation of the notation for specifying execution formally. For the interested
reader, a more thorough introduction can be found in respective text books.19

The formal execution rules use a standard approach for specifying operational semantics, rendering them into
reduction rules. Every rule has the following general form:

configuration →˓ configuration

A configuration is a syntactic description of a program state. Each rule specifies one step of execution. As long
as there is at most one reduction rule applicable to a given configuration, reduction – and thereby execution – is
deterministic. WebAssembly has only very few exceptions to this, which are noted explicitly in this specification.

For WebAssembly, a configuration typically is a tuple (𝑆;𝐹 ; instr*) consisting of the current store 𝑆, the call
frame 𝐹 of the current function, and the sequence of instructions that is to be executed. (A more precise definition
is given later.)

To avoid unnecessary clutter, the store 𝑆 and the frame 𝐹 are omitted from reduction rules that do not touch them.

There is no separate representation of the stack. Instead, it is conveniently represented as part of the configuration’s
instruction sequence. In particular, values are defined to coincide with const instructions, and a sequence of const
instructions can be interpreted as an operand “stack” that grows to the right.

Note: For example, the reduction rule for the i32.add instruction can be given as follows:

(i32.const 𝑛1) (i32.const 𝑛2) i32.add →˓ (i32.const (𝑛1 + 𝑛2) mod 232)

Per this rule, two const instructions and the add instruction itself are removed from the instruction stream and
replaced with one new const instruction. This can be interpreted as popping two value off the stack and pushing
the result.

When no result is produced, an instruction reduces to the empty sequence:

nop →˓ 𝜖

Labels and frames are similarly defined to be part of an instruction sequence.

The order of reduction is determined by the definition of an appropriate evaluation context.

Reduction terminates when no more reduction rules are applicable. Soundness of the WebAssembly type system
guarantees that this is only the case when the original instruction sequence has either been reduced to a sequence
of const instructions, which can be interpreted as the values of the resulting operand stack, or if a trap occurred.

19 For example: Benjamin Pierce. Types and Programming Languages20. The MIT Press 2002
20 https://www.cis.upenn.edu/~bcpierce/tapl/

44 Chapter 4. Execution

https://www.cis.upenn.edu/~bcpierce/tapl/

WebAssembly Specification, Release 1.1

Note: For example, the following instruction sequence,

(f64.const 𝑥1) (f64.const 𝑥2) f64.neg (f64.const 𝑥3) f64.add f64.mul

terminates after three steps:

(f64.const 𝑥1) (f64.const 𝑥2) f64.neg (f64.const 𝑥3) f64.add f64.mul
→˓ (f64.const 𝑥1) (f64.const 𝑥4) (f64.const 𝑥3) f64.add f64.mul
→˓ (f64.const 𝑥1) (f64.const 𝑥5) f64.mul
→˓ (f64.const 𝑥6)

where 𝑥4 = −𝑥2 and 𝑥5 = −𝑥2 + 𝑥3 and 𝑥6 = 𝑥1 · (−𝑥2 + 𝑥3).

4.2 Runtime Structure

Store, stack, and other runtime structure forming the WebAssembly abstract machine, such as values or module
instances, are made precise in terms of additional auxiliary syntax.

4.2.1 Values

WebAssembly computations manipulate values of the four basic value types: integers and floating-point data of
32 or 64 bit width each, respectively.

In most places of the semantics, values of different types can occur. In order to avoid ambiguities, values are
therefore represented with an abstract syntax that makes their type explicit. It is convenient to reuse the same
notation as for the const instructions producing them:

val ::= i32.const i32
| i64.const i64
| f32.const f32
| f64.const f64

4.2.2 Results

A result is the outcome of a computation. It is either a sequence of values or a trap.

result ::= val*

| trap

Note: In the current version of WebAssembly, a result can consist of at most one value.

4.2.3 Store

The store represents all global state that can be manipulated by WebAssembly programs. It consists of the runtime
representation of all instances of functions, tables, memories, and globals, element segments, and data segments
that have been allocated during the life time of the abstract machine.21

It is an invariant of the semantics that no element or data instance is addressed from anywhere else but the owning
module instances.

21 In practice, implementations may apply techniques like garbage collection to remove objects from the store that are no longer referenced.
However, such techniques are not semantically observable, and hence outside the scope of this specification.

4.2. Runtime Structure 45

WebAssembly Specification, Release 1.1

Syntactically, the store is defined as a record listing the existing instances of each category:

store ::= { funcs funcinst*,
tables tableinst*,
mems meminst*,
globals globalinst*,
elems eleminst*,
datas datainst* }

Convention

• The meta variable 𝑆 ranges over stores where clear from context.

4.2.4 Addresses

Function instances, table instances, memory instances, and global instances, element instances, and data instances
in the store are referenced with abstract addresses. These are simply indices into the respective store component.

addr ::= 0 | 1 | 2 | . . .
funcaddr ::= addr
tableaddr ::= addr
memaddr ::= addr
globaladdr ::= addr
elemaddr ::= addr
dataaddr ::= addr

An embedder may assign identity to exported store objects corresponding to their addresses, even where this
identity is not observable from within WebAssembly code itself (such as for function instances or immutable
globals).

Note: Addresses are dynamic, globally unique references to runtime objects, in contrast to indices, which are
static, module-local references to their original definitions. A memory address memaddr denotes the abstract
address of a memory instance in the store, not an offset inside a memory instance.

There is no specific limit on the number of allocations of store objects, hence logical addresses can be arbitrarily
large natural numbers.

4.2.5 Module Instances

A module instance is the runtime representation of a module. It is created by instantiating a module, and collects
runtime representations of all entities that are imported, defined, or exported by the module.

moduleinst ::= { types functype*,
funcaddrs funcaddr*,
tableaddrs tableaddr*,
memaddrs memaddr*,
globaladdrs globaladdr*,
elemaddrs elemaddr*,
dataaddrs dataaddr*,
exports exportinst* }

Each component references runtime instances corresponding to respective declarations from the original module
– whether imported or defined – in the order of their static indices. Function instances, table instances, memory
instances, and global instances are referenced with an indirection through their respective addresses in the store.

It is an invariant of the semantics that all export instances in a given module instance have different names.

46 Chapter 4. Execution

WebAssembly Specification, Release 1.1

4.2.6 Function Instances

A function instance is the runtime representation of a function. It effectively is a closure of the original function
over the runtime module instance of its originating module. The module instance is used to resolve references to
other definitions during execution of the function.

funcinst ::= {type functype,module moduleinst , code func}
| {type functype, hostcode hostfunc}

hostfunc ::= . . .

A host function is a function expressed outside WebAssembly but passed to a module as an import. The definition
and behavior of host functions are outside the scope of this specification. For the purpose of this specification, it
is assumed that when invoked, a host function behaves non-deterministically, but within certain constraints that
ensure the integrity of the runtime.

Note: Function instances are immutable, and their identity is not observable by WebAssembly code. However,
the embedder might provide implicit or explicit means for distinguishing their addresses.

4.2.7 Table Instances

A table instance is the runtime representation of a table. It holds a vector of function elements and an optional
maximum size, if one was specified in the table type at the table’s definition site.

Each function element is either empty, representing an uninitialized table entry, or a function address. Function
elements can be mutated through the execution of an element segment or by external means provided by the
embedder.

tableinst ::= {elem vec(funcelem),max u32 ?}
funcelem ::= funcaddr?

It is an invariant of the semantics that the length of the element vector never exceeds the maximum size, if present.

Note: Other table elements may be added in future versions of WebAssembly.

4.2.8 Memory Instances

A memory instance is the runtime representation of a linear memory. It holds a vector of bytes and an optional
maximum size, if one was specified at the definition site of the memory.

meminst ::= {data vec(byte),max u32 ?}

The length of the vector always is a multiple of the WebAssembly page size, which is defined to be the constant
65536 – abbreviated 64 Ki. Like in a memory type, the maximum size in a memory instance is given in units of
this page size.

The bytes can be mutated through memory instructions, the execution of a data segment, or by external means
provided by the embedder.

It is an invariant of the semantics that the length of the byte vector, divided by page size, never exceeds the
maximum size, if present.

4.2. Runtime Structure 47

WebAssembly Specification, Release 1.1

4.2.9 Global Instances

A global instance is the runtime representation of a global variable. It holds an individual value and a flag
indicating whether it is mutable.

globalinst ::= {value val ,mut mut}

The value of mutable globals can be mutated through variable instructions or by external means provided by the
embedder.

4.2.10 Element Instances

An element instance is the runtime representation of an element segment. It holds a vector of function elements.

eleminst ::= {elem vec(funcelem)}

4.2.11 Data Instances

An data instance is the runtime representation of a data segment. It holds a vector of bytes.

datainst ::= {data vec(byte)}

4.2.12 Export Instances

An export instance is the runtime representation of an export. It defines the export’s name and the associated
external value.

exportinst ::= {name name, value externval}

4.2.13 External Values

An external value is the runtime representation of an entity that can be imported or exported. It is an address
denoting either a function instance, table instance, memory instance, or global instances in the shared store.

externval ::= func funcaddr
| table tableaddr
| mem memaddr
| global globaladdr

Conventions

The following auxiliary notation is defined for sequences of external values. It filters out entries of a specific kind
in an order-preserving fashion:

• funcs(externval*) = [funcaddr | (func funcaddr) ∈ externval*]

• tables(externval*) = [tableaddr | (table tableaddr) ∈ externval*]

• mems(externval*) = [memaddr | (mem memaddr) ∈ externval*]

• globals(externval*) = [globaladdr | (global globaladdr) ∈ externval*]

48 Chapter 4. Execution

WebAssembly Specification, Release 1.1

4.2.14 Stack

Besides the store, most instructions interact with an implicit stack. The stack contains three kinds of entries:

• Values: the operands of instructions.

• Labels: active structured control instructions that can be targeted by branches.

• Activations: the call frames of active function calls.

These entries can occur on the stack in any order during the execution of a program. Stack entries are described
by abstract syntax as follows.

Note: It is possible to model the WebAssembly semantics using separate stacks for operands, control constructs,
and calls. However, because the stacks are interdependent, additional book keeping about associated stack heights
would be required. For the purpose of this specification, an interleaved representation is simpler.

Values

Values are represented by themselves.

Labels

Labels carry an argument arity 𝑛 and their associated branch target, which is expressed syntactically as an instruc-
tion sequence:

label ::= label𝑛{instr*}

Intuitively, instr* is the continuation to execute when the branch is taken, in place of the original control construct.

Note: For example, a loop label has the form

label𝑛{loop . . . end}

When performing a branch to this label, this executes the loop, effectively restarting it from the beginning. Con-
versely, a simple block label has the form

label𝑛{𝜖}

When branching, the empty continuation ends the targeted block, such that execution can proceed with consecutive
instructions.

Activations and Frames

Activation frames carry the return arity 𝑛 of the respective function, hold the values of its locals (including ar-
guments) in the order corresponding to their static local indices, and a reference to the function’s own module
instance:

activation ::= frame𝑛{frame}
frame ::= {locals val*,module moduleinst}

The values of the locals are mutated by respective variable instructions.

4.2. Runtime Structure 49

WebAssembly Specification, Release 1.1

Conventions

• The meta variable 𝐿 ranges over labels where clear from context.

• The meta variable 𝐹 ranges over frames where clear from context.

• The following auxiliary definition takes a block type and looks up the function type that it denotes in the
current frame:

expand𝐹 (typeidx) = 𝐹.module.types[typeidx]
expand𝐹 ([valtype?]) = [] → [valtype?]

4.2.15 Administrative Instructions

Note: This section is only relevant for the formal notation.

In order to express the reduction of traps, calls, and control instructions, the syntax of instructions is extended to
include the following administrative instructions:

instr ::= . . .
| trap
| invoke funcaddr
| table.get
| table.set
| label𝑛{instr*} instr* end
| frame𝑛{frame} instr* end

The trap instruction represents the occurrence of a trap. Traps are bubbled up through nested instruction se-
quences, ultimately reducing the entire program to a single trap instruction, signalling abrupt termination.

The invoke instruction represents the imminent invocation of a function instance, identified by its address. It
unifies the handling of different forms of calls.

The table.get and table.set instructions are used to simplify the specification of the table.init and table.copy
instructions.

Note: In the future, table.get and table.set may be provided as regular instructions.

The label and frame instructions model labels and frames “on the stack”. Moreover, the administrative syntax
maintains the nesting structure of the original structured control instruction or function body and their instruction
sequences with an end marker. That way, the end of the inner instruction sequence is known when part of an outer
sequence.

Note: For example, the reduction rule for block is:

block [𝑡𝑛] instr* end →˓ label𝑛{𝜖} instr* end

This replaces the block with a label instruction, which can be interpreted as “pushing” the label on the stack. When
end is reached, i.e., the inner instruction sequence has been reduced to the empty sequence – or rather, a sequence
of 𝑛 const instructions representing the resulting values – then the label instruction is eliminated courtesy of its
own reduction rule:

label𝑚{instr*} val𝑛 end →˓ val𝑛

This can be interpreted as removing the label from the stack and only leaving the locally accumulated operand
values.

50 Chapter 4. Execution

WebAssembly Specification, Release 1.1

Block Contexts

In order to specify the reduction of branches, the following syntax of block contexts is defined, indexed by the
count 𝑘 of labels surrounding a hole [_] that marks the place where the next step of computation is taking place:

𝐵0 ::= val* [_] instr*

𝐵𝑘+1 ::= val* label𝑛{instr*} 𝐵𝑘 end instr*

This definition allows to index active labels surrounding a branch or return instruction.

Note: For example, the reduction of a simple branch can be defined as follows:

label0{instr*} 𝐵𝑙[br 𝑙] end →˓ instr*

Here, the hole [_] of the context is instantiated with a branch instruction. When a branch occurs, this rule replaces
the targeted label and associated instruction sequence with the label’s continuation. The selected label is identified
through the label index 𝑙, which corresponds to the number of surrounding label instructions that must be hopped
over – which is exactly the count encoded in the index of a block context.

Configurations

A configuration consists of the current store and an executing thread.

A thread is a computation over instructions that operates relative to a current frame referring to the module instance
in which the computation runs, i.e., where the current function originates from.

config ::= store; thread
thread ::= frame; instr*

Note: The current version of WebAssembly is single-threaded, but configurations with multiple threads may be
supported in the future.

Evaluation Contexts

Finally, the following definition of evaluation context and associated structural rules enable reduction inside in-
struction sequences and administrative forms as well as the propagation of traps:

𝐸 ::= [_] | val* 𝐸 instr* | label𝑛{instr*} 𝐸 end

𝑆;𝐹 ;𝐸[instr*] →˓ 𝑆′;𝐹 ′;𝐸[instr ′
*
]

(if 𝑆;𝐹 ; instr* →˓ 𝑆′;𝐹 ′; instr ′
*
)

𝑆;𝐹 ; frame𝑛{𝐹 ′} instr* end →˓ 𝑆′;𝐹 ; frame𝑛{𝐹 ′′} instr ′* end
(if 𝑆;𝐹 ′; instr* →˓ 𝑆′;𝐹 ′′; instr ′

*
)

𝑆;𝐹 ;𝐸[trap] →˓ 𝑆;𝐹 ; trap (if 𝐸 ̸= [_])
𝑆;𝐹 ; frame𝑛{𝐹 ′} trap end →˓ 𝑆;𝐹 ; trap

Reduction terminates when a thread’s instruction sequence has been reduced to a result, that is, either a sequence
of values or to a trap.

Note: The restriction on evaluation contexts rules out contexts like [_] and 𝜖 [_] 𝜖 for which 𝐸[trap] = trap.

For an example of reduction under evaluation contexts, consider the following instruction sequence.

(f64.const 𝑥1) (f64.const 𝑥2) f64.neg (f64.const 𝑥3) f64.add f64.mul

4.2. Runtime Structure 51

WebAssembly Specification, Release 1.1

This can be decomposed into 𝐸[(f64.const 𝑥2) f64.neg] where

𝐸 = (f64.const 𝑥1) [_] (f64.const 𝑥3) f64.add f64.mul

Moreover, this is the only possible choice of evaluation context where the contents of the hole matches the left-
hand side of a reduction rule.

4.3 Numerics

Numeric primitives are defined in a generic manner, by operators indexed over a bit width 𝑁 .

Some operators are non-deterministic, because they can return one of several possible results (such as different
NaN values). Technically, each operator thus returns a set of allowed values. For convenience, deterministic
results are expressed as plain values, which are assumed to be identified with a respective singleton set.

Some operators are partial, because they are not defined on certain inputs. Technically, an empty set of results is
returned for these inputs.

In formal notation, each operator is defined by equational clauses that apply in decreasing order of precedence.
That is, the first clause that is applicable to the given arguments defines the result. In some cases, similar clauses
are combined into one by using the notation ± or ∓. When several of these placeholders occur in a single clause,
then they must be resolved consistently: either the upper sign is chosen for all of them or the lower sign.

Note: For example, the fcopysign operator is defined as follows:

fcopysign𝑁 (±𝑝1,±𝑝2) = ±𝑝1
fcopysign𝑁 (±𝑝1,∓𝑝2) = ∓𝑝1

This definition is to be read as a shorthand for the following expansion of each clause into two separate ones:

fcopysign𝑁 (+𝑝1,+𝑝2) = +𝑝1
fcopysign𝑁 (−𝑝1,−𝑝2) = −𝑝1
fcopysign𝑁 (+𝑝1,−𝑝2) = −𝑝1
fcopysign𝑁 (−𝑝1,+𝑝2) = +𝑝1

Conventions:

• The meta variable 𝑑 is used to range over single bits.

• The meta variable 𝑝 is used to range over (signless) magnitudes of floating-point values, including nan and
∞.

• The meta variable 𝑞 is used to range over (signless) rational magnitudes, excluding nan or ∞.

• The notation 𝑓−1 denotes the inverse of a bijective function 𝑓 .

• Truncation of rational values is written trunc(±𝑞), with the usual mathematical definition:

trunc(±𝑞) = ±𝑖 (if 𝑖 ∈ N ∧ +𝑞 − 1 < 𝑖 ≤ +𝑞)

52 Chapter 4. Execution

WebAssembly Specification, Release 1.1

4.3.1 Representations

Numbers have an underlying binary representation as a sequence of bits:

bitsi𝑁 (𝑖) = ibits𝑁 (𝑖)
bitsf𝑁 (𝑧) = fbits𝑁 (𝑧)

Each of these functions is a bijection, hence they are invertible.

Integers

Integers are represented as base two unsigned numbers:

ibits𝑁 (𝑖) = 𝑑𝑁−1 . . . 𝑑0 (𝑖 = 2𝑁−1 · 𝑑𝑁−1 + · · · + 20 · 𝑑0)

Boolean operators like ∧, ∨, or Y are lifted to bit sequences of equal length by applying them pointwise.

Floating-Point

Floating-point values are represented in the respective binary format defined by IEEE 754-201922 (Section 3.4):

fbits𝑁 (±(1 + 𝑚 · 2−𝑀) · 2𝑒) = fsign(±) ibits𝐸(𝑒 + fbias𝑁) ibits𝑀 (𝑚)
fbits𝑁 (±(0 + 𝑚 · 2−𝑀) · 2𝑒) = fsign(±) (0)𝐸 ibits𝑀 (𝑚)
fbits𝑁 (±∞) = fsign(±) (1)𝐸 (0)𝑀

fbits𝑁 (±nan(𝑛)) = fsign(±) (1)𝐸 ibits𝑀 (𝑛)

fbias𝑁 = 2𝐸−1 − 1
fsign(+) = 0
fsign(−) = 1

where 𝑀 = signif(𝑁) and 𝐸 = expon(𝑁).

Storage

When a number is stored into memory, it is converted into a sequence of bytes in little endian23 byte order:

bytes𝑡(𝑖) = littleendian(bits𝑡(𝑖))

littleendian(𝜖) = 𝜖
littleendian(𝑑8 𝑑′

*
) = littleendian(𝑑′

*
) ibits−1

8 (𝑑8)

Again these functions are invertable bijections.

4.3.2 Integer Operations

Sign Interpretation

Integer operators are defined on i𝑁 values. Operators that use a signed interpretation convert the value using the
following definition, which takes the two’s complement when the value lies in the upper half of the value range
(i.e., its most significant bit is 1):

signed𝑁 (𝑖) = 𝑖 (0 ≤ 𝑖 < 2𝑁−1)
signed𝑁 (𝑖) = 𝑖− 2𝑁 (2𝑁−1 ≤ 𝑖 < 2𝑁)

This function is bijective, and hence invertible.

22 https://ieeexplore.ieee.org/document/8766229
23 https://en.wikipedia.org/wiki/Endianness#Little-endian

4.3. Numerics 53

https://ieeexplore.ieee.org/document/8766229
https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 1.1

Boolean Interpretation

The integer result of predicates – i.e., tests and relational operators – is defined with the help of the following
auxiliary function producing the value 1 or 0 depending on a condition.

bool(𝐶) = 1 (if 𝐶)
bool(𝐶) = 0 (otherwise)

iadd𝑁 (𝑖1, 𝑖2)

• Return the result of adding 𝑖1 and 𝑖2 modulo 2𝑁 .

iadd𝑁 (𝑖1, 𝑖2) = (𝑖1 + 𝑖2) mod 2𝑁

isub𝑁 (𝑖1, 𝑖2)

• Return the result of subtracting 𝑖2 from 𝑖1 modulo 2𝑁 .

isub𝑁 (𝑖1, 𝑖2) = (𝑖1 − 𝑖2 + 2𝑁) mod 2𝑁

imul𝑁 (𝑖1, 𝑖2)

• Return the result of multiplying 𝑖1 and 𝑖2 modulo 2𝑁 .

imul𝑁 (𝑖1, 𝑖2) = (𝑖1 · 𝑖2) mod 2𝑁

idiv_u𝑁 (𝑖1, 𝑖2)

• If 𝑖2 is 0, then the result is undefined.

• Else, return the result of dividing 𝑖1 by 𝑖2, truncated toward zero.

idiv_u𝑁 (𝑖1, 0) = {}
idiv_u𝑁 (𝑖1, 𝑖2) = trunc(𝑖1/𝑖2)

Note: This operator is partial.

idiv_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• If 𝑗2 is 0, then the result is undefined.

• Else if 𝑗1 divided by 𝑗2 is 2𝑁−1, then the result is undefined.

• Else, return the result of dividing 𝑗1 by 𝑗2, truncated toward zero.

idiv_s𝑁 (𝑖1, 0) = {}
idiv_s𝑁 (𝑖1, 𝑖2) = {} (if signed𝑁 (𝑖1)/signed𝑁 (𝑖2) = 2𝑁−1)
idiv_s𝑁 (𝑖1, 𝑖2) = signed−1

𝑁 (trunc(signed𝑁 (𝑖1)/signed𝑁 (𝑖2)))

Note: This operator is partial. Besides division by 0, the result of (−2𝑁−1)/(−1) = +2𝑁−1 is not representable
as an 𝑁 -bit signed integer.

54 Chapter 4. Execution

WebAssembly Specification, Release 1.1

irem_u𝑁 (𝑖1, 𝑖2)

• If 𝑖2 is 0, then the result is undefined.

• Else, return the remainder of dividing 𝑖1 by 𝑖2.

irem_u𝑁 (𝑖1, 0) = {}
irem_u𝑁 (𝑖1, 𝑖2) = 𝑖1 − 𝑖2 · trunc(𝑖1/𝑖2)

Note: This operator is partial.

As long as both operators are defined, it holds that 𝑖1 = 𝑖2 · idiv_u(𝑖1, 𝑖2) + irem_u(𝑖1, 𝑖2).

irem_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• If 𝑖2 is 0, then the result is undefined.

• Else, return the remainder of dividing 𝑗1 by 𝑗2, with the sign of the dividend 𝑗1.

irem_s𝑁 (𝑖1, 0) = {}
irem_s𝑁 (𝑖1, 𝑖2) = signed−1

𝑁 (𝑗1 − 𝑗2 · trunc(𝑗1/𝑗2))
(where 𝑗1 = signed𝑁 (𝑖1) ∧ 𝑗2 = signed𝑁 (𝑖2))

Note: This operator is partial.

As long as both operators are defined, it holds that 𝑖1 = 𝑖2 · idiv_s(𝑖1, 𝑖2) + irem_s(𝑖1, 𝑖2).

iand𝑁 (𝑖1, 𝑖2)

• Return the bitwise conjunction of 𝑖1 and 𝑖2.

iand𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (ibits𝑁 (𝑖1) ∧ ibits𝑁 (𝑖2))

ior𝑁 (𝑖1, 𝑖2)

• Return the bitwise disjunction of 𝑖1 and 𝑖2.

ior𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (ibits𝑁 (𝑖1) ∨ ibits𝑁 (𝑖2))

ixor𝑁 (𝑖1, 𝑖2)

• Return the bitwise exclusive disjunction of 𝑖1 and 𝑖2.

ixor𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (ibits𝑁 (𝑖1) Y ibits𝑁 (𝑖2))

4.3. Numerics 55

WebAssembly Specification, Release 1.1

ishl𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of shifting 𝑖1 left by 𝑘 bits, modulo 2𝑁 .

ishl𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑁−𝑘

2 0𝑘) (if ibits𝑁 (𝑖1) = 𝑑𝑘1 𝑑𝑁−𝑘
2 ∧ 𝑘 = 𝑖2 mod 𝑁)

ishr_u𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of shifting 𝑖1 right by 𝑘 bits, extended with 0 bits.

ishr_u𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (0𝑘 𝑑𝑁−𝑘

1) (if ibits𝑁 (𝑖1) = 𝑑𝑁−𝑘
1 𝑑𝑘2 ∧ 𝑘 = 𝑖2 mod 𝑁)

ishr_s𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of shifting 𝑖1 right by 𝑘 bits, extended with the most significant bit of the original value.

ishr_s𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑘+1

0 𝑑𝑁−𝑘−1
1) (if ibits𝑁 (𝑖1) = 𝑑0 𝑑

𝑁−𝑘−1
1 𝑑𝑘2 ∧ 𝑘 = 𝑖2 mod 𝑁)

irotl𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of rotating 𝑖1 left by 𝑘 bits.

irotl𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑁−𝑘

2 𝑑𝑘1) (if ibits𝑁 (𝑖1) = 𝑑𝑘1 𝑑𝑁−𝑘
2 ∧ 𝑘 = 𝑖2 mod 𝑁)

irotr𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of rotating 𝑖1 right by 𝑘 bits.

irotr𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑘2 𝑑𝑁−𝑘

1) (if ibits𝑁 (𝑖1) = 𝑑𝑁−𝑘
1 𝑑𝑘2 ∧ 𝑘 = 𝑖2 mod 𝑁)

iclz𝑁 (𝑖)

• Return the count of leading zero bits in 𝑖; all bits are considered leading zeros if 𝑖 is 0.

iclz𝑁 (𝑖) = 𝑘 (if ibits𝑁 (𝑖) = 0𝑘 (1 𝑑*)?)

ictz𝑁 (𝑖)

• Return the count of trailing zero bits in 𝑖; all bits are considered trailing zeros if 𝑖 is 0.

ictz𝑁 (𝑖) = 𝑘 (if ibits𝑁 (𝑖) = (𝑑* 1)? 0𝑘)

56 Chapter 4. Execution

WebAssembly Specification, Release 1.1

ipopcnt𝑁 (𝑖)

• Return the count of non-zero bits in 𝑖.

ipopcnt𝑁 (𝑖) = 𝑘 (if ibits𝑁 (𝑖) = (0* 1)𝑘 0*)

ieqz𝑁 (𝑖)

• Return 1 if 𝑖 is zero, 0 otherwise.

ieqz𝑁 (𝑖) = bool(𝑖 = 0)

ieq𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 equals 𝑖2, 0 otherwise.

ieq𝑁 (𝑖1, 𝑖2) = bool(𝑖1 = 𝑖2)

ine𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 does not equal 𝑖2, 0 otherwise.

ine𝑁 (𝑖1, 𝑖2) = bool(𝑖1 ̸= 𝑖2)

ilt_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is less than 𝑖2, 0 otherwise.

ilt_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 < 𝑖2)

ilt_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is less than 𝑗2, 0 otherwise.

ilt_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) < signed𝑁 (𝑖2))

igt_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is greater than 𝑖2, 0 otherwise.

igt_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 > 𝑖2)

4.3. Numerics 57

WebAssembly Specification, Release 1.1

igt_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is greater than 𝑗2, 0 otherwise.

igt_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) > signed𝑁 (𝑖2))

ile_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is less than or equal to 𝑖2, 0 otherwise.

ile_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 ≤ 𝑖2)

ile_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is less than or equal to 𝑗2, 0 otherwise.

ile_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) ≤ signed𝑁 (𝑖2))

ige_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is greater than or equal to 𝑖2, 0 otherwise.

ige_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 ≥ 𝑖2)

ige_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is greater than or equal to 𝑗2, 0 otherwise.

ige_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) ≥ signed𝑁 (𝑖2))

iextend𝑀_s𝑁 (𝑖)

• Return extends
𝑀,𝑁 (𝑖).

iextend𝑀_s𝑁 (𝑖) = extends
𝑀,𝑁 (𝑖)

58 Chapter 4. Execution

WebAssembly Specification, Release 1.1

4.3.3 Floating-Point Operations

Floating-point arithmetic follows the IEEE 754-201924 standard, with the following qualifications:

• All operators use round-to-nearest ties-to-even, except where otherwise specified. Non-default directed
rounding attributes are not supported.

• Following the recommendation that operators propagate NaN payloads from their operands is permitted but
not required.

• All operators use “non-stop” mode, and floating-point exceptions are not otherwise observable. In particular,
neither alternate floating-point exception handling attributes nor operators on status flags are supported.
There is no observable difference between quiet and signalling NaNs.

Note: Some of these limitations may be lifted in future versions of WebAssembly.

Rounding

Rounding always is round-to-nearest ties-to-even, in correspondence with IEEE 754-201925 (Section 4.3.1).

An exact floating-point number is a rational number that is exactly representable as a floating-point number of
given bit width 𝑁 .

A limit number for a given floating-point bit width 𝑁 is a positive or negative number whose magnitude is the
smallest power of 2 that is not exactly representable as a floating-point number of width 𝑁 (that magnitude is 2128

for 𝑁 = 32 and 21024 for 𝑁 = 64).

A candidate number is either an exact floating-point number or a positive or negative limit number for the given
bit width 𝑁 .

A candidate pair is a pair 𝑧1, 𝑧2 of candidate numbers, such that no candidate number exists that lies between the
two.

A real number 𝑟 is converted to a floating-point value of bit width 𝑁 as follows:

• If 𝑟 is 0, then return +0.

• Else if 𝑟 is an exact floating-point number, then return 𝑟.

• Else if 𝑟 greater than or equal to the positive limit, then return +∞.

• Else if 𝑟 is less than or equal to the negative limit, then return −∞.

• Else if 𝑧1 and 𝑧2 are a candidate pair such that 𝑧1 < 𝑟 < 𝑧2, then:

– If |𝑟 − 𝑧1| < |𝑟 − 𝑧2|, then let 𝑧 be 𝑧1.

– Else if |𝑟 − 𝑧1| > |𝑟 − 𝑧2|, then let 𝑧 be 𝑧2.

– Else if |𝑟 − 𝑧1| = |𝑟 − 𝑧2| and the significand of 𝑧1 is even, then let 𝑧 be 𝑧1.

– Else, let 𝑧 be 𝑧2.

• If 𝑧 is 0, then:

– If 𝑟 < 0, then return −0.

– Else, return +0.

• Else if 𝑧 is a limit number, then:

– If 𝑟 < 0, then return −∞.

– Else, return +∞.
24 https://ieeexplore.ieee.org/document/8766229
25 https://ieeexplore.ieee.org/document/8766229

4.3. Numerics 59

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 1.1

• Else, return 𝑧.

float𝑁 (0) = +0
float𝑁 (𝑟) = 𝑟 (if 𝑟 ∈ exact𝑁)
float𝑁 (𝑟) = +∞ (if 𝑟 ≥ +limit𝑁)
float𝑁 (𝑟) = −∞ (if 𝑟 ≤ −limit𝑁)
float𝑁 (𝑟) = closest𝑁 (𝑟, 𝑧1, 𝑧2) (if 𝑧1 < 𝑟 < 𝑧2 ∧ (𝑧1, 𝑧2) ∈ candidatepair𝑁)

closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧1) (if |𝑟 − 𝑧1| < |𝑟 − 𝑧2|)
closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧2) (if |𝑟 − 𝑧1| > |𝑟 − 𝑧2|)
closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧1) (if |𝑟 − 𝑧1| = |𝑟 − 𝑧2| ∧ even𝑁 (𝑧1))
closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧2) (if |𝑟 − 𝑧1| = |𝑟 − 𝑧2| ∧ even𝑁 (𝑧2))

rectify𝑁 (𝑟,±limit𝑁) = ±∞
rectify𝑁 (𝑟, 0) = +0 (𝑟 ≥ 0)
rectify𝑁 (𝑟, 0) = −0 (𝑟 < 0)
rectify𝑁 (𝑟, 𝑧) = 𝑧

where:

exact𝑁 = f𝑁 ∩Q
limit𝑁 = 22

expon(𝑁)−1

candidate𝑁 = exact𝑁 ∪ {+limit𝑁 ,−limit𝑁}
candidatepair𝑁 = {(𝑧1, 𝑧2) ∈ candidate2𝑁 | 𝑧1 < 𝑧2 ∧ ∀𝑧 ∈ candidate𝑁 , 𝑧 ≤ 𝑧1 ∨ 𝑧 ≥ 𝑧2}
even𝑁 ((𝑑 + 𝑚 · 2−𝑀) · 2𝑒) ⇔ 𝑚 mod 2 = 0
even𝑁 (±limit𝑁) ⇔ true

NaN Propagation

When the result of a floating-point operator other than fneg, fabs, or fcopysign is a NaN, then its sign is non-
deterministic and the payload is computed as follows:

• If the payload of all NaN inputs to the operator is canonical (including the case that there are no NaN
inputs), then the payload of the output is canonical as well.

• Otherwise the payload is picked non-deterministically among all arithmetic NaNs; that is, its most signifi-
cant bit is 1 and all others are unspecified.

This non-deterministic result is expressed by the following auxiliary function producing a set of allowed outputs
from a set of inputs:

nans𝑁{𝑧*} = {+nan(𝑛),−nan(𝑛) | 𝑛 = canon𝑁} (if ∀nan(𝑛) ∈ 𝑧*, 𝑛 = canon𝑁)
nans𝑁{𝑧*} = {+nan(𝑛),−nan(𝑛) | 𝑛 ≥ canon𝑁} (otherwise)

fadd𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if both 𝑧1 and 𝑧2 are infinities of opposite signs, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are infinities of equal sign, then return that infinity.

• Else if one of 𝑧1 or 𝑧2 is an infinity, then return that infinity.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite sign, then return positive zero.

• Else if both 𝑧1 and 𝑧2 are zeroes of equal sign, then return that zero.

• Else if one of 𝑧1 or 𝑧2 is a zero, then return the other operand.

• Else if both 𝑧1 and 𝑧2 are values with the same magnitude but opposite signs, then return positive zero.

• Else return the result of adding 𝑧1 and 𝑧2, rounded to the nearest representable value.

60 Chapter 4. Execution

WebAssembly Specification, Release 1.1

fadd𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fadd𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fadd𝑁 (±∞,∓∞) = nans𝑁{}
fadd𝑁 (±∞,±∞) = ±∞
fadd𝑁 (𝑧1,±∞) = ±∞
fadd𝑁 (±∞, 𝑧2) = ±∞
fadd𝑁 (±0,∓0) = +0
fadd𝑁 (±0,±0) = ±0
fadd𝑁 (𝑧1,±0) = 𝑧1
fadd𝑁 (±0, 𝑧2) = 𝑧2
fadd𝑁 (±𝑞,∓𝑞) = +0
fadd𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1 + 𝑧2)

fsub𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if both 𝑧1 and 𝑧2 are infinities of equal signs, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are infinities of opposite sign, then return 𝑧1.

• Else if 𝑧1 is an infinity, then return that infinity.

• Else if 𝑧2 is an infinity, then return that infinity negated.

• Else if both 𝑧1 and 𝑧2 are zeroes of equal sign, then return positive zero.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite sign, then return 𝑧1.

• Else if 𝑧2 is a zero, then return 𝑧1.

• Else if 𝑧1 is a zero, then return 𝑧2 negated.

• Else if both 𝑧1 and 𝑧2 are the same value, then return positive zero.

• Else return the result of subtracting 𝑧2 from 𝑧1, rounded to the nearest representable value.

fsub𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fsub𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fsub𝑁 (±∞,±∞) = nans𝑁{}
fsub𝑁 (±∞,∓∞) = ±∞
fsub𝑁 (𝑧1,±∞) = ∓∞
fsub𝑁 (±∞, 𝑧2) = ±∞
fsub𝑁 (±0,±0) = +0
fsub𝑁 (±0,∓0) = ±0
fsub𝑁 (𝑧1,±0) = 𝑧1
fsub𝑁 (±0,±𝑞2) = ∓𝑞2
fsub𝑁 (±𝑞,±𝑞) = +0
fsub𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1 − 𝑧2)

Note: Up to the non-determinism regarding NaNs, it always holds that fsub𝑁 (𝑧1, 𝑧2) = fadd𝑁 (𝑧1, fneg𝑁 (𝑧2)).

4.3. Numerics 61

WebAssembly Specification, Release 1.1

fmul𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if one of 𝑧1 and 𝑧2 is a zero and the other an infinity, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are infinities of equal sign, then return positive infinity.

• Else if both 𝑧1 and 𝑧2 are infinities of opposite sign, then return negative infinity.

• Else if one of 𝑧1 or 𝑧2 is an infinity and the other a value with equal sign, then return positive infinity.

• Else if one of 𝑧1 or 𝑧2 is an infinity and the other a value with opposite sign, then return negative infinity.

• Else if both 𝑧1 and 𝑧2 are zeroes of equal sign, then return positive zero.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite sign, then return negative zero.

• Else return the result of multiplying 𝑧1 and 𝑧2, rounded to the nearest representable value.

fmul𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fmul𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fmul𝑁 (±∞,±0) = nans𝑁{}
fmul𝑁 (±∞,∓0) = nans𝑁{}
fmul𝑁 (±0,±∞) = nans𝑁{}
fmul𝑁 (±0,∓∞) = nans𝑁{}
fmul𝑁 (±∞,±∞) = +∞
fmul𝑁 (±∞,∓∞) = −∞
fmul𝑁 (±𝑞1,±∞) = +∞
fmul𝑁 (±𝑞1,∓∞) = −∞
fmul𝑁 (±∞,±𝑞2) = +∞
fmul𝑁 (±∞,∓𝑞2) = −∞
fmul𝑁 (±0,±0) = +0
fmul𝑁 (±0,∓0) = −0
fmul𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1 · 𝑧2)

fdiv𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if both 𝑧1 and 𝑧2 are infinities, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if 𝑧1 is an infinity and 𝑧2 a value with equal sign, then return positive infinity.

• Else if 𝑧1 is an infinity and 𝑧2 a value with opposite sign, then return negative infinity.

• Else if 𝑧2 is an infinity and 𝑧1 a value with equal sign, then return positive zero.

• Else if 𝑧2 is an infinity and 𝑧1 a value with opposite sign, then return negative zero.

• Else if 𝑧1 is a zero and 𝑧2 a value with equal sign, then return positive zero.

• Else if 𝑧1 is a zero and 𝑧2 a value with opposite sign, then return negative zero.

• Else if 𝑧2 is a zero and 𝑧1 a value with equal sign, then return positive infinity.

• Else if 𝑧2 is a zero and 𝑧1 a value with opposite sign, then return negative infinity.

• Else return the result of dividing 𝑧1 by 𝑧2, rounded to the nearest representable value.

62 Chapter 4. Execution

WebAssembly Specification, Release 1.1

fdiv𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fdiv𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fdiv𝑁 (±∞,±∞) = nans𝑁{}
fdiv𝑁 (±∞,∓∞) = nans𝑁{}
fdiv𝑁 (±0,±0) = nans𝑁{}
fdiv𝑁 (±0,∓0) = nans𝑁{}
fdiv𝑁 (±∞,±𝑞2) = +∞
fdiv𝑁 (±∞,∓𝑞2) = −∞
fdiv𝑁 (±𝑞1,±∞) = +0
fdiv𝑁 (±𝑞1,∓∞) = −0
fdiv𝑁 (±0,±𝑞2) = +0
fdiv𝑁 (±0,∓𝑞2) = −0
fdiv𝑁 (±𝑞1,±0) = +∞
fdiv𝑁 (±𝑞1,∓0) = −∞
fdiv𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1/𝑧2)

fmin𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if one of 𝑧1 or 𝑧2 is a negative infinity, then return negative infinity.

• Else if one of 𝑧1 or 𝑧2 is a positive infinity, then return the other value.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite signs, then return negative zero.

• Else return the smaller value of 𝑧1 and 𝑧2.

fmin𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fmin𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fmin𝑁 (+∞, 𝑧2) = 𝑧2
fmin𝑁 (−∞, 𝑧2) = −∞
fmin𝑁 (𝑧1,+∞) = 𝑧1
fmin𝑁 (𝑧1,−∞) = −∞
fmin𝑁 (±0,∓0) = −0
fmin𝑁 (𝑧1, 𝑧2) = 𝑧1 (if 𝑧1 ≤ 𝑧2)
fmin𝑁 (𝑧1, 𝑧2) = 𝑧2 (if 𝑧2 ≤ 𝑧1)

fmax𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if one of 𝑧1 or 𝑧2 is a positive infinity, then return positive infinity.

• Else if one of 𝑧1 or 𝑧2 is a negative infinity, then return the other value.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite signs, then return positive zero.

• Else return the larger value of 𝑧1 and 𝑧2.

fmax𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fmax𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fmax𝑁 (+∞, 𝑧2) = +∞
fmax𝑁 (−∞, 𝑧2) = 𝑧2
fmax𝑁 (𝑧1,+∞) = +∞
fmax𝑁 (𝑧1,−∞) = 𝑧1
fmax𝑁 (±0,∓0) = +0
fmax𝑁 (𝑧1, 𝑧2) = 𝑧1 (if 𝑧1 ≥ 𝑧2)
fmax𝑁 (𝑧1, 𝑧2) = 𝑧2 (if 𝑧2 ≥ 𝑧1)

4.3. Numerics 63

WebAssembly Specification, Release 1.1

fcopysign𝑁 (𝑧1, 𝑧2)

• If 𝑧1 and 𝑧2 have the same sign, then return 𝑧1.

• Else return 𝑧1 with negated sign.

fcopysign𝑁 (±𝑝1,±𝑝2) = ±𝑝1
fcopysign𝑁 (±𝑝1,∓𝑝2) = ∓𝑝1

fabs𝑁 (𝑧)

• If 𝑧 is a NaN, then return 𝑧 with positive sign.

• Else if 𝑧 is an infinity, then return positive infinity.

• Else if 𝑧 is a zero, then return positive zero.

• Else if 𝑧 is a positive value, then 𝑧.

• Else return 𝑧 negated.

fabs𝑁 (±nan(𝑛)) = +nan(𝑛)
fabs𝑁 (±∞) = +∞
fabs𝑁 (±0) = +0
fabs𝑁 (±𝑞) = +𝑞

fneg𝑁 (𝑧)

• If 𝑧 is a NaN, then return 𝑧 with negated sign.

• Else if 𝑧 is an infinity, then return that infinity negated.

• Else if 𝑧 is a zero, then return that zero negated.

• Else return 𝑧 negated.

fneg𝑁 (±nan(𝑛)) = ∓nan(𝑛)
fneg𝑁 (±∞) = ∓∞
fneg𝑁 (±0) = ∓0
fneg𝑁 (±𝑞) = ∓𝑞

fsqrt𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is negative infinity, then return an element of nans𝑁{}.

• Else if 𝑧 is positive infinity, then return positive infinity.

• Else if 𝑧 is a zero, then return that zero.

• Else if 𝑧 has a negative sign, then return an element of nans𝑁{}.

• Else return the square root of 𝑧.

fsqrt𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
fsqrt𝑁 (−∞) = nans𝑁{}
fsqrt𝑁 (+∞) = +∞
fsqrt𝑁 (±0) = ±0
fsqrt𝑁 (−𝑞) = nans𝑁{}
fsqrt𝑁 (+𝑞) = float𝑁

(︀√
𝑞
)︀

64 Chapter 4. Execution

WebAssembly Specification, Release 1.1

fceil𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is smaller than 0 but greater than −1, then return negative zero.

• Else return the smallest integral value that is not smaller than 𝑧.

fceil𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
fceil𝑁 (±∞) = ±∞
fceil𝑁 (±0) = ±0
fceil𝑁 (−𝑞) = −0 (if −1 < −𝑞 < 0)
fceil𝑁 (±𝑞) = float𝑁 (𝑖) (if ±𝑞 ≤ 𝑖 < ±𝑞 + 1)

ffloor𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is greater than 0 but smaller than 1, then return positive zero.

• Else return the largest integral value that is not larger than 𝑧.

ffloor𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
ffloor𝑁 (±∞) = ±∞
ffloor𝑁 (±0) = ±0
ffloor𝑁 (+𝑞) = +0 (if 0 < +𝑞 < 1)
ffloor𝑁 (±𝑞) = float𝑁 (𝑖) (if ±𝑞 − 1 < 𝑖 ≤ ±𝑞)

ftrunc𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is greater than 0 but smaller than 1, then return positive zero.

• Else if 𝑧 is smaller than 0 but greater than −1, then return negative zero.

• Else return the integral value with the same sign as 𝑧 and the largest magnitude that is not larger than the
magnitude of 𝑧.

ftrunc𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
ftrunc𝑁 (±∞) = ±∞
ftrunc𝑁 (±0) = ±0
ftrunc𝑁 (+𝑞) = +0 (if 0 < +𝑞 < 1)
ftrunc𝑁 (−𝑞) = −0 (if −1 < −𝑞 < 0)
ftrunc𝑁 (±𝑞) = float𝑁 (±𝑖) (if +𝑞 − 1 < 𝑖 ≤ +𝑞)

4.3. Numerics 65

WebAssembly Specification, Release 1.1

fnearest𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is greater than 0 but smaller than or equal to 0.5, then return positive zero.

• Else if 𝑧 is smaller than 0 but greater than or equal to −0.5, then return negative zero.

• Else return the integral value that is nearest to 𝑧; if two values are equally near, return the even one.

fnearest𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
fnearest𝑁 (±∞) = ±∞
fnearest𝑁 (±0) = ±0
fnearest𝑁 (+𝑞) = +0 (if 0 < +𝑞 ≤ 0.5)
fnearest𝑁 (−𝑞) = −0 (if −0.5 ≤ −𝑞 < 0)
fnearest𝑁 (±𝑞) = float𝑁 (±𝑖) (if |𝑖− 𝑞| < 0.5)
fnearest𝑁 (±𝑞) = float𝑁 (±𝑖) (if |𝑖− 𝑞| = 0.5 ∧ 𝑖 even)

feq𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 1.

• Else if both 𝑧1 and 𝑧2 are the same value, then return 1.

• Else return 0.

feq𝑁 (±nan(𝑛), 𝑧2) = 0
feq𝑁 (𝑧1,±nan(𝑛)) = 0
feq𝑁 (±0,∓0) = 1
feq𝑁 (𝑧1, 𝑧2) = bool(𝑧1 = 𝑧2)

fne𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 1.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 0.

• Else if both 𝑧1 and 𝑧2 are the same value, then return 0.

• Else return 1.

fne𝑁 (±nan(𝑛), 𝑧2) = 1
fne𝑁 (𝑧1,±nan(𝑛)) = 1
fne𝑁 (±0,∓0) = 0
fne𝑁 (𝑧1, 𝑧2) = bool(𝑧1 ̸= 𝑧2)

flt𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 0.

• Else if 𝑧1 is positive infinity, then return 0.

• Else if 𝑧1 is negative infinity, then return 1.

• Else if 𝑧2 is positive infinity, then return 1.

• Else if 𝑧2 is negative infinity, then return 0.

66 Chapter 4. Execution

WebAssembly Specification, Release 1.1

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 0.

• Else if 𝑧1 is smaller than 𝑧2, then return 1.

• Else return 0.

flt𝑁 (±nan(𝑛), 𝑧2) = 0
flt𝑁 (𝑧1,±nan(𝑛)) = 0
flt𝑁 (𝑧, 𝑧) = 0
flt𝑁 (+∞, 𝑧2) = 0
flt𝑁 (−∞, 𝑧2) = 1
flt𝑁 (𝑧1,+∞) = 1
flt𝑁 (𝑧1,−∞) = 0
flt𝑁 (±0,∓0) = 0
flt𝑁 (𝑧1, 𝑧2) = bool(𝑧1 < 𝑧2)

fgt𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 0.

• Else if 𝑧1 is positive infinity, then return 1.

• Else if 𝑧1 is negative infinity, then return 0.

• Else if 𝑧2 is positive infinity, then return 0.

• Else if 𝑧2 is negative infinity, then return 1.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 0.

• Else if 𝑧1 is larger than 𝑧2, then return 1.

• Else return 0.

fgt𝑁 (±nan(𝑛), 𝑧2) = 0
fgt𝑁 (𝑧1,±nan(𝑛)) = 0
fgt𝑁 (𝑧, 𝑧) = 0
fgt𝑁 (+∞, 𝑧2) = 1
fgt𝑁 (−∞, 𝑧2) = 0
fgt𝑁 (𝑧1,+∞) = 0
fgt𝑁 (𝑧1,−∞) = 1
fgt𝑁 (±0,∓0) = 0
fgt𝑁 (𝑧1, 𝑧2) = bool(𝑧1 > 𝑧2)

fle𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 1.

• Else if 𝑧1 is positive infinity, then return 0.

• Else if 𝑧1 is negative infinity, then return 1.

• Else if 𝑧2 is positive infinity, then return 1.

• Else if 𝑧2 is negative infinity, then return 0.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 1.

• Else if 𝑧1 is smaller than or equal to 𝑧2, then return 1.

• Else return 0.

4.3. Numerics 67

WebAssembly Specification, Release 1.1

fle𝑁 (±nan(𝑛), 𝑧2) = 0
fle𝑁 (𝑧1,±nan(𝑛)) = 0
fle𝑁 (𝑧, 𝑧) = 1
fle𝑁 (+∞, 𝑧2) = 0
fle𝑁 (−∞, 𝑧2) = 1
fle𝑁 (𝑧1,+∞) = 1
fle𝑁 (𝑧1,−∞) = 0
fle𝑁 (±0,∓0) = 1
fle𝑁 (𝑧1, 𝑧2) = bool(𝑧1 ≤ 𝑧2)

fge𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 1.

• Else if 𝑧1 is positive infinity, then return 1.

• Else if 𝑧1 is negative infinity, then return 0.

• Else if 𝑧2 is positive infinity, then return 0.

• Else if 𝑧2 is negative infinity, then return 1.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 1.

• Else if 𝑧1 is smaller than or equal to 𝑧2, then return 1.

• Else return 0.

fge𝑁 (±nan(𝑛), 𝑧2) = 0
fge𝑁 (𝑧1,±nan(𝑛)) = 0
fge𝑁 (𝑧, 𝑧) = 1
fge𝑁 (+∞, 𝑧2) = 1
fge𝑁 (−∞, 𝑧2) = 0
fge𝑁 (𝑧1,+∞) = 0
fge𝑁 (𝑧1,−∞) = 1
fge𝑁 (±0,∓0) = 1
fge𝑁 (𝑧1, 𝑧2) = bool(𝑧1 ≥ 𝑧2)

4.3.4 Conversions

extendu
𝑀,𝑁 (𝑖)

• Return 𝑖.

extendu
𝑀,𝑁 (𝑖) = 𝑖

Note: In the abstract syntax, unsigned extension just reinterprets the same value.

68 Chapter 4. Execution

WebAssembly Specification, Release 1.1

extends
𝑀,𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖 of size 𝑀 .

• Return the two’s complement of 𝑗 relative to size 𝑁 .

extends
𝑀,𝑁 (𝑖) = signed−1

𝑁 (signed𝑀 (𝑖))

wrap𝑀,𝑁 (𝑖)

• Return 𝑖 modulo 2𝑁 .

wrap𝑀,𝑁 (𝑖) = 𝑖 mod 2𝑁

truncu𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then the result is undefined.

• Else if 𝑧 is an infinity, then the result is undefined.

• Else if 𝑧 is a number and trunc(𝑧) is a value within range of the target type, then return that value.

• Else the result is undefined.

truncu𝑀,𝑁 (±nan(𝑛)) = {}
truncu𝑀,𝑁 (±∞) = {}
truncu𝑀,𝑁 (±𝑞) = trunc(±𝑞) (if −1 < trunc(±𝑞) < 2𝑁)
truncu𝑀,𝑁 (±𝑞) = {} (otherwise)

Note: This operator is partial. It is not defined for NaNs, infinities, or values for which the result is out of range.

truncs𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then the result is undefined.

• Else if 𝑧 is an infinity, then the result is undefined.

• If 𝑧 is a number and trunc(𝑧) is a value within range of the target type, then return that value.

• Else the result is undefined.

truncs𝑀,𝑁 (±nan(𝑛)) = {}
truncs𝑀,𝑁 (±∞) = {}
truncs𝑀,𝑁 (±𝑞) = trunc(±𝑞) (if −2𝑁−1 − 1 < trunc(±𝑞) < 2𝑁−1)
truncs𝑀,𝑁 (±𝑞) = {} (otherwise)

Note: This operator is partial. It is not defined for NaNs, infinities, or values for which the result is out of range.

4.3. Numerics 69

WebAssembly Specification, Release 1.1

trunc_sat_u𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then return 0.

• Else if 𝑧 is negative infinity, then return 0.

• Else if 𝑧 is positive infinity, then return 2𝑁 − 1.

• Else if trunc(𝑧) is less than 0, then return 0.

• Else if trunc(𝑧) is greater than 2𝑁 − 1, then return 2𝑁 − 1.

• Else, return trunc(𝑧).

trunc_sat_u𝑀,𝑁 (±nan(𝑛)) = 0
trunc_sat_u𝑀,𝑁 (−∞) = 0
trunc_sat_u𝑀,𝑁 (+∞) = 2𝑁 − 1
trunc_sat_u𝑀,𝑁 (−𝑞) = 0 (if trunc(−𝑞) < 0)
trunc_sat_u𝑀,𝑁 (+𝑞) = 2𝑁 − 1 (if trunc(+𝑞) > 2𝑁 − 1)
trunc_sat_u𝑀,𝑁 (±𝑞) = trunc(±𝑞) (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

trunc_sat_s𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then return 0.

• Else if 𝑧 is negative infinity, then return −2𝑁−1.

• Else if 𝑧 is positive infinity, then return 2𝑁−1 − 1.

• Else if trunc(𝑧) is less than −2𝑁−1, then return −2𝑁−1.

• Else if trunc(𝑧) is greater than 2𝑁−1 − 1, then return 2𝑁−1 − 1.

• Else, return trunc(𝑧).

trunc_sat_s𝑀,𝑁 (±nan(𝑛)) = 0
trunc_sat_s𝑀,𝑁 (−∞) = −2𝑁−1

trunc_sat_s𝑀,𝑁 (+∞) = 2𝑁−1 − 1
trunc_sat_s𝑀,𝑁 (−𝑞) = −2𝑁−1 (if trunc(−𝑞) < −2𝑁−1)
trunc_sat_s𝑀,𝑁 (+𝑞) = 2𝑁−1 − 1 (if trunc(+𝑞) > 2𝑁−1 − 1)
trunc_sat_s𝑀,𝑁 (±𝑞) = trunc(±𝑞) (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

promote𝑀,𝑁 (𝑧)

• If 𝑧 is a canonical NaN, then return an element of nans𝑁{} (i.e., a canonical NaN of size 𝑁).

• Else if 𝑧 is a NaN, then return an element of nans𝑁{±nan(1)} (i.e., any arithmetic NaN of size 𝑁).

• Else, return 𝑧.

promote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{} (if 𝑛 = canon𝑁)
promote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{+nan(1)} (otherwise)
promote𝑀,𝑁 (𝑧) = 𝑧

70 Chapter 4. Execution

WebAssembly Specification, Release 1.1

demote𝑀,𝑁 (𝑧)

• If 𝑧 is a canonical NaN, then return an element of nans𝑁{} (i.e., a canonical NaN of size 𝑁).

• Else if 𝑧 is a NaN, then return an element of nans𝑁{±nan(1)} (i.e., any NaN of size 𝑁).

• Else if 𝑧 is an infinity, then return that infinity.

• Else if 𝑧 is a zero, then return that zero.

• Else, return float𝑁 (𝑧).

demote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{} (if 𝑛 = canon𝑁)
demote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{+nan(1)} (otherwise)
demote𝑀,𝑁 (±∞) = ±∞
demote𝑀,𝑁 (±0) = ±0
demote𝑀,𝑁 (±𝑞) = float𝑁 (±𝑞)

convertu𝑀,𝑁 (𝑖)

• Return float𝑁 (𝑖).

convertu𝑀,𝑁 (𝑖) = float𝑁 (𝑖)

converts𝑀,𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖.

• Return float𝑁 (𝑗).

converts𝑀,𝑁 (𝑖) = float𝑁 (signed𝑀 (𝑖))

reinterpret𝑡1,𝑡2(𝑐)

• Let 𝑑* be the bit sequence bits𝑡1(𝑐).

• Return the constant 𝑐′ for which bits𝑡2(𝑐′) = 𝑑*.

reinterpret𝑡1,𝑡2(𝑐) = bits−1
𝑡2 (bits𝑡1(𝑐))

4.4 Instructions

WebAssembly computation is performed by executing individual instructions.

4.4.1 Numeric Instructions

Numeric instructions are defined in terms of the generic numeric operators. The mapping of numeric instructions
to their underlying operators is expressed by the following definition:

op i𝑁 (𝑛1, . . . , 𝑛𝑘) = iop𝑁 (𝑛1, . . . , 𝑛𝑘)
opf𝑁 (𝑧1, . . . , 𝑧𝑘) = fop𝑁 (𝑧1, . . . , 𝑧𝑘)

And for conversion operators:

cvtopsx?

𝑡1,𝑡2(𝑐) = cvtopsx?

|𝑡1|,|𝑡2|(𝑐)

4.4. Instructions 71

WebAssembly Specification, Release 1.1

Where the underlying operators are partial, the corresponding instruction will trap when the result is not defined.
Where the underlying operators are non-deterministic, because they may return one of multiple possible NaN
values, so are the corresponding instructions.

Note: For example, the result of instruction i32.add applied to operands 𝑖1, 𝑖2 invokes addi32(𝑖1, 𝑖2), which
maps to the generic iadd32(𝑖1, 𝑖2) via the above definition. Similarly, i64.trunc_f32_s applied to 𝑧 invokes
truncsf32,i64(𝑧), which maps to the generic truncs32,64(𝑧).

𝑡.const 𝑐

1. Push the value 𝑡.const 𝑐 to the stack.

Note: No formal reduction rule is required for this instruction, since const instructions coincide with values.

𝑡.unop

1. Assert: due to validation, a value of value type 𝑡 is on the top of the stack.

2. Pop the value 𝑡.const 𝑐1 from the stack.

3. If unop𝑡(𝑐1) is defined, then:

a. Let 𝑐 be a possible result of computing unop𝑡(𝑐1).

b. Push the value 𝑡.const 𝑐 to the stack.

4. Else:

a. Trap.

(𝑡.const 𝑐1) 𝑡.unop →˓ (𝑡.const 𝑐) (if 𝑐 ∈ unop𝑡(𝑐1))
(𝑡.const 𝑐1) 𝑡.unop →˓ trap (if unop𝑡(𝑐1) = {})

𝑡.binop

1. Assert: due to validation, two values of value type 𝑡 are on the top of the stack.

2. Pop the value 𝑡.const 𝑐2 from the stack.

3. Pop the value 𝑡.const 𝑐1 from the stack.

4. If binop𝑡(𝑐1, 𝑐2) is defined, then:

a. Let 𝑐 be a possible result of computing binop𝑡(𝑐1, 𝑐2).

b. Push the value 𝑡.const 𝑐 to the stack.

5. Else:

a. Trap.

(𝑡.const 𝑐1) (𝑡.const 𝑐2) 𝑡.binop →˓ (𝑡.const 𝑐) (if 𝑐 ∈ binop𝑡(𝑐1, 𝑐2))
(𝑡.const 𝑐1) (𝑡.const 𝑐2) 𝑡.binop →˓ trap (if binop𝑡(𝑐1, 𝑐2) = {})

72 Chapter 4. Execution

WebAssembly Specification, Release 1.1

𝑡.testop

1. Assert: due to validation, a value of value type 𝑡 is on the top of the stack.

2. Pop the value 𝑡.const 𝑐1 from the stack.

3. Let 𝑐 be the result of computing testop𝑡(𝑐1).

4. Push the value i32.const 𝑐 to the stack.

(𝑡.const 𝑐1) 𝑡.testop →˓ (i32.const 𝑐) (if 𝑐 = testop𝑡(𝑐1))

𝑡.relop

1. Assert: due to validation, two values of value type 𝑡 are on the top of the stack.

2. Pop the value 𝑡.const 𝑐2 from the stack.

3. Pop the value 𝑡.const 𝑐1 from the stack.

4. Let 𝑐 be the result of computing relop𝑡(𝑐1, 𝑐2).

5. Push the value i32.const 𝑐 to the stack.

(𝑡.const 𝑐1) (𝑡.const 𝑐2) 𝑡.relop →˓ (i32.const 𝑐) (if 𝑐 = relop𝑡(𝑐1, 𝑐2))

𝑡2.cvtop_𝑡1_sx ?

1. Assert: due to validation, a value of value type 𝑡1 is on the top of the stack.

2. Pop the value 𝑡1.const 𝑐1 from the stack.

3. If cvtopsx?

𝑡1,𝑡2(𝑐1) is defined:

a. Let 𝑐2 be a possible result of computing cvtopsx?

𝑡1,𝑡2(𝑐1).

b. Push the value 𝑡2.const 𝑐2 to the stack.

4. Else:

a. Trap.

(𝑡1.const 𝑐1) 𝑡2.cvtop_𝑡1_sx ? →˓ (𝑡2.const 𝑐2) (if 𝑐2 ∈ cvtopsx?

𝑡1,𝑡2(𝑐1))

(𝑡1.const 𝑐1) 𝑡2.cvtop_𝑡1_sx ? →˓ trap (if cvtopsx?

𝑡1,𝑡2(𝑐1) = {})

4.4.2 Parametric Instructions

drop

1. Assert: due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

val drop →˓ 𝜖

4.4. Instructions 73

WebAssembly Specification, Release 1.1

select

1. Assert: due to validation, a value of value type i32 is on the top of the stack.

2. Pop the value i32.const 𝑐 from the stack.

3. Assert: due to validation, two more values (of the same value type) are on the top of the stack.

4. Pop the value val2 from the stack.

5. Pop the value val1 from the stack.

6. If 𝑐 is not 0, then:

a. Push the value val1 back to the stack.

7. Else:

a. Push the value val2 back to the stack.

val1 val2 (i32.const 𝑐) select →˓ val1 (if 𝑐 ̸= 0)
val1 val2 (i32.const 𝑐) select →˓ val2 (if 𝑐 = 0)

4.4.3 Variable Instructions

local.get 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.locals[𝑥] exists.

3. Let val be the value 𝐹.locals[𝑥].

4. Push the value val to the stack.

𝐹 ; (local.get 𝑥) →˓ 𝐹 ; val (if 𝐹.locals[𝑥] = val)

local.set 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.locals[𝑥] exists.

3. Assert: due to validation, a value is on the top of the stack.

4. Pop the value val from the stack.

5. Replace 𝐹.locals[𝑥] with the value val .

𝐹 ; val (local.set 𝑥) →˓ 𝐹 ′; 𝜖 (if 𝐹 ′ = 𝐹 with locals[𝑥] = val)

local.tee 𝑥

1. Assert: due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

3. Push the value val to the stack.

4. Push the value val to the stack.

5. Execute the instruction (local.set 𝑥).

val (local.tee 𝑥) →˓ val val (local.set 𝑥)

74 Chapter 4. Execution

WebAssembly Specification, Release 1.1

global.get 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.globaladdrs[𝑥] exists.

3. Let 𝑎 be the global address 𝐹.module.globaladdrs[𝑥].

4. Assert: due to validation, 𝑆.globals[𝑎] exists.

5. Let glob be the global instance 𝑆.globals[𝑎].

6. Let val be the value glob.value.

7. Push the value val to the stack.

𝑆;𝐹 ; (global.get 𝑥) →˓ 𝑆;𝐹 ; val
(if 𝑆.globals[𝐹.module.globaladdrs[𝑥]].value = val)

global.set 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.globaladdrs[𝑥] exists.

3. Let 𝑎 be the global address 𝐹.module.globaladdrs[𝑥].

4. Assert: due to validation, 𝑆.globals[𝑎] exists.

5. Let glob be the global instance 𝑆.globals[𝑎].

6. Assert: due to validation, a value is on the top of the stack.

7. Pop the value val from the stack.

8. Replace glob.value with the value val .

𝑆;𝐹 ; val (global.set 𝑥) →˓ 𝑆′;𝐹 ; 𝜖
(if 𝑆′ = 𝑆 with globals[𝐹.module.globaladdrs[𝑥]].value = val)

Note: Validation ensures that the global is, in fact, marked as mutable.

4.4.4 Memory Instructions

Note: The alignment memarg .align in load and store instructions does not affect the semantics. It is an indication
that the offset ea at which the memory is accessed is intended to satisfy the property ea mod 2memarg.align = 0. A
WebAssembly implementation can use this hint to optimize for the intended use. Unaligned access violating that
property is still allowed and must succeed regardless of the annotation. However, it may be substantially slower
on some hardware.

4.4. Instructions 75

WebAssembly Specification, Release 1.1

𝑡.load memarg and 𝑡.load𝑁_sx memarg

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[0] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[0].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Assert: due to validation, a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑖 from the stack.

8. Let ea be the integer 𝑖 + memarg .offset.

9. If 𝑁 is not part of the instruction, then:

a. Let 𝑁 be the bit width |𝑡| of value type 𝑡.

10. If ea + 𝑁/8 is larger than the length of mem.data, then:

a. Trap.

11. Let 𝑏* be the byte sequence mem.data[ea : 𝑁/8].

12. If 𝑁 and sx are part of the instruction, then:

a. Let 𝑛 be the integer for which bytesi𝑁 (𝑛) = 𝑏*.

b. Let 𝑐 be the result of computing extendsx
𝑁,|𝑡|(𝑛).

13. Else:

a. Let 𝑐 be the constant for which bytes𝑡(𝑐) = 𝑏*.

14. Push the value 𝑡.const 𝑐 to the stack.

𝑆;𝐹 ; (i32.const 𝑖) (𝑡.load memarg) →˓ 𝑆;𝐹 ; (𝑡.const 𝑐)
(if ea = 𝑖 + memarg .offset
∧ ea + |𝑡|/8 ≤ |𝑆.mems[𝐹.module.memaddrs[0]].data|
∧ bytes𝑡(𝑐) = 𝑆.mems[𝐹.module.memaddrs[0]].data[ea : |𝑡|/8])

𝑆;𝐹 ; (i32.const 𝑖) (𝑡.load𝑁_sx memarg) →˓ 𝑆;𝐹 ; (𝑡.const extendsx
𝑁,|𝑡|(𝑛))

(if ea = 𝑖 + memarg .offset
∧ ea + 𝑁/8 ≤ |𝑆.mems[𝐹.module.memaddrs[0]].data|
∧ bytesi𝑁 (𝑛) = 𝑆.mems[𝐹.module.memaddrs[0]].data[ea : 𝑁/8])

𝑆;𝐹 ; (i32.const 𝑘) (𝑡.load(𝑁_sx)? memarg) →˓ 𝑆;𝐹 ; trap
(otherwise)

𝑡.store memarg and 𝑡.store𝑁 memarg

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[0] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[0].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Assert: due to validation, a value of value type 𝑡 is on the top of the stack.

7. Pop the value 𝑡.const 𝑐 from the stack.

8. Assert: due to validation, a value of value type i32 is on the top of the stack.

9. Pop the value i32.const 𝑖 from the stack.

76 Chapter 4. Execution

WebAssembly Specification, Release 1.1

10. Let ea be the integer 𝑖 + memarg .offset.

11. If 𝑁 is not part of the instruction, then:

a. Let 𝑁 be the bit width |𝑡| of value type 𝑡.

12. If ea + 𝑁/8 is larger than the length of mem.data, then:

a. Trap.

13. If 𝑁 is part of the instruction, then:

a. Let 𝑛 be the result of computing wrap|𝑡|,𝑁 (𝑐).

b. Let 𝑏* be the byte sequence bytesi𝑁 (𝑛).

14. Else:

a. Let 𝑏* be the byte sequence bytes𝑡(𝑐).

15. Replace the bytes mem.data[ea : 𝑁/8] with 𝑏*.

𝑆;𝐹 ; (i32.const 𝑖) (𝑡.const 𝑐) (𝑡.store memarg) →˓ 𝑆′;𝐹 ; 𝜖
(if ea = 𝑖 + memarg .offset
∧ ea + |𝑡|/8 ≤ |𝑆.mems[𝐹.module.memaddrs[0]].data|
∧ 𝑆′ = 𝑆 with mems[𝐹.module.memaddrs[0]].data[ea : |𝑡|/8] = bytes𝑡(𝑐)

𝑆;𝐹 ; (i32.const 𝑖) (𝑡.const 𝑐) (𝑡.store𝑁 memarg) →˓ 𝑆′;𝐹 ; 𝜖
(if ea = 𝑖 + memarg .offset
∧ ea + 𝑁/8 ≤ |𝑆.mems[𝐹.module.memaddrs[0]].data|
∧ 𝑆′ = 𝑆 with mems[𝐹.module.memaddrs[0]].data[ea : 𝑁/8] = bytesi𝑁 (wrap|𝑡|,𝑁 (𝑐))

𝑆;𝐹 ; (i32.const 𝑘) (𝑡.const 𝑐) (𝑡.store𝑁? memarg) →˓ 𝑆;𝐹 ; trap
(otherwise)

memory.size

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[0] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[0].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Let sz be the length of mem.data divided by the page size.

7. Push the value i32.const sz to the stack.

𝑆;𝐹 ;memory.size →˓ 𝑆;𝐹 ; (i32.const sz)
(if |𝑆.mems[𝐹.module.memaddrs[0]].data| = sz · 64 Ki)

memory.grow

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[0] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[0].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Let sz be the length of 𝑆.mems[𝑎] divided by the page size.

7. Assert: due to validation, a value of value type i32 is on the top of the stack.

4.4. Instructions 77

WebAssembly Specification, Release 1.1

8. Pop the value i32.const 𝑛 from the stack.

9. Let err be the i32 value 232 − 1, for which signed32(err) is −1.

10. Either, try growing mem by 𝑛 pages:

a. If it succeeds, push the value i32.const sz to the stack.

b. Else, push the value i32.const err to the stack.

11. Or, push the value i32.const err to the stack.

𝑆;𝐹 ; (i32.const 𝑛) memory.grow →˓ 𝑆′;𝐹 ; (i32.const sz)
(if 𝐹.module.memaddrs[0] = 𝑎
∧ sz = |𝑆.mems[𝑎].data|/64 Ki
∧ 𝑆′ = 𝑆 with mems[𝑎] = growmem(𝑆.mems[𝑎], 𝑛))

𝑆;𝐹 ; (i32.const 𝑛) memory.grow →˓ 𝑆;𝐹 ; (i32.const signed−1
32 (−1))

Note: The memory.grow instruction is non-deterministic. It may either succeed, returning the old memory size
sz , or fail, returning −1. Failure must occur if the referenced memory instance has a maximum size defined that
would be exceeded. However, failure can occur in other cases as well. In practice, the choice depends on the
resources available to the embedder.

memory.fill

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[0] exists.

3. Let ma be the memory address 𝐹.module.memaddrs[0].

4. Assert: due to validation, 𝑆.mems[ma] exists.

5. Let mem be the memory instance 𝑆.mems[ma].

6. Assert: due to validation, a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑛 from the stack.

8. Assert: due to validation, a value of value type i32 is on the top of the stack.

9. Pop the value val from the stack.

10. Assert: due to validation, a value of value type i32 is on the top of the stack.

11. Pop the value i32.const 𝑑 from the stack.

12. If 𝑑 + 𝑛 is larger than the length of mem.data, then:

a. Trap.

13. If 𝑛 = 0, then:

a. Return.

14. Push the value i32.const 𝑑 to the stack.

15. Push the value val to the stack.

16. Execute the instruction i32.store8 {offset 0, align 0}.

17. Assert: due to the earlier check against the memory size, 𝑑 + 1 < 232.

18. Push the value i32.const (𝑑 + 1) to the stack.

19. Push the value val to the stack.

20. Push the value i32.const (𝑛− 1) to the stack.

78 Chapter 4. Execution

WebAssembly Specification, Release 1.1

21. Execute the instruction memory.fill.

𝑆;𝐹 ; (i32.const 𝑑) val (i32.const 𝑛) memory.fill →˓ 𝑆;𝐹 ; trap
(if 𝑑 + 𝑛 > |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|)

𝑆;𝐹 ; (i32.const 𝑑) val (i32.const 0) memory.fill →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (i32.const 𝑑) val (i32.const 𝑛 + 1) memory.fill →˓ 𝑆;𝐹 ; (i32.const 𝑑) val (i32.store8 {offset 0, align 0})
(i32.const 𝑑 + 1) val (i32.const 𝑛) memory.fill

(otherwise)

memory.init 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[0] exists.

3. Let ma be the memory address 𝐹.module.memaddrs[0].

4. Assert: due to validation, 𝑆.mems[ma] exists.

5. Let mem be the memory instance 𝑆.mems[ma].

6. Assert: due to validation, 𝐹.module.dataaddrs[𝑥] exists.

7. Let da be the data address 𝐹.module.dataaddrs[𝑥].

8. Assert: due to validation, 𝑆.datas[da] exists.

9. Let data be the data instance 𝑆.datas[da].

10. Assert: due to validation, a value of value type i32 is on the top of the stack.

11. Pop the value i32.const 𝑐𝑛𝑡 from the stack.

12. Assert: due to validation, a value of value type i32 is on the top of the stack.

13. Pop the value i32.const 𝑠𝑟𝑐 from the stack.

14. Assert: due to validation, a value of value type i32 is on the top of the stack.

15. Pop the value i32.const 𝑑𝑠𝑡 from the stack.

16. If 𝑠 + 𝑛 is larger than the length of data.data or 𝑑 + 𝑛 is larger than the length of mem.data, then:

a. Trap.

17. If 𝑛 = 0, then:

a. Return.

18. Let 𝑏 be the byte data.data[𝑠].

19. Push the value i32.const 𝑑 to the stack.

20. Push the value i32.const 𝑏 to the stack.

21. Execute the instruction i32.store8 {offset 0, align 0}.

22. Assert: due to the earlier check against the memory size, 𝑑 + 1 < 232.

23. Push the value i32.const (𝑑 + 1) to the stack.

24. Assert: due to the earlier check against the memory size, 𝑠 + 1 < 232.

25. Push the value i32.const (𝑠 + 1) to the stack.

26. Push the value i32.const (𝑛− 1) to the stack.

27. Execute the instruction memory.init 𝑥.

4.4. Instructions 79

WebAssembly Specification, Release 1.1

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) (memory.init 𝑥) →˓ 𝑆;𝐹 ; trap
(if 𝑠 + 𝑛 > |𝑆.datas[𝐹.module.dataaddrs[𝑥]].data|
∨ 𝑑 + 𝑛 > |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 0) (memory.init 𝑥) →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛 + 1) (memory.init 𝑥) →˓ 𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑏) (i32.store8 {offset 0, align 0})
(i32.const 𝑑 + 1) (i32.const 𝑠 + 1) (i32.const 𝑛) (memory.init 𝑥)

(otherwise, if 𝑏 = 𝑆.datas[𝐹.module.dataaddrs[𝑥]].data[𝑠])

data.drop 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.dataaddrs[𝑥] exists.

3. Let 𝑎 be the data address 𝐹.module.dataaddrs[𝑥].

4. Assert: due to validation, 𝑆.datas[𝑎] exists.

5. Replace 𝑆.datas[𝑎] with the data instance {data 𝜖}.

𝑆;𝐹 ; (data.drop 𝑥) →˓ 𝑆′;𝐹 ; 𝜖
(if 𝑆′ = 𝑆 with datas[𝐹.module.dataaddrs[𝑥]] = {data 𝜖})

memory.copy

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[0] exists.

3. Let ma be the memory address 𝐹.module.memaddrs[0].

4. Assert: due to validation, 𝑆.mems[ma] exists.

5. Let mem be the memory instance 𝑆.mems[ma].

6. Assert: due to validation, a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑛 from the stack.

8. Assert: due to validation, a value of value type i32 is on the top of the stack.

9. Pop the value i32.const 𝑠 from the stack.

10. Assert: due to validation, a value of value type i32 is on the top of the stack.

11. Pop the value i32.const 𝑑 from the stack.

12. If 𝑠 + 𝑛 is larger than the length of mem.data or 𝑑 + 𝑛 is larger than the length of mem.data, then:

a. Trap.

13. If 𝑛 = 0, then:

a. Return.

14. If 𝑑 ≤ 𝑠, then:

a. Push the value i32.const 𝑑 to the stack.

b. Push the value i32.const 𝑠 to the stack.

c. Execute the instruction i32.load8_u {offset 0, align 0}.

d. Execute the instruction i32.store8 {offset 0, align 0}.

e. Assert: due to the earlier check against the memory size, 𝑑 + 1 < 232.

80 Chapter 4. Execution

WebAssembly Specification, Release 1.1

f. Push the value i32.const (𝑑 + 1) to the stack.

g. Assert: due to the earlier check against the memory size, 𝑠 + 1 < 232.

h. Push the value i32.const (𝑠 + 1) to the stack.

15. Else:

a. Assert: due to the earlier check against the memory size, 𝑑 + 𝑛− 1 < 232.

b. Push the value i32.const (𝑑 + 𝑛− 1) to the stack.

c. Assert: due to the earlier check against the memory size, 𝑠 + 𝑛− 1 < 232.

d. Push the value i32.const (𝑠 + 𝑛− 1) to the stack.

e. Execute the instruction i32.load8_u {offset 0, align 0}.

f. Execute the instruction i32.store8 {offset 0, align 0}.

g. Push the value i32.const 𝑑 to the stack.

h. Push the value i32.const 𝑠 to the stack.

16. Push the value i32.const (𝑛− 1) to the stack.

17. Execute the instruction memory.copy.

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) memory.copy →˓ 𝑆;𝐹 ; trap
(if 𝑠 + 𝑛 > |𝑆.mems[𝐹.module.memaddrs[0]].data|
∨ 𝑑 + 𝑛 > |𝑆.mems[𝐹.module.memaddrs[0]].data|)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 0) memory.copy →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛 + 1) memory.copy →˓ 𝑆;𝐹 ; (i32.const 𝑑)
(i32.const 𝑠) (i32.load8_u {offset 0, align 0})
(i32.store8 {offset 0, align 0})
(i32.const 𝑑 + 1) (i32.const 𝑠 + 1) (i32.const 𝑛) memory.copy

(otherwise, if 𝑑 ≤ 𝑠)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛 + 1) memory.copy →˓ 𝑆;𝐹 ; (i32.const 𝑑 + 𝑛− 1)
(i32.const 𝑠 + 𝑛− 1) (i32.load8_u {offset 0, align 0})
(i32.store8 {offset 0, align 0})
(i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) memory.copy

(otherwise, if 𝑑 > 𝑠)

4.4.5 Table Instructions

table.copy

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[0] exists.

3. Let ta be the table address 𝐹.module.tableaddrs[0].

4. Assert: due to validation, 𝑆.tables[ta] exists.

5. Let tab be the table instance 𝑆.tables[ta].

6. Assert: due to validation, a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑛 from the stack.

8. Assert: due to validation, a value of value type i32 is on the top of the stack.

9. Pop the value i32.const 𝑠 from the stack.

4.4. Instructions 81

WebAssembly Specification, Release 1.1

10. Assert: due to validation, a value of value type i32 is on the top of the stack.

11. Pop the value i32.const 𝑑 from the stack.

12. If 𝑠 + 𝑛 is larger than the length of tab.elem or 𝑑 + 𝑛 is larger than the length of tab.elem, then:

a. Trap.

13. If 𝑛 = 0, then:

a. Return.

14. If 𝑑 ≤ 𝑠, then:

a. Push the value i32.const 𝑑 to the stack.

b. Push the value i32.const 𝑠 to the stack.

c. Execute the instruction table.get.

d. Execute the instruction table.set.

e. Assert: due to the earlier check against the table size, 𝑑 + 1 < 232.

f. Push the value i32.const (𝑑 + 1) to the stack.

g. Assert: due to the earlier check against the table size, 𝑠 + 1 < 232.

h. Push the value i32.const (𝑠 + 1) to the stack.

15. Else:

a. Assert: due to the earlier check against the table size, 𝑑 + 𝑛− 1 < 232.

b. Push the value i32.const (𝑑 + 𝑛− 1) to the stack.

c. Assert: due to the earlier check against the table size, 𝑠 + 𝑛− 1 < 232.

d. Push the value i32.const (𝑠 + 𝑛− 1) to the stack.

c. Execute the instruction table.get.

f. Execute the instruction table.set.

g. Push the value i32.const 𝑑 to the stack.

h. Push the value i32.const 𝑠 to the stack.

16. Push the value i32.const (𝑛− 1) to the stack.

17. Execute the instruction table.copy.

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) table.copy →˓ 𝑆;𝐹 ; trap
(if 𝑠 + 𝑛 > |𝑆.tables[𝐹.module.tableaddrs[0]].elem|
∨ 𝑑 + 𝑛 > |𝑆.tables[𝐹.module.tableaddrs[0]].elem|)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 0) table.copy →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛 + 1) table.copy →˓ 𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) table.get table.set
(i32.const 𝑑 + 1) (i32.const 𝑠 + 1) (i32.const 𝑛) table.copy

(otherwise, if 𝑑 ≤ 𝑠)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛 + 1) table.copy →˓ 𝑆;𝐹 ; (i32.const 𝑑 + 𝑛− 1) (i32.const 𝑠 + 𝑛− 1) table.get table.set
(i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) table.copy

(otherwise, if 𝑑 > 𝑠)

82 Chapter 4. Execution

WebAssembly Specification, Release 1.1

table.init 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[0] exists.

3. Let ta be the table address 𝐹.module.tableaddrs[0].

4. Assert: due to validation, 𝑆.tables[ta] exists.

5. Let tab be the table instance 𝑆.tables[ta].

6. Assert: due to validation, 𝐹.module.elemaddrs[𝑥] exists.

7. Let ea be the element address 𝐹.module.elemaddrs[𝑥].

8. Assert: due to validation, 𝑆.elems[ea] exists.

9. Let elem be the element instance 𝑆.elems[ea].

10. Assert: due to validation, a value of value type i32 is on the top of the stack.

11. Pop the value i32.const 𝑛 from the stack.

12. Assert: due to validation, a value of value type i32 is on the top of the stack.

13. Pop the value i32.const 𝑠 from the stack.

14. Assert: due to validation, a value of value type i32 is on the top of the stack.

15. Pop the value i32.const 𝑑 from the stack.

16. If 𝑠 + 𝑛 is larger than the length of elem.elem or 𝑑 + 𝑛 is larger than the length of tab.elem, then:

a. Trap.

17. If 𝑛 = 0, then:

a. Return.

18. Let funcelem be the function element elem.elem[𝑠].

19. Push the value i32.const 𝑑 to the stack.

20. Push the value funcelem to the stack.

21. Execute the instruction table.set.

22. Assert: due to the earlier check against the table size, 𝑑 + 1 < 232.

23. Push the value i32.const (𝑑 + 1) to the stack.

24. Assert: due to the earlier check against the segment size, 𝑠 + 1 < 232.

25. Push the value i32.const (𝑠 + 1) to the stack.

26. Push the value i32.const (𝑛− 1) to the stack.

27. Execute the instruction table.init 𝑥.

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) (table.init 𝑥) →˓ 𝑆;𝐹 ; trap
(if 𝑠 + 𝑛 > |𝑆.elems[𝐹.module.elemaddrs[𝑥]].elem|
∨ 𝑑 + 𝑛 > |𝑆.tables[𝐹.module.tableaddrs[𝑥]].elem|)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 0) (table.init 𝑥) →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛 + 1) (table.init 𝑥) →˓ 𝑆;𝐹 ; (i32.const 𝑑) funcelem (table.set 𝑥)
(i32.const 𝑑 + 1) (i32.const 𝑠 + 1) (i32.const 𝑛) (table.init 𝑥)

(otherwise, if funcelem = 𝑆.elems[𝐹.module.elemaddrs[𝑥]].elem[𝑠])

4.4. Instructions 83

WebAssembly Specification, Release 1.1

elem.drop 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.elemaddrs[𝑥] exists.

3. Let 𝑎 be the element address 𝐹.module.elemaddrs[𝑥].

4. Assert: due to validation, 𝑆.elems[𝑎] exists.

5. Replace 𝑆.elems[𝑎] with the element instance {elem 𝜖}.

𝑆;𝐹 ; (elem.drop 𝑥) →˓ 𝑆′;𝐹 ; 𝜖
(if 𝑆′ = 𝑆 with elems[𝐹.module.elemaddrs[𝑥]] = {elem 𝜖})

table.get

1. Let 𝐹 be the current frame.

2. Assert: 𝐹.module.tableaddrs[0] exists.

3. Let ta be the table address 𝐹.module.tableaddrs[0].

4. Assert: 𝑆.tables[ta] exists.

5. Let tab be the table instance 𝑆.tables[ta].

6. Assert: a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑖 from the stack.

8. If 𝑖 is not smaller than the length of tab.elem, then:

a. Trap.

9. Push the function element 𝑋𝑡𝑎𝑏.elem[𝑖] to the stack.

𝑆;𝐹 ; (i32.const 𝑖) table.get →˓ 𝑆;𝐹 ; funcelem
(if funcelem = 𝑆.tables[𝐹.module.tableaddrs[0]].elem[𝑖])

𝑆;𝐹 ; (i32.const 𝑖) table.get →˓ 𝑆;𝐹 ; trap
(otherwise)

table.set

1. Let 𝐹 be the current frame.

2. Assert: 𝐹.module.tableaddrs[0] exists.

3. Let ta be the table address 𝐹.module.tableaddrs[0].

4. Assert: 𝑆.tables[ta] exists.

5. Let tab be the table instance 𝑆.tables[ta].

6. Assert: a function element is on the top of the stack.

7. Pop the function element funcelem from the stack.

8. Assert: a value of value type i32 is on the top of the stack.

9. Pop the value i32.const 𝑖 from the stack.

10. If 𝑖 is not smaller than the length of tab.elem, then:

a. Trap.

11. Replace 𝑋𝑡𝑎𝑏.elem[𝑖] with funcelem .

84 Chapter 4. Execution

WebAssembly Specification, Release 1.1

𝑆;𝐹 ; (i32.const 𝑖) funcelem table.set →˓ 𝑆′;𝐹 ; 𝜖
(if 𝑆′ = 𝑆 with tables[𝐹.module.tableaddrs[0]].elem[𝑖] = funcelem)

𝑆;𝐹 ; (i32.const 𝑖) funcelem table.set →˓ 𝑆;𝐹 ; trap
(otherwise)

4.4.6 Control Instructions

nop

1. Do nothing.

nop →˓ 𝜖

unreachable

1. Trap.

unreachable →˓ trap

block blocktype instr* end

1. Assert: due to validation, expand𝐹 (blocktype) is defined.

2. Let [𝑡𝑚1] → [𝑡𝑛2] be the function type expand𝐹 (blocktype).

3. Let 𝐿 be the label whose arity is 𝑛 and whose continuation is the end of the block.

4. Assert: due to validation, there are at least 𝑚 values on the top of the stack.

5. Pop the values val𝑚 from the stack.

6. Enter the block val𝑚 instr* with label 𝐿.

𝐹 ; val𝑚 block bt instr* end →˓ 𝐹 ; label𝑛{𝜖} val𝑚 instr* end (if expand𝐹 (bt) = [𝑡𝑚1] → [𝑡𝑛2])

loop blocktype instr* end

1. Assert: due to validation, expand𝐹 (blocktype) is defined.

2. Let [𝑡𝑚1] → [𝑡𝑛2] be the function type expand𝐹 (blocktype).

3. Let 𝐿 be the label whose arity is 𝑚 and whose continuation is the start of the loop.

4. Assert: due to validation, there are at least 𝑚 values on the top of the stack.

5. Pop the values val𝑚 from the stack.

6. Enter the block val𝑚 instr* with label 𝐿.

𝐹 ; val𝑚 loop bt instr* end →˓ 𝐹 ; label𝑚{loop bt instr* end} val𝑚 instr* end (if expand𝐹 (bt) = [𝑡𝑚1] → [𝑡𝑛2])

4.4. Instructions 85

WebAssembly Specification, Release 1.1

if blocktype instr*1 else instr*2 end

1. Assert: due to validation, expand𝐹 (blocktype) is defined.

2. Let [𝑡𝑚1] → [𝑡𝑛2] be the function type expand𝐹 (blocktype).

3. Let 𝐿 be the label whose arity is 𝑛 and whose continuation is the end of the if instruction.

4. Assert: due to validation, a value of value type i32 is on the top of the stack.

5. Pop the value i32.const 𝑐 from the stack.

6. Assert: due to validation, there are at least 𝑚 values on the top of the stack.

7. Pop the values val𝑚 from the stack.

8. If 𝑐 is non-zero, then:

a. Enter the block val𝑚 instr*1 with label 𝐿.

9. Else:

a. Enter the block val𝑚 instr*2 with label 𝐿.

𝐹 ; val𝑚 (i32.const 𝑐) if bt instr*1 else instr
*
2 end →˓ 𝐹 ; label𝑛{𝜖} val𝑚 instr*1 end (if 𝑐 ̸= 0 ∧ expand𝐹 (bt) = [𝑡𝑚1] → [𝑡𝑛2])

𝐹 ; val𝑚 (i32.const 𝑐) if bt instr*1 else instr
*
2 end →˓ 𝐹 ; label𝑛{𝜖} val𝑚 instr*2 end (if 𝑐 = 0 ∧ expand𝐹 (bt) = [𝑡𝑚1] → [𝑡𝑛2])

br 𝑙

1. Assert: due to validation, the stack contains at least 𝑙 + 1 labels.

2. Let 𝐿 be the 𝑙-th label appearing on the stack, starting from the top and counting from zero.

3. Let 𝑛 be the arity of 𝐿.

4. Assert: due to validation, there are at least 𝑛 values on the top of the stack.

5. Pop the values val𝑛 from the stack.

6. Repeat 𝑙 + 1 times:

a. While the top of the stack is a value, do:

i. Pop the value from the stack.

b. Assert: due to validation, the top of the stack now is a label.

c. Pop the label from the stack.

7. Push the values val𝑛 to the stack.

8. Jump to the continuation of 𝐿.

label𝑛{instr*} 𝐵𝑙[val𝑛 (br 𝑙)] end →˓ val𝑛 instr*

br_if 𝑙

1. Assert: due to validation, a value of value type i32 is on the top of the stack.

2. Pop the value i32.const 𝑐 from the stack.

3. If 𝑐 is non-zero, then:

a. Execute the instruction (br 𝑙).

4. Else:

a. Do nothing.

86 Chapter 4. Execution

WebAssembly Specification, Release 1.1

(i32.const 𝑐) (br_if 𝑙) →˓ (br 𝑙) (if 𝑐 ̸= 0)
(i32.const 𝑐) (br_if 𝑙) →˓ 𝜖 (if 𝑐 = 0)

br_table 𝑙* 𝑙𝑁

1. Assert: due to validation, a value of value type i32 is on the top of the stack.

2. Pop the value i32.const 𝑖 from the stack.

3. If 𝑖 is smaller than the length of 𝑙*, then:

a. Let 𝑙𝑖 be the label 𝑙*[𝑖].

b. Execute the instruction (br 𝑙𝑖).

4. Else:

a. Execute the instruction (br 𝑙𝑁).

(i32.const 𝑖) (br_table 𝑙* 𝑙𝑁) →˓ (br 𝑙𝑖) (if 𝑙*[𝑖] = 𝑙𝑖)
(i32.const 𝑖) (br_table 𝑙* 𝑙𝑁) →˓ (br 𝑙𝑁) (if |𝑙*| ≤ 𝑖)

return

1. Let 𝐹 be the current frame.

2. Let 𝑛 be the arity of 𝐹 .

3. Assert: due to validation, there are at least 𝑛 values on the top of the stack.

4. Pop the results val𝑛 from the stack.

5. Assert: due to validation, the stack contains at least one frame.

6. While the top of the stack is not a frame, do:

a. Pop the top element from the stack.

7. Assert: the top of the stack is the frame 𝐹 .

8. Pop the frame from the stack.

9. Push val𝑛 to the stack.

10. Jump to the instruction after the original call that pushed the frame.

frame𝑛{𝐹} 𝐵𝑘[val𝑛 return] end →˓ val𝑛

call 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.funcaddrs[𝑥] exists.

3. Let 𝑎 be the function address 𝐹.module.funcaddrs[𝑥].

4. Invoke the function instance at address 𝑎.

𝐹 ; (call 𝑥) →˓ 𝐹 ; (invoke 𝑎) (if 𝐹.module.funcaddrs[𝑥] = 𝑎)

4.4. Instructions 87

WebAssembly Specification, Release 1.1

call_indirect 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[0] exists.

3. Let ta be the table address 𝐹.module.tableaddrs[0].

4. Assert: due to validation, 𝑆.tables[ta] exists.

5. Let tab be the table instance 𝑆.tables[ta].

6. Assert: due to validation, 𝐹.module.types[𝑥] exists.

7. Let ftexpect be the function type 𝐹.module.types[𝑥].

8. Assert: due to validation, a value with value type i32 is on the top of the stack.

9. Pop the value i32.const 𝑖 from the stack.

10. If 𝑖 is not smaller than the length of tab.elem, then:

a. Trap.

11. If tab.elem[𝑖] is uninitialized, then:

a. Trap.

12. Let 𝑎 be the function address tab.elem[𝑖].

13. Assert: due to validation, 𝑆.funcs[𝑎] exists.

14. Let f be the function instance 𝑆.funcs[𝑎].

15. Let ftactual be the function type f .type.

16. If ftactual and ftexpect differ, then:

a. Trap.

17. Invoke the function instance at address 𝑎.

𝑆;𝐹 ; (i32.const 𝑖) (call_indirect 𝑥) →˓ 𝑆;𝐹 ; (invoke 𝑎)
(if 𝑆.tables[𝐹.module.tableaddrs[0]].elem[𝑖] = 𝑎
∧ 𝑆.funcs[𝑎] = 𝑓
∧ 𝐹.module.types[𝑥] = 𝑓.type)

𝑆;𝐹 ; (i32.const 𝑖) (call_indirect 𝑥) →˓ 𝑆;𝐹 ; trap
(otherwise)

4.4.7 Blocks

The following auxiliary rules define the semantics of executing an instruction sequence that forms a block.

Entering instr* with label 𝐿

1. Push 𝐿 to the stack.

2. Jump to the start of the instruction sequence instr*.

Note: No formal reduction rule is needed for entering an instruction sequence, because the label 𝐿 is embedded
in the administrative instruction that structured control instructions reduce to directly.

88 Chapter 4. Execution

WebAssembly Specification, Release 1.1

Exiting instr* with label 𝐿

When the end of a block is reached without a jump or trap aborting it, then the following steps are performed.

1. Let 𝑚 be the number of values on the top of the stack.

2. Pop the values val𝑚 from the stack.

3. Assert: due to validation, the label 𝐿 is now on the top of the stack.

4. Pop the label from the stack.

5. Push val𝑚 back to the stack.

6. Jump to the position after the end of the structured control instruction associated with the label 𝐿.

label𝑛{instr*} val𝑚 end →˓ val𝑚

Note: This semantics also applies to the instruction sequence contained in a loop instruction. Therefore, execution
of a loop falls off the end, unless a backwards branch is performed explicitly.

4.4.8 Function Calls

The following auxiliary rules define the semantics of invoking a function instance through one of the call instruc-
tions and returning from it.

Invocation of function address 𝑎

1. Assert: due to validation, 𝑆.funcs[𝑎] exists.

2. Let 𝑓 be the function instance, 𝑆.funcs[𝑎].

3. Let [𝑡𝑛1] → [𝑡𝑚2] be the function type 𝑓.type.

4. Let 𝑡* be the list of value types 𝑓.code.locals.

5. Let instr* end be the expression 𝑓.code.body.

6. Assert: due to validation, 𝑛 values are on the top of the stack.

7. Pop the values val𝑛 from the stack.

8. Let val*0 be the list of zero values of types 𝑡*.

9. Let 𝐹 be the frame {module 𝑓.module, locals val𝑛 val*0}.

10. Push the activation of 𝐹 with arity 𝑚 to the stack.

11. Let 𝐿 be the label whose arity is 𝑚 and whose continuation is the end of the function.

12. Enter the instruction sequence instr* with label 𝐿.

𝑆; val𝑛 (invoke 𝑎) →˓ 𝑆; frame𝑚{𝐹} label𝑚{} instr* end end
(if 𝑆.funcs[𝑎] = 𝑓
∧ 𝑓.type = [𝑡𝑛1] → [𝑡𝑚2]
∧ 𝑓.code = {type 𝑥, locals 𝑡𝑘, body instr* end}
∧ 𝐹 = {module 𝑓.module, locals val𝑛 (𝑡.const 0)𝑘})

4.4. Instructions 89

WebAssembly Specification, Release 1.1

Returning from a function

When the end of a function is reached without a jump (i.e., return) or trap aborting it, then the following steps are
performed.

1. Let 𝐹 be the current frame.

2. Let 𝑛 be the arity of the activation of 𝐹 .

3. Assert: due to validation, there are 𝑛 values on the top of the stack.

4. Pop the results val𝑛 from the stack.

5. Assert: due to validation, the frame 𝐹 is now on the top of the stack.

6. Pop the frame from the stack.

7. Push val𝑛 back to the stack.

8. Jump to the instruction after the original call.

frame𝑛{𝐹} val𝑛 end →˓ val𝑛

Host Functions

Invoking a host function has non-deterministic behavior. It may either terminate with a trap or return regularly.
However, in the latter case, it must consume and produce the right number and types of WebAssembly values on
the stack, according to its function type.

A host function may also modify the store. However, all store modifications must result in an extension of the
original store, i.e., they must only modify mutable contents and must not have instances removed. Furthermore,
the resulting store must be valid, i.e., all data and code in it is well-typed.

𝑆; val𝑛 (invoke 𝑎) →˓ 𝑆′; result
(if 𝑆.funcs[𝑎] = {type [𝑡𝑛1] → [𝑡𝑚2], hostcode hf }
∧ (𝑆′; result) ∈ hf (𝑆; val𝑛))

𝑆; val𝑛 (invoke 𝑎) →˓ 𝑆; val𝑛 (invoke 𝑎)
(if 𝑆.funcs[𝑎] = {type [𝑡𝑛1] → [𝑡𝑚2], hostcode hf }
∧ ⊥ ∈ hf (𝑆; val𝑛))

Here, hf (𝑆; val𝑛) denotes the implementation-defined execution of host function hf in current store 𝑆 with argu-
ments val𝑛. It yields a set of possible outcomes, where each element is either a pair of a modified store 𝑆′ and
a result or the special value ⊥ indicating divergence. A host function is non-deterministic if there is at least one
argument for which the set of outcomes is not singular.

For a WebAssembly implementation to be sound in the presence of host functions, every host function instance
must be valid, which means that it adheres to suitable pre- and post-conditions: under a valid store 𝑆, and given
arguments val𝑛 matching the ascribed parameter types 𝑡𝑛1 , executing the host function must yield a non-empty set
of possible outcomes each of which is either divergence or consists of a valid store 𝑆′ that is an extension of 𝑆 and
a result matching the ascribed return types 𝑡𝑚2 . All these notions are made precise in the Appendix.

Note: A host function can call back into WebAssembly by invoking a function exported from a module. However,
the effects of any such call are subsumed by the non-deterministic behavior allowed for the host function.

90 Chapter 4. Execution

WebAssembly Specification, Release 1.1

4.4.9 Expressions

An expression is evaluated relative to a current frame pointing to its containing module instance.

1. Jump to the start of the instruction sequence instr* of the expression.

2. Execute the instruction sequence.

3. Assert: due to validation, the top of the stack contains a value.

4. Pop the value val from the stack.

The value val is the result of the evaluation.

𝑆;𝐹 ; instr* →˓ 𝑆′;𝐹 ′; instr ′* (if 𝑆;𝐹 ; instr* end →˓ 𝑆′;𝐹 ′; instr ′* end)

Note: Evaluation iterates this reduction rule until reaching a value. Expressions constituting function bodies are
executed during function invocation.

4.5 Modules

For modules, the execution semantics primarily defines instantiation, which allocates instances for a module and
its contained definitions, initializes tables and memories from contained element and data segments, and invokes
the start function if present. It also includes invocation of exported functions.

Instantiation depends on a number of auxiliary notions for type-checking imports and allocating instances.

4.5.1 External Typing

For the purpose of checking external values against imports, such values are classified by external types. The
following auxiliary typing rules specify this typing relation relative to a store 𝑆 in which the referenced instances
live.

func 𝑎

• The store entry 𝑆.funcs[𝑎] must be a function instance {type functype, . . . }.

• Then func 𝑎 is valid with external type func functype.

𝑆.funcs[𝑎] = {type functype, . . . }
𝑆 ⊢ func 𝑎 : func functype

table 𝑎

• The store entry 𝑆.tables[𝑎] must be a table instance {elem (fa?)𝑛,max 𝑚?}.

• Then table 𝑎 is valid with external type table ({min 𝑛,max 𝑚?} funcref).

𝑆.tables[𝑎] = {elem (fa?)𝑛,max 𝑚?}
𝑆 ⊢ table 𝑎 : table ({min 𝑛,max 𝑚?} funcref)

4.5. Modules 91

WebAssembly Specification, Release 1.1

mem 𝑎

• The store entry 𝑆.mems[𝑎] must be a memory instance {data 𝑏𝑛·64Ki,max 𝑚?}, for some 𝑛.

• Then mem 𝑎 is valid with external type mem ({min 𝑛,max 𝑚?}).

𝑆.mems[𝑎] = {data 𝑏𝑛·64Ki,max 𝑚?}
𝑆 ⊢ mem 𝑎 : mem {min 𝑛,max 𝑚?}

global 𝑎

• The store entry 𝑆.globals[𝑎] must be a global instance {value (𝑡.const 𝑐),mut mut}.

• Then global 𝑎 is valid with external type global (mut 𝑡).

𝑆.globals[𝑎] = {value (𝑡.const 𝑐),mut mut}
𝑆 ⊢ global 𝑎 : global (mut 𝑡)

4.5.2 Import Matching

When instantiating a module, external values must be provided whose types are matched against the respective
external types classifying each import. In some cases, this allows for a simple form of subtyping, as defined below.

Limits

Limits {min 𝑛1,max 𝑚?
1} match limits {min 𝑛2,max 𝑚?

2} if and only if:

• 𝑛1 is larger than or equal to 𝑛2.

• Either:

– 𝑚?
2 is empty.

• Or:

– Both 𝑚?
1 and 𝑚?

2 are non-empty.

– 𝑚1 is smaller than or equal to 𝑚2.

𝑛1 ≥ 𝑛2

⊢ {min 𝑛1,max 𝑚?
1} ≤ {min 𝑛2,max 𝜖}

𝑛1 ≥ 𝑛2 𝑚1 ≤ 𝑚2

⊢ {min 𝑛1,max 𝑚1} ≤ {min 𝑛2,max 𝑚2}

Functions

An external type func functype1 matches func functype2 if and only if:

• Both functype1 and functype2 are the same.

⊢ func functype ≤ func functype

92 Chapter 4. Execution

WebAssembly Specification, Release 1.1

Tables

An external type table (limits1 elemtype1) matches table (limits2 elemtype2) if and only if:

• Limits limits1 match limits2.

• Both elemtype1 and elemtype2 are the same.

⊢ limits1 ≤ limits2
⊢ table (limits1 elemtype) ≤ table (limits2 elemtype)

Memories

An external type mem limits1 matches mem limits2 if and only if:

• Limits limits1 match limits2.

⊢ limits1 ≤ limits2
⊢ mem limits1 ≤ mem limits2

Globals

An external type global globaltype1 matches global globaltype2 if and only if:

• Both globaltype1 and globaltype2 are the same.

⊢ global globaltype ≤ global globaltype

4.5.3 Allocation

New instances of functions, tables, memories, and globals are allocated in a store 𝑆, as defined by the following
auxiliary functions.

Functions

1. Let func be the function to allocate and moduleinst its module instance.

2. Let 𝑎 be the first free function address in 𝑆.

3. Let functype be the function type moduleinst .types[func.type].

4. Let funcinst be the function instance {type functype,module moduleinst , code func}.

5. Append funcinst to the funcs of 𝑆.

6. Return 𝑎.

allocfunc(𝑆, func,moduleinst) = 𝑆′, funcaddr

where:
funcaddr = |𝑆.funcs|
functype = moduleinst .types[func.type]
funcinst = {type functype,module moduleinst , code func}

𝑆′ = 𝑆 ⊕ {funcs funcinst}

4.5. Modules 93

WebAssembly Specification, Release 1.1

Host Functions

1. Let hostfunc be the host function to allocate and functype its function type.

2. Let 𝑎 be the first free function address in 𝑆.

3. Let funcinst be the function instance {type functype, hostcode hostfunc}.

4. Append funcinst to the funcs of 𝑆.

5. Return 𝑎.

allochostfunc(𝑆, functype, hostfunc) = 𝑆′, funcaddr

where:
funcaddr = |𝑆.funcs|
funcinst = {type functype, hostcode hostfunc}

𝑆′ = 𝑆 ⊕ {funcs funcinst}

Note: Host functions are never allocated by the WebAssembly semantics itself, but may be allocated by the
embedder.

Tables

1. Let tabletype be the table type to allocate.

2. Let ({min 𝑛,max𝑚?} elemtype) be the structure of table type tabletype.

3. Let 𝑎 be the first free table address in 𝑆.

4. Let tableinst be the table instance {elem (𝜖)𝑛,max 𝑚?} with 𝑛 empty elements.

5. Append tableinst to the tables of 𝑆.

6. Return 𝑎.

alloctable(𝑆, tabletype) = 𝑆′, tableaddr

where:
tabletype = {min 𝑛,max 𝑚?} elemtype
tableaddr = |𝑆.tables|
tableinst = {elem (𝜖)𝑛,max 𝑚?}

𝑆′ = 𝑆 ⊕ {tables tableinst}

Memories

1. Let memtype be the memory type to allocate.

2. Let {min 𝑛,max 𝑚?} be the structure of memory type memtype.

3. Let 𝑎 be the first free memory address in 𝑆.

4. Let meminst be the memory instance {data (0x00)𝑛·64Ki,max𝑚?} that contains 𝑛 pages of zeroed bytes.

5. Append meminst to the mems of 𝑆.

6. Return 𝑎.

allocmem(𝑆,memtype) = 𝑆′,memaddr

where:
memtype = {min 𝑛,max 𝑚?}
memaddr = |𝑆.mems|
meminst = {data (0x00)𝑛·64Ki,max 𝑚?}

𝑆′ = 𝑆 ⊕ {mems meminst}

94 Chapter 4. Execution

WebAssembly Specification, Release 1.1

Globals

1. Let globaltype be the global type to allocate and val the value to initialize the global with.

2. Let mut 𝑡 be the structure of global type globaltype.

3. Let 𝑎 be the first free global address in 𝑆.

4. Let globalinst be the global instance {value val ,mut mut}.

5. Append globalinst to the globals of 𝑆.

6. Return 𝑎.

allocglobal(𝑆, globaltype, val) = 𝑆′, globaladdr

where:
globaltype = mut 𝑡
globaladdr = |𝑆.globals|
globalinst = {value val ,mut mut}

𝑆′ = 𝑆 ⊕ {globals globalinst}

Element segments

1. Let funcelem* be the vector of function elements to allocate.

2. Let 𝑎 be the first free element address in 𝑆.

3. Let eleminst be the element instance {elem funcelem*}.

4. Append eleminst to the elems of 𝑆.

5. Return 𝑎.

allocelem(𝑆, funcelem*) = 𝑆′, elemaddr

where:
elemaddr = |𝑆.elems|
eleminst = {elem funcelem*}

𝑆′ = 𝑆 ⊕ {elems eleminst}

Data segments

1. Let bytes be the vector of bytes to allocate.

2. Let 𝑎 be the first free data address in 𝑆.

3. Let datainst be the data instance {data bytes}.

4. Append datainst to the datas of 𝑆.

5. Return 𝑎.

allocdata(𝑆, bytes) = 𝑆′, dataaddr

where:
dataaddr = |𝑆.datas|
datainst = {data bytes}

𝑆′ = 𝑆 ⊕ {datas datainst}

4.5. Modules 95

WebAssembly Specification, Release 1.1

Growing tables

1. Let tableinst be the table instance to grow and 𝑛 the number of elements by which to grow it.

2. Let len be 𝑛 added to the length of tableinst .elem.

3. If len is larger than or equal to 232, then fail.

4. If tableinst .max is not empty and its value is smaller than len , then fail.

5. Append 𝑛 empty elements to tableinst .elem.

growtable(tableinst , 𝑛) = tableinst with elem = tableinst .elem (𝜖)𝑛

(if len = 𝑛 + |tableinst .elem|
∧ len < 232

∧ (tableinst .max = 𝜖 ∨ len ≤ tableinst .max))

Growing memories

1. Let meminst be the memory instance to grow and 𝑛 the number of pages by which to grow it.

2. Assert: The length of meminst .data is divisible by the page size 64 Ki.

3. Let len be 𝑛 added to the length of meminst .data divided by the page size 64 Ki.

4. If len is larger than 216, then fail.

5. If meminst .max is not empty and its value is smaller than len , then fail.

6. Append 𝑛 times 64 Ki bytes with value 0x00 to meminst .data.

growmem(meminst , 𝑛) = meminst with data = meminst .data (0x00)𝑛·64Ki

(if len = 𝑛 + |meminst .data|/64 Ki
∧ len ≤ 216

∧ (meminst .max = 𝜖 ∨ len ≤ meminst .max))

Modules

The allocation function for modules requires a suitable list of external values that are assumed to match the import
vector of the module, a list of initialization values for the module’s globals, and list of function element vectors
for the module’s element segments.

1. Let module be the module to allocate and externval*im the vector of external values providing the mod-
ule’s imports, val* the initialization values of the module’s globals, and (funcelem*)* the function element
vectors of the module’s element segments.

2. For each function func𝑖 in module.funcs, do:

a. Let funcaddr 𝑖 be the function address resulting from allocating func𝑖 for the module instance
moduleinst defined below.

3. For each table table𝑖 in module.tables, do:

a. Let tableaddr 𝑖 be the table address resulting from allocating table𝑖.type.

4. For each memory mem𝑖 in module.mems, do:

a. Let memaddr 𝑖 be the memory address resulting from allocating mem𝑖.type.

5. For each global global 𝑖 in module.globals, do:

a. Let globaladdr 𝑖 be the global address resulting from allocating global 𝑖.type with initializer value
val*[𝑖].

6. For each element segment elem𝑖 in module.elems, do:

96 Chapter 4. Execution

WebAssembly Specification, Release 1.1

a. Let elemaddr 𝑖 be the element address resulting from allocating a element instance with contents
(funcelem*)*[𝑖].

7. For each data segment data𝑖 in module.datas, do:

a. Let dataaddr 𝑖 be the data address resulting from allocating a data instance with contents data𝑖.init.

8. Let funcaddr* be the the concatenation of the function addresses funcaddr 𝑖 in index order.

9. Let tableaddr* be the the concatenation of the table addresses tableaddr 𝑖 in index order.

10. Let memaddr* be the the concatenation of the memory addresses memaddr 𝑖 in index order.

11. Let globaladdr* be the the concatenation of the global addresses globaladdr 𝑖 in index order.

12. Let elemaddr* be the the concatenation of the element addresses elemaddr 𝑖 in index order.

13. Let dataaddr* be the the concatenation of the data addresses dataaddr 𝑖 in index order.

14. Let funcaddr*mod be the list of function addresses extracted from externval*im, concatenated with
funcaddr*.

15. Let tableaddr*mod be the list of table addresses extracted from externval*im, concatenated with tableaddr*.

16. Let memaddr*mod be the list of memory addresses extracted from externval*im, concatenated with
memaddr*.

17. Let globaladdr*mod be the list of global addresses extracted from externval*im, concatenated with
globaladdr*.

18. For each export export 𝑖 in module.exports, do:

a. If export 𝑖 is a function export for function index 𝑥, then let externval 𝑖 be the external value
func (funcaddr*mod[𝑥]).

b. Else, if export 𝑖 is a table export for table index 𝑥, then let externval 𝑖 be the external value
table (tableaddr*mod[𝑥]).

c. Else, if export 𝑖 is a memory export for memory index 𝑥, then let externval 𝑖 be the external value
mem (memaddr*mod[𝑥]).

d. Else, if export 𝑖 is a global export for global index 𝑥, then let externval 𝑖 be the external value
global (globaladdr*mod[𝑥]).

e. Let exportinst 𝑖 be the export instance {name (export 𝑖.name), value externval 𝑖}.

19. Let exportinst* be the the concatenation of the export instances exportinst 𝑖 in index order.

20. Let moduleinst be the module instance {types (module.types), funcaddrs funcaddr*mod,
tableaddrs tableaddr*mod, memaddrs memaddr*mod, globaladdrs globaladdr

*
mod, exports exportinst

*}.

21. Return moduleinst .

allocmodule(𝑆,module, externval*im, val
, (funcelem)*) = 𝑆′,moduleinst

4.5. Modules 97

WebAssembly Specification, Release 1.1

where:

moduleinst = { types module.types,
funcaddrs funcs(externval*im) funcaddr*,
tableaddrs tables(externval*im) tableaddr*,
memaddrs mems(externval*im) memaddr*,
globaladdrs globals(externval*im) globaladdr*,
elemaddrs elemaddr*,
dataaddrs dataaddr*,
exports exportinst* }

𝑆1, funcaddr
* = allocfunc*(𝑆,module.funcs,moduleinst)

𝑆2, tableaddr
* = alloctable*(𝑆1, (table.type)

) (where table = module.tables)
𝑆3,memaddr* = allocmem*(𝑆2, (mem.type)*) (where mem* = module.mems)
𝑆4, globaladdr

* = allocglobal*(𝑆3, (global .type)
, val) (where global* = module.globals)

𝑆5, elemaddr* = allocelem*(𝑆4, (funcelem
))

𝑆′, dataaddr* = allocdata*(𝑆5, (data.init)
) (where data = module.datas)

exportinst* = {name (export .name), value externvalex}* (where export* = module.exports)

funcs(externval*ex) = (moduleinst .funcaddrs[𝑥])* (where 𝑥* = funcs(module.exports))
tables(externval*ex) = (moduleinst .tableaddrs[𝑥])* (where 𝑥* = tables(module.exports))
mems(externval*ex) = (moduleinst .memaddrs[𝑥])* (where 𝑥* = mems(module.exports))

globals(externval*ex) = (moduleinst .globaladdrs[𝑥])* (where 𝑥* = globals(module.exports))

Here, the notation allocx* is shorthand for multiple allocations of object kind 𝑋 , defined as follows:

allocx*(𝑆0, 𝑋
𝑛, . . .) = 𝑆𝑛, 𝑎

𝑛

where for all 𝑖 < 𝑛:
𝑆𝑖+1, 𝑎

𝑛[𝑖] = allocx(𝑆𝑖, 𝑋
𝑛[𝑖], . . .)

Moreover, if the dots . . . are a sequence 𝐴𝑛 (as for globals), then the elements of this sequence are passed to the
allocation function pointwise.

Note: The definition of module allocation is mutually recursive with the allocation of its associated functions,
because the resulting module instance moduleinst is passed to the function allocator as an argument, in order to
form the necessary closures. In an implementation, this recursion is easily unraveled by mutating one or the other
in a secondary step.

4.5.4 Instantiation

Given a store 𝑆, a module module is instantiated with a list of external values externval𝑛 supplying the required
imports as follows.

Instantiation checks that the module is valid and the provided imports match the declared types, and may fail with
an error otherwise. Instantiation can also result in a trap from executing the start function. It is up to the embedder
to define how such conditions are reported.

1. If module is not valid, then:

a. Fail.

2. Assert: module is valid with external types externtype𝑚im classifying its imports.

3. If the number 𝑚 of imports is not equal to the number 𝑛 of provided external values, then:

a. Fail.

4. For each external value externval 𝑖 in externval𝑛 and external type externtype ′𝑖 in externtype𝑛im, do:

a. If externval 𝑖 is not valid with an external type externtype𝑖 in store 𝑆, then:

i. Fail.

98 Chapter 4. Execution

WebAssembly Specification, Release 1.1

b. If externtype𝑖 does not match externtype ′𝑖, then:

i. Fail.

5. Let val* be the vector of global initialization values determined by module and externval𝑛. These may be
calculated as follows.

a. Let moduleinst im be the auxiliary module instance {globaladdrs globals(externval𝑛)} that only con-
sists of the imported globals.

b. Let 𝐹im be the auxiliary frame {module moduleinst im, locals 𝜖}.

c. Push the frame 𝐹im to the stack.

d. For each global global 𝑖 in module.globals, do:

i. Let val 𝑖 be the result of evaluating the initializer expression global 𝑖.init.

e. Assert: due to validation, the frame 𝐹im is now on the top of the stack.

f. Pop the frame 𝐹im from the stack.

g. Let val* be the conatenation of val 𝑖 in index order.

6. Let (funcelem*)* be the list of function element vectors determined by the element segments in module.
These may be calculated as follows.

a. For each element segment elem𝑖 in module.elems, and for each element expression elemexpr 𝑖𝑗 in
elem𝑖.init, do:

i. If elemexpr 𝑖𝑗 is of the form ref.null, then let the function element funcelem𝑖𝑗 be 𝜖.

ii. Else, elemexpr 𝑖𝑗 is of the form is ref.func funcidx 𝑖𝑗 .

iii. Assert: due to validation, moduleinst .funcaddrs[funcidx 𝑖𝑗] exists.

iv. Let the function element funcelem𝑖𝑗 be the function address moduleinst .funcaddrs[funcidx 𝑖𝑗].

b. Let funcelem*
𝑖 be the concatenation of function elements funcelem𝑖𝑗 in order of index 𝑗.

c. Let (funcelem*)* be the concatenation of function element vectors funcelem*
𝑖 in order of index 𝑖.

7. Let moduleinst be a new module instance allocated from module in store 𝑆 with imports externval𝑛,
global initializer values val*, and element segment contents (funcelem*)*, and let 𝑆′ be the extended store
produced by module allocation.

8. Let 𝐹 be the auxiliary frame {module moduleinst , locals 𝜖}.

9. Push the frame 𝐹 to the stack.

10. For each element segment elem𝑖 in module.elems whose mode is of the form
active {table tableidx 𝑖, offset einstr

*
𝑖 end}, do:

a. Assert: tableidx 𝑖 is 0.

b. Let 𝑛 be the length of the vector elem𝑖.init.

c. Execute the instruction sequence einstr*𝑖 .

d. Execute the instruction i32.const 0.

e. Execute the instruction i32.const 𝑛.

f. Execute the instruction table.init 𝑖.

g. Execute the instruction elem.drop 𝑖.

11. For each data segment data𝑖 in module.datas whose mode is of the form
active {memory memidx 𝑖, offset dinstr

*
𝑖 end}, do:

a. Assert: memidx 𝑖 is 0.

b. Let 𝑛 be the length of the vector data𝑖.init.

c. Execute the instruction sequence dinstr*𝑖 .

4.5. Modules 99

WebAssembly Specification, Release 1.1

d. Execute the instruction i32.const 0.

e. Execute the instruction i32.const 𝑛.

f. Execute the instruction memory.init 𝑖.

g. Execute the instruction data.drop 𝑖.

12. If the start function module.start is not empty, then:

a. Let start be the start function module.start.

b. Execute the instruction call start .func.

13. Assert: due to validation, the frame 𝐹 is now on the top of the stack.

14. Pop the frame 𝐹 from the stack.

instantiate(𝑆,module, externval𝑘) = 𝑆′;𝐹 ; runelem0(elem𝑛[0]) . . . runelem𝑛−1(elem𝑛[𝑛− 1])
rundata0(data𝑚[0]) . . . rundata𝑚−1(data𝑚[𝑚− 1])
(call start .func)?

(if ⊢ module : externtype𝑘im → externtype*ex
∧ (𝑆 ⊢ externval : externtype)𝑘

∧ (⊢ externtype ≤ externtype im)𝑘

∧ module.globals = global*

∧ module.elems = elem𝑛

∧ module.datas = data𝑚

∧ module.start = start?

∧ 𝑆′,moduleinst = allocmodule(𝑆,module, externval𝑘, val*)
∧ 𝐹 = {module moduleinst , locals 𝜖}
∧ (𝑆′;𝐹 ; global .init →˓ *𝑆′;𝐹 ; val end)*

∧ (𝑆′;𝐹 ; elem.offset →˓ *𝑆′;𝐹 ; i32.const eo end)*

∧ (𝑆′;𝐹 ; data.offset →˓ *𝑆′;𝐹 ; i32.const do end)*

∧ (tableaddr = moduleinst .tableaddrs[elem.table])*

∧ (memaddr = moduleinst .memaddrs[data.memory])*

∧ (funcaddr = moduleinst .funcaddrs[start .func])?)

where:

runelem𝑖({type et , init funcelem𝑛,mode passive}) = 𝜖
runelem𝑖({type et , init funcelem𝑛,mode active{table 0, offset instr* end}}) =

instr* (i32.const 0) (i32.const 𝑛) (table.init 𝑖) (elem.drop 𝑖)

rundata𝑖({init 𝑏𝑛, 𝐷𝑀𝑂𝐷𝐸 passive}) = 𝜖
rundata𝑖({init 𝑏𝑛, 𝐷𝑀𝑂𝐷𝐸 active{memory 0, offset instr* end}}) =

instr* (i32.const 0) (i32.const 𝑛) (memory.init 𝑖) (data.drop 𝑖)

Note: Module allocation and the evaluation of global initializers are mutually recursive because the global
initialization values val* are passed to the module allocator but depend on the store 𝑆′ and module instance
moduleinst returned by allocation. However, this recursion is just a specification device. Due to validation, the
initialization values can easily be determined from a simple pre-pass that evaluates global initializers in the initial
store.

All failure conditions are checked before any observable mutation of the store takes place. Store mutation is not
atomic; it happens in individual steps that may be interleaved with other threads.

Evaluation of constant expressions does not affect the store.

100 Chapter 4. Execution

WebAssembly Specification, Release 1.1

4.5.5 Invocation

Once a module has been instantiated, any exported function can be invoked externally via its function address
funcaddr in the store 𝑆 and an appropriate list val* of argument values.

Invocation may fail with an error if the arguments do not fit the function type. Invocation can also result in a trap.
It is up to the embedder to define how such conditions are reported.

Note: If the embedder API performs type checks itself, either statically or dynamically, before performing an
invocation, then no failure other than traps can occur.

The following steps are performed:

1. Assert: 𝑆.funcs[funcaddr] exists.

2. Let funcinst be the function instance 𝑆.funcs[funcaddr].

3. Let [𝑡𝑛1] → [𝑡𝑚2] be the function type funcinst .type.

4. If the length |val*| of the provided argument values is different from the number 𝑛 of expected arguments,
then:

a. Fail.

5. For each value type 𝑡𝑖 in 𝑡𝑛1 and corresponding value 𝑣𝑎𝑙𝑖 in val*, do:

a. If val 𝑖 is not 𝑡𝑖.const 𝑐𝑖 for some 𝑐𝑖, then:

i. Fail.

6. Let 𝐹 be the dummy frame {module {}, locals 𝜖}.

7. Push the frame 𝐹 to the stack.

8. Push the values val* to the stack.

9. Invoke the function instance at address funcaddr .

Once the function has returned, the following steps are executed:

1. Assert: due to validation, 𝑚 values are on the top of the stack.

2. Pop val𝑚res from the stack.

The values val𝑚res are returned as the results of the invocation.

invoke(𝑆, funcaddr , val𝑛) = 𝑆;𝐹 ; val𝑛 (invoke funcaddr)
(if 𝑆.funcs[funcaddr].type = [𝑡𝑛1] → [𝑡𝑚2]
∧ val𝑛 = (𝑡1.const 𝑐)

𝑛

∧ 𝐹 = {module {}, locals 𝜖})

4.5. Modules 101

WebAssembly Specification, Release 1.1

102 Chapter 4. Execution

CHAPTER 5

Binary Format

5.1 Conventions

The binary format for WebAssembly modules is a dense linear encoding of their abstract syntax.27

The format is defined by an attribute grammar whose only terminal symbols are bytes. A byte sequence is a
well-formed encoding of a module if and only if it is generated by the grammar.

Each production of this grammar has exactly one synthesized attribute: the abstract syntax that the respective byte
sequence encodes. Thus, the attribute grammar implicitly defines a decoding function (i.e., a parsing function for
the binary format).

Except for a few exceptions, the binary grammar closely mirrors the grammar of the abstract syntax.

Note: Some phrases of abstract syntax have multiple possible encodings in the binary format. For example,
numbers may be encoded as if they had optional leading zeros. Implementations of decoders must support all
possible alternatives; implementations of encoders can pick any allowed encoding.

The recommended extension for files containing WebAssembly modules in binary format is “.wasm” and the
recommended Media Type26 is “application/wasm”.

5.1.1 Grammar

The following conventions are adopted in defining grammar rules for the binary format. They mirror the conven-
tions used for abstract syntax. In order to distinguish symbols of the binary syntax from symbols of the abstract
syntax, typewriter font is adopted for the former.

• Terminal symbols are bytes expressed in hexadecimal notation: 0x0F.

• Nonterminal symbols are written in typewriter font: valtype, instr.

• 𝐵𝑛 is a sequence of 𝑛 ≥ 0 iterations of 𝐵.

• 𝐵* is a possibly empty sequence of iterations of 𝐵. (This is a shorthand for 𝐵𝑛 used where 𝑛 is not
relevant.)

27 Additional encoding layers – for example, introducing compression – may be defined on top of the basic representation defined here.
However, such layers are outside the scope of the current specification.

26 https://www.iana.org/assignments/media-types/media-types.xhtml

103

https://www.iana.org/assignments/media-types/media-types.xhtml

WebAssembly Specification, Release 1.1

• 𝐵? is an optional occurrence of 𝐵. (This is a shorthand for 𝐵𝑛 where 𝑛 ≤ 1.)

• 𝑥:𝐵 denotes the same language as the nonterminal 𝐵, but also binds the variable 𝑥 to the attribute synthe-
sized for 𝐵.

• Productions are written sym ::= 𝐵1 ⇒ 𝐴1 | . . . | 𝐵𝑛 ⇒ 𝐴𝑛, where each 𝐴𝑖 is the attribute that is
synthesized for sym in the given case, usually from attribute variables bound in 𝐵𝑖.

• Some productions are augmented by side conditions in parentheses, which restrict the applicability of the
production. They provide a shorthand for a combinatorial expansion of the production into many separate
cases.

• If the same meta variable or non-terminal symbol appears multiple times in a production (in the syntax or
in an attribute), then all those occurrences must have the same instantiation. (This is a shorthand for a side
condition requiring multiple different variables to be equal.)

Note: For example, the binary grammar for value types is given as follows:

valtype ::= 0x7F ⇒ i32
| 0x7E ⇒ i64
| 0x7D ⇒ f32
| 0x7C ⇒ f64

Consequently, the byte 0x7F encodes the type i32, 0x7E encodes the type i64, and so forth. No other byte value is
allowed as the encoding of a value type.

The binary grammar for limits is defined as follows:

limits ::= 0x00 𝑛:u32 ⇒ {min 𝑛,max 𝜖}
| 0x01 𝑛:u32 𝑚:u32 ⇒ {min 𝑛,max 𝑚}

That is, a limits pair is encoded as either the byte 0x00 followed by the encoding of a u32 value, or the byte 0x01
followed by two such encodings. The variables 𝑛 and 𝑚 name the attributes of the respective u32 nonterminals,
which in this case are the actual unsigned integers those decode into. The attribute of the complete production
then is the abstract syntax for the limit, expressed in terms of the former values.

5.1.2 Auxiliary Notation

When dealing with binary encodings the following notation is also used:

• 𝜖 denotes the empty byte sequence.

• ||𝐵|| is the length of the byte sequence generated from the production 𝐵 in a derivation.

5.1.3 Vectors

Vectors are encoded with their u32 length followed by the encoding of their element sequence.

vec(B) ::= 𝑛:u32 (𝑥:B)𝑛 ⇒ 𝑥𝑛

104 Chapter 5. Binary Format

WebAssembly Specification, Release 1.1

5.2 Values

5.2.1 Bytes

Bytes encode themselves.

byte ::= 0x00 ⇒ 0x00

| . . .
| 0xFF ⇒ 0xFF

5.2.2 Integers

All integers are encoded using the LEB12828 variable-length integer encoding, in either unsigned or signed variant.

Unsigned integers are encoded in unsigned LEB12829 format. As an additional constraint, the total number of
bytes encoding a value of type u𝑁 must not exceed ceil(𝑁/7) bytes.

u𝑁 ::= 𝑛:byte ⇒ 𝑛 (if 𝑛 < 27 ∧ 𝑛 < 2𝑁)
| 𝑛:byte 𝑚:u(𝑁−7) ⇒ 27 ·𝑚 + (𝑛− 27) (if 𝑛 ≥ 27 ∧𝑁 > 7)

Signed integers are encoded in signed LEB12830 format, which uses a two’s complement representation. As an
additional constraint, the total number of bytes encoding a value of type s𝑁 must not exceed ceil(𝑁/7) bytes.

s𝑁 ::= 𝑛:byte ⇒ 𝑛 (if 𝑛 < 26 ∧ 𝑛 < 2𝑁−1)
| 𝑛:byte ⇒ 𝑛− 27 (if 26 ≤ 𝑛 < 27 ∧ 𝑛 ≥ 27 − 2𝑁−1)
| 𝑛:byte 𝑚:s(𝑁−7) ⇒ 27 ·𝑚 + (𝑛− 27) (if 𝑛 ≥ 27 ∧𝑁 > 7)

Uninterpreted integers are encoded as signed integers.

i𝑁 ::= 𝑛:s𝑁 ⇒ 𝑖 (if 𝑛 = signedi𝑁 (𝑖))

Note: The side conditions 𝑁 > 7 in the productions for non-terminal bytes of the u and s encodings restrict
the encoding’s length. However, “trailing zeros” are still allowed within these bounds. For example, 0x03 and
0x83 0x00 are both well-formed encodings for the value 3 as a u8 . Similarly, either of 0x7e and 0xFE 0x7F and
0xFE 0xFF 0x7F are well-formed encodings of the value −2 as a s16 .

The side conditions on the value 𝑛 of terminal bytes further enforce that any unused bits in these bytes must be 0
for positive values and 1 for negative ones. For example, 0x83 0x10 is malformed as a u8 encoding. Similarly,
both 0x83 0x3E and 0xFF 0x7B are malformed as s8 encodings.

5.2.3 Floating-Point

Floating-point values are encoded directly by their IEEE 754-201931 (Section 3.4) bit pattern in little endian32

byte order:

f𝑁 ::= 𝑏*: byte𝑁/8 ⇒ bytes−1
f𝑁 (𝑏*)

28 https://en.wikipedia.org/wiki/LEB128
29 https://en.wikipedia.org/wiki/LEB128#Unsigned_LEB128
30 https://en.wikipedia.org/wiki/LEB128#Signed_LEB128
31 https://ieeexplore.ieee.org/document/8766229
32 https://en.wikipedia.org/wiki/Endianness#Little-endian

5.2. Values 105

https://en.wikipedia.org/wiki/LEB128
https://en.wikipedia.org/wiki/LEB128#Unsigned_LEB128
https://en.wikipedia.org/wiki/LEB128#Signed_LEB128
https://ieeexplore.ieee.org/document/8766229
https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 1.1

5.2.4 Names

Names are encoded as a vector of bytes containing the Unicode33 (Section 3.9) UTF-8 encoding of the name’s
character sequence.

name ::= 𝑏*:vec(byte) ⇒ name (if utf8(name) = 𝑏*)

The auxiliary utf8 function expressing this encoding is defined as follows:

utf8(𝑐*) = (utf8(𝑐))*

utf8(𝑐) = 𝑏 (if 𝑐 < U+80
∧ 𝑐 = 𝑏)

utf8(𝑐) = 𝑏1 𝑏2 (if U+80 ≤ 𝑐 < U+800
∧ 𝑐 = 26(𝑏1 − 0xC0) + (𝑏2 − 0x80))

utf8(𝑐) = 𝑏1 𝑏2 𝑏3 (if U+800 ≤ 𝑐 < U+D800 ∨ U+E000 ≤ 𝑐 < U+10000
∧ 𝑐 = 212(𝑏1 − 0xE0) + 26(𝑏2 − 0x80) + (𝑏3 − 0x80))

utf8(𝑐) = 𝑏1 𝑏2 𝑏3 𝑏4 (if U+10000 ≤ 𝑐 < U+110000
∧ 𝑐 = 218(𝑏1 − 0xF0) + 212(𝑏2 − 0x80) + 26(𝑏3 − 0x80) + (𝑏4 − 0x80))

where 𝑏2, 𝑏3, 𝑏4 < 0xC0

Note: Unlike in some other formats, name strings are not 0-terminated.

5.3 Types

5.3.1 Value Types

Value types are encoded by a single byte.

valtype ::= 0x7F ⇒ i32
| 0x7E ⇒ i64
| 0x7D ⇒ f32
| 0x7C ⇒ f64

Note: Value types can occur in contexts where type indices are also allowed, such as in the case of block types.
Thus, the binary format for types corresponds to the signed LEB12834 encoding of small negative s𝑁 values, so
that they can coexist with (positive) type indices in the future.

5.3.2 Result Types

Result types are encoded by the respective vectors of value types `.

resulttype ::= 𝑡*: vec(valtype) ⇒ [𝑡*]

33 http://www.unicode.org/versions/latest/
34 https://en.wikipedia.org/wiki/LEB128#Signed_LEB128

106 Chapter 5. Binary Format

http://www.unicode.org/versions/latest/
https://en.wikipedia.org/wiki/LEB128#Signed_LEB128

WebAssembly Specification, Release 1.1

5.3.3 Function Types

Function types are encoded by the byte 0x60 followed by the respective vectors of parameter and result types.

functype ::= 0x60 rt1: resulttype rt2: resulttype ⇒ rt1 → rt2

5.3.4 Limits

Limits are encoded with a preceding flag indicating whether a maximum is present.

limits ::= 0x00 𝑛:u32 ⇒ {min 𝑛,max 𝜖}
| 0x01 𝑛:u32 𝑚:u32 ⇒ {min 𝑛,max 𝑚}

5.3.5 Memory Types

Memory types are encoded with their limits.

memtype ::= lim:limits ⇒ lim

5.3.6 Table Types

Table types are encoded with their limits and a constant byte indicating their element type.

tabletype ::= et :elemtype lim:limits ⇒ lim et
elemtype ::= 0x70 ⇒ funcref

5.3.7 Global Types

Global types are encoded by their value type and a flag for their mutability.

globaltype ::= 𝑡:valtype 𝑚:mut ⇒ 𝑚 𝑡
mut ::= 0x00 ⇒ const

| 0x01 ⇒ var

5.4 Instructions

Instructions are encoded by opcodes. Each opcode is represented by a single byte, and is followed by the instruc-
tion’s immediate arguments, where present. The only exception are structured control instructions, which consist
of several opcodes bracketing their nested instruction sequences.

Note: Gaps in the byte code ranges for encoding instructions are reserved for future extensions.

5.4. Instructions 107

WebAssembly Specification, Release 1.1

5.4.1 Control Instructions

Control instructions have varying encodings. For structured instructions, the instruction sequences forming nested
blocks are terminated with explicit opcodes for end and else.

Block types are encoded in special compressed form, by either the byte 0x40 indicating the empty type, as a single
value type, or as a type index encoded as a positive signed integer.

blocktype ::= 0x40 ⇒ 𝜖
| 𝑡:valtype ⇒ 𝑡
| 𝑥:s33 ⇒ 𝑥 (if 𝑥 ≥ 0)

instr ::= 0x00 ⇒ unreachable
| 0x01 ⇒ nop
| 0x02 bt :blocktype (in:instr)* 0x0B ⇒ block bt in* end
| 0x03 bt :blocktype (in:instr)* 0x0B ⇒ loop bt in* end
| 0x04 bt :blocktype (in:instr)* 0x0B ⇒ if bt in* else 𝜖 end
| 0x04 bt :blocktype (in1:instr)* 0x05 (in2:instr)* 0x0B ⇒ if bt in*

1 else in
*
2 end

| 0x0C 𝑙:labelidx ⇒ br 𝑙
| 0x0D 𝑙:labelidx ⇒ br_if 𝑙
| 0x0E 𝑙*:vec(labelidx) 𝑙𝑁 :labelidx ⇒ br_table 𝑙* 𝑙𝑁
| 0x0F ⇒ return
| 0x10 𝑥:funcidx ⇒ call 𝑥
| 0x11 𝑥:typeidx 0x00 ⇒ call_indirect 𝑥

Note: The else opcode 0x05 in the encoding of an if instruction can be omitted if the following instruction
sequence is empty.

Unlike any other occurrence, the type index in a block type is encoded as a positive signed integer, so that its signed
LEB128 bit pattern cannot collide with the encoding of value types or the special code 0x40, which correspond to
the LEB128 encoding of negative integers. To avoid any loss in the range of allowed indices, it is treated as a 33
bit signed integer.

In future versions of WebAssembly, the zero byte occurring in the encoding of the call_indirect instruction may
be used to index additional tables.

5.4.2 Parametric Instructions

Parametric instructions are represented by single byte codes.

instr ::= . . .
| 0x1A ⇒ drop
| 0x1B ⇒ select

5.4.3 Variable Instructions

Variable instructions are represented by byte codes followed by the encoding of the respective index.

instr ::= . . .
| 0x20 𝑥:localidx ⇒ local.get 𝑥
| 0x21 𝑥:localidx ⇒ local.set 𝑥
| 0x22 𝑥:localidx ⇒ local.tee 𝑥
| 0x23 𝑥:globalidx ⇒ global.get 𝑥
| 0x24 𝑥:globalidx ⇒ global.set 𝑥

108 Chapter 5. Binary Format

WebAssembly Specification, Release 1.1

5.4.4 Table Instructions

Each variant of table instruction is encoded with a different byte code.

instr ::= . . .
| 0xFC 12:u32 𝑥:elemidx 0x00 ⇒ table.init 𝑥
| 0xFC 13:u32 𝑥:elemidx ⇒ elem.drop 𝑥
| 0xFC 14:u32 0x00 0x00 ⇒ table.copy

Note: In future versions of WebAssembly, the additional zero bytes occurring in the encoding of the table.copy
instruction may be used to index additional tables.

5.4.5 Memory Instructions

Each variant of memory instruction is encoded with a different byte code. Loads and stores are followed by the
encoding of their memarg immediate.

memarg ::= 𝑎:u32 𝑜:u32 ⇒ {align 𝑎, offset 𝑜}
instr ::= . . .

| 0x28 𝑚:memarg ⇒ i32.load𝑚
| 0x29 𝑚:memarg ⇒ i64.load𝑚
| 0x2A 𝑚:memarg ⇒ f32.load𝑚
| 0x2B 𝑚:memarg ⇒ f64.load𝑚
| 0x2C 𝑚:memarg ⇒ i32.load8_s𝑚
| 0x2D 𝑚:memarg ⇒ i32.load8_u𝑚
| 0x2E 𝑚:memarg ⇒ i32.load16_s 𝑚
| 0x2F 𝑚:memarg ⇒ i32.load16_u𝑚
| 0x30 𝑚:memarg ⇒ i64.load8_s𝑚
| 0x31 𝑚:memarg ⇒ i64.load8_u𝑚
| 0x32 𝑚:memarg ⇒ i64.load16_s 𝑚
| 0x33 𝑚:memarg ⇒ i64.load16_u𝑚
| 0x34 𝑚:memarg ⇒ i64.load32_s 𝑚
| 0x35 𝑚:memarg ⇒ i64.load32_u𝑚
| 0x36 𝑚:memarg ⇒ i32.store 𝑚
| 0x37 𝑚:memarg ⇒ i64.store 𝑚
| 0x38 𝑚:memarg ⇒ f32.store 𝑚
| 0x39 𝑚:memarg ⇒ f64.store 𝑚
| 0x3A 𝑚:memarg ⇒ i32.store8 𝑚
| 0x3B 𝑚:memarg ⇒ i32.store16 𝑚
| 0x3C 𝑚:memarg ⇒ i64.store8 𝑚
| 0x3D 𝑚:memarg ⇒ i64.store16 𝑚
| 0x3E 𝑚:memarg ⇒ i64.store32 𝑚
| 0x3F 0x00 ⇒ memory.size
| 0x40 0x00 ⇒ memory.grow
| 0xFC 8:u32 𝑥:dataidx 0x00 ⇒ memory.init 𝑥
| 0xFC 9:u32 𝑥:dataidx ⇒ data.drop 𝑥
| 0xFC 10:u32 0x00 0x00 ⇒ memory.copy
| 0xFC 11:u32 0x00 ⇒ memory.fill

Note: In future versions of WebAssembly, the additional zero bytes occurring in the encoding of the memory.size,
memory.grow, memory.copy, and memory.fill instructions may be used to index additional memories.

5.4. Instructions 109

WebAssembly Specification, Release 1.1

5.4.6 Numeric Instructions

All variants of numeric instructions are represented by separate byte codes.

The const instructions are followed by the respective literal.

instr ::= . . .
| 0x41 𝑛:i32 ⇒ i32.const 𝑛
| 0x42 𝑛:i64 ⇒ i64.const 𝑛
| 0x43 𝑧:f32 ⇒ f32.const 𝑧
| 0x44 𝑧:f64 ⇒ f64.const 𝑧

All other numeric instructions are plain opcodes without any immediates.

instr ::= . . .
| 0x45 ⇒ i32.eqz
| 0x46 ⇒ i32.eq
| 0x47 ⇒ i32.ne
| 0x48 ⇒ i32.lt_s
| 0x49 ⇒ i32.lt_u
| 0x4A ⇒ i32.gt_s
| 0x4B ⇒ i32.gt_u
| 0x4C ⇒ i32.le_s
| 0x4D ⇒ i32.le_u
| 0x4E ⇒ i32.ge_s
| 0x4F ⇒ i32.ge_u

| 0x50 ⇒ i64.eqz
| 0x51 ⇒ i64.eq
| 0x52 ⇒ i64.ne
| 0x53 ⇒ i64.lt_s
| 0x54 ⇒ i64.lt_u
| 0x55 ⇒ i64.gt_s
| 0x56 ⇒ i64.gt_u
| 0x57 ⇒ i64.le_s
| 0x58 ⇒ i64.le_u
| 0x59 ⇒ i64.ge_s
| 0x5A ⇒ i64.ge_u

| 0x5B ⇒ f32.eq
| 0x5C ⇒ f32.ne
| 0x5D ⇒ f32.lt
| 0x5E ⇒ f32.gt
| 0x5F ⇒ f32.le
| 0x60 ⇒ f32.ge

| 0x61 ⇒ f64.eq
| 0x62 ⇒ f64.ne
| 0x63 ⇒ f64.lt
| 0x64 ⇒ f64.gt
| 0x65 ⇒ f64.le
| 0x66 ⇒ f64.ge

110 Chapter 5. Binary Format

WebAssembly Specification, Release 1.1

| 0x67 ⇒ i32.clz
| 0x68 ⇒ i32.ctz
| 0x69 ⇒ i32.popcnt
| 0x6A ⇒ i32.add
| 0x6B ⇒ i32.sub
| 0x6C ⇒ i32.mul
| 0x6D ⇒ i32.div_s
| 0x6E ⇒ i32.div_u
| 0x6F ⇒ i32.rem_s
| 0x70 ⇒ i32.rem_u
| 0x71 ⇒ i32.and
| 0x72 ⇒ i32.or
| 0x73 ⇒ i32.xor
| 0x74 ⇒ i32.shl
| 0x75 ⇒ i32.shr_s
| 0x76 ⇒ i32.shr_u
| 0x77 ⇒ i32.rotl
| 0x78 ⇒ i32.rotr

| 0x79 ⇒ i64.clz
| 0x7A ⇒ i64.ctz
| 0x7B ⇒ i64.popcnt
| 0x7C ⇒ i64.add
| 0x7D ⇒ i64.sub
| 0x7E ⇒ i64.mul
| 0x7F ⇒ i64.div_s
| 0x80 ⇒ i64.div_u
| 0x81 ⇒ i64.rem_s
| 0x82 ⇒ i64.rem_u
| 0x83 ⇒ i64.and
| 0x84 ⇒ i64.or
| 0x85 ⇒ i64.xor
| 0x86 ⇒ i64.shl
| 0x87 ⇒ i64.shr_s
| 0x88 ⇒ i64.shr_u
| 0x89 ⇒ i64.rotl
| 0x8A ⇒ i64.rotr

| 0x8B ⇒ f32.abs
| 0x8C ⇒ f32.neg
| 0x8D ⇒ f32.ceil
| 0x8E ⇒ f32.floor
| 0x8F ⇒ f32.trunc
| 0x90 ⇒ f32.nearest
| 0x91 ⇒ f32.sqrt
| 0x92 ⇒ f32.add
| 0x93 ⇒ f32.sub
| 0x94 ⇒ f32.mul
| 0x95 ⇒ f32.div
| 0x96 ⇒ f32.min
| 0x97 ⇒ f32.max
| 0x98 ⇒ f32.copysign

5.4. Instructions 111

WebAssembly Specification, Release 1.1

| 0x99 ⇒ f64.abs
| 0x9A ⇒ f64.neg
| 0x9B ⇒ f64.ceil
| 0x9C ⇒ f64.floor
| 0x9D ⇒ f64.trunc
| 0x9E ⇒ f64.nearest
| 0x9F ⇒ f64.sqrt
| 0xA0 ⇒ f64.add
| 0xA1 ⇒ f64.sub
| 0xA2 ⇒ f64.mul
| 0xA3 ⇒ f64.div
| 0xA4 ⇒ f64.min
| 0xA5 ⇒ f64.max
| 0xA6 ⇒ f64.copysign

| 0xA7 ⇒ i32.wrap_i64
| 0xA8 ⇒ i32.trunc_f32_s
| 0xA9 ⇒ i32.trunc_f32_u
| 0xAA ⇒ i32.trunc_f64_s
| 0xAB ⇒ i32.trunc_f64_u
| 0xAC ⇒ i64.extend_i32_s
| 0xAD ⇒ i64.extend_i32_u
| 0xAE ⇒ i64.trunc_f32_s
| 0xAF ⇒ i64.trunc_f32_u
| 0xB0 ⇒ i64.trunc_f64_s
| 0xB1 ⇒ i64.trunc_f64_u
| 0xB2 ⇒ f32.convert_i32_s
| 0xB3 ⇒ f32.convert_i32_u
| 0xB4 ⇒ f32.convert_i64_s
| 0xB5 ⇒ f32.convert_i64_u
| 0xB6 ⇒ f32.demote_f64
| 0xB7 ⇒ f64.convert_i32_s
| 0xB8 ⇒ f64.convert_i32_u
| 0xB9 ⇒ f64.convert_i64_s
| 0xBA ⇒ f64.convert_i64_u
| 0xBB ⇒ f64.promote_f32
| 0xBC ⇒ i32.reinterpret_f32
| 0xBD ⇒ i64.reinterpret_f64
| 0xBE ⇒ f32.reinterpret_i32
| 0xBF ⇒ f64.reinterpret_i64

| 0xC0 ⇒ i32.extend8_s
| 0xC1 ⇒ i32.extend16_s
| 0xC2 ⇒ i64.extend8_s
| 0xC3 ⇒ i64.extend16_s
| 0xC4 ⇒ i64.extend32_s

The saturating truncation instructions all have a one byte prefix, whereas the actual opcode is encoded by a
variable-length unsigned integer.

instr ::= . . .
| 0xFC 0:u32 ⇒ i32.trunc_sat_f32_s
| 0xFC 1:u32 ⇒ i32.trunc_sat_f32_u
| 0xFC 2:u32 ⇒ i32.trunc_sat_f64_s
| 0xFC 3:u32 ⇒ i32.trunc_sat_f64_u
| 0xFC 4:u32 ⇒ i64.trunc_sat_f32_s
| 0xFC 5:u32 ⇒ i64.trunc_sat_f32_u
| 0xFC 6:u32 ⇒ i64.trunc_sat_f64_s
| 0xFC 7:u32 ⇒ i64.trunc_sat_f64_u

112 Chapter 5. Binary Format

WebAssembly Specification, Release 1.1

5.4.7 Expressions

Expressions are encoded by their instruction sequence terminated with an explicit 0x0B opcode for end.

expr ::= (in:instr)* 0x0B ⇒ in* end

5.5 Modules

The binary encoding of modules is organized into sections. Most sections correspond to one component of a
module record, except that function definitions are split into two sections, separating their type declarations in the
function section from their bodies in the code section.

Note: This separation enables parallel and streaming compilation of the functions in a module.

5.5.1 Indices

All indices are encoded with their respective value.

typeidx ::= 𝑥:u32 ⇒ 𝑥
funcidx ::= 𝑥:u32 ⇒ 𝑥
tableidx ::= 𝑥:u32 ⇒ 𝑥
memidx ::= 𝑥:u32 ⇒ 𝑥
globalidx ::= 𝑥:u32 ⇒ 𝑥
elemidx ::= 𝑥:u32 ⇒ 𝑥
dataidx ::= 𝑥:u32 ⇒ 𝑥
localidx ::= 𝑥:u32 ⇒ 𝑥
labelidx ::= 𝑙:u32 ⇒ 𝑙

5.5.2 Sections

Each section consists of

• a one-byte section id,

• the u32 size of the contents, in bytes,

• the actual contents, whose structure is depended on the section id.

Every section is optional; an omitted section is equivalent to the section being present with empty contents.

The following parameterized grammar rule defines the generic structure of a section with id 𝑁 and contents
described by the grammar B.

section𝑁 (B) ::= 𝑁 :byte size:u32 cont :B ⇒ cont (if size = ||B||)
| 𝜖 ⇒ 𝜖

For most sections, the contents B encodes a vector. In these cases, the empty result 𝜖 is interpreted as the empty
vector.

Note: Other than for unknown custom sections, the size is not required for decoding, but can be used to skip
sections when navigating through a binary. The module is malformed if the size does not match the length of the
binary contents B.

The following section ids are used:

5.5. Modules 113

WebAssembly Specification, Release 1.1

Id Section
0 custom section
1 type section
2 import section
3 function section
4 table section
5 memory section
6 global section
7 export section
8 start section
9 element section
10 code section
11 data section
12 data count section

5.5.3 Custom Section

Custom sections have the id 0. They are intended to be used for debugging information or third-party extensions,
and are ignored by the WebAssembly semantics. Their contents consist of a name further identifying the custom
section, followed by an uninterpreted sequence of bytes for custom use.

customsec ::= section0(custom)
custom ::= name byte*

Note: If an implementation interprets the data of a custom section, then errors in that data, or the placement of
the section, must not invalidate the module.

5.5.4 Type Section

The type section has the id 1. It decodes into a vector of function types that represent the types component of a
module.

typesec ::= ft*: section1(vec(functype)) ⇒ ft*

5.5.5 Import Section

The import section has the id 2. It decodes into a vector of imports that represent the imports component of a
module.

importsec ::= im*:section2(vec(import)) ⇒ im*

import ::= mod :name nm:name 𝑑:importdesc ⇒ {module mod , name nm, desc 𝑑}
importdesc ::= 0x00 𝑥:typeidx ⇒ func 𝑥

| 0x01 tt :tabletype ⇒ table tt
| 0x02 mt :memtype ⇒ mem mt
| 0x03 gt :globaltype ⇒ global gt

114 Chapter 5. Binary Format

WebAssembly Specification, Release 1.1

5.5.6 Function Section

The function section has the id 3. It decodes into a vector of type indices that represent the type fields of the
functions in the funcs component of a module. The locals and body fields of the respective functions are encoded
separately in the code section.

funcsec ::= 𝑥*:section3(vec(typeidx)) ⇒ 𝑥*

5.5.7 Table Section

The table section has the id 4. It decodes into a vector of tables that represent the tables component of a module.

tablesec ::= tab*:section4(vec(table)) ⇒ tab*

table ::= tt :tabletype ⇒ {type tt}

5.5.8 Memory Section

The memory section has the id 5. It decodes into a vector of memories that represent the mems component of a
module.

memsec ::= mem*:section5(vec(mem)) ⇒ mem*

mem ::= mt :memtype ⇒ {type mt}

5.5.9 Global Section

The global section has the id 6. It decodes into a vector of globals that represent the globals component of a
module.

globalsec ::= glob*:section6(vec(global)) ⇒ glob*

global ::= gt :globaltype 𝑒:expr ⇒ {type gt , init 𝑒}

5.5.10 Export Section

The export section has the id 7. It decodes into a vector of exports that represent the exports component of a
module.

exportsec ::= ex*:section7(vec(export)) ⇒ ex*

export ::= nm:name 𝑑:exportdesc ⇒ {name nm, desc 𝑑}
exportdesc ::= 0x00 𝑥:funcidx ⇒ func 𝑥

| 0x01 𝑥:tableidx ⇒ table 𝑥
| 0x02 𝑥:memidx ⇒ mem 𝑥
| 0x03 𝑥:globalidx ⇒ global 𝑥

5.5. Modules 115

WebAssembly Specification, Release 1.1

5.5.11 Start Section

The start section has the id 8. It decodes into an optional start function that represents the start component of a
module.

startsec ::= st?:section8(start) ⇒ st?

start ::= 𝑥:funcidx ⇒ {func 𝑥}

5.5.12 Element Section

The element section has the id 9. It decodes into a vector of element segments that represent the elems component
of a module.

elemsec ::= seg*:section9(vec(elem)) ⇒ seg
elem ::= 0x00 𝑒:expr 𝑦*:vec(funcidx) ⇒ {type funcref, init ((ref.func 𝑦) end)*,mode active {table 0, offset 𝑒}}

| 0x01 et : elemkind 𝑦*:vec(funcidx) ⇒ {type et , init ((ref.func 𝑦) end)*,mode passive}
| 0x02 𝑥:tableidx 𝑒:expr et : elemkind 𝑦*:vec(funcidx) ⇒ {type et , init ((ref.func 𝑦) end)*,mode active {table 𝑥, offset 𝑒}}
| 0x04 𝑒:expr el*:vec(elemexpr) ⇒ {type funcref, init el*,mode active {table 0, offset 𝑒}}
| 0x05 et : elemtype el*:vec(elemexpr) ⇒ {type 𝑒𝑡, init el*,mode passive}
| 0x06 𝑥:tableidx 𝑒:expr et : elemtype el*:vec(elemexpr) ⇒ {type 𝑒𝑡, init el*,mode active {table 𝑥, offset 𝑒}}

elemkind ::= 0x00 ⇒ funcref
elemexpr ::= 0xD0 0x70 0x0B ⇒ ref.null end

| 0xD2 𝑥:funcidx 0x0B ⇒ (ref.func 𝑥) end

Note: The initial byte can be interpreted as a bitfield. Bit 0 indicates a passive segment, bit 1 indicates the
presence of an explicit table index for an active segment, bit 2 indicates the use of element type and element
expressions instead of element kind and element indices.

In the current version of WebAssembly, at most one table may be defined or imported in a single module, so all
valid active element segments have a table value of 0.

Additional element kinds may be added in future versions of WebAssembly.

5.5.13 Code Section

The code section has the id 10. It decodes into a vector of code entries that are pairs of value type vectors and
expressions. They represent the locals and body field of the functions in the funcs component of a module. The
type fields of the respective functions are encoded separately in the function section.

The encoding of each code entry consists of

• the u32 size of the function code in bytes,

• the actual function code, which in turn consists of

– the declaration of locals,

– the function body as an expression.

Local declarations are compressed into a vector whose entries consist of

• a u32 count,

• a value type,

denoting count locals of the same value type.

codesec ::= code*:section10(vec(code)) ⇒ code*

code ::= size:u32 code:func ⇒ code (if size = ||func||)
func ::= (𝑡*)*:vec(locals) 𝑒:expr ⇒ concat((𝑡*)*), 𝑒* (if |concat((𝑡*)*)| < 232)
locals ::= 𝑛:u32 𝑡:valtype ⇒ 𝑡𝑛

116 Chapter 5. Binary Format

WebAssembly Specification, Release 1.1

Here, code ranges over pairs (valtype*, expr). The meta function concat((𝑡*)*) concatenates all sequences 𝑡*𝑖 in
(𝑡*)*. Any code for which the length of the resulting sequence is out of bounds of the maximum size of a vector
is malformed.

Note: Like with sections, the code size is not needed for decoding, but can be used to skip functions when
navigating through a binary. The module is malformed if a size does not match the length of the respective
function code.

5.5.14 Data Section

The data section has the id 11. It decodes into a vector of data segments that represent the datas component of a
module.

datasec ::= seg*:section11(vec(data)) ⇒ seg
data ::= 0x00 𝑒:expr 𝑏*:vec(byte) ⇒ {init 𝑏*,mode active {memory 0, offset 𝑒}}

| 0x01 𝑏*:vec(byte) ⇒ {init 𝑏*,mode passive}
| 0x02 𝑥:memidx 𝑒:expr 𝑏*:vec(byte) ⇒ {init 𝑏*,mode active {memory 𝑥, offset 𝑒}}

Note: The initial byte can be interpreted as a bitfield. Bit 0 indicates a passive segment, bit 1 indicates the
presence of an explicit memory index for an active segment.

In the current version of WebAssembly, at most one memory may be defined or imported in a single module, so
all valid active data segments have a memory value of 0.

5.5.15 Data Count Section

The data count section has the id 12. It decodes into an optional u32 that represents the number of data segments
in the data section. If this count does not match the length of the data segment vector, the module is malformed.

datacountsec ::= n?:section12(u32) ⇒ n?

Note: The data count section is used to simplify single-pass validation. Since the data section occurs after the
code section, the memory.init and data.drop instructions would not be able to check whether the data segment
index is valid until the data section is read. The data count section occurs before the code section, so a single-pass
validator can use this count instead of deferring validation.

5.5.16 Modules

The encoding of a module starts with a preamble containing a 4-byte magic number (the string ‘∖0asm’) and a
version field. The current version of the WebAssembly binary format is 1.

The preamble is followed by a sequence of sections. Custom sections may be inserted at any place in this sequence,
while other sections must occur at most once and in the prescribed order. All sections can be empty.

The lengths of vectors produced by the (possibly empty) function and code section must match up.

Similarly, the optional data count must match the length of the data segment vector. Furthermore, it must be

5.5. Modules 117

WebAssembly Specification, Release 1.1

present if any 𝑑𝑎𝑡𝑎𝑖𝑛𝑑𝑒𝑥 < 𝑠𝑦𝑛𝑡𝑎𝑥− 𝑑𝑎𝑡𝑎𝑖𝑑𝑥 > occurs in the code section.

magic ::= 0x00 0x61 0x73 0x6D

version ::= 0x01 0x00 0x00 0x00

module ::= magic

version

customsec*

functype*: typesec
customsec*

import*: importsec
customsec*

typeidx𝑛: funcsec
customsec*

table*: tablesec
customsec*

mem*: memsec
customsec*

global*: globalsec
customsec*

export*: exportsec
customsec*

start?: startsec
customsec*

elem*: elemsec
customsec*

𝑚?: datacountsec
customsec*

code𝑛: codesec
customsec*

data𝑚: datasec
customsec* ⇒ { types functype*,

funcs func𝑛,
tables table*,
mems mem*,
globals global*,
elems elem*,
datas data𝑚,
start start?,
imports import*,
exports export* }

(if 𝑚? ̸= 𝜖 ∨ dataidx(code𝑛) = ∅)

where for each 𝑡*𝑖 , 𝑒𝑖 in code𝑛,

func𝑛[𝑖] = {type typeidx𝑛[𝑖], locals 𝑡*𝑖 , body 𝑒𝑖})

Note: The version of the WebAssembly binary format may increase in the future if backward-incompatible
changes have to be made to the format. However, such changes are expected to occur very infrequently, if ever. The
binary format is intended to be forward-compatible, such that future extensions can be made without incrementing
its version.

118 Chapter 5. Binary Format

CHAPTER 6

Text Format

6.1 Conventions

The textual format for WebAssembly modules is a rendering of their abstract syntax into S-expressions35.

Like the binary format, the text format is defined by an attribute grammar. A text string is a well-formed de-
scription of a module if and only if it is generated by the grammar. Each production of this grammar has at most
one synthesized attribute: the abstract syntax that the respective character sequence expresses. Thus, the attribute
grammar implicitly defines a parsing function. Some productions also take a context as an inherited attribute that
records bound identifers.

Except for a few exceptions, the core of the text grammar closely mirrors the grammar of the abstract syntax.
However, it also defines a number of abbreviations that are “syntactic sugar” over the core syntax.

The recommended extension for files containing WebAssembly modules in text format is “.wat”. Files with this
extension are assumed to be encoded in UTF-8, as per Unicode36 (Section 2.5).

6.1.1 Grammar

The following conventions are adopted in defining grammar rules of the text format. They mirror the conventions
used for abstract syntax and for the binary format. In order to distinguish symbols of the textual syntax from
symbols of the abstract syntax, typewriter font is adopted for the former.

• Terminal symbols are either literal strings of characters enclosed in quotes or expressed as Unicode37 scalar
values: ‘module’, U+0A. (All characters written literally are unambiguously drawn from the 7-bit ASCII38

subset of Unicode.)

• Nonterminal symbols are written in typewriter font: valtype, instr.

• 𝑇𝑛 is a sequence of 𝑛 ≥ 0 iterations of 𝑇 .

• 𝑇 * is a possibly empty sequence of iterations of 𝑇 . (This is a shorthand for 𝑇𝑛 used where 𝑛 is not relevant.)

• 𝑇+ is a sequence of one or more iterations of 𝑇 . (This is a shorthand for 𝑇𝑛 where 𝑛 ≥ 1.)

• 𝑇 ? is an optional occurrence of 𝑇 . (This is a shorthand for 𝑇𝑛 where 𝑛 ≤ 1.)

35 https://en.wikipedia.org/wiki/S-expression
36 http://www.unicode.org/versions/latest/
37 http://www.unicode.org/versions/latest/
38 http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

119

https://en.wikipedia.org/wiki/S-expression
http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 1.1

• 𝑥:𝑇 denotes the same language as the nonterminal 𝑇 , but also binds the variable 𝑥 to the attribute synthe-
sized for 𝑇 .

• Productions are written sym ::= 𝑇1 ⇒ 𝐴1 | . . . | 𝑇𝑛 ⇒ 𝐴𝑛, where each 𝐴𝑖 is the attribute that is
synthesized for sym in the given case, usually from attribute variables bound in 𝑇𝑖.

• Some productions are augmented by side conditions in parentheses, which restrict the applicability of the
production. They provide a shorthand for a combinatorial expansion of the production into many separate
cases.

• If the same meta variable or non-terminal symbol appears multiple times in a production (in the syntax or
in an attribute), then all those occurrences must have the same instantiation.

• A distinction is made between lexical and syntactic productions. For the latter, arbitrary white space is
allowed in any place where the grammar contains spaces. The productions defining lexical syntax and the
syntax of values are considered lexical, all others are syntactic.

Note: For example, the textual grammar for value types is given as follows:

valtype ::= ‘i32’ ⇒ i32
| ‘i64’ ⇒ i64
| ‘f32’ ⇒ f32
| ‘f64’ ⇒ f64

The textual grammar for limits is defined as follows:

limits ::= 𝑛:u32 ⇒ {min 𝑛,max 𝜖}
| 𝑛:u32 𝑚:u32 ⇒ {min 𝑛,max 𝑚}

The variables 𝑛 and 𝑚 name the attributes of the respective u32 nonterminals, which in this case are the actual
unsigned integers those parse into. The attribute of the complete production then is the abstract syntax for the
limit, expressed in terms of the former values.

6.1.2 Abbreviations

In addition to the core grammar, which corresponds directly to the abstract syntax, the textual syntax also defines
a number of abbreviations that can be used for convenience and readability.

Abbreviations are defined by rewrite rules specifying their expansion into the core syntax:

abbreviation syntax ≡ expanded syntax

These expansions are assumed to be applied, recursively and in order of appearance, before applying the core
grammar rules to construct the abstract syntax.

6.1.3 Contexts

The text format allows the use of symbolic identifiers in place of indices. To resolve these identifiers into concrete
indices, some grammar production are indexed by an identifier context 𝐼 as a synthesized attribute that records the
declared identifiers in each index space. In addition, the context records the types defined in the module, so that
parameter indices can be computed for functions.

120 Chapter 6. Text Format

WebAssembly Specification, Release 1.1

It is convenient to define identifier contexts as records 𝐼 with abstract syntax as follows:

𝐼 ::= { types (id?)*,
funcs (id?)*,
tables (id?)*,
mems (id?)*,
globals (id?)*,
elem (id?)*,
data (id?)*,
locals (id?)*,
labels (id?)*,
typedefs functype* }

For each index space, such a context contains the list of identifiers assigned to the defined indices. Unnamed
indices are associated with empty (𝜖) entries in these lists.

An identifier context is well-formed if no index space contains duplicate identifiers.

Conventions

To avoid unnecessary clutter, empty components are omitted when writing out identifier contexts. For example,
the record {} is shorthand for an identifier context whose components are all empty.

6.1.4 Vectors

Vectors are written as plain sequences, but with a restriction on the length of these sequence.

vec(A) ::= (𝑥:A)𝑛 ⇒ 𝑥𝑛 (if 𝑛 < 232)

6.2 Lexical Format

6.2.1 Characters

The text format assigns meaning to source text, which consists of a sequence of characters. Characters are assumed
to be represented as valid Unicode39 (Section 2.4) scalar values.

source ::= char*

char ::= U+00 | . . . | U+D7FF | U+E000 | . . . | U+10FFFF

Note: While source text may contain any Unicode character in comments or string literals, the rest of the grammar
is formed exclusively from the characters supported by the 7-bit ASCII40 subset of Unicode.

39 http://www.unicode.org/versions/latest/
40 http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

6.2. Lexical Format 121

http://www.unicode.org/versions/latest/
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 1.1

6.2.2 Tokens

The character stream in the source text is divided, from left to right, into a sequence of tokens, as defined by the
following grammar.

token ::= keyword | u𝑁 | s𝑁 | f𝑁 | string | id | ‘(’ | ‘)’ | reserved
keyword ::= (‘a’ | . . . | ‘z’) idchar* (if occurring as a literal terminal in the grammar)
reserved ::= idchar+

Tokens are formed from the input character stream according to the longest match rule. That is, the next token
always consists of the longest possible sequence of characters that is recognized by the above lexical grammar.
Tokens can be separated by white space, but except for strings, they cannot themselves contain whitespace.

The set of keyword tokens is defined implicitly, by all occurrences of a terminal symbol in literal form, such as
‘keyword’, in a syntactic production of this chapter.

Any token that does not fall into any of the other categories is considered reserved, and cannot occur in source
text.

Note: The effect of defining the set of reserved tokens is that all tokens must be separated by either parentheses
or white space. For example, ‘0$x’ is a single reserved token. Consequently, it is not recognized as two separate
tokens ‘0’ and ‘$x’, but instead disallowed. This property of tokenization is not affected by the fact that the
definition of reserved tokens overlaps with other token classes.

6.2.3 White Space

White space is any sequence of literal space characters, formatting characters, or comments. The allowed format-
ting characters correspond to a subset of the ASCII41 format effectors, namely, horizontal tabulation (U+09), line
feed (U+0A), and carriage return (U+0D).

space ::= (‘ ’ | format | comment)*

format ::= U+09 | U+0A | U+0D

The only relevance of white space is to separate tokens. It is otherwise ignored.

6.2.4 Comments

A comment can either be a line comment, started with a double semicolon ‘;;’ and extending to the end of the line,
or a block comment, enclosed in delimiters ‘(;’ . . . ‘;)’. Block comments can be nested.

comment ::= linecomment | blockcomment
linecomment ::= ‘;;’ linechar* (U+0A | eof)
linechar ::= 𝑐:char (if 𝑐 ̸= U+0A)
blockcomment ::= ‘(;’ blockchar* ‘;)’
blockchar ::= 𝑐:char (if 𝑐 ̸= ‘;’ ∧ 𝑐 ̸= ‘(’)

| ‘;’ (if the next character is not ‘)’)
| ‘(’ (if the next character is not ‘;’)
| blockcomment

Here, the pseudo token eof indicates the end of the input. The look-ahead restrictions on the productions for
blockchar disambiguate the grammar such that only well-bracketed uses of block comment delimiters are al-
lowed.

Note: Any formatting and control characters are allowed inside comments.

41 http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

122 Chapter 6. Text Format

http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 1.1

6.3 Values

The grammar productions in this section define lexical syntax, hence no white space is allowed.

6.3.1 Integers

All integers can be written in either decimal or hexadecimal notation. In both cases, digits can optionally be
separated by underscores.

sign ::= 𝜖 ⇒ + | ‘+’ ⇒ + | ‘−’ ⇒ −
digit ::= ‘0’ ⇒ 0 | . . . | ‘9’ ⇒ 9
hexdigit ::= 𝑑:digit ⇒ 𝑑

| ‘A’ ⇒ 10 | . . . | ‘F’ ⇒ 15
| ‘a’ ⇒ 10 | . . . | ‘f’ ⇒ 15

num ::= 𝑑:digit ⇒ 𝑑

| 𝑛:num ‘_’? 𝑑:digit ⇒ 10 · 𝑛 + 𝑑
hexnum ::= ℎ:hexdigit ⇒ ℎ

| 𝑛:hexnum ‘_’? ℎ:hexdigit ⇒ 16 · 𝑛 + ℎ

The allowed syntax for integer literals depends on size and signedness. Moreover, their value must lie within the
range of the respective type.

u𝑁 ::= 𝑛:num ⇒ 𝑛 (if 𝑛 < 2𝑁)
| ‘0x’ 𝑛:hexnum ⇒ 𝑛 (if 𝑛 < 2𝑁)

s𝑁 ::= ±:sign 𝑛:num ⇒ ±𝑛 (if −2𝑁−1 ≤ ±𝑛 < 2𝑁−1)
| ±:sign ‘0x’ 𝑛:hexnum ⇒ ±𝑛 (if −2𝑁−1 ≤ ±𝑛 < 2𝑁−1)

Uninterpreted integers can be written as either signed or unsigned, and are normalized to unsigned in the abstract
syntax.

i𝑁 ::= 𝑛:u𝑁 ⇒ 𝑛
| 𝑖:s𝑁 ⇒ 𝑛 (if 𝑖 = signed(𝑛))

6.3.2 Floating-Point

Floating-point values can be represented in either decimal or hexadecimal notation.

frac ::= 𝑑:digit ⇒ 𝑑/10

| 𝑑:digit ‘_’? 𝑝:frac ⇒ (𝑑 + 𝑝/10)/10
hexfrac ::= ℎ:hexdigit ⇒ ℎ/16

| ℎ:hexdigit ‘_’? 𝑝:hexfrac ⇒ (ℎ + 𝑝/16)/16

float ::= 𝑝:num ‘.’? ⇒ 𝑝
| 𝑝:num ‘.’ 𝑞:frac ⇒ 𝑝 + 𝑞

| 𝑝:num ‘.’? (‘E’ | ‘e’) ±:sign 𝑒:num ⇒ 𝑝 · 10±𝑒

| 𝑝:num ‘.’ 𝑞:frac (‘E’ | ‘e’) ±:sign 𝑒:num ⇒ (𝑝 + 𝑞) · 10±𝑒

hexfloat ::= ‘0x’ 𝑝:hexnum ‘.’? ⇒ 𝑝
| ‘0x’ 𝑝:hexnum ‘.’ 𝑞:hexfrac ⇒ 𝑝 + 𝑞

| ‘0x’ 𝑝:hexnum ‘.’? (‘P’ | ‘p’) ±:sign 𝑒:num ⇒ 𝑝 · 2±𝑒

| ‘0x’ 𝑝:hexnum ‘.’ 𝑞:hexfrac (‘P’ | ‘p’) ±:sign 𝑒:num ⇒ (𝑝 + 𝑞) · 2±𝑒

The value of a literal must not lie outside the representable range of the corresponding IEEE 754-201942 type (that
is, a numeric value must not overflow to ±infinity), but it may be rounded to the nearest representable value.

42 https://ieeexplore.ieee.org/document/8766229

6.3. Values 123

https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 1.1

Note: Rounding can be prevented by using hexadecimal notation with no more significant bits than supported by
the required type.

Floating-point values may also be written as constants for infinity or canonical NaN (not a number). Furthermore,
arbitrary NaN values may be expressed by providing an explicit payload value.

f𝑁 ::= ±:sign 𝑧:f𝑁mag ⇒ ±𝑧
f𝑁mag ::= 𝑧:float ⇒ float𝑁 (𝑧) (if float𝑁 (𝑧) ̸= ±∞)

| 𝑧:hexfloat ⇒ float𝑁 (𝑧) (if float𝑁 (𝑧) ̸= ±∞)
| ‘inf’ ⇒ ∞
| ‘nan’ ⇒ nan(2signif(𝑁)−1)
| ‘nan:0x’ 𝑛:hexnum ⇒ nan(𝑛) (if 1 ≤ 𝑛 < 2signif(𝑁))

6.3.3 Strings

Strings denote sequences of bytes that can represent both textual and binary data. They are enclosed in quotation
marks and may contain any character other than ASCII43 control characters, quotation marks (‘”’), or backslash
(‘∖’), except when expressed with an escape sequence.

string ::= ‘”’ (𝑏*:stringelem)* ‘”’ ⇒ concat((𝑏*)*) (if |concat((𝑏*)*)| < 232)
stringelem ::= 𝑐:stringchar ⇒ utf8(𝑐)

| ‘∖’ 𝑛:hexdigit𝑚:hexdigit ⇒ 16 · 𝑛 + 𝑚

Each character in a string literal represents the byte sequence corresponding to its UTF-8 Unicode44 (Section 2.5)
encoding, except for hexadecimal escape sequences ‘∖ℎℎ’, which represent raw bytes of the respective value.

stringchar ::= 𝑐:char ⇒ 𝑐 (if 𝑐 ≥ U+20 ∧ 𝑐 ̸= U+7F ∧ 𝑐 ̸= ‘”’ ∧ 𝑐 ̸= ‘∖’)
| ‘∖t’ ⇒ U+09
| ‘∖n’ ⇒ U+0A
| ‘∖r’ ⇒ U+0D
| ‘∖”’ ⇒ U+22
| ‘∖′’ ⇒ U+27
| ‘∖∖’ ⇒ U+5C
| ‘∖u{’ 𝑛:hexnum ‘}’ ⇒ U+(n) (if 𝑛 < 0xD800 ∨ 0xE000 ≤ 𝑛 < 0x110000)

6.3.4 Names

Names are strings denoting a literal character sequence. A name string must form a valid UTF-8 encoding as
defined by Unicode45 (Section 2.5) and is interpreted as a string of Unicode scalar values.

name ::= 𝑏*:string ⇒ 𝑐* (if 𝑏* = utf8(𝑐*))

Note: Presuming the source text is itself encoded correctly, strings that do not contain any uses of hexadecimal
byte escapes are always valid names.

43 http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d
44 http://www.unicode.org/versions/latest/
45 http://www.unicode.org/versions/latest/

124 Chapter 6. Text Format

http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d
http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/

WebAssembly Specification, Release 1.1

6.3.5 Identifiers

Indices can be given in both numeric and symbolic form. Symbolic identifiers that stand in lieu of indices start
with ‘$’, followed by any sequence of printable ASCII46 characters that does not contain a space, quotation mark,
comma, semicolon, or bracket.

id ::= ‘$’ idchar+

idchar ::= ‘0’ | . . . | ‘9’
| ‘A’ | . . . | ‘Z’
| ‘a’ | . . . | ‘z’
| ‘!’ | ‘#’ | ‘$’ | ‘%’ | ‘&’ | ‘′’ | ‘*’ | ‘+’ | ‘−’ | ‘.’ | ‘/’
| ‘:’ | ‘<’ | ‘=’ | ‘>’ | ‘?’ | ‘@’ | ‘∖’ | ‘^’ | ‘_’ | ‘`’ | ‘|’ | ‘~’

Conventions

The expansion rules of some abbreviations require insertion of a fresh identifier. That may be any syntactically
valid identifier that does not already occur in the given source text.

6.4 Types

6.4.1 Value Types

valtype ::= ‘i32’ ⇒ i32
| ‘i64’ ⇒ i64
| ‘f32’ ⇒ f32
| ‘f64’ ⇒ f64

6.4.2 Function Types

functype ::= ‘(’ ‘func’ 𝑡*1: vec(param) 𝑡*2: vec(result) ‘)’ ⇒ [𝑡*1] → [𝑡*2]
param ::= ‘(’ ‘param’ id? 𝑡:valtype ‘)’ ⇒ 𝑡
result ::= ‘(’ ‘result’ 𝑡:valtype ‘)’ ⇒ 𝑡

Abbreviations

Multiple anonymous parameters or results may be combined into a single declaration:

‘(’ ‘param’ valtype* ‘)’ ≡ (‘(’ ‘param’ valtype ‘)’)*

‘(’ ‘result’ valtype* ‘)’ ≡ (‘(’ ‘result’ valtype ‘)’)*

6.4.3 Limits

limits ::= 𝑛:u32 ⇒ {min 𝑛,max 𝜖}
| 𝑛:u32 𝑚:u32 ⇒ {min 𝑛,max 𝑚}

46 http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

6.4. Types 125

http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 1.1

6.4.4 Memory Types

memtype ::= lim:limits ⇒ lim

6.4.5 Table Types

tabletype ::= lim:limits et :elemtype ⇒ lim et
elemtype ::= ‘funcref’ ⇒ funcref

Note: Additional element types may be introduced in future versions of WebAssembly.

6.4.6 Global Types

globaltype ::= 𝑡:valtype ⇒ const 𝑡
| ‘(’ ‘mut’ 𝑡:valtype ‘)’ ⇒ var 𝑡

6.5 Instructions

Instructions are syntactically distinguished into plain and structured instructions.

instr𝐼 ::= in:plaininstr𝐼 ⇒ in
| in:blockinstr𝐼 ⇒ in

In addition, as a syntactic abbreviation, instructions can be written as S-expressions in folded form, to group them
visually.

6.5.1 Labels

Structured control instructions can be annotated with a symbolic label identifier. They are the only symbolic
identifiers that can be bound locally in an instruction sequence. The following grammar handles the corresponding
update to the identifier context by composing the context with an additional label entry.

label𝐼 ::= 𝑣:id ⇒ {labels 𝑣} ⊕ 𝐼 (if 𝑣 /∈ 𝐼.labels)
| 𝜖 ⇒ {labels (𝜖)} ⊕ 𝐼

Note: The new label entry is inserted at the beginning of the label list in the identifier context. This effectively
shifts all existing labels up by one, mirroring the fact that control instructions are indexed relatively not absolutely.

6.5.2 Control Instructions

Structured control instructions can bind an optional symbolic label identifier. The same label identifier may op-
tionally be repeated after the corresponding end and else pseudo instructions, to indicate the matching delimiters.

126 Chapter 6. Text Format

WebAssembly Specification, Release 1.1

Their block type is given as a type use, analogous to the type of functions. However, the special case of a type
use that is syntactically empty or consists of only a single result is not regarded as an abbreviation for an inline
function type, but is parsed directly into an optional value type.

blocktype𝐼 ::=
|

(𝑡:result)? ⇒ 𝑡?

𝑥, 𝐼 ′:typeuse𝐼 ⇒ 𝑥 (if 𝐼 ′ = {})
blockinstr𝐼 ::= ‘block’ 𝐼 ′:label𝐼 bt :blocktype (in:instr𝐼′)* ‘end’ id?

⇒ block bt in* end (if id? = 𝜖 ∨ id? = label)
| ‘loop’ 𝐼 ′:label𝐼 bt :blocktype (in:instr𝐼′)* ‘end’ id?

⇒ loop bt in* end (if id? = 𝜖 ∨ id? = label)
| ‘if’ 𝐼 ′:label𝐼 bt :blocktype (in1:instr𝐼′)* ‘else’ id?1 (in2:instr𝐼′)* ‘end’ id?2

⇒ if bt in*
1 else in

*
2 end (if id?1 = 𝜖 ∨ id?1 = label, id?2 = 𝜖 ∨ id?2 = label)

Note: The side condition stating that the identifier context 𝐼 ′ must be empty in the rule for typeuse block types
enforces that no identifier can be bound in any param declaration for a block type.

All other control instruction are represented verbatim.

plaininstr𝐼 ::= ‘unreachable’ ⇒ unreachable
| ‘nop’ ⇒ nop
| ‘br’ 𝑙:labelidx𝐼 ⇒ br 𝑙
| ‘br_if’ 𝑙:labelidx𝐼 ⇒ br_if 𝑙
| ‘br_table’ 𝑙*:vec(labelidx𝐼) 𝑙𝑁 :labelidx𝐼 ⇒ br_table 𝑙* 𝑙𝑁
| ‘return’ ⇒ return
| ‘call’ 𝑥:funcidx𝐼 ⇒ call 𝑥
| ‘call_indirect’ 𝑥, 𝐼 ′:typeuse𝐼 ⇒ call_indirect 𝑥 (if 𝐼 ′ = {})

Note: The side condition stating that the identifier context 𝐼 ′ must be empty in the rule for call_indirect enforces
that no identifier can be bound in any param declaration appearing in the type annotation.

Abbreviations

The ‘else’ keyword of an ‘if’ instruction can be omitted if the following instruction sequence is empty.

‘if’ label blocktype instr* ‘end’ ≡ ‘if’ label blocktype instr* ‘else’ ‘end’

6.5.3 Parametric Instructions

plaininstr𝐼 ::= . . .
| ‘drop’ ⇒ drop
| ‘select’ ⇒ select

6.5.4 Variable Instructions

plaininstr𝐼 ::= . . .
| ‘local.get’ 𝑥:localidx𝐼 ⇒ local.get 𝑥
| ‘local.set’ 𝑥:localidx𝐼 ⇒ local.set 𝑥
| ‘local.tee’ 𝑥:localidx𝐼 ⇒ local.tee 𝑥
| ‘global.get’ 𝑥:globalidx𝐼 ⇒ global.get 𝑥
| ‘global.set’ 𝑥:globalidx𝐼 ⇒ global.set 𝑥

6.5. Instructions 127

WebAssembly Specification, Release 1.1

6.5.5 Table Instructions

plaininstr𝐼 ::= . . .
| ‘table.copy’ ⇒ table.copy
| ‘table.init’ 𝑥:elemidx𝐼 ⇒ table.init 𝑥
| ‘elem.drop’ 𝑥:elemidx𝐼 ⇒ elem.drop 𝑥

6.5.6 Memory Instructions

The offset and alignment immediates to memory instructions are optional. The offset defaults to 0, the alignment
to the storage size of the respective memory access, which is its natural alignment. Lexically, an offset or align
phrase is considered a single keyword token, so no white space is allowed around the ‘=’.

memarg𝑁 ::= 𝑜:offset 𝑎:align𝑁 ⇒ {align 𝑛, offset 𝑜} (if 𝑎 = 2𝑛)
offset ::= ‘offset=’𝑜:u32 ⇒ 𝑜

| 𝜖 ⇒ 0
align𝑁 ::= ‘align=’𝑎:u32 ⇒ 𝑎

| 𝜖 ⇒ 𝑁
plaininstr𝐼 ::= . . .

| ‘i32.load’ 𝑚:memarg4 ⇒ i32.load𝑚
| ‘i64.load’ 𝑚:memarg8 ⇒ i64.load𝑚
| ‘f32.load’ 𝑚:memarg4 ⇒ f32.load𝑚
| ‘f64.load’ 𝑚:memarg8 ⇒ f64.load𝑚
| ‘i32.load8_s’ 𝑚:memarg1 ⇒ i32.load8_s𝑚
| ‘i32.load8_u’ 𝑚:memarg1 ⇒ i32.load8_u𝑚
| ‘i32.load16_s’ 𝑚:memarg2 ⇒ i32.load16_s 𝑚
| ‘i32.load16_u’ 𝑚:memarg2 ⇒ i32.load16_u𝑚
| ‘i64.load8_s’ 𝑚:memarg1 ⇒ i64.load8_s𝑚
| ‘i64.load8_u’ 𝑚:memarg1 ⇒ i64.load8_u𝑚
| ‘i64.load16_s’ 𝑚:memarg2 ⇒ i64.load16_s 𝑚
| ‘i64.load16_u’ 𝑚:memarg2 ⇒ i64.load16_u𝑚
| ‘i64.load32_s’ 𝑚:memarg4 ⇒ i64.load32_s 𝑚
| ‘i64.load32_u’ 𝑚:memarg4 ⇒ i64.load32_u𝑚
| ‘i32.store’ 𝑚:memarg4 ⇒ i32.store 𝑚
| ‘i64.store’ 𝑚:memarg8 ⇒ i64.store 𝑚
| ‘f32.store’ 𝑚:memarg4 ⇒ f32.store 𝑚
| ‘f64.store’ 𝑚:memarg8 ⇒ f64.store 𝑚
| ‘i32.store8’ 𝑚:memarg1 ⇒ i32.store8 𝑚
| ‘i32.store16’ 𝑚:memarg2 ⇒ i32.store16 𝑚
| ‘i64.store8’ 𝑚:memarg1 ⇒ i64.store8 𝑚
| ‘i64.store16’ 𝑚:memarg2 ⇒ i64.store16 𝑚
| ‘i64.store32’ 𝑚:memarg4 ⇒ i64.store32 𝑚
| ‘memory.size’ ⇒ memory.size
| ‘memory.grow’ ⇒ memory.grow
| ‘memory.fill’ ⇒ memory.fill
| ‘memory.copy’ ⇒ memory.copy
| ‘memory.init’ 𝑥:dataidx𝐼 ⇒ memory.init 𝑥
| ‘data.drop’ 𝑥:dataidx𝐼 ⇒ data.drop 𝑥

128 Chapter 6. Text Format

WebAssembly Specification, Release 1.1

6.5.7 Numeric Instructions

plaininstr𝐼 ::= . . .
| ‘i32.const’ 𝑛:i32 ⇒ i32.const 𝑛
| ‘i64.const’ 𝑛:i64 ⇒ i64.const 𝑛
| ‘f32.const’ 𝑧:f32 ⇒ f32.const 𝑧
| ‘f64.const’ 𝑧:f64 ⇒ f64.const 𝑧

| ‘i32.clz’ ⇒ i32.clz
| ‘i32.ctz’ ⇒ i32.ctz
| ‘i32.popcnt’ ⇒ i32.popcnt
| ‘i32.add’ ⇒ i32.add
| ‘i32.sub’ ⇒ i32.sub
| ‘i32.mul’ ⇒ i32.mul
| ‘i32.div_s’ ⇒ i32.div_s
| ‘i32.div_u’ ⇒ i32.div_u
| ‘i32.rem_s’ ⇒ i32.rem_s
| ‘i32.rem_u’ ⇒ i32.rem_u
| ‘i32.and’ ⇒ i32.and
| ‘i32.or’ ⇒ i32.or
| ‘i32.xor’ ⇒ i32.xor
| ‘i32.shl’ ⇒ i32.shl
| ‘i32.shr_s’ ⇒ i32.shr_s
| ‘i32.shr_u’ ⇒ i32.shr_u
| ‘i32.rotl’ ⇒ i32.rotl
| ‘i32.rotr’ ⇒ i32.rotr

| ‘i64.clz’ ⇒ i64.clz
| ‘i64.ctz’ ⇒ i64.ctz
| ‘i64.popcnt’ ⇒ i64.popcnt
| ‘i64.add’ ⇒ i64.add
| ‘i64.sub’ ⇒ i64.sub
| ‘i64.mul’ ⇒ i64.mul
| ‘i64.div_s’ ⇒ i64.div_s
| ‘i64.div_u’ ⇒ i64.div_u
| ‘i64.rem_s’ ⇒ i64.rem_s
| ‘i64.rem_u’ ⇒ i64.rem_u
| ‘i64.and’ ⇒ i64.and
| ‘i64.or’ ⇒ i64.or
| ‘i64.xor’ ⇒ i64.xor
| ‘i64.shl’ ⇒ i64.shl
| ‘i64.shr_s’ ⇒ i64.shr_s
| ‘i64.shr_u’ ⇒ i64.shr_u
| ‘i64.rotl’ ⇒ i64.rotl
| ‘i64.rotr’ ⇒ i64.rotr

6.5. Instructions 129

WebAssembly Specification, Release 1.1

| ‘f32.abs’ ⇒ f32.abs
| ‘f32.neg’ ⇒ f32.neg
| ‘f32.ceil’ ⇒ f32.ceil
| ‘f32.floor’ ⇒ f32.floor
| ‘f32.trunc’ ⇒ f32.trunc
| ‘f32.nearest’ ⇒ f32.nearest
| ‘f32.sqrt’ ⇒ f32.sqrt
| ‘f32.add’ ⇒ f32.add
| ‘f32.sub’ ⇒ f32.sub
| ‘f32.mul’ ⇒ f32.mul
| ‘f32.div’ ⇒ f32.div
| ‘f32.min’ ⇒ f32.min
| ‘f32.max’ ⇒ f32.max
| ‘f32.copysign’ ⇒ f32.copysign

| ‘f64.abs’ ⇒ f64.abs
| ‘f64.neg’ ⇒ f64.neg
| ‘f64.ceil’ ⇒ f64.ceil
| ‘f64.floor’ ⇒ f64.floor
| ‘f64.trunc’ ⇒ f64.trunc
| ‘f64.nearest’ ⇒ f64.nearest
| ‘f64.sqrt’ ⇒ f64.sqrt
| ‘f64.add’ ⇒ f64.add
| ‘f64.sub’ ⇒ f64.sub
| ‘f64.mul’ ⇒ f64.mul
| ‘f64.div’ ⇒ f64.div
| ‘f64.min’ ⇒ f64.min
| ‘f64.max’ ⇒ f64.max
| ‘f64.copysign’ ⇒ f64.copysign

| ‘i32.eqz’ ⇒ i32.eqz
| ‘i32.eq’ ⇒ i32.eq
| ‘i32.ne’ ⇒ i32.ne
| ‘i32.lt_s’ ⇒ i32.lt_s
| ‘i32.lt_u’ ⇒ i32.lt_u
| ‘i32.gt_s’ ⇒ i32.gt_s
| ‘i32.gt_u’ ⇒ i32.gt_u
| ‘i32.le_s’ ⇒ i32.le_s
| ‘i32.le_u’ ⇒ i32.le_u
| ‘i32.ge_s’ ⇒ i32.ge_s
| ‘i32.ge_u’ ⇒ i32.ge_u

| ‘i64.eqz’ ⇒ i64.eqz
| ‘i64.eq’ ⇒ i64.eq
| ‘i64.ne’ ⇒ i64.ne
| ‘i64.lt_s’ ⇒ i64.lt_s
| ‘i64.lt_u’ ⇒ i64.lt_u
| ‘i64.gt_s’ ⇒ i64.gt_s
| ‘i64.gt_u’ ⇒ i64.gt_u
| ‘i64.le_s’ ⇒ i64.le_s
| ‘i64.le_u’ ⇒ i64.le_u
| ‘i64.ge_s’ ⇒ i64.ge_s
| ‘i64.ge_u’ ⇒ i64.ge_u

130 Chapter 6. Text Format

WebAssembly Specification, Release 1.1

| ‘f32.eq’ ⇒ f32.eq
| ‘f32.ne’ ⇒ f32.ne
| ‘f32.lt’ ⇒ f32.lt
| ‘f32.gt’ ⇒ f32.gt
| ‘f32.le’ ⇒ f32.le
| ‘f32.ge’ ⇒ f32.ge

| ‘f64.eq’ ⇒ f64.eq
| ‘f64.ne’ ⇒ f64.ne
| ‘f64.lt’ ⇒ f64.lt
| ‘f64.gt’ ⇒ f64.gt
| ‘f64.le’ ⇒ f64.le
| ‘f64.ge’ ⇒ f64.ge

| ‘i32.wrap_i64’ ⇒ i32.wrap_i64
| ‘i32.trunc_f32_s’ ⇒ i32.trunc_f32_s
| ‘i32.trunc_f32_u’ ⇒ i32.trunc_f32_u
| ‘i32.trunc_f64_s’ ⇒ i32.trunc_f64_s
| ‘i32.trunc_f64_u’ ⇒ i32.trunc_f64_u
| ‘i32.trunc_sat_f32_s’ ⇒ i32.trunc_sat_f32_s
| ‘i32.trunc_sat_f32_u’ ⇒ i32.trunc_sat_f32_u
| ‘i32.trunc_sat_f64_s’ ⇒ i32.trunc_sat_f64_s
| ‘i32.trunc_sat_f64_u’ ⇒ i32.trunc_sat_f64_u
| ‘i64.extend_i32_s’ ⇒ i64.extend_i32_s
| ‘i64.extend_i32_u’ ⇒ i64.extend_i32_u
| ‘i64.trunc_f32_s’ ⇒ i64.trunc_f32_s
| ‘i64.trunc_f32_u’ ⇒ i64.trunc_f32_u
| ‘i64.trunc_f64_s’ ⇒ i64.trunc_f64_s
| ‘i64.trunc_f64_u’ ⇒ i64.trunc_f64_u
| ‘i64.trunc_sat_f32_s’ ⇒ i64.trunc_sat_f32_s
| ‘i64.trunc_sat_f32_u’ ⇒ i64.trunc_sat_f32_u
| ‘i64.trunc_sat_f64_s’ ⇒ i64.trunc_sat_f64_s
| ‘i64.trunc_sat_f64_u’ ⇒ i64.trunc_sat_f64_u
| ‘f32.convert_i32_s’ ⇒ f32.convert_i32_s
| ‘f32.convert_i32_u’ ⇒ f32.convert_i32_u
| ‘f32.convert_i64_s’ ⇒ f32.convert_i64_s
| ‘f32.convert_i64_u’ ⇒ f32.convert_i64_u
| ‘f32.demote_f64’ ⇒ f32.demote_f64
| ‘f64.convert_i32_s’ ⇒ f64.convert_i32_s
| ‘f64.convert_i32_u’ ⇒ f64.convert_i32_u
| ‘f64.convert_i64_s’ ⇒ f64.convert_i64_s
| ‘f64.convert_i64_u’ ⇒ f64.convert_i64_u
| ‘f64.promote_f32’ ⇒ f64.promote_f32
| ‘i32.reinterpret_f32’ ⇒ i32.reinterpret_f32
| ‘i64.reinterpret_f64’ ⇒ i64.reinterpret_f64
| ‘f32.reinterpret_i32’ ⇒ f32.reinterpret_i32
| ‘f64.reinterpret_i64’ ⇒ f64.reinterpret_i64

| ‘i32.extend8_s’ ⇒ i32.extend8_s
| ‘i32.extend16_s’ ⇒ i32.extend16_s
| ‘i64.extend8_s’ ⇒ i64.extend8_s
| ‘i64.extend16_s’ ⇒ i64.extend16_s
| ‘i64.extend32_s’ ⇒ i64.extend32_s

6.5. Instructions 131

WebAssembly Specification, Release 1.1

6.5.8 Folded Instructions

Instructions can be written as S-expressions by grouping them into folded form. In that notation, an instruction is
wrapped in parentheses and optionally includes nested folded instructions to indicate its operands.

In the case of block instructions, the folded form omits the ‘end’ delimiter. For if instructions, both branches have
to be wrapped into nested S-expressions, headed by the keywords ‘then’ and ‘else’.

The set of all phrases defined by the following abbreviations recursively forms the auxiliary syntactic class
foldedinstr. Such a folded instruction can appear anywhere a regular instruction can.

‘(’ plaininstr foldedinstr* ‘)’ ≡ foldedinstr* plaininstr

‘(’ ‘block’ label blocktype instr* ‘)’ ≡ ‘block’ label blocktype instr* ‘end’
‘(’ ‘loop’ label blocktype instr* ‘)’ ≡ ‘loop’ label blocktype instr* ‘end’
‘(’ ‘if’ label blocktype foldedinstr* ‘(’ ‘then’ instr*1 ‘)’ ‘(’ ‘else’ instr*2 ‘)’? ‘)’ ≡

foldedinstr* ‘if’ label blocktype instr*1 ‘else’ (instr*2)? ‘end’

Note: For example, the instruction sequence

(local.get $x) (i32.const 2) i32.add (i32.const 3) i32.mul

can be folded into

(i32.mul (i32.add (local.get $x) (i32.const 2)) (i32.const 3))

Folded instructions are solely syntactic sugar, no additional syntactic or type-based checking is implied.

6.5.9 Expressions

Expressions are written as instruction sequences. No explicit ‘end’ keyword is included, since they only occur in
bracketed positions.

expr ::= (in:instr)* ⇒ in* end

132 Chapter 6. Text Format

WebAssembly Specification, Release 1.1

6.6 Modules

6.6.1 Indices

Indices can be given either in raw numeric form or as symbolic identifiers when bound by a respective construct.
Such identifiers are looked up in the suitable space of the identifier context 𝐼 .

typeidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.types[𝑥] = 𝑣)

funcidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.funcs[𝑥] = 𝑣)

tableidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.tables[𝑥] = 𝑣)

memidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.mems[𝑥] = 𝑣)

globalidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.globals[𝑥] = 𝑣)

elemidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.elem[𝑥] = 𝑣)

dataidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.data[𝑥] = 𝑣)

localidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.locals[𝑥] = 𝑣)

labelidx𝐼 ::= 𝑙:u32 ⇒ 𝑙
| 𝑣:id ⇒ 𝑙 (if 𝐼.labels[𝑙] = 𝑣)

6.6.2 Types

Type definitions can bind a symbolic type identifier.

type ::= ‘(’ ‘type’ id? ft :functype ‘)’ ⇒ ft

6.6.3 Type Uses

A type use is a reference to a type definition. It may optionally be augmented by explicit inlined parameter and
result declarations. That allows binding symbolic identifiers to name the local indices of parameters. If inline
declarations are given, then their types must match the referenced function type.

typeuse𝐼 ::= ‘(’ ‘type’ 𝑥:typeidx𝐼 ‘)’ ⇒ 𝑥, 𝐼 ′

(if 𝐼.typedefs[𝑥] = [𝑡𝑛1] → [𝑡*2] ∧ 𝐼 ′ = {locals (𝜖)𝑛})

| ‘(’ ‘type’ 𝑥:typeidx𝐼 ‘)’ (𝑡1:param)* (𝑡2:result)* ⇒ 𝑥, 𝐼 ′

(if 𝐼.typedefs[𝑥] = [𝑡*1] → [𝑡*2] ∧ 𝐼 ′ = {locals id(param)*} well-formed)

The synthesized attribute of a typeuse is a pair consisting of both the used type index and the updated identifier
context including possible parameter identifiers. The following auxiliary function extracts optional identifiers
from parameters:

id(‘(’ ‘param’ id? . . . ‘)’) = id?

Note: Both productions overlap for the case that the function type is [] → []. However, in that case, they also
produce the same results, so that the choice is immaterial.

The well-formedness condition on 𝐼 ′ ensures that the parameters do not contain duplicate identifier.

6.6. Modules 133

WebAssembly Specification, Release 1.1

Abbreviations

A typeuse may also be replaced entirely by inline parameter and result declarations. In that case, a type index is
automatically inserted:

(𝑡1:param)* (𝑡2:result)* ≡ ‘(’ ‘type’ 𝑥 ‘)’ param* result*

where 𝑥 is the smallest existing type index whose definition in the current module is the function type [𝑡*1] → [𝑡*2].
If no such index exists, then a new type definition of the form

‘(’ ‘type’ ‘(’ ‘func’ param* result* ‘)’ ‘)’

is inserted at the end of the module.

Abbreviations are expanded in the order they appear, such that previously inserted type definitions are reused by
consecutive expansions.

6.6.4 Imports

The descriptors in imports can bind a symbolic function, table, memory, or global identifier.

import𝐼 ::= ‘(’ ‘import’ mod :name nm:name 𝑑:importdesc𝐼 ‘)’
⇒ {module mod , name nm, desc 𝑑}

importdesc𝐼 ::= ‘(’ ‘func’ id? 𝑥, 𝐼 ′:typeuse𝐼 ‘)’ ⇒ func 𝑥
| ‘(’ ‘table’ id? tt :tabletype ‘)’ ⇒ table tt
| ‘(’ ‘memory’ id? mt :memtype ‘)’ ⇒ mem mt
| ‘(’ ‘global’ id? gt :globaltype ‘)’ ⇒ global gt

Abbreviations

As an abbreviation, imports may also be specified inline with function, table, memory, or global definitions; see
the respective sections.

6.6.5 Functions

Function definitions can bind a symbolic function identifier, and local identifiers for its parameters and locals.

func𝐼 ::= ‘(’ ‘func’ id? 𝑥, 𝐼 ′:typeuse𝐼 (𝑡:local)* (in:instr𝐼′′)* ‘)’
⇒ {type 𝑥, locals 𝑡*, body in* end}

(if 𝐼 ′′ = 𝐼 ′ ⊕ {locals id(local)*} well-formed)

local ::= ‘(’ ‘local’ id? 𝑡:valtype ‘)’ ⇒ 𝑡

The definition of the local identifier context 𝐼 ′′ uses the following auxiliary function to extract optional identifiers
from locals:

id(‘(’ ‘local’ id? . . . ‘)’) = id?

Note: The well-formedness condition on 𝐼 ′′ ensures that parameters and locals do not contain duplicate identifiers.

134 Chapter 6. Text Format

WebAssembly Specification, Release 1.1

Abbreviations

Multiple anonymous locals may be combined into a single declaration:

‘(’ ‘local’ valtype* ‘)’ ≡ (‘(’ ‘local’ valtype ‘)’)*

Functions can be defined as imports or exports inline:

‘(’ ‘func’ id? ‘(’ ‘import’ name1 name2 ‘)’ typeuse ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘func’ id? typeuse ‘)’ ‘)’

‘(’ ‘func’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘func’ id′ ‘)’ ‘)’ ‘(’ ‘func’ id′ . . . ‘)’

(if id′ = id? ̸= 𝜖 ∨ id′ fresh)

The latter abbreviation can be applied repeatedly, with “. . .” containing another import or export.

6.6.6 Tables

Table definitions can bind a symbolic table identifier.

table𝐼 ::= ‘(’ ‘table’ id? tt :tabletype ‘)’ ⇒ {type tt}

Abbreviations

An element segment can be given inline with a table definition, in which case its offset is 0 and the limits of the
table type are inferred from the length of the given segment:

‘(’ ‘table’ id? elemtype ‘(’ ‘elem’ elemlist ‘)’ ≡
‘(’ ‘table’ id′ 𝑛 𝑛 elemtype ‘)’ ‘(’ ‘elem’ ‘(’ ‘table’ id′ ‘)’ ‘(’ ‘i32.const’ ‘0’ ‘)’ elemlist ‘)’

(if id′ = id? ̸= 𝜖 ∨ id′ fresh)

‘(’ ‘table’ id? elemtype ‘(’ ‘elem’ 𝑥𝑛:vec(expr) ‘)’ ‘)’ ≡
‘(’ ‘table’ id′ 𝑛 𝑛 elemtype ‘)’ ‘(’ ‘elem’ id′ ‘(’ ‘i32.const’ ‘0’ ‘)’ vec(expr) ‘)’

(if id′ = id? ̸= 𝜖 ∨ id′ fresh)

Tables can be defined as imports or exports inline:

‘(’ ‘table’ id? ‘(’ ‘import’ name1 name2 ‘)’ tabletype ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘table’ id? tabletype ‘)’ ‘)’

‘(’ ‘table’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘table’ id′ ‘)’ ‘)’ ‘(’ ‘table’ id′ . . . ‘)’

(if id′ = id? ̸= 𝜖 ∨ id′ fresh)

The latter abbreviation can be applied repeatedly, with “. . .” containing another import or export or an inline
elements segment.

6.6.7 Memories

Memory definitions can bind a symbolic memory identifier.

mem𝐼 ::= ‘(’ ‘memory’ id? mt :memtype ‘)’ ⇒ {type mt}

6.6. Modules 135

WebAssembly Specification, Release 1.1

Abbreviations

A data segment can be given inline with a memory definition, in which case its offset is 0 the limits of the memory
type are inferred from the length of the data, rounded up to page size:

‘(’ ‘memory’ id? ‘(’ ‘data’ 𝑏𝑛:datastring ‘)’ ‘)’ ≡
‘(’ ‘memory’ id′ 𝑚 𝑚 ‘)’ ‘(’ ‘data’ ‘(’ ‘memory’ id′ ‘)’ ‘(’ ‘i32.const’ ‘0’ ‘)’ datastring ‘)’

(if id′ = id? ̸= 𝜖 ∨ id′ fresh,𝑚 = ceil(𝑛/64Ki))

Memories can be defined as imports or exports inline:

‘(’ ‘memory’ id? ‘(’ ‘import’ name1 name2 ‘)’ memtype ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘memory’ id? memtype ‘)’ ‘)’

‘(’ ‘memory’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘memory’ id′ ‘)’ ‘)’ ‘(’ ‘memory’ id′ . . . ‘)’

(if id′ = id? ̸= 𝜖 ∨ id′ fresh)

The latter abbreviation can be applied repeatedly, with “. . .” containing another import or export or an inline data
segment.

6.6.8 Globals

Global definitions can bind a symbolic global identifier.

global𝐼 ::= ‘(’ ‘global’ id? gt :globaltype 𝑒:expr𝐼 ‘)’ ⇒ {type gt , init 𝑒}

Abbreviations

Globals can be defined as imports or exports inline:

‘(’ ‘global’ id? ‘(’ ‘import’ name1 name2 ‘)’ globaltype ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘global’ id? globaltype ‘)’ ‘)’

‘(’ ‘global’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘global’ id′ ‘)’ ‘)’ ‘(’ ‘global’ id′ . . . ‘)’

(if id′ = id? ̸= 𝜖 ∨ id′ fresh)

The latter abbreviation can be applied repeatedly, with “. . .” containing another import or export.

6.6.9 Exports

The syntax for exports mirrors their abstract syntax directly.

export𝐼 ::= ‘(’ ‘export’ nm:name 𝑑:exportdesc𝐼 ‘)’ ⇒ {name nm, desc 𝑑}
exportdesc𝐼 ::= ‘(’ ‘func’ 𝑥:funcidx𝐼 ‘)’ ⇒ func 𝑥

| ‘(’ ‘table’ 𝑥:tableidx𝐼 ‘)’ ⇒ table 𝑥
| ‘(’ ‘memory’ 𝑥:memidx𝐼 ‘)’ ⇒ mem 𝑥
| ‘(’ ‘global’ 𝑥:globalidx𝐼 ‘)’ ⇒ global 𝑥

136 Chapter 6. Text Format

WebAssembly Specification, Release 1.1

Abbreviations

As an abbreviation, exports may also be specified inline with function, table, memory, or global definitions; see
the respective sections.

6.6.10 Start Function

A start function is defined in terms of its index.

start𝐼 ::= ‘(’ ‘start’ 𝑥:funcidx𝐼 ‘)’ ⇒ {func 𝑥}

Note: At most one start function may occur in a module, which is ensured by a suitable side condition on the
module grammar.

6.6.11 Element Segments

Element segments allow for an optional table index to identify the table to initialize.

elem𝐼 ::= ‘(’ ‘elem’ id? (𝑒𝑡, 𝑦*):elemlist ‘)’
⇒ {type 𝑒𝑡, init 𝑦*,mode passive}

| ‘(’ ‘elem’ id? 𝑥:tableuse𝐼 ‘(’ ‘offset’ 𝑒:expr𝐼 ‘)’ (𝑒𝑡, 𝑦*):elemlist ‘)’
⇒ {type 𝑒𝑡, init 𝑦*,mode active {table 𝑥, offset 𝑒}}

elemlist ::= 𝑒𝑡:elemtype 𝑦*:vec(elemexpr 𝐼) ⇒ (type 𝑒𝑡, init 𝑦*)
elemexpr ::= ‘(’ ‘ref.null’ ‘func’ ‘)’

| ‘(’ ‘ref.func’ funcidx𝐼 ‘)’
tableuse𝐼 ::= ‘(’ ‘table’ 𝑥:tableidx𝐼 ‘)’ ⇒ 𝑥

Note: In the current version of WebAssembly, the only valid table index is 0 or a symbolic table identifier
resolving to the same value.

Abbreviations

As an abbreviation, a single instruction may occur in place of the offset of an active element segment:

instr ≡ ‘(’ ‘offset’ instr ‘)’

Also, the element list may be written as just a sequence of function indices:

‘func’ vec(funcidx𝐼) ≡ ‘funcref’ vec(‘(’ ‘ref.func’ funcidx𝐼 ‘)’)

Also, a table use can be omitted, defaulting to 0. Furthermore, for backwards compatibility with earlier versions
of WebAssembly, if the table use is omitted, the ‘func’ keyword can be omitted as well.

𝜖 ≡ ‘(’ ‘table’ ‘0’ ‘)’
‘(’ ‘elem’ id? ‘(’ ‘offset’ expr𝐼 ‘)’ vec(funcidx𝐼) ‘)’ ≡ ‘(’ ‘elem’ id? ‘(’ ‘table’ ‘0’ ‘)’ ‘(’ ‘offset’ expr𝐼 ‘)’ ‘func’ vec(funcidx𝐼) ‘)’

As another abbreviation, element segments may also be specified inline with table definitions; see the respective
section.

6.6. Modules 137

WebAssembly Specification, Release 1.1

6.6.12 Data Segments

Data segments allow for an optional memory index to identify the memory to initialize. The data is written as a
string, which may be split up into a possibly empty sequence of individual string literals.

data𝐼 ::= ‘(’ ‘data’ id? 𝑏*:datastring ‘)’
⇒ {init 𝑏*,mode passive}

| ‘(’ ‘data’ id? 𝑥:memuse𝐼 ‘(’ ‘offset’ 𝑒:expr𝐼 ‘)’ 𝑏*:datastring ‘)’
⇒ {init 𝑏*,mode active {memory 𝑥′, offset 𝑒}}

datastring ::= (𝑏*:string)* ⇒ concat((𝑏*)*)
memuse𝐼 ::= ‘(’ ‘memory’ 𝑥:memidx𝐼 ‘)’ ⇒ 𝑥

Note: In the current version of WebAssembly, the only valid memory index is 0 or a symbolic memory identifier
resolving to the same value.

Abbreviations

As an abbreviation, a single instruction may occur in place of the offset of an active data segment:

instr ≡ ‘(’ ‘offset’ instr ‘)’

Also, a memory use can be omitted, defaulting to 0.

𝜖 ≡ ‘(’ ‘memory’ ‘0’ ‘)’

As another abbreviation, data segments may also be specified inline with memory definitions; see the respective
section.

6.6.13 Modules

A module consists of a sequence of fields that can occur in any order. All definitions and their respective bound
identifiers scope over the entire module, including the text preceding them.

A module may optionally bind an identifier that names the module. The name serves a documentary role only.

Note: Tools may include the module name in the name section of the binary format.

module ::= ‘(’ ‘module’ id? (𝑚:modulefield𝐼)* ‘)’ ⇒
⨁︀

𝑚*

(if 𝐼 =
⨁︀

idc(modulefield)* well-formed)
modulefield𝐼 ::= ty :type ⇒ {types ty}

| im:import𝐼 ⇒ {imports im}
| fn:func𝐼 ⇒ {funcs fn}
| ta:table𝐼 ⇒ {tables ta}
| me:mem𝐼 ⇒ {mems me}
| gl :global𝐼 ⇒ {globals gl}
| ex :export𝐼 ⇒ {exports ex}
| st :start𝐼 ⇒ {start st}
| el :elem𝐼 ⇒ {elems el}
| da:data𝐼 ⇒ {datas da}

The following restrictions are imposed on the composition of modules: 𝑚1 ⊕𝑚2 is defined if and only if

• 𝑚1.start = 𝜖 ∨𝑚2.start = 𝜖

• 𝑚1.funcs = 𝑚1.tables = 𝑚1.mems = 𝑚1.globals = 𝜖 ∨𝑚2.imports = 𝜖

138 Chapter 6. Text Format

WebAssembly Specification, Release 1.1

Note: The first condition ensures that there is at most one start function. The second condition enforces that all
imports must occur before any regular definition of a function, table, memory, or global, thereby maintaining the
ordering of the respective index spaces.

The well-formedness condition on 𝐼 in the grammar for module ensures that no namespace contains duplicate
identifiers.

The definition of the initial identifier context 𝐼 uses the following auxiliary definition which maps each relevant
definition to a singular context with one (possibly empty) identifier:

idc(‘(’ ‘type’ id? ft :functype ‘)’) = {types (id?), typedefs ft}
idc(‘(’ ‘func’ id? . . . ‘)’) = {funcs (id?)}
idc(‘(’ ‘table’ id? . . . ‘)’) = {tables (id?)}
idc(‘(’ ‘memory’ id? . . . ‘)’) = {mems (id?)}
idc(‘(’ ‘global’ id? . . . ‘)’) = {globals (id?)}
idc(‘(’ ‘elem’ id? . . . ‘)’) = {elem (id?)}
idc(‘(’ ‘data’ id? . . . ‘)’) = {data (id?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘func’ id? . . . ‘)’ ‘)’) = {funcs (id?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘table’ id? . . . ‘)’ ‘)’) = {tables (id?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘memory’ id? . . . ‘)’ ‘)’) = {mems (id?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘global’ id? . . . ‘)’ ‘)’) = {globals (id?)}
idc(‘(’ . . . ‘)’) = {}

Abbreviations

In a source file, the toplevel (module . . .) surrounding the module body may be omitted.

modulefield* ≡ ‘(’ ‘module’ modulefield* ‘)’

6.6. Modules 139

WebAssembly Specification, Release 1.1

140 Chapter 6. Text Format

CHAPTER 7

Appendix

7.1 Embedding

A WebAssembly implementation will typically be embedded into a host environment. An embedder implements
the connection between such a host environment and the WebAssembly semantics as defined in the main body of
this specification. An embedder is expected to interact with the semantics in well-defined ways.

This section defines a suitable interface to the WebAssembly semantics in the form of entry points through which
an embedder can access it. The interface is intended to be complete, in the sense that an embedder does not need
to reference other functional parts of the WebAssembly specification directly.

Note: On the other hand, an embedder does not need to provide the host environment with access to all function-
ality defined in this interface. For example, an implementation may not support parsing of the text format.

7.1.1 Types

In the description of the embedder interface, syntactic classes from the abstract syntax and the runtime’s abstract
machine are used as names for variables that range over the possible objects from that class. Hence, these syntactic
classes can also be interpreted as types.

For numeric parameters, notation like 𝑛 : u32 is used to specify a symbolic name in addition to the respective
value range.

7.1.2 Errors

Failure of an interface operation is indicated by an auxiliary syntactic class:

error ::= error

In addition to the error conditions specified explicitly in this section, implementations may also return errors when
specific implementation limitations are reached.

Note: Errors are abstract and unspecific with this definition. Implementations can refine it to carry suitable
classifications and diagnostic messages.

141

WebAssembly Specification, Release 1.1

7.1.3 Pre- and Post-Conditions

Some operations state pre-conditions about their arguments or post-conditions about their results. It is the embed-
der’s responsibility to meet the pre-conditions. If it does, the post conditions are guaranteed by the semantics.

In addition to pre- and post-conditions explicitly stated with each operation, the specification adopts the following
conventions for runtime objects (𝑠𝑡𝑜𝑟𝑒, moduleinst , externval , addresses):

• Every runtime object passed as a parameter must be valid per an implicit pre-condition.

• Every runtime object returned as a result is valid per an implicit post-condition.

Note: As long as an embedder treats runtime objects as abstract and only creates and manipulates them through
the interface defined here, all implicit pre-conditions are automatically met.

7.1.4 Store

store_init() : store

1. Return the empty store.

store_init() = {funcs 𝜖, mems 𝜖, tables 𝜖, globals 𝜖}

7.1.5 Modules

module_decode(byte*) : module | error

1. If there exists a derivation for the byte sequence byte* as a module according to the binary grammar for
modules, yielding a module 𝑚, then return 𝑚.

2. Else, return error.

module_decode(𝑏*) = 𝑚 (if module *
=⇒ 𝑚:𝑏*)

module_decode(𝑏*) = error (otherwise)

module_parse(char*) : module | error

1. If there exists a derivation for the source char* as a module according to the text grammar for modules,
yielding a module 𝑚, then return 𝑚.

2. Else, return error.

module_parse(𝑐*) = 𝑚 (if module *
=⇒ 𝑚:𝑐*)

module_parse(𝑐*) = error (otherwise)

142 Chapter 7. Appendix

WebAssembly Specification, Release 1.1

module_validate(module) : error?

1. If module is valid, then return nothing.

2. Else, return error.

module_validate(𝑚) = 𝜖 (if ⊢ 𝑚 : externtype* → externtype ′
*
)

module_validate(𝑚) = error (otherwise)

module_instantiate(store,module, externval*) : (store,moduleinst | error)

1. Try instantiating module in store with external values externval* as imports:

a. If it succeeds with a module instance moduleinst , then let result be moduleinst .

b. Else, let result be error.

2. Return the new store paired with result .

module_instantiate(𝑆,𝑚, ev*) = (𝑆′, 𝐹.module) (if instantiate(𝑆,𝑚, ev*) →˓ *𝑆′;𝐹 ; 𝜖)
module_instantiate(𝑆,𝑚, ev*) = (𝑆′, error) (if instantiate(𝑆,𝑚, ev*) →˓ *𝑆′;𝐹 ; trap)

Note: The store may be modified even in case of an error.

module_imports(module) : (name,name, externtype)*

1. Pre-condition: module is valid with external import types externtype* and external export types
externtype ′

*.

2. Let import* be the imports module.imports.

3. Assert: the length of import* equals the length of externtype*.

4. For each import 𝑖 in import* and corresponding externtype𝑖 in externtype*, do:

a. Let result 𝑖 be the triple (import 𝑖.module, import 𝑖.name, externtype𝑖).

5. Return the concatenation of all result 𝑖, in index order.

6. Post-condition: each externtype𝑖 is valid.

module_imports(𝑚) = (im.module, im.name, externtype)*

(if im* = 𝑚.imports ∧ ⊢ 𝑚 : externtype* → externtype ′
*
)

module_exports(module) : (name, externtype)*

1. Pre-condition: module is valid with external import types externtype* and external export types
externtype ′

*.

2. Let export* be the exports module.exports.

3. Assert: the length of export* equals the length of externtype ′*.

4. For each export 𝑖 in export* and corresponding externtype ′𝑖 in externtype ′
*, do:

a. Let result 𝑖 be the pair (export 𝑖.name, externtype ′𝑖).

5. Return the concatenation of all result 𝑖, in index order.

6. Post-condition: each externtype ′𝑖 is valid.

7.1. Embedding 143

WebAssembly Specification, Release 1.1

module_exports(𝑚) = (ex .name, externtype ′)*

(if ex* = 𝑚.exports ∧ ⊢ 𝑚 : externtype* → externtype ′
*
)

7.1.6 Module Instances

instance_export(moduleinst ,name) : externval | error

1. Assert: due to validity of the module instance moduleinst , all its export names are different.

2. If there exists an exportinst 𝑖 in moduleinst .exports such that name exportinst 𝑖.name equals name , then:

a. Return the external value exportinst 𝑖.value.

3. Else, return error.

instance_export(𝑚,name) = 𝑚.exports[𝑖].value (if 𝑚.exports[𝑖].name = name)
instance_export(𝑚,name) = error (otherwise)

7.1.7 Functions

func_alloc(store, functype, hostfunc) : (store, funcaddr)

1. Pre-condition: functype is 𝑣𝑎𝑙𝑖𝑑 < 𝑣𝑎𝑙𝑖𝑑− 𝑓𝑢𝑛𝑐𝑡𝑦𝑝𝑒 >.

2. Let funcaddr be the result of allocating a host function in store with function type functype and host
function code hostfunc.

3. Return the new store paired with funcaddr .

func_alloc(𝑆, ft , code) = (𝑆′, a) (if allochostfunc(𝑆, ft , code) = 𝑆′, a)

Note: This operation assumes that hostfunc satisfies the pre- and post-conditions required for a function instance
with type functype.

Regular (non-host) function instances can only be created indirectly through module instantiation.

func_type(store, funcaddr) : functype

1. Assert: the external value func funcaddr is valid with external type func functype.

2. Return functype.

3. Post-condition: functype is valid.

func_type(𝑆, 𝑎) = ft (if 𝑆 ⊢ func 𝑎 : func ft)

144 Chapter 7. Appendix

WebAssembly Specification, Release 1.1

func_invoke(store, funcaddr , val*) : (store, val* | error)

1. Try invoking the function funcaddr in store with values val* as arguments:

a. If it succeeds with values val ′* as results, then let result be val ′
*.

b. Else it has trapped, hence let result be error.

2. Return the new store paired with result .

func_invoke(𝑆, 𝑎, 𝑣*) = (𝑆′, 𝑣′
*
) (if invoke(𝑆, 𝑎, 𝑣*) →˓ *𝑆′;𝐹 ; 𝑣′

*
)

func_invoke(𝑆, 𝑎, 𝑣*) = (𝑆′, error) (if invoke(𝑆, 𝑎, 𝑣*) →˓ *𝑆′;𝐹 ; trap)

Note: The store may be modified even in case of an error.

7.1.8 Tables

table_alloc(store, tabletype) : (store, tableaddr)

1. Pre-condition: tabletype is 𝑣𝑎𝑙𝑖𝑑 < 𝑣𝑎𝑙𝑖𝑑− 𝑡𝑎𝑏𝑙𝑒𝑡𝑦𝑝𝑒 >.

2. Let tableaddr be the result of allocating a table in store with table type tabletype.

3. Return the new store paired with tableaddr .

table_alloc(𝑆, tt) = (𝑆′, a) (if alloctable(𝑆, tt) = 𝑆′, a)

table_type(store, tableaddr) : tabletype

1. Assert: the external value table tableaddr is valid with external type table tabletype .

2. Return tabletype .

3. Post-condition: tabletype is 𝑣𝑎𝑙𝑖𝑑 < 𝑣𝑎𝑙𝑖𝑑− 𝑡𝑎𝑏𝑙𝑒𝑡𝑦𝑝𝑒 >.

table_type(𝑆, 𝑎) = tt (if 𝑆 ⊢ table 𝑎 : table tt)

table_read(store, tableaddr , 𝑖 : u32) : funcaddr? | error

1. Let ti be the table instance store.tables[tableaddr].

2. If 𝑖 is larger than or equal to the length of ti .elem, then return error.

3. Else, return ti .elem[𝑖].

table_read(𝑆, 𝑎, 𝑖) = fa? (if 𝑆.tables[𝑎].elem[𝑖] = fa?)
table_read(𝑆, 𝑎, 𝑖) = error (otherwise)

7.1. Embedding 145

WebAssembly Specification, Release 1.1

table_write(store, tableaddr , 𝑖 : u32 , funcaddr?) : store | error

1. Let ti be the table instance store.tables[tableaddr].

2. If 𝑖 is larger than or equal to the length of ti .elem, then return error.

3. Replace ti .elem[𝑖] with the optional function address fa?.

4. Return the updated store.

table_write(𝑆, 𝑎, 𝑖, fa?) = 𝑆′ (if 𝑆′ = 𝑆 with tables[𝑎].elem[𝑖] = fa?)

table_write(𝑆, 𝑎, 𝑖, fa?) = error (otherwise)

table_size(store, tableaddr) : u32

1. Return the length of store.tables[tableaddr].elem.

table_size(𝑆, 𝑎) = 𝑛 (if |𝑆.tables[𝑎].elem| = 𝑛)

table_grow(store, tableaddr , 𝑛 : u32) : store | error

1. Try growing the table instance store.tables[tableaddr] by 𝑛 elements:

a. If it succeeds, return the updated store.

b. Else, return error.

table_grow(𝑆, 𝑎, 𝑛) = 𝑆′ (if 𝑆′ = 𝑆 with tables[𝑎] = growtable(𝑆.tables[𝑎], 𝑛))
table_grow(𝑆, 𝑎, 𝑛) = error (otherwise)

7.1.9 Memories

mem_alloc(store,memtype) : (store,memaddr)

1. Pre-condition: memtype is 𝑣𝑎𝑙𝑖𝑑 < 𝑣𝑎𝑙𝑖𝑑−𝑚𝑒𝑚𝑡𝑦𝑝𝑒 >.

2. Let memaddr be the result of allocating a memory in store with memory type memtype .

3. Return the new store paired with memaddr .

mem_alloc(𝑆,mt) = (𝑆′, a) (if allocmem(𝑆,mt) = 𝑆′, a)

mem_type(store,memaddr) : memtype

1. Assert: the external value mem memaddr is valid with external type mem memtype.

2. Return memtype.

3. Post-condition: memtype is 𝑣𝑎𝑙𝑖𝑑 < 𝑣𝑎𝑙𝑖𝑑−𝑚𝑒𝑚𝑡𝑦𝑝𝑒 >.

mem_type(𝑆, 𝑎) = mt (if 𝑆 ⊢ mem 𝑎 : mem mt)

146 Chapter 7. Appendix

WebAssembly Specification, Release 1.1

mem_read(store,memaddr , 𝑖 : u32) : byte | error

1. Let mi be the memory instance store.mems[memaddr].

2. If 𝑖 is larger than or equal to the length of mi .data, then return error.

3. Else, return the byte mi .data[𝑖].

mem_read(𝑆, 𝑎, 𝑖) = 𝑏 (if 𝑆.mems[𝑎].data[𝑖] = 𝑏)
mem_read(𝑆, 𝑎, 𝑖) = error (otherwise)

mem_write(store,memaddr , 𝑖 : u32 , byte) : store | error

1. Let mi be the memory instance store.mems[memaddr].

2. If u32 is larger than or equal to the length of mi .data, then return error.

3. Replace mi .data[𝑖] with byte .

4. Return the updated store.

mem_write(𝑆, 𝑎, 𝑖, 𝑏) = 𝑆′ (if 𝑆′ = 𝑆 with mems[𝑎].data[𝑖] = 𝑏)
mem_write(𝑆, 𝑎, 𝑖, 𝑏) = error (otherwise)

mem_size(store,memaddr) : u32

1. Return the length of store.mems[memaddr].data divided by the page size.

mem_size(𝑆, 𝑎) = 𝑛 (if |𝑆.mems[𝑎].data| = 𝑛 · 64 Ki)

mem_grow(store,memaddr , 𝑛 : u32) : store | error

1. Try growing the memory instance store.mems[memaddr] by 𝑛 pages:

a. If it succeeds, return the updated store.

b. Else, return error.

mem_grow(𝑆, 𝑎, 𝑛) = 𝑆′ (if 𝑆′ = 𝑆 with mems[𝑎] = growmem(𝑆.mems[𝑎], 𝑛))
mem_grow(𝑆, 𝑎, 𝑛) = error (otherwise)

7.1.10 Globals

global_alloc(store, globaltype, val) : (store, globaladdr)

1. Pre-condition: globaltype is 𝑣𝑎𝑙𝑖𝑑 < 𝑣𝑎𝑙𝑖𝑑− 𝑔𝑙𝑜𝑏𝑎𝑙𝑡𝑦𝑝𝑒 >.

2. Let globaladdr be the result of allocating a global in store with global type globaltype and initialization
value val .

3. Return the new store paired with globaladdr .

global_alloc(𝑆, gt , 𝑣) = (𝑆′, a) (if allocglobal(𝑆, gt , 𝑣) = 𝑆′, a)

7.1. Embedding 147

WebAssembly Specification, Release 1.1

global_type(store, globaladdr) : globaltype

1. Assert: the external value global globaladdr is valid with external type global globaltype.

2. Return globaltype.

3. Post-condition: globaltype is 𝑣𝑎𝑙𝑖𝑑 < 𝑣𝑎𝑙𝑖𝑑− 𝑔𝑙𝑜𝑏𝑎𝑙𝑡𝑦𝑝𝑒 >.

global_type(𝑆, 𝑎) = gt (if 𝑆 ⊢ global 𝑎 : global gt)

global_read(store, globaladdr) : val

1. Let gi be the global instance store.globals[globaladdr].

2. Return the value gi .value.

global_read(𝑆, 𝑎) = 𝑣 (if 𝑆.globals[𝑎].value = 𝑣)

global_write(store, globaladdr , val) : store | error

1. Let gi be the global instance store.globals[globaladdr].

2. If gi .mut is not var, then return error.

3. Replace gi .value with the value val .

4. Return the updated store.

global_write(𝑆, 𝑎, 𝑣) = 𝑆′ (if 𝑆.globals[𝑎].mut = var ∧ 𝑆′ = 𝑆 with globals[𝑎].value = 𝑣)
global_write(𝑆, 𝑎, 𝑣) = error (otherwise)

7.2 Implementation Limitations

Implementations typically impose additional restrictions on a number of aspects of a WebAssembly module or
execution. These may stem from:

• physical resource limits,

• constraints imposed by the embedder or its environment,

• limitations of selected implementation strategies.

This section lists allowed limitations. Where restrictions take the form of numeric limits, no minimum require-
ments are given, nor are the limits assumed to be concrete, fixed numbers. However, it is expected that all
implementations have “reasonably” large limits to enable common applications.

Note: A conforming implementation is not allowed to leave out individual features. However, designated subsets
of WebAssembly may be specified in the future.

148 Chapter 7. Appendix

WebAssembly Specification, Release 1.1

7.2.1 Syntactic Limits

Structure

An implementation may impose restrictions on the following dimensions of a module:

• the number of types in a module

• the number of functions in a module, including imports

• the number of tables in a module, including imports

• the number of memories in a module, including imports

• the number of globals in a module, including imports

• the number of element segments in a module

• the number of data segments in a module

• the number of imports to a module

• the number of exports from a module

• the number of parameters in a function type

• the number of results in a function type

• the number of parameters in a block type

• the number of results in a block type

• the number of locals in a function

• the size of a function body

• the size of a structured control instruction

• the number of structured control instructions in a function

• the nesting depth of structured control instructions

• the number of label indices in a br_table instruction

• the length of an element segment

• the length of a data segment

• the length of a name

• the range of characters in a name

If the limits of an implementation are exceeded for a given module, then the implementation may reject the
validation, compilation, or instantiation of that module with an embedder-specific error.

Note: The last item allows embedders that operate in limited environments without support for Unicode47 to limit
the names of imports and exports to common subsets like ASCII48.

47 http://www.unicode.org/versions/latest/
48 http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

7.2. Implementation Limitations 149

http://www.unicode.org/versions/latest/
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 1.1

Binary Format

For a module given in binary format, additional limitations may be imposed on the following dimensions:

• the size of a module

• the size of any section

• the size of an individual function’s code

• the number of sections

Text Format

For a module given in text format, additional limitations may be imposed on the following dimensions:

• the size of the source text

• the size of any syntactic element

• the size of an individual token

• the nesting depth of folded instructions

• the length of symbolic identifiers

• the range of literal characters allowed in the source text

7.2.2 Validation

An implementation may defer validation of individual functions until they are first invoked.

If a function turns out to be invalid, then the invocation, and every consecutive call to the same function, results in
a trap.

Note: This is to allow implementations to use interpretation or just-in-time compilation for functions. The
function must still be fully validated before execution of its body begins.

7.2.3 Execution

Restrictions on the following dimensions may be imposed during execution of a WebAssembly program:

• the number of allocated module instances

• the number of allocated function instances

• the number of allocated table instances

• the number of allocated memory instances

• the number of allocated global instances

• the size of a table instance

• the size of a memory instance

• the number of frames on the stack

• the number of labels on the stack

• the number of values on the stack

150 Chapter 7. Appendix

WebAssembly Specification, Release 1.1

If the runtime limits of an implementation are exceeded during execution of a computation, then it may terminate
that computation and report an embedder-specific error to the invoking code.

Some of the above limits may already be verified during instantiation, in which case an implementation may report
exceedance in the same manner as for syntactic limits.

Note: Concrete limits are usually not fixed but may be dependent on specifics, interdependent, vary over time, or
depend on other implementation- or embedder-specific situations or events.

7.3 Validation Algorithm

The specification of WebAssembly validation is purely declarative. It describes the constraints that must be met
by a module or instruction sequence to be valid.

This section sketches the skeleton of a sound and complete algorithm for effectively validating code, i.e., se-
quences of instructions. (Other aspects of validation are straightforward to implement.)

In fact, the algorithm is expressed over the flat sequence of opcodes as occurring in the binary format, and performs
only a single pass over it. Consequently, it can be integrated directly into a decoder.

The algorithm is expressed in typed pseudo code whose semantics is intended to be self-explanatory.

7.3.1 Data Structures

The algorithm uses two separate stacks: the operand stack and the control stack. The former tracks the types of
operand values on the stack, the latter surrounding structured control instructions and their associated blocks.

type val_type = I32 | I64 | F32 | F64

type opd_stack = stack(val_type | Unknown)

type ctrl_stack = stack(ctrl_frame)
type ctrl_frame = {

opcode : opcode
start_types : list(val_type)
end_types : list(val_type)
height : nat
unreachable : bool

}

For each value, the operand stack records its value type, or Unknown when the type is not known.

For each entered block, the control stack records a control frame with the originating opcode, the types on the top
of the operand stack at the start and end of the block (used to check its result as well as branches), the height of
the operand stack at the start of the block (used to check that operands do not underflow the current block), and a
flag recording whether the remainder of the block is unreachable (used to handle stack-polymorphic typing after
branches).

For the purpose of presenting the algorithm, the operand and control stacks are simply maintained as global
variables:

var opds : opd_stack
var ctrls : ctrl_stack

However, these variables are not manipulated directly by the main checking function, but through a set of auxiliary
functions:

7.3. Validation Algorithm 151

WebAssembly Specification, Release 1.1

func push_opd(type : val_type | Unknown) =
opds.push(type)

func pop_opd() : val_type | Unknown =
if (opds.size() = ctrls[0].height && ctrls[0].unreachable) return Unknown
error_if(opds.size() = ctrls[0].height)
return opds.pop()

func pop_opd(expect : val_type | Unknown) : val_type | Unknown =
let actual = pop_opd()
if (actual = Unknown) return expect
if (expect = Unknown) return actual
error_if(actual =/= expect)
return actual

func push_opds(types : list(val_type)) = foreach (t in types) push_opd(t)
func pop_opds(types : list(val_type)) = foreach (t in reverse(types)) pop_opd(t)

Pushing an operand simply pushes the respective type to the operand stack.

Popping an operand checks that the operand stack does not underflow the current block and then removes one
type. But first, a special case is handled where the block contains no known operands, but has been marked as
unreachable. That can occur after an unconditional branch, when the stack is typed polymorphically. In that case,
an unknown type is returned.

A second function for popping an operand takes an expected type, which the actual operand type is checked
against. The types may differ in case one of them is Unknown. The more specific type is returned.

Finally, there are accumulative functions for pushing or popping multiple operand types.

Note: The notation stack[i] is meant to index the stack from the top, so that ctrls[0] accesses the element
pushed last.

The control stack is likewise manipulated through auxiliary functions:

func push_ctrl(opcode : opcode, in : list(val_type), out : list(val_type)) =
let frame = ctrl_frame(opcode, in, out, opds.size(), false)
ctrls.push(frame)
push_opds(in)

func pop_ctrl() : ctrl_frame =
error_if(ctrls.is_empty())
let frame = ctrls[0]
pop_opds(frame.end_types)
error_if(opds.size() =/= frame.height)
ctrls.pop()
return frame

func label_types(frame : ctrl_frame) : list(val_types) =
return (if frame.opcode == loop then frame.start_types else frame.end_types)

func unreachable() =
opds.resize(ctrls[0].height)
ctrls[0].unreachable := true

Pushing a control frame takes the types of the label and result values. It allocates a new frame record recording
them along with the current height of the operand stack and marks the block as reachable.

Popping a frame first checks that the control stack is not empty. It then verifies that the operand stack contains the
right types of values expected at the end of the exited block and pops them off the operand stack. Afterwards, it
checks that the stack has shrunk back to its initial height.

152 Chapter 7. Appendix

WebAssembly Specification, Release 1.1

The type of the label associated with a control frame is either that of the stack at the start or the end of the frame,
determined by the opcode that it originates from.

Finally, the current frame can be marked as unreachable. In that case, all existing operand types are purged from
the operand stack, in order to allow for the stack-polymorphism logic in pop_opd to take effect.

Note: Even with the unreachable flag set, consecutive operands are still pushed to and popped from the operand
stack. That is necessary to detect invalid examples like (unreachable (i32.const) i64.add). However, a polymor-
phic stack cannot underflow, but instead generates Unknown types as needed.

7.3.2 Validation of Opcode Sequences

The following function shows the validation of a number of representative instructions that manipulate the stack.
Other instructions are checked in a similar manner.

Note: Various instructions not shown here will additionally require the presence of a validation context for
checking uses of indices. That is an easy addition and therefore omitted from this presentation.

func validate(opcode) =
switch (opcode)
case (i32.add)

pop_opd(I32)
pop_opd(I32)
push_opd(I32)

case (drop)
pop_opd()

case (select)
pop_opd(I32)
let t1 = pop_opd()
let t2 = pop_opd(t1)
push_opd(t2)

case (unreachable)
unreachable()

case (block t1*->t2*)
pop_opds([t1*])
push_ctrl(block, [t1*], [t2*])

case (loop t1*->t2*)
pop_opds([t1*])
push_ctrl(loop, [t1*], [t2*])

case (if t1*->t2*)
pop_opd(I32)
pop_opds([t1*])
push_ctrl(if, [t1*], [t2*])

case (end)
let frame = pop_ctrl()
push_opds(frame.end_types)

case (else)
let frame = pop_ctrl()
error_if(frame.opcode =/= if)

(continues on next page)

7.3. Validation Algorithm 153

WebAssembly Specification, Release 1.1

(continued from previous page)

push_ctrl(else, frame.start_types, frame.end_types)

case (br n)
error_if(ctrls.size() < n)
pop_opds(label_types(ctrls[n]))
unreachable()

case (br_if n)
error_if(ctrls.size() < n)
pop_opd(I32)
pop_opds(label_types(ctrls[n]))
push_opds(label_types(ctrls[n]))

case (br_table n* m)
error_if(ctrls.size() < m)
foreach (n in n*)

error_if(ctrls.size() < n || label_types(ctrls[n]) =/= label_
→˓types(ctrls[m]))

pop_opd(I32)
pop_opds(label_types(ctrls[m]))
unreachable()

Note: It is an invariant under the current WebAssembly instruction set that an operand of Unknown type is never
duplicated on the stack. This would change if the language were extended with stack instructions like dup. Under
such an extension, the above algorithm would need to be refined by replacing the Unknown type with proper type
variables to ensure that all uses are consistent.

7.4 Custom Sections

This appendix defines dedicated custom sections for WebAssembly’s binary format. Such sections do not con-
tribute to, or otherwise affect, the WebAssembly semantics, and like any custom section they may be ignored by
an implementation. However, they provide useful meta data that implementations can make use of to improve user
experience or take compilation hints.

Currently, only one dedicated custom section is defined, the name section.

7.4.1 Name Section

The name section is a custom section whose name string is itself ‘name’. The name section should appear only
once in a module, and only after the data section.

The purpose of this section is to attach printable names to definitions in a module, which e.g. can be used by a
debugger or when parts of the module are to be rendered in text form.

Note: All names are represented in Unicode49 encoded in UTF-8. Names need not be unique.

49 http://www.unicode.org/versions/latest/

154 Chapter 7. Appendix

http://www.unicode.org/versions/latest/

WebAssembly Specification, Release 1.1

Subsections

The data of a name section consists of a sequence of subsections. Each subsection consists of a

• a one-byte subsection id,

• the u32 size of the contents, in bytes,

• the actual contents, whose structure is depended on the subsection id.

namesec ::= section0(namedata)
namedata ::= 𝑛:name (if 𝑛 = ‘name’)

modulenamesubsec?

funcnamesubsec?

localnamesubsec?

namesubsection𝑁 (B) ::= 𝑁 :byte size:u32 B (if size = ||B||)

The following subsection ids are used:

Id Subsection
0 module name
1 function names
2 local names

Each subsection may occur at most once, and in order of increasing id.

Name Maps

A name map assigns names to indices in a given index space. It consists of a vector of index/name pairs in order
of increasing index value. Each index must be unique, but the assigned names need not be.

namemap ::= vec(nameassoc)
nameassoc ::= idx name

An indirect name map assigns names to a two-dimensional index space, where secondary indices are grouped by
primary indices. It consists of a vector of primary index/name map pairs in order of increasing index value, where
each name map in turn maps secondary indices to names. Each primary index must be unique, and likewise each
secondary index per individual name map.

indirectnamemap ::= vec(indirectnameassoc)
indirectnameassoc ::= idx namemap

Module Names

The module name subsection has the id 0. It simply consists of a single name that is assigned to the module itself.

modulenamesubsec ::= namesubsection0(name)

7.4. Custom Sections 155

WebAssembly Specification, Release 1.1

Function Names

The function name subsection has the id 1. It consists of a name map assigning function names to function indices.

funcnamesubsec ::= namesubsection1(namemap)

Local Names

The local name subsection has the id 2. It consists of an indirect name map assigning local names to local indices
grouped by function indices.

localnamesubsec ::= namesubsection2(indirectnamemap)

7.5 Soundness

The type system of WebAssembly is sound, implying both type safety and memory safety with respect to the
WebAssembly semantics. For example:

• All types declared and derived during validation are respected at run time; e.g., every local or global variable
will only contain type-correct values, every instruction will only be applied to operands of the expected type,
and every function invocation always evaluates to a result of the right type (if it does not trap or diverge).

• No memory location will be read or written except those explicitly defined by the program, i.e., as a local,
a global, an element in a table, or a location within a linear memory.

• There is no undefined behavior, i.e., the execution rules cover all possible cases that can occur in a valid
program, and the rules are mutually consistent.

Soundness also is instrumental in ensuring additional properties, most notably, encapsulation of function and
module scopes: no locals can be accessed outside their own function and no module components can be accessed
outside their own module unless they are explicitly exported or imported.

The typing rules defining WebAssembly validation only cover the static components of a WebAssembly program.
In order to state and prove soundness precisely, the typing rules must be extended to the dynamic components of
the abstract runtime, that is, the store, configurations, and administrative instructions.50

7.5.1 Values and Results

Values and results can be classified by value types and result types as follows.

Values 𝑡.const 𝑐

• The value is valid with value type 𝑡.

⊢ 𝑡.const 𝑐 : 𝑡
50 The formalization and theorems are derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan

Gohman, Luke Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssembly51. Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

51 https://dl.acm.org/citation.cfm?doid=3062341.3062363

156 Chapter 7. Appendix

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 1.1

Results val*

• For each value val 𝑖 in val*:

– The value val 𝑖 is valid with some value type 𝑡𝑖.

• Let 𝑡* be the concatenation of all 𝑡𝑖.

• Then the result is valid with result type [𝑡*].

(⊢ val : 𝑡)*

⊢ val* : [𝑡*]

Results trap

• The result is valid with result type [𝑡*], for any sequence 𝑡* of value types.

⊢ trap : [𝑡*]

7.5.2 Store Validity

The following typing rules specify when a runtime store 𝑆 is valid. A valid store must consist of function, table,
memory, global, and module instances that are themselves valid, relative to 𝑆.

To that end, each kind of instance is classified by a respective function, table, memory, or global type. Module
instances are classified by module contexts, which are regular contexts repurposed as module types describing the
index spaces defined by a module.

Store 𝑆

• Each function instance funcinst 𝑖 in 𝑆.funcs must be valid with some function type functype𝑖.

• Each table instance tableinst 𝑖 in 𝑆.tables must be valid with some table type tabletype𝑖.

• Each memory instance meminst 𝑖 in 𝑆.mems must be valid with some memory type memtype𝑖.

• Each global instance globalinst 𝑖 in 𝑆.globals must be valid with some global type globaltype𝑖.

• Each element instance eleminst 𝑖 in 𝑆.elems must be valid.

• Each data instance datainst 𝑖 in 𝑆.datas must be valid.

• Then the store is valid.

(𝑆 ⊢ funcinst : functype)* (𝑆 ⊢ tableinst : tabletype)*

(𝑆 ⊢ meminst : memtype)* (𝑆 ⊢ globalinst : globaltype)*

(𝑆 ⊢ eleminst ok)* (𝑆 ⊢ datainst ok)*

𝑆 = {funcs funcinst*, tables tableinst*,mems meminst*, globals globalinst*, elems eleminst*, datas datainst*}
⊢ 𝑆 ok

7.5. Soundness 157

WebAssembly Specification, Release 1.1

Function Instances {type functype,module moduleinst , code func}

• The function type functype must be valid.

• The module instance moduleinst must be valid with some context 𝐶.

• Under context 𝐶, the function func must be valid with function type functype.

• Then the function instance is valid with function type functype.

⊢ functype ok 𝑆 ⊢ moduleinst : 𝐶 𝐶 ⊢ func : functype

𝑆 ⊢ {type functype,module moduleinst , code func} : functype

Host Function Instances {type functype, hostcode hf }

• The function type functype must be valid.

• Let [𝑡*1] → [𝑡*2] be the function type functype.

• For every valid store 𝑆1 extending 𝑆 and every sequence val* of values whose types coincide with 𝑡*1:

– Executing hf in store 𝑆1 with arguments val* has a non-empty set of possible outcomes.

– For every element 𝑅 of this set:

* Either 𝑅 must be ⊥ (i.e., divergence).

* Or 𝑅 consists of a valid store 𝑆2 extending 𝑆1 and a result result whose type coincides with [𝑡*2].

• Then the function instance is valid with function type functype.

⊢ [𝑡*1] → [𝑡*2] ok

∀𝑆1, val
, ⊢ 𝑆1 ok ∧ ⊢ 𝑆 ⪯ 𝑆1 ∧ ⊢ val : [𝑡*1] =⇒

hf (𝑆1; val*) ⊃ ∅ ∧
∀𝑅 ∈ hf (𝑆1; val*), 𝑅 = ⊥ ∨

∃𝑆2, result , ⊢ 𝑆2 ok ∧ ⊢ 𝑆1 ⪯ 𝑆2 ∧ ⊢ result : [𝑡*2] ∧𝑅 = (𝑆2; result)

𝑆 ⊢ {type [𝑡*1] → [𝑡*2], hostcode hf } : [𝑡*1] → [𝑡*2]

Note: This rule states that, if appropriate pre-conditions about store and arguments are satisfied, then executing
the host function must satisfy appropriate post-conditions about store and results. The post-conditions match the
ones in the execution rule for invoking host functions.

Any store under which the function is invoked is assumed to be an extension of the current store. That way, the
function itself is able to make sufficient assumptions about future stores.

Table Instances {elem (fa?)𝑛,max 𝑚?}

• For each optional function address fa?
𝑖 in the table elements (fa?)𝑛:

– Either fa?
𝑖 is empty.

– Or the external value func fa must be valid with some external type func ft .

• The limits {min 𝑛,max 𝑚?} must be valid within range 232.

• Then the table instance is valid with table type {min 𝑛,max 𝑚?} funcref.

((𝑆 ⊢ func fa : func functype)?)𝑛 ⊢ {min 𝑛,max 𝑚?} : 232

𝑆 ⊢ {elem (fa?)𝑛,max 𝑚?} : {min 𝑛,max 𝑚?} funcref

158 Chapter 7. Appendix

WebAssembly Specification, Release 1.1

Memory Instances {data 𝑏𝑛,max 𝑚?}

• The limits {min 𝑛,max 𝑚?} must be valid within range 216.

• Then the memory instance is valid with memory type {min 𝑛,max 𝑚?}.

⊢ {min 𝑛,max 𝑚?} : 216

𝑆 ⊢ {data 𝑏𝑛,max 𝑚?} : {min 𝑛,max 𝑚?}

Global Instances {value (𝑡.const 𝑐),mut mut}

• The global instance is valid with global type mut 𝑡.

𝑆 ⊢ {value (𝑡.const 𝑐),mut mut} : mut 𝑡

Element Instances {elem fa*}

• For each function address fa𝑖 in the table elements fa*:

– The external value func fa must be valid with some external type func ft .

• Then the element instance is valid.
(𝑆 ⊢ func fa : func functype)*

𝑆 ⊢ {elem fa*} ok

Data Instances {data 𝑏*}

• The data instance is valid.

𝑆 ⊢ {data 𝑏*} ok

Export Instances {name name, value externval}

• The external value externval must be valid with some external type externtype.

• Then the export instance is valid.

𝑆 ⊢ externval : externtype

𝑆 ⊢ {name name, value externval} ok

Module Instances moduleinst

• Each function type functype𝑖 in moduleinst .types must be valid.

• For each function address funcaddr 𝑖 in moduleinst .funcaddrs, the external value func funcaddr 𝑖 must be
valid with some external type func functype ′𝑖.

• For each table address tableaddr 𝑖 in moduleinst .tableaddrs, the external value table tableaddr 𝑖 must be
valid with some external type table tabletype𝑖.

• For each memory address memaddr 𝑖 in moduleinst .memaddrs, the external value mem memaddr 𝑖 must
be valid with some external type mem memtype𝑖.

7.5. Soundness 159

WebAssembly Specification, Release 1.1

• For each global address globaladdr 𝑖 in moduleinst .globaladdrs, the external value global globaladdr 𝑖 must
be valid with some external type global globaltype𝑖.

• For each element address elemaddr 𝑖 in moduleinst .elemaddrs, the element instance 𝑆.elems[elemaddr 𝑖]
must be valid.

• For each data address dataaddr 𝑖 in moduleinst .dataaddrs, the data instance 𝑆.datas[dataaddr 𝑖] must be
valid.

• Each export instance exportinst 𝑖 in moduleinst .exports must be valid.

• For each export instance exportinst 𝑖 in moduleinst .exports, the name exportinst 𝑖.name must be different
from any other name occurring in moduleinst .exports.

• Let functype ′* be the concatenation of all functype ′𝑖 in order.

• Let tabletype* be the concatenation of all tabletype𝑖 in order.

• Let memtype* be the concatenation of all memtype𝑖 in order.

• Let globaltype* be the concatenation of all globaltype𝑖 in order.

• Then the module instance is valid with context {types functype*, funcs functype ′*, tables tabletype*,memsmemtype*, globals globaltype*}.

(⊢ functype ok)*

(𝑆 ⊢ func funcaddr : func functype ′)* (𝑆 ⊢ table tableaddr : table tabletype)*

(𝑆 ⊢ mem memaddr : mem memtype)* (𝑆 ⊢ global globaladdr : global globaltype)*

(𝑆 ⊢ 𝑆.elems[elemaddr] ok)* (𝑆 ⊢ 𝑆.datas[dataaddr] ok)*

(𝑆 ⊢ exportinst ok)* (exportinst .name)* disjoint
𝑆 ⊢ {types functype*,

funcaddrs funcaddr*,
tableaddrs tableaddr*,
memaddrs memaddr*,
globaladdrs globaladdr*,
elemaddrs elemaddr*,
dataaddrs dataaddr*,
exports exportinst* } : {types functype*,

funcs functype ′
*
,

tables tabletype*,
mems memtype*,
globals globaltype* }

7.5.3 Configuration Validity

To relate the WebAssembly type system to its execution semantics, the typing rules for instructions must be ex-
tended to configurations 𝑆;𝑇 , which relates the store to execution threads.

Configurations and threads are classified by their result type. In addition to the store 𝑆, threads are typed under a
return type resulttype?, which controls whether and with which type a return instruction is allowed. This type is
absent (𝜖) except for instruction sequences inside an administrative frame instruction.

Finally, frames are classified with frame contexts, which extend the module contexts of a frame’s associated module
instance with the locals that the frame contains.

160 Chapter 7. Appendix

WebAssembly Specification, Release 1.1

Configurations 𝑆;𝑇

• The store 𝑆 must be valid.

• Under no allowed return type, the thread 𝑇 must be valid with some result type [𝑡*].

• Then the configuration is valid with the result type [𝑡*].

⊢ 𝑆 ok 𝑆; 𝜖 ⊢ 𝑇 : [𝑡*]

⊢ 𝑆;𝑇 : [𝑡*]

Threads 𝐹 ; instr*

• Let resulttype? be the current allowed return type.

• The frame 𝐹 must be valid with a context 𝐶.

• Let 𝐶 ′ be the same context as 𝐶, but with return set to resulttype?.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with some type [] → [𝑡*].

• Then the thread is valid with the result type [𝑡*].

𝑆 ⊢ 𝐹 : 𝐶 𝑆;𝐶, return resulttype? ⊢ instr* : [] → [𝑡*]

𝑆; resulttype? ⊢ 𝐹 ; instr* : [𝑡*]

Frames {locals val*,module moduleinst}

• The module instance moduleinst must be valid with some module context 𝐶.

• Each value val 𝑖 in val* must be valid with some value type 𝑡𝑖.

• Let 𝑡* the concatenation of all 𝑡𝑖 in order.

• Let 𝐶 ′ be the same context as 𝐶, but with the value types 𝑡* prepended to the locals vector.

• Then the frame is valid with frame context 𝐶 ′.

𝑆 ⊢ moduleinst : 𝐶 (⊢ val : 𝑡)*

𝑆 ⊢ {locals val*,module moduleinst} : (𝐶, locals 𝑡*)

7.5.4 Administrative Instructions

Typing rules for administrative instructions are specified as follows. In addition to the context 𝐶, typing of these
instructions is defined under a given store 𝑆. To that end, all previous typing judgements 𝐶 ⊢ prop are generalized
to include the store, as in 𝑆;𝐶 ⊢ prop, by implicitly adding 𝑆 to all rules – 𝑆 is never modified by the pre-existing
rules, but it is accessed in the extra rules for administrative instructions given below.

trap

• The instruction is valid with type [𝑡*1] → [𝑡*2], for any sequences of value types 𝑡*1 and 𝑡*2.

𝑆;𝐶 ⊢ trap : [𝑡*1] → [𝑡*2]

7.5. Soundness 161

WebAssembly Specification, Release 1.1

invoke funcaddr

• The external function value func funcaddr must be valid with external function type func([𝑡*1] → [𝑡*2]).

• Then the instruction is valid with type [𝑡*1] → [𝑡*2].

𝑆 ⊢ func funcaddr : func [𝑡*1] → [𝑡*2]

𝑆;𝐶 ⊢ invoke funcaddr : [𝑡*1] → [𝑡*2]

label𝑛{instr*0} instr* end

• The instruction sequence instr*0 must be valid with some type [𝑡𝑛1] → [𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with the result type [𝑡𝑛1] prepended to the labels vector.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with type [] → [𝑡*2].

• Then the compound instruction is valid with type [] → [𝑡*2].

𝑆;𝐶 ⊢ instr*0 : [𝑡𝑛1] → [𝑡*2] 𝑆;𝐶, labels [𝑡𝑛1] ⊢ instr* : [] → [𝑡*2]

𝑆;𝐶 ⊢ label𝑛{instr*0} instr* end : [] → [𝑡*2]

frame𝑛{𝐹} instr* end

• Under the return type [𝑡𝑛], the thread 𝐹 ; instr* must be valid with result type [𝑡𝑛].

• Then the compound instruction is valid with type [] → [𝑡𝑛].

𝑆; [𝑡𝑛] ⊢ 𝐹 ; instr* : [𝑡𝑛]

𝑆;𝐶 ⊢ frame𝑛{𝐹} instr* end : [] → [𝑡𝑛]

7.5.5 Store Extension

Programs can mutate the store and its contained instances. Any such modification must respect certain invariants,
such as not removing allocated instances or changing immutable definitions. While these invariants are inherent
to the execution semantics of WebAssembly instructions and modules, host functions do not automatically adhere
to them. Consequently, the required invariants must be stated as explicit constraints on the invocation of host
functions. Soundness only holds when the embedder ensures these constraints.

The necessary constraints are codified by the notion of store extension: a store state 𝑆′ extends state 𝑆, written
𝑆 ⪯ 𝑆′, when the following rules hold.

Note: Extension does not imply that the new store is valid, which is defined separately above.

Store 𝑆

• The length of 𝑆.funcs must not shrink.

• The length of 𝑆.tables must not shrink.

• The length of 𝑆.mems must not shrink.

• The length of 𝑆.globals must not shrink.

• The length of 𝑆.elems must not shrink.

• The length of 𝑆.datas must not shrink.

162 Chapter 7. Appendix

WebAssembly Specification, Release 1.1

• For each function instance funcinst 𝑖 in the original 𝑆.funcs, the new function instance must be an extension
of the old.

• For each table instance tableinst 𝑖 in the original 𝑆.tables, the new table instance must be an extension of
the old.

• For each memory instance meminst 𝑖 in the original 𝑆.mems, the new memory instance must be an extension
of the old.

• For each global instance globalinst 𝑖 in the original 𝑆.globals, the new global instance must be an extension
of the old.

• For each element instance eleminst 𝑖 in the original 𝑆.elems, the new global instance must be an extension
of the old.

• For each data instance datainst 𝑖 in the original 𝑆.datas, the new global instance must be an extension of
the old.

𝑆1.funcs = funcinst*1 𝑆2.funcs = funcinst ′1
*
funcinst*2 (⊢ funcinst1 ⪯ funcinst ′1)*

𝑆1.tables = tableinst*1 𝑆2.tables = tableinst ′1
*
tableinst*2 (⊢ tableinst1 ⪯ tableinst ′1)*

𝑆1.mems = meminst*1 𝑆2.mems = meminst ′1
*
meminst*2 (⊢ meminst1 ⪯ meminst ′1)*

𝑆1.globals = globalinst*1 𝑆2.globals = globalinst ′1
*
globalinst*2 (⊢ globalinst1 ⪯ globalinst ′1)*

𝑆1.elems = eleminst*1 𝑆2.elems = eleminst ′1
*
eleminst*2 (⊢ eleminst1 ⪯ eleminst ′1)*

𝑆1.datas = datainst*1 𝑆2.datas = datainst ′1
*
datainst*2 (⊢ datainst1 ⪯ datainst ′1)*

⊢ 𝑆1 ⪯ 𝑆2

Function Instance funcinst

• A function instance must remain unchanged.

⊢ funcinst ⪯ funcinst

Table Instance tableinst

• The length of tableinst .elem must not shrink.

• The value of tableinst .max must remain unchanged.

𝑛1 ≤ 𝑛2

⊢ {elem (fa?
1)𝑛1 ,max 𝑚} ⪯ {elem (fa?

2)𝑛2 ,max 𝑚}

Memory Instance meminst

• The length of meminst .data must not shrink.

• The value of meminst .max must remain unchanged.

𝑛1 ≤ 𝑛2

⊢ {data 𝑏𝑛1
1 ,max 𝑚} ⪯ {data 𝑏𝑛2

2 ,max 𝑚}

7.5. Soundness 163

WebAssembly Specification, Release 1.1

Global Instance globalinst

• The mutability globalinst .mut must remain unchanged.

• The value type of the value globalinst .value must remain unchanged.

• If globalinst .mut is const, then the value globalinst .value must remain unchanged.

mut = var ∨ 𝑐1 = 𝑐2
⊢ {value (𝑡.const 𝑐1),mut mut} ⪯ {value (𝑡.const 𝑐2),mut mut}

Element Instance eleminst

• The vector eleminst .elem must either remain unchanged or shrink to length 0.

fa*
1 = fa*

2 ∨ fa*
2 = 𝜖

⊢ {elem fa*
1} ⪯ {elem fa*

2}

Data Instance datainst

• The vector datainst .data must either remain unchanged or shrink to length 0.

𝑏*1 = 𝑏*2 ∨ 𝑏*2 = 𝜖

⊢ {data 𝑏*1} ⪯ {data 𝑏*2}

7.5.6 Theorems

Given the definition of valid configurations, the standard soundness theorems hold.52

Theorem (Preservation). If a configuration 𝑆;𝑇 is valid with result type [𝑡*] (i.e., ⊢ 𝑆;𝑇 : [𝑡*]), and steps to
𝑆′;𝑇 ′ (i.e., 𝑆;𝑇 →˓ 𝑆′;𝑇 ′), then 𝑆′;𝑇 ′ is a valid configuration with the same result type (i.e., ⊢ 𝑆′;𝑇 ′ : [𝑡*]).
Furthermore, 𝑆′ is an extension of 𝑆 (i.e., ⊢ 𝑆 ⪯ 𝑆′).

A terminal thread is one whose sequence of instructions is a result. A terminal configuration is a configuration
whose thread is terminal.

Theorem (Progress). If a configuration 𝑆;𝑇 is valid (i.e., ⊢ 𝑆;𝑇 : [𝑡*] for some result type [𝑡*]), then either it is
terminal, or it can step to some configuration 𝑆′;𝑇 ′ (i.e., 𝑆;𝑇 →˓ 𝑆′;𝑇 ′).

From Preservation and Progress the soundness of the WebAssembly type system follows directly.

Corollary (Soundness). If a configuration 𝑆;𝑇 is valid (i.e., ⊢ 𝑆;𝑇 : [𝑡*] for some result type [𝑡*]), then it either
diverges or takes a finite number of steps to reach a terminal configuration 𝑆′;𝑇 ′ (i.e., 𝑆;𝑇 →˓ *𝑆′;𝑇 ′) that is
valid with the same result type (i.e., ⊢ 𝑆′;𝑇 ′ : [𝑡*]) and where 𝑆′ is an extension of 𝑆 (i.e., ⊢ 𝑆 ⪯ 𝑆′).

In other words, every thread in a valid configuration either runs forever, traps, or terminates with a result that has
the expected type. Consequently, given a valid store, no computation defined by instantiation or invocation of a
valid module can “crash” or otherwise (mis)behave in ways not covered by the execution semantics given in this
specification.

52 A machine-verified version of the formalization and soundness proof is described in the following article: Conrad Watt. Mechanising
and Verifying the WebAssembly Specification53. Proceedings of the 7th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP
2018). ACM 2018.

53 https://dl.acm.org/citation.cfm?id=3167082

164 Chapter 7. Appendix

https://dl.acm.org/citation.cfm?id=3167082
https://dl.acm.org/citation.cfm?id=3167082

Index

Symbols
: abstract syntax

administrative instruction, 50

A
abbreviations, 120
abstract syntax, 5, 103, 119, 149

block type, 13, 24
byte, 7
data, 17, 38
data address, 46
data index, 15
data instance, 48
element, 17, 37
element address, 46
element index, 15
element instance, 48
element type, 9
export, 18, 39
export instance, 48
expression, 15, 35, 90
external type, 10, 25
external value, 48
floating-point number, 7
frame, 48
function, 16, 36
function address, 46
function index, 15
function instance, 46
function type, 9, 24
global, 17, 37
global address, 46
global index, 15
global instance, 47
global type, 10, 25
grammar, 5
import, 18, 40
instruction, 10–13, 27–29, 31, 71, 73–75, 81,

85
integer, 7
label, 48
label index, 15
limits, 9, 23
local, 16

local index, 15
memory, 16, 36
memory address, 46
memory index, 15
memory instance, 47
memory type, 9, 25
module, 15, 41
module instance, 46
mutability, 10
name, 8
notation, 5
result, 45
result type, 9
signed integer, 7
start function, 18, 38
store, 45
table, 16, 36
table address, 46
table index, 15
table instance, 47
table type, 9, 24
type, 8
type definition, 16
type index, 15
uninterpreted integer, 7
unsigned integer, 7
value, 6, 45
value type, 8
vector, 6

activation, 48
active, 17
address, 46, 74, 75, 81, 85, 93

data, 46
element, 46
function, 46
global, 46
memory, 46
table, 46

administrative instruction, 160, 161
: abstract syntax, 50

administrative instructions, 50
algorithm, 151
allocation, 45, 93, 142, 150
arithmetic NaN, 7

165

WebAssembly Specification, Release 1.1

ASCII, 121, 122, 124

B
binary format, 8, 103, 142, 149, 151, 154

block type, 107
byte, 105
custom section, 114
data, 117
data count, 117
data index, 113
element, 116
element index, 113
element type, 107
export, 115
expression, 112
floating-point number, 105
function, 114, 116
function index, 113
function type, 106
global, 115
global index, 113
global type, 107
grammar, 103
import, 114
instruction, 107–109
integer, 105
label index, 113
limits, 107
local, 116
local index, 113
memory, 115
memory index, 113
memory type, 107
module, 117
mutability, 107
name, 105
notation, 103
result type, 106
section, 113
signed integer, 105
start function, 115
table, 115
table index, 113
table type, 107
type, 106
type index, 113
type section, 114
uninterpreted integer, 105
unsigned integer, 105
value, 104
value type, 106
vector, 104

bit, 52
bit width, 7, 8, 52, 75
block, 13, 31, 85, 88, 107, 126

type, 13
block context, 50
block type, 13, 24, 31, 107

abstract syntax, 13
binary format, 107
validation, 24

Boolean, 3, 53
branch, 13, 31, 50, 85, 107, 126
byte, 7, 8, 17, 38, 47, 48, 53, 94, 103, 105, 117, 124,

135, 137, 146, 158, 159
abstract syntax, 7
binary format, 105
text format, 124

C
call, 48, 50, 89
canonical NaN, 7
character, 2, 8, 121, 121, 122, 124, 149, 150

text format, 121
closure, 46
code, 10, 149

section, 116
code section, 116
comment, 121, 122
concepts, 3
configuration, 44, 51, 160, 164
constant, 15, 17, 35, 45
context, 21, 26, 28, 29, 31, 41, 117, 159, 161
control instruction, 13
control instructions, 31, 85, 107, 126
custom section, 114, 154

binary format, 114

D
data, 15, 16, 17, 38, 41, 50, 95, 117, 135, 137, 138,

149
abstract syntax, 17
address, 46
binary format, 117
index, 15
instance, 48
section, 117
segment, 17, 38, 117, 135, 137
text format, 135, 137
validation, 38

data address, 46, 95
abstract syntax, 46

data count, 117
binary format, 117
section, 117

data count section, 117
data index, 15, 17, 113, 133

abstract syntax, 15
binary format, 113
text format, 133

data instance, 46, 48, 95, 159, 164
abstract syntax, 48

data section, 117
data segment, 47, 48, 117
decoding, 4
design goals, 1

166 Index

WebAssembly Specification, Release 1.1

determinism, 52, 71

E
element, 9, 15, 16, 17, 37, 41, 50, 95, 116, 117, 135,

137, 138, 145, 149
abstract syntax, 17
address, 46
binary format, 116
index, 15
instance, 48
section, 116
segment, 17, 37, 116, 135, 137
text format, 135, 137
type, 9
validation, 37

element address, 46, 81, 95
abstract syntax, 46

element expression, 48
element index, 15, 17, 113, 133

abstract syntax, 15
binary format, 113
text format, 133

element instance, 46, 48, 81, 95, 159, 164
abstract syntax, 48

element section, 116
element segment, 47, 48
element type, 9, 24, 92, 107, 126

abstract syntax, 9
binary format, 107
text format, 126

embedder, 2, 3, 46–48, 141
embedding, 141
evaluation context, 44, 51
execution, 4, 8, 9, 43, 150

expression, 90
instruction, 71, 73–75, 81, 85

exponent, 7, 53
export, 15, 18, 39, 41, 48, 96, 100, 115, 117, 134–

136, 138, 143, 144, 149
abstract syntax, 18
binary format, 115
instance, 48
section, 115
text format, 134–136
validation, 39

export instance, 46, 48, 96, 144, 159
abstract syntax, 48

export section, 115
expression, 15, 16, 17, 35–38, 90, 112, 115–117,

132, 135–137
abstract syntax, 15
binary format, 112
constant, 15, 35, 112, 132
execution, 90
text format, 132
validation, 35

extern type, 161
extern value, 161

external
type, 10
value, 48

external type, 10, 25, 91, 92, 96, 159
abstract syntax, 10
validation, 25

external value, 10, 48, 48, 91, 96, 159
abstract syntax, 48

F
file extension, 103, 119
floating point, 2
floating-point, 3, 7, 8, 10, 45, 52, 58
floating-point number, 105, 123

abstract syntax, 7
binary format, 105
text format, 123

folded instruction, 131
frame, 48, 50, 51, 74, 75, 81, 85, 89, 150, 151, 160–

162
abstract syntax, 48

function, 2, 3, 9, 13, 15, 16, 18, 21, 36, 41, 46, 48,
50, 89, 93, 96, 100, 114, 116, 117, 134, 138,
144, 149, 150, 155, 156

abstract syntax, 16, 36
address, 46
binary format, 114, 116
export, 18
import, 18
index, 15
instance, 46
section, 114
text format, 134
type, 9

function address, 47, 48, 50, 91, 93, 96, 100,
144, 145, 158, 161

abstract syntax, 46
function element, 81
function index, 13, 15, 16–18, 31, 36–39, 85, 96,

107, 113, 115, 116, 126, 133–137, 155, 156
abstract syntax, 15
binary format, 113
text format, 133

function instance, 45, 46, 46, 50, 89, 93, 96,
100, 144, 150, 157, 158, 162, 163

abstract syntax, 46
function section, 114
function type, 9, 10, 13, 15, 16, 18, 21, 24–26,

36, 40, 41, 46, 71, 91–93, 100, 106, 114, 116,
117, 125, 134, 138, 144, 157, 158, 161

abstract syntax, 9
binary format, 106
text format, 125
validation, 24

G
global, 10, 12, 15, 17, 18, 37, 41, 47, 48, 95, 96, 115,

117, 136, 138, 147, 149

Index 167

WebAssembly Specification, Release 1.1

abstract syntax, 17
address, 46
binary format, 115
export, 18
import, 18
index, 15
instance, 47
mutability, 10
section, 115
text format, 136
type, 10
validation, 37

global address, 46, 48, 74, 92, 95, 96, 147
abstract syntax, 46

global index, 12, 15, 17, 18, 28, 39, 74, 96, 108,
113, 115, 127, 133, 136

abstract syntax, 15
binary format, 113
text format, 133

global instance, 45, 46, 47, 74, 95, 96, 147, 150,
157, 159, 162, 163

abstract syntax, 47
global section, 115
global type, 10, 10, 17, 18, 21, 25, 37, 40, 92, 93,

95, 107, 114, 115, 126, 134, 136, 147, 157,
159

abstract syntax, 10
binary format, 107
text format, 126
validation, 25

globaltype, 21
grammar notation, 5, 103, 119
grow, 95, 96

H
host, 2, 141
host function, 46, 90, 93, 144, 158

I
identifier, 119, 120, 133–136, 138, 150
identifier context, 120, 138
identifiers, 124

text format, 124
IEEE 754, 2, 3, 7, 8, 53, 58
implementation, 141, 148
implementation limitations, 148
import, 2, 10, 15–17, 18, 36, 40, 41, 91, 96, 114, 117,

134–136, 138, 143, 149
abstract syntax, 18
binary format, 114
section, 114
text format, 134–136
validation, 40

import section, 114
index, 15, 18, 39, 46, 113, 115, 120, 126, 133–136,

155
data, 15
element, 15

function, 15
global, 15
label, 15
local, 15
memory, 15
table, 15
type, 15

index space, 15, 18, 21, 120, 155
instance, 46, 98

data, 48
element, 48
export, 48
function, 46
global, 47
memory, 47
module, 46
table, 47

instantiation, 4, 8, 18, 98, 143, 164
instantiation. module, 21
instruction, 3, 9, 10, 15, 26, 34, 47, 48, 50, 51, 71,

88, 107, 126, 149, 151, 161, 162
abstract syntax, 10–13
binary format, 107–109
execution, 71, 73–75, 81, 85
text format, 126–128
validation, 27–29, 31

instruction sequence, 34, 88
integer, 3, 7, 8, 10, 45, 52, 53, 75, 105, 123

abstract syntax, 7
binary format, 105
signed, 7
text format, 123
uninterpreted, 7
unsigned, 7

invocation, 4, 46, 100, 144, 164

K
keyword, 121

L
label, 13, 31, 48, 50, 51, 85, 89, 107, 126, 150, 151,

162
abstract syntax, 48
index, 15

label index, 13, 15, 31, 85, 107, 113, 126, 133
abstract syntax, 15
binary format, 113
text format, 126, 133

LEB128, 105, 107
lexical format, 121
limits, 9, 9, 16, 23–25, 75, 91–96, 107, 125, 126,

158
abstract syntax, 9
binary format, 107
memory, 9
table, 9
text format, 125
validation, 23

168 Index

WebAssembly Specification, Release 1.1

linear memory, 3
little endian, 12, 53, 105
local, 12, 15, 16, 36, 48, 116, 134, 149, 156, 161

abstract syntax, 16
binary format, 116
index, 15
text format, 134

local index, 12, 15, 16, 28, 36, 74, 108, 113, 127,
133, 156

abstract syntax, 15
binary format, 113
text format, 133

M
magnitude, 7
matching, 92, 96
memory, 3, 9, 12, 15, 16, 17, 18, 36, 38, 41, 47, 48, 50,

53, 94, 96, 115, 117, 135, 137, 138, 146, 149
abstract syntax, 16
address, 46
binary format, 115
data, 17, 38, 117, 135, 137
export, 18
import, 18
index, 15
instance, 47
limits, 9
section, 115
text format, 135
type, 9
validation, 36

memory address, 46, 48, 75, 91, 94, 96, 146
abstract syntax, 46

memory index, 12, 15, 16–18, 29, 38, 39, 75, 96,
109, 113, 115, 117, 128, 133, 135–137

abstract syntax, 15
binary format, 113
text format, 133

memory instance, 45, 46, 47, 50, 75, 94, 96, 146,
150, 157, 158, 162, 163

abstract syntax, 47
memory instruction, 12, 29, 75, 109, 128
memory section, 115
memory type, 9, 9, 10, 16, 18, 21, 25, 36, 40, 47,

91, 93, 94, 107, 114, 115, 125, 134, 135, 146,
157, 158

abstract syntax, 9
binary format, 107
text format, 125
validation, 25

module, 2, 3, 15, 21, 41, 45, 46, 96, 98, 100, 103, 117,
138, 142, 144, 149, 151, 155, 164

abstract syntax, 15
binary format, 117
instance, 46
text format, 138
validation, 41

module instance, 46, 48, 93, 96, 100, 143, 144,
150, 159, 161

abstract syntax, 46
module instruction, 51
mutability, 10, 10, 17, 25, 47, 92, 93, 95, 107, 126,

159, 163
abstract syntax, 10
binary format, 107
global, 10
text format, 126

N
name, 2, 8, 18, 39, 40, 46, 48, 105, 114, 115, 124, 134–

136, 149, 154, 159
abstract syntax, 8
binary format, 105
text format, 124

name map, 155
name section, 138, 154
NaN, 7, 52, 60, 71

arithmetic, 7
canonical, 7
payload, 7

notation, 5, 103, 119
abstract syntax, 5
binary format, 103
text format, 119

numeric instruction, 10, 27, 71, 109, 128

O
offset, 15
opcode, 107, 151, 153
operand, 10
operand stack, 10, 26

P
page size, 9, 12, 16, 47, 107, 125, 135
parameter, 9, 15, 149
parametric instruction, 11
parametric instructions, 27, 73
passive, 17
payload, 7
phases, 4
polymorphism, 26, 27, 31, 107, 108, 126, 127
portability, 1
preservation, 164
progress, 164

R
reduction rules, 44
reference, 159
result, 9, 45, 144, 149, 156

abstract syntax, 45
type, 9

result type, 9, 9, 13, 21, 31, 35, 85, 106, 107, 125,
126, 156, 160–162

abstract syntax, 9
binary format, 106

Index 169

WebAssembly Specification, Release 1.1

resulttype, 21
rewrite rule, 120
rounding, 59
runtime, 45

S
S-expression, 119, 131
section, 113, 117, 149, 154

binary format, 113
code, 116
custom, 114
data, 117
data count, 117
element, 116
export, 115
function, 114
global, 115
import, 114
memory, 115
name, 138
start, 115
table, 115
type, 114

security, 2
segment, 50
sign, 53
signed integer, 7, 53, 105, 123

abstract syntax, 7
binary format, 105
text format, 123

significand, 7, 53
soundness, 156, 164
source text, 121, 121, 150
stack, 43, 48, 100, 151
stack machine, 10
start function, 15, 18, 38, 41, 115, 117, 137, 138

abstract syntax, 18
binary format, 115
section, 115
text format, 137
validation, 38

start section, 115
store, 43, 45, 46, 48, 51, 71, 74, 75, 81, 85, 90, 91,

93, 98, 100, 142, 144–147, 157, 160–162
abstract syntax, 45

store extension, 162
string, 124

text format, 124
structured control, 13, 31, 85, 107, 126
structured control instruction, 149

T
table, 3, 9, 12, 13, 15, 16, 17, 18, 36, 37, 41, 47, 48,

50, 94–96, 115, 117, 135, 138, 145, 149
abstract syntax, 16
address, 46
binary format, 115
element, 17, 37, 116, 135, 137

export, 18
import, 18
index, 15
instance, 47
limits, 9
section, 115
text format, 135
type, 9
validation, 36

table address, 46, 48, 81, 85, 91, 94–96, 145
abstract syntax, 46

table index, 12, 15, 16–18, 29, 37, 39, 81, 96, 113,
115, 116, 133, 135–137

abstract syntax, 15
binary format, 113
text format, 133

table instance, 45, 46, 47, 50, 81, 85, 94–96,
145, 150, 157, 158, 162, 163

abstract syntax, 47
table instruction, 12, 29, 81
table section, 115
table type, 9, 9, 10, 16, 18, 21, 24, 25, 36, 40, 47,

91, 92, 94, 107, 114, 115, 126, 134, 135, 145,
157, 158

abstract syntax, 9
binary format, 107
text format, 126
validation, 24

terminal configuration, 164
text format, 2, 119, 142, 150

byte, 124
character, 121
comment, 122
data, 135, 137
data index, 133
element, 135, 137
element index, 133
element type, 126
export, 134–136
expression, 132
floating-point number, 123
function, 134
function index, 133
function type, 125
global, 136
global index, 133
global type, 126
grammar, 119
identifiers, 124
import, 134–136
instruction, 126–128
integer, 123
label index, 126, 133
limits, 125
local, 134
local index, 133
memory, 135
memory index, 133

170 Index

WebAssembly Specification, Release 1.1

memory type, 125
module, 138
mutability, 126
name, 124
notation, 119
signed integer, 123
start function, 137
string, 124
table, 135
table index, 133
table type, 126
token, 121
type, 125
type definition, 133
type index, 133
type use, 133
uninterpreted integer, 123
unsigned integer, 123
value, 122
value type, 125
vector, 121
white space, 122

thread, 51, 160, 161, 164
token, 121, 150
trap, 3, 12, 13, 45, 50, 51, 71, 98, 100, 156, 161
two's complement, 3, 7, 10, 53, 105
type, 8, 96, 106, 125, 149

abstract syntax, 8
binary format, 106
block, 13
element, 9
external, 10
function, 9
global, 10
index, 15
memory, 9
result, 9
section, 114
table, 9
text format, 125
value, 8

type definition, 15, 16, 41, 114, 117, 133, 138
abstract syntax, 16
text format, 133

type index, 13, 15, 16, 18, 31, 36, 85, 107, 113,
114, 116, 126, 133, 134

abstract syntax, 15
binary format, 113
text format, 133

type section, 114
binary format, 114

type system, 21, 156
type use, 133

text format, 133
typing rules, 22

U
Unicode, 2, 8, 105, 119, 121, 124, 149

unicode, 150
Unicode UTF-8, 154
uninterpreted integer, 7, 53, 105, 123

abstract syntax, 7
binary format, 105
text format, 123

unsigned integer, 7, 53, 105, 123
abstract syntax, 7
binary format, 105
text format, 123

unwinding, 13
UTF-8, 2, 8, 105, 119, 124

V
validation, 4, 8, 21, 71, 91, 142, 150, 151

block type, 24
data, 38
element, 37
export, 39
expression, 35
external type, 25
function type, 24
global, 37
global type, 25
import, 40
instruction, 27–29, 31
limits, 23
memory, 36
memory type, 25
module, 41
start function, 38
table, 36
table type, 24

validity, 164
valtype, 21
value, 3, 6, 10, 17, 26, 45, 45, 47, 51, 52, 71, 73–75,

95, 100, 104, 122, 144, 147, 150, 156, 159,
161, 163

abstract syntax, 6, 45
binary format, 104
external, 48
text format, 122
type, 8

value type, 8, 9–11, 13, 16, 21, 25, 27, 36, 45, 71,
75, 81, 92, 93, 95, 106–108, 125–127, 151,
156, 161

abstract syntax, 8
binary format, 106
text format, 125

variable instruction, 12
variable instructions, 28, 74, 108, 127
vector, 6, 9, 13, 17, 31, 85, 104, 107, 121, 126

abstract syntax, 6
binary format, 104
text format, 121

version, 117

Index 171

WebAssembly Specification, Release 1.1

W
white space, 121, 122

172 Index

	Introduction
	Introduction
	Overview

	Structure
	Conventions
	Values
	Types
	Instructions
	Modules

	Validation
	Conventions
	Types
	Instructions
	Modules

	Execution
	Conventions
	Runtime Structure
	Numerics
	Instructions
	Modules

	Binary Format
	Conventions
	Values
	Types
	Instructions
	Modules

	Text Format
	Conventions
	Lexical Format
	Values
	Types
	Instructions
	Modules

	Appendix
	Embedding
	Implementation Limitations
	Validation Algorithm
	Custom Sections
	Soundness

	Index

