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1 Introduction
The recent spread of digital video recording devices
has made it commonplace for individuals to store large
amounts of video in their equipment. This situation
brings out the need for an effective retrieval method
of finding desired scenes from accumulated video data.
Broadcasting organizations also need efficient retrieval
technology to enable effective use of their huge video
archives.

To efficiently retrieve a desired video resource, it is
important to analyze its semantic content rather than
just its physical characteristics such as color or texture.
The semantic indexing task in TRECVID aims at detect-
ing semantic concepts such as objects and events. The
studies about this task are also referred to as generic
object recognition. One of the most common techniques
for semantic indexing is the bag-of-visual-words (BoVW)
method [1, 2], which calculates feature vectors on the ba-
sis of the occurrence frequency of local features such as
SIFT [3] and SURF [4] and classifies them by a machine
learning algorithm such as the support vector machine.
The effectiveness of the BoVW approach has been veri-
fied in many previous studies [5].

In this paper, we propose a detection method of se-
mantic concepts based on the BoVW approach. The
proposed method uses global features that take a wider
region into consideration, in addition to the local features
of the conventional BoVW method. The feature vectors
are calculated for block regions of various sizes in order
to obtain robustness against variations in the size or posi-
tion of objects. The random forests method [6] is used to
determine whether the shot contains a specific concept.
Semi-supervised learning is used to improve the quality
of the learning data. Results of an evaluation experiment
demonstrated that the proposed method had a sufficient
accuracy in the detection of 346 different concepts.

2 Semantic Indexing Task
An overview of the proposed method is shown in Fig. 1.
First, the input video is divided into shots, and then a
keyframe is extracted from the beginning of each shot.
The proposed method uses these keyframes as represen-
tative images for each shot. Next, local features and
global features are calculated from the keyframes to ob-

SIFT

SURF

Color moments

Haar wavelet
texture

Local binary
pattern

K
ey

fr
am

e 
ex

tr
ac

tio
n

Soft-weighted
feature vector

Soft-weighted
feature vector

R
an

do
m

 f
or

es
ts

 c
la

ss
if

ie
r

Local feature

Global feature

G
ri

d-
ba

se
d 

fe
at

ur
e 

ve
ct

or

Figure 1: Overview of semantic indexing method.

tain a feature vector. Local features are obtained by
using the BoVW approach based on two types of algo-
rithm: SIFT [3] and SURF [4]. Global features are cal-
culated using color moments, the Haar wavelet, and local
binary patterns (LBPs) [7]. These local and global fea-
tures are aggregated over block regions of various sizes
and then connected to form a feature vector for the en-
tire frame. Finally, the feature vectors are classified by a
random forest classifier to determine whether the target
concept appears in the shot. The random forest classi-
fier uses learning data labeled with concept names and
is assumed to have been trained in advance. The details
of each process are described below.

2.1 Local Feature
The proposed method calculates local features based on
the combination of SIFT and SURF algorithms to cap-
ture the visual characteristics of keyframes more accu-
rately. The visual vocabularies are generated by using
the k-means method to cluster feature descriptors ex-
tracted from the training data. Separate visual vocabu-
laries are prepared for SIFT and SURF. The local feature
vectors are calculated using a weighting method on the
basis of the distances between a visual vocabulary and
feature descriptors [8]. This differs from the conventional
approach, where a single feature point is allocated to a
single visual vocabulary item, and instead allows a single



feature point to be associated with multiple visual vo-
cabulary items. If K is the total number of items in the
visual vocabulary, it calculates a K-dimensional feature
vector T = (t1, ..., tk, ..., tK). The vector elements tk are
calculated with the formula

tk =
N∑

i=1

Mi∑
j=1

1
2i−1

sim(pj , wk), (1)

where Mi is the total number of feature points having
wk as a visual vocabulary item whose distance is close to
the i-th item and sim(pj , wk) is the degree of similarity
between feature point pj and visual vocabulary item wk.
N is a constant expressing how many of the closest visual
vocabulary items should be considered. We set N = 4,
as in reference [8].

2.2 Global Features
The proposed method uses three types of global feature.

2.2.1 Color Moments

The proposed method transforms the input image into
the HSV and Lab color spaces and then calculates the
average pixel value µc, the standard deviation σc, and
the cube root of skewness sc for each component c (c ∈
{h, s, v, l, a, b}). The calculation formulae are as follows:

µc =
1

HW

∑
x

∑
y

fc(x, y), (2)

σc =

{
1

HW

∑
x

∑
y

{fc(x, y) − µc}2

}1/2

, (3)

sc =

{
1

HW

∑
x

∑
y

{fc(x, y) − µc}3

}1/3

, (4)

where fc(x, y) represents the pixel value of a component
c at coordinates (x, y) and HandW are the height and
width of the image region.

2.2.2 Haar Wavelet Texture

First, a Haar wavelet transform is applied in three levels
to the image region. We then calculate the variance of
the pixel values in each sub-band region, and these are
concatenated to form the feature quantities.

2.2.3 Local Binary Pattern

The local binary pattern LP,R from P pixels on a circle
of radius R is formulated as

LP,R(x, y)=


P−1∑
p=0

δP,R(xp, yp), if UP,R(x, y)≤2

P + 1, otherwise

.(5)

Here, δP,R represents the magnitude relationship of in-
tensity values between a particular pixel (x, y) and the
surrounding pixels (x + xp, y + yp) and is calculated as

δP,R(xp, yp) =
{

1, f(x+xp, y+yp)−f(x, y)≥0
0, otherwise

.(6)

The values of xp and yp are given by
xp = R cos

2πp

P

yp = R sin
2πp

P

(0 ≤ p ≤ P − 1) . (7)

The function UP,R in Equation (5) represents the total
number of locations where there is a change between 0
and 1 in the sequence δP,R for the surrounding pixels,
and is calculated by

UP,R(x, y) = |δP,R(xP−1, yP−1)|

+
P−1∑
p=1

|δP,R(xp, yp) − δP,R(xp−1, yp−1)|. (8)

The proposed method calculates LP,R(0 ≤ LP,R ≤ P +1)
for all the pixels in the image region and obtains their fre-
quency histogram. To ensure robustness against changes
of resolution, frequency histograms are calculated for
each LP,R with (P,R) = (8, 1), (16, 2), and (24, 3) [7].

2.3 Calculation of Feature Vectors
The conventional method [9] partitions the keyframe im-
ages horizontally and vertically into 2× 2 and 1× 3 grid
regions, and the average feature vectors for each grid re-
gion are concatenated to obtain a feature vector for the
whole image. To calculate feature vectors more robustly
with respect to differences in the size and position of
objects, the proposed method partitions the frame im-
ages into grid regions of various sizes. In addition, to
deal with objects that cross over the boundaries between
grid regions, neighboring grid regions overlap each other.
The average feature vectors are calculated for each grid
region, and these are concatenated to form the feature
vector of the entire keyframe. The specific size of the
grid regions is obtained by dividing the frame image hor-
izontally and vertically into 1 × 1, 2 × 2, 3 × 3, 3 × 1,
1 × 3, and 4 × 4 regions. Figure 2 shows the grid region
sizes used in the proposed method. The amount of over-
lap between neighboring grid regions is 50% of the grid
width in the vertical direction and 50% of the grid height
in the horizontal direction.

2.4 Random Forests Classifier
The random forests method [6] is used to determine
whether an input keyframe has a specific concept. Ran-
dom forests is a kind of ensemble learning, and it provides
highly accurate classifications by using a combination of
decision trees (CART) [10]. Some researchers assert that
random forests is superior to methods such as bagging
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Figure 2: Calculation of grid-based feature vector.

or boosting in certain cases. In addition, random forests
can complete the learning process in a short time even
for high-dimension feature vectors by searching for the
best feature for the branching node in a subset of vector
elements.

The random forests algorithm works well when the
training data for two classes (including and not includ-
ing the concept) are roughly the same in number, but the
classification error rate is rather uneven when one class
is much larger than the other. The conventional method
attempts to resolve this problem by applying a higher
weight to the smaller class [6]. However, the bootstrap
samples generated by the conventional method contain
few data items with a high weight and many data items
with a low weight, and this situation could cause over-
training. Thus, we propose a new sampling method for
creating the bootstrap samples that ensures each class is
selected with equal probability. The data is sampled with
replacement and is not weighted. If the number of boot-
strap samples is small relative to the amount of training
data, various data items are additionally selected from
the minority class, making it possible to generate a clas-
sifier with high generalization capability.

3 Experiments

3.1 Settings
For the full task of detecting 346 concepts, our team
submitted four types of run (shown in Table 1). The
training type was “A” in each case. These runs dif-
fered with regard to the methods used for feature vector
calculation and classifier learning. The settings of each
run are shown in Table 2. For the feature vectors, we
used our proposed block-based feature vector for runs 1
and 3, and the conventional SIFT-BoVW feature vector
for runs 2 and 4. For the learning method, runs 1 and
2 create random forest (RF) classifiers by using semi-
supervised learning with collaborative annotation as a
starting point, while runs 3 and 4 create classifiers by us-
ing the results of collaborative annotation directly. Run
4 is the baseline method.

Table 1: System ID and training type of each run.
Run System ID Training type

1 NHKSTRL1 A

2 NHKSTRL2 A

3 NHKSTRL3 A

4 NHKSTRL4 (baseline) A

Table 2: Evaluation results of each run.
Run Feature type Training method infAP

1 Block-based BoVW Semi-supervised RF 0.106

2 SIFT BoVW Semi-supervised RF 0.101

3 Block-based BoVW RF 0.102

4 SIFT BoVW RF 0.099

3.1.1 Experimental Results

The evaluation results are shown in Table 2. Each
method obtained evaluation results with an inferred av-
erage precision (infAP) of around 0.1. The lowest ac-
curacy was obtained with the baseline method (run 4),
for which the infAP was 0.099. Next was run 2, which
used semi-supervised learning and achieved an accu-
racy of 0.101. Runs 1 and 3, which used our block-
based features, achieved better accuracy than the con-
ventional SIFT-BoVW method. Specifically, the accu-
racy of run 3 (which used an ordinary learning method)
was 0.102, while run 1 (which used semi-supervised learn-
ing) achieved the greatest accuracy, which was 0.106.

Table 3 shows the results of a detailed comparison be-
tween run 1, which achieved the highest infAP, and run 4,
which used the baseline method. The comparison result
shows that run 1 achieved greater accuracy in 31 out of
46 concepts. This increase in accuracy was particularly
large for the concepts “101 Scene Text” and “128 Walk-
ing Running”. In these concepts, we conclude that the
image features were well reflected by the proposed fea-
ture quantities. In contrast, run 4 achieved greater accu-
racy for the concepts “4 Airplane Flying” and “198 Civil-
ian Person”. This over-fitting problem might occur in
some concepts due to the increased number of dimensions



in the feature vectors. It may be necessary to investigate
potential alternatives such as switching the feature quan-
tity calculation method for some concepts.

4 Conclusion
In this paper, we proposed a method for calculating fea-
ture vectors that is robust against variations in the size
or position of objects by combining image features calcu-
lated for block regions of various sizes. We also proposed
a method for using semi-supervised learning to tidy up
the training data. Evaluation results showed that the
proposed method has a better detection accuracy than
the conventional method. In our future work, we intend
to continue improving the image feature vector in order
to further improve the accuracy and to incorporate audio
features as well as video features.

References
[1] J. Sivic and A. Zisserman, “Video google: a text re-

trieval approach to object matching in videos,” In Proc.
ICCV’03, 2003.

[2] G. Csurka, C. Bray, C. Dance and L. Fan, “Visual cat-
egorization with bags of keypoints,” in Proc. ECCV
Workshop on Statistical Learning in Computer Vision,
pp.59–74, 2004.

[3] D.G. Lowe, “Object recognition from local scale-
invariant features,” In Proc. ICCV’99. vol.2. pp.1150–
1157, 1999.

[4] H. Bay, A. Ess, T. Tuytelaars and L.V. Gool, “SURF:
speeded up robust features,” Computer Vision and Im-
age Understanding, vol.110, no.3, pp.346–359, 2008.

[5] “TREC video retrieval evaluation notebook papers and
slides,” http://www-nlpir.nist.gov/projects/tvpubs/
tv.pubs.org.html

[6] L. Breiman, “Random forests,” Machine Learning,
vol.45, pp.5–32, 2001.

[7] T. Ojala M. Pietikaninen and T. Maenpaa, “Multireso-
lution gray-scale and rotation invariant texture classifi-
cation with local binary patterns,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol.24, no.7, pp.971–
987, 2002.

[8] Y.-G. Jiang, C.-W. Hgo and J. Yang, “Towords opti-
mal bag-of-features for object categorization and seman-
tic video retrieval,” In Proc. ACM CIVR’07, 2007.

[9] S.-F. Chang, J. He, Y.-G. Jiang, E.E. Khoury, C.-
W. Ngo, A. Yanagawa and E. Zavesky, “Columbia
University/VIREO-City/IRIT TRECVID2008 high-
level feature extraction and interactive video search,” In
Proc. TRECVID 2008 Workshop, 2008.

[10] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone,
“Classification and regression trees,” Wadsworth and
Brooks, 1984.

[11] S. Ayache and G. Quenot, “Video corpus annotation us-
ing active learning”, In Proc. ECIR’08, 2008.

Table 3: Evaluation results for each concept.
infAP

Concept Run 1 Run 4

(Baseline)

3 Airplane 0.099 0.094

4 Airplane Flying 0.147 0.173

9 Basketball 0.022 0.031

13 Bicycling 0.011 0.007

15 Boat Ship 0.051 0.050

16 Boy 0.027 0.024

17 Bridges 0.018 0.026

25 Chair 0.033 0.039

31 Computers 0.009 0.004

51 Female Person 0.194 0.187

54 Girl 0.021 0.010

56 Government-Leader 0.162 0.123

57 Greeting 0.051 0.056

63 Highway 0.030 0.035

71 Instrumental Musician 0.093 0.080

72 Kitchen 0.010 0.009

74 Landscape 0.334 0.328

75 Male Person 0.616 0.620

77 Meeting 0.084 0.063

80 Motorcycle 0.057 0.044

84 Nighttime 0.042 0.049

85 Office 0.076 0.080

95 Press Conference 0.030 0.025

99 Roadway Junction 0.034 0.022

101 Scene Text 0.073 0.011

105 Singing 0.018 0.029

107 Sitting Down 0.002 0.002

112 Stadium 0.076 0.090

116 Teenagers 0.041 0.030

120 Throwing 0.018 0.018

128 Walking Running 0.222 0.163

155 Apartments 0.059 0.056

163 Baby 0.038 0.033

198 Civilian Person 0.733 0.756

199 Clearing 0.089 0.097

254 Fields 0.175 0.161

267 Forest 0.117 0.090

274 George Bush 0.087 0.054

276 Glasses 0.051 0.050

297 Hill 0.105 0.090

321 Lakes 0.124 0.137

338 Man Wearing A Suit 0.169 0.138

342 Military Airplane 0.085 0.082

359 Oceans 0.170 0.173

434 Skier 0.108 0.074

440 Soldiers 0.046 0.045

Average 0.106 0.099


