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Abstract. The efficient implementation of positioning algo-
rithms is investigated for Global Positioning System (GPS).
In order to do the positioning, the pseudoranges between the
receiver and the satellites are required. The most commonly
used algorithm for position computation from pseudoranges
is non-linear Least Squares (LS) method. Linearization is
done to convert the non-linear system of equations into an
iterative procedure, which requires the solution of a linear
system of equations in each iteration, i.e. linear LS method
is applied iteratively. CORDIC-based approximate rotations
are used while computing the QR decomposition for solv-
ing the LS problem in each iteration. By choosing accu-
racy of the approximation, e.g. with a chosen number of
optimal CORDIC angles per rotation, the LS computation
can be simplified. The accuracy of the positioning results
is compared for various numbers of required iterations and
various approximation accuracies using real GPS data. The
results show that very coarse approximations are sufficient
for reasonable positioning accuracy. Therefore, the presented
method reduces the computational complexity significantly
and is highly suited for hardware implementation.

1 Introduction

Location Based Services (LBS) (Monsmondo et al., 2006;
Perusco, 2002; He and Bilgic, 2009; Schiller and Vois-
ard, 2004) are wireless “mobile content” services which are
used to provide location-specific information to mobile users
moving from location to location. They utilize the ability
to make use of the geographical position of the mobile de-
vice. Currently, GPS technique (Schreiner, 2007; Djuknic
and Richton, 2002), network positioning methods (Drane et
al., 1998) as well as other positioning methods (He et al.,
2008; Chan and Ho, 1994) are commonly used positioning
methods for location estimation for LBS.
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The result of the free availability of satellite positioning
parameters has led to wide adoption of the GPS systems.
Building GPS devices in commercially available cell phones
has been achieved by mobile device providers, such that the
number of cell phones equipped with GPS functionality has
rapidly grown in the last few years.

In order to do the positioning, an initial set of pseudor-
anges between the receiver and the satellites is needed. Non-
linear LS is the most common method to determine the re-
ceiver’s position from the pseudoranges. Usually, lineariza-
tion is done to convert the non-linear problem into an itera-
tive algorithm, which requires the solution of an overdeter-
mined system of linear equations in each iteration stepitr ,
i.e. linear LS method is applied in each iteration stepitr . For
solving the linear LS problems in each iteration step an iter-
ative version of the QR decomposition (QRD) (Götze, 1994)
is applied in this paper. Instead of annihilating the lower di-
agonal elements during the QRD, CORDIC-based approx-
imate rotations are used. By choosing the accuracy of the
approximation, e.g. by choosingitg optimal CORDIC angles
per rotation, the LS computation can be simplified. However,
we only obtain an approximate solution to the LS problem,
whose accuracy depends onitg. The accuracy of the posi-
tioning results of GPS method is compared for varying num-
bers of iterationsitr of the positioning algorithms and vary-
ing numbers of iterationsitg of the iterative QRD using real
GPS data. The results show that very coarse approximations
(small itg) are sufficient for obtaining a reasonable position
estimate. Therefore the presented methods reduce the com-
putational complexity and the required power consumption
significantly.

GPS positioning is introduced in Sect.2 resulting in an
algorithm, which requires the solution of LS problems in
each iterationitr (itr = 1, 2, ··· , itrmax). For solving
these LS problems an iteration version of the QRD is pre-
sented in Sect.3 using CORDIC-based approximate rota-
tions, whereitg denotes the approximation accuracy (itg =

1, 2, ··· , itgmax). The trade-off betweenitr (iteration of the
positioning method) anditg (iteration of the iterative QRD) is
investigated in Sect.4, where experimental results are given
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Fig. 1. Pseudoranges: the distance from satellites to GPS receiver.

using real GPS data. The paper finishes with a conclusion
and an outlook to the future work in Sect.5.

2 GPS positioning

The whole GPS positioning procedure includes three tasks:
acquisition, tracking and positioning (Borre et al., 2007). The
acquisition tries to find satellites and to get their positions. It
gives rough estimates of signal parameters. Tracking keeps
track of these parameters as the signal properties change over
time. After tracking, the navigation data can be extracted
and pseudoranges (measured distance from satellites to GPS
receiver) can be computed. The final task of the receiver is
to compute the user position.

The GPS satellites’ arrangement ensures that every point
on our planet is in contact with at least six satellites at all
times. Each satellitek continuously broadcasts a digital ra-
dio signal that includes its position(Xk, Y k, Zk) and its time
tk. On board atomic clocks ensure an accurate time to a bil-
lionth of a second. The radio signal of satellite spreads with
c = 3×108 in universe, the velocity of light in vacuum. GPS
receivers measure the time delayτ k of the signal from each
satellitek to the receiver, soτ k

= t − tk, wheret is time of
receiver. The measurement oft in the receiver is not very ac-
curate (as compared to the satellite timetk). Furthermore the
speed of radio signal from the satellites cuts down because
of ionosphere and troposphere. Signal propagation duration
from satellites to the receiver is longer than expected. There-
fore the measured distance from the satellite to the receiver
P k, measured byP k

= τ k
· c, is a rough distance estimate

called “Pseudorange” (see Fig.1). The receiver simultane-
ously collects these measurements from at least four satellites
and processes them to solve for position and time measure-
ment error.

Fig. 2. Observed pseudorangesP k and geometrical pseudoranges
ρk .

2.1 Observation equation

The most commonly used algorithm for position computa-
tion from pseudoranges is based on the LS method.

This method is used to find the receiver position from
pseudoranges to four or more satellites.

The basic observation equation for the pseudorangeP k is

P k
= ρk

+c(dt −dtk)+T k
+`k

+ek. (1)

ρk is the geometrical range between satellitek and receiver,
which can be computed as:

ρk
=

√
(Xk −X)2+(Y k −Y )2+(Zk −Z)2 (2)

where(X, Y, Z) is the position of receiver (see Fig.2). dt

denotes the receiver clock offset anddtk is the satellite clock
offset. From the ephemerids, which also include informa-
tion on the satellite clock offsetdtk, the position of the satel-
lite (Xk, Y k, Zk) can be computed.T k is the tropospheric
error and`k is the ionospheric error. These two errors are
computed from a priori models, whose coefficients are part
of the broadcast ephemerids.ek is the observation error of
the pseudorange. Therefore, Eq. (1) contains four unknowns
X,Y,Z anddt . The error terms are minimized by using the
LS method.

Equation (2) is nonlinear with respect to the receiver posi-
tion (X, Y, Z), so the equation is linearized before using the
LS method. The nonlinear term in Eq. (2):

f (X, Y, Z) =

√
(Xk −X)2+(Y k −Y )2+(Zk −Z)2 (3)

is linearized. Starting from an initial position for the re-
ceiver (X1, Y1, Z1), the position estimate is improved it-
eratively. The center of the Earth(0, 0, 0) can be chosen
as the initial point, if no a-priori-information (as e.g. from
AGPS) is available. Letitr be the number of the iterations
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(itr = 1, 2, ··· , itrmax). The increments1Xitr , 1Yitr , 1Zitr

update the receiver coordinates as follows:

Xitr+1 = Xitr +1Xitr ,

Yitr+1 = Yitr +1Yitr , (4)

Zitr+1 = Zitr +1Zitr .

The Taylor expansion of f (Xitr + 1Xitr , Yitr +

1Yitr , Zitr +1Zitr) is

f (Xitr+1,Yitr+1,Zitr+1) = f (Xitr ,Yitr ,Zitr) (5)

+
∂f (Xitr ,Yitr ,Zitr)

∂Xitr

1Xitr

+
∂f (Xitr ,Yitr ,Zitr)

∂Yitr

1Yitr

+
∂f (Xitr ,Yitr ,Zitr)

∂Zitr

1Zitr

Equation (5) includes only first-order terms, and the partial
derivatives are

∂f (Xitr ,Yitr ,Zitr)

∂Xitr

= −
Xk

−Xitr

ρk
itr

∂f (Xitr ,Yitr ,Zitr)

∂Yitr

= −
Y k

−Yitr

ρk
itr

∂f (Xitr ,Yitr ,Zitr)

∂Zitr

= −
Zk

−Zitr

ρk
itr

Let ρk
itr =

√
(Xk −Xitr)2+(Y k −Yitr)2+(Zk −Zitr)2 be

the range computed from the satellite position (Xk, Y k, Zk)
to the approximate receiver position(Xitr , Yitr , Zitr), so the
first-order linearized observation equation becomes

P k
itr = ρk

itr −
Xk

−Xitr

ρk
itr

1Xitr −
Y k

−Yitr

ρk
itr

1Yitr

−
Zk

−Zitr

ρk
itr

1Zitr +c(dtitr −dtk)+T k
itr +`k

itr +ek
itr . (6)

wheredtitr is the estimated clock error at the receiver.

2.2 Applying least-squares method

Rearranging Eq. (6), it can be rewritten as

[
−

Xk
−Xitr

ρk
itr

−
Y k

−Yitr

ρk
itr

−
Zk

−Zitr

ρk
itr

+1

]
1Xitr

1Yitr

1Zitr

cdti


= P k

itr −ρk
itr +cdtk −T k

itr −`k
itr −ek

itr . (7)

A unique solution can not be found from a single equa-
tion. Thereforem ≥ 4 satellites are required to form a sys-
tem of linear equations (usuallym ≥ 6 satellites are avail-
able). Letbk

itr = P k
itr − ρk

itr + cdtk − T k
itr − `k

itr − ek
itr and

bitr = [b1
itr , b2

itr ,··· , bm
itr ]

T . Then we obtain the LS prob-
lem:

minxitr
||Aitrxitr −bitr ||2, (8)

where

Aitr =



−
X1

−Xitr

ρ1
itr

−
Y 1

−Yitr

ρ1
itr

−
Z1

−Zitr

ρ1
itr

1

−
X2

−Xitr

ρ2
itr

−
Y 2

−Yitr

ρ2
itr

−
Z2

−Zitr

ρ2
itr

1

−
X3

−Xitr

ρ3
itr

−
Y 3

−Yitr

ρ3
itr

−
Z3

−Zitr

ρ3
itr

1

...
...

...
...

−
Xm

−Xitr

ρm
itr

−
Ym

−Yitr

ρm
itr

−
Zm

−Zitr

ρm
itr

1


and xitr = [1Xitr 1Yitr 1Zitr cdtitr ]

T . The solution
1Xitr , 1Yitr , 1Zitr has to be added to the approximate
receiver position to get the next approximate position as
in Eq. (4). These iterations continue until the solution
1Xitr , 1Yitr , 1Zitr is at meter level.

For solving Eq. (8) we need to findx̂itr which mini-
mizes the length of the error vectorêitr = bitr − Aitr x̂itr

with ||eitr ||
2
= (bitr −Aitrxitr)

T (bitr −Aitrxitr) the sum of
squares of them separate errors. Minimizing this quadratic
gives the normal equations

AT
itrAitr x̂itr = AT

itrbitr ⇒ x̂itr = (AT
itrAitr)

−1AT
itrbitr (9)

and the error vector is

êitr = bitr −Aitr x̂itr . (10)

There are various algorithms for solving LS problems (Eq.8)
(Golub and Loan, 1996). In the subsequent section, we use
the QRD by Givens rotations.

3 Iterative solution of LS

In each iteration of the positioning algorithm a LS prob-
lem must be computed. Since the pseudoranges are subject
to measurement errors and the convergence (number of re-
quired iterations) of the algorithm depends on the accuracy
of these LS solutions, it is worthwhile to investigate the use
of an iterative LS solver and the trade-off between the num-
ber of iterations of the positioning method and the number of
iterations of the iterative LS solver.

The iterative version of the QR decomposition (QRD) pre-
sented inGötze (1994) is used for the iterative solution of
Eq. (8), since it is well suited for hardware implementation,
suitable for the adaption to measurement errors (pseudor-
anges), and yields a solution vector which converges linearly
to the exact solution. Here we will briefly review this itera-
tive QRD.

The QR decomposition of am×n matrixA = Q ·R can be
computed by applying a sequence of Givens rotationsG(φij )
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Table 1. Mean value of position-accuracy results (in meter) by GPS
with exact LS method and CORDIC-based approximate rotations.

itr itg GPS-itr GPS-itg

2

1

1241.4

1282.8
2 1256.6
3 1246.1
8 1241.4
9 1241.4

3

1

38.484

85.756
2 47.744
3 39.020
8 38.484
9 38.484

4

1

32.472

81.495
2 35.452
3 32.985
8 32.472
9 32.472

5

1

32.472

81.495
2 35.452
3 32.985
8 32.472
9 32.472

(φij = arctan(aij/ajj )) to the matrix such that the matrix en-
tries below the diagonal ofA are annihilated, i.e. generate
a′

ij = 0 for

(i,j)= {(2,1)(3,1)...(m,1)(3,2)...(m,2) (11)

...(n+1,n)...(m,n)}.

The resulting matrix is upper triangular and denoted byR.
The product of all required Givens rotations forms the or-

thogonal matrixQT
=

n∏
j=1

m∏
i=j+1

G(φij ) such that

minw‖Aw −b‖2 = minw‖Rw−QT b‖2 (12)

and the solutionw can be computed by back substitution.
One iteration of the iterative version of the QRD works ex-

actly like the QRD but instead of using exact rotationsG(φij )

that annihilateaij (a′

ij = 0) CORDIC–based approximate ro-
tations are used resulting in|a′

ij | = |d||aij | with 0≤ |d| < 1.
The CORDIC–based approximate Givens rotations are com-
puted by determining the shift valuè, ` ∈ {0,1,2,...,b} (b
wordlength) corresponding to the CORDIC angleφij (`) =

arctan2−` which is closest to the exact rotation angleφij . In-
stead of annihilating the matrix elements during the course of
the QRD an approximate rotation will only reduce the ma-
trix elements by the maximal factor possible withitg spe-
cific CORDIC anglesφij (`). This CORDIC–based approxi-
mate rotation is applied to the QRD for solving LS problems.

Since the matrix elements below the diagonal are no longer
annihilated the QRD procedure using CORDIC–based ap-
proximate rotations must iteratively be applied until the ma-
trix is ultimately upper triangular. One obtainsiterativever-
sions of the QRD distinguished byitg, which determines the
accuracy of the approximation of the rotations.

Defining the lower diagonal quantity for iterationitg:

S(itg)
=

n∑
j=1

m∑
i=j+1

(
a

(itg)
ij

)2
(13)

the above algorithm guarantees

lim
itg→∞

S(itg)
→ 0

which is equivalent to

lim
itg→∞

A(itg)
→ R and lim

itg→∞
QT (itg)

→ QT

When we apply this method to the LS problems, which must
be solved for positioning in Eq. (8), very few steps, i.e.
itg � b, of the CORDIC-based approximate rotation are suf-
ficient to obtain similar results as using exact rotations. This
yields a significant reduction in computational complexity by
itg/b (we will show in the following section for real GPS data
that evenitg = 1 gives reasonable results). Furthermore, this
method only requiring shift and add operations is very well
suited for hardware implementation.

4 Experimental results

4.1 GPS raw data collection

For GPS positioning, a SiGe GN3S Sampler v2 is used to
capture the raw GPS data, which are low level signal data
(raw intermediate frequency samples) being delivered by the
GPS satellite network and processed by the SiGe radio front
end (GN3S, 2009). Each GPS satellite continuously broad-
casts a navigation message at a rate of 50 bits per second.

The obtained raw GPS data at each measurement point in-
cludes information ofm = 7 satellites with matched pseudor-
anges. 78 raw GPS data records are gained. Afterwards posi-
tion calculation is done for GPS method for various numbers
of required iterationsitr (see Sect.2) and various approxima-
tion accuraciesitg (see Sect.3).

4.2 Experimental results

The mean values of the positioning results for the 78 mea-
surements are presented in Table1. The calculated positions
are compared with the exact positions (known coordinates
at the measure points from land surveying office in Bochum
Germany) and the accuracy of the positioning results of GPS
method for varyingitr and itg is compared. The number of
required iterationsitr is at least two. The second columnitg
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Fig. 3. Positioning results with GPS method.

in Table1 is the approximation accuracy in QRD. Figures3
and 4 show the position estimates of GPS positioning. In
Table1 the 3rd column GPS-itr is the accuracy of GPS posi-
tioning with exact LS method and the 4th column GPS-itg is
the accuracy of GPS positioning using QRD with CORDIC-
based approximate rotations for solving LS problems. The
results show that with the increasing number of iterations in
QRD, the accuracy of GPS-itg also increases. Ifitg ≥ 8, the
accuracy of the exact LS method is achieved. Especially,
if itr is big enough, e.g.itr ≥ 3, only one iteration in QRD
itg = 1 is required to compute the position with reasonable
positioning accuracy, which means very coarse approxima-
tions are sufficient.

The position estimates of 78 measurements are shown in
Fig. 3. GPS position with exact LS (black circles), its mean
value (black cross), GPS position using iterative QRD with
itg = 1 (blue stars), its mean value (blue cross), GPS position
using iterative QRD withitg = 3 (green squares), its mean
value (green cross) and the exact position (red cross) are
shown in the figure. All the position results are considered
as accuracy of position, i.e. the position estimates subtracted
by the exact position (so the exact position is set to(0, 0)).

Figure4 is an enlarged part of Fig.3. It is obvious to notice
that GPS position using QRD withitg = 3 (the green squares)
are more closer to GPS position with exact LS (black circles)
than GPS position using QRD withitg = 1 (blue stars). If
the number of iterations in QRD increases, i.e.itg increases,
the position results will become more and more similar to the
results of exact LS. The mean value ofitg = 3 is almost the
same as the mean value of exact LS (green cross is almost at
the same position as black cross in Fig.4).

5 Conclusion

An iterative LS approach and an iterative version of the QRD
using CORDIC-based approximate rotation are applied to
position computation. The accuracy of the positioning re-
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Fig. 4. Enlarged positioning results with GPS method.

sults of GPS method is compared for various numbers of re-
quired iterationsitr and various approximation accuraciesitg
of CORDIC-based approximate rotations by using real GPS
data. It is shown that a significant reduction concerning com-
putational complexity and hardware requirements can be ob-
tained. Furthermore, this method only requiring shift and add
operations is very well suited for hardware implementation.

The presented method is very efficient for the implemen-
tation of the standard triangulation method based on non-
linear LS. In future work we apply this idea torecursivecom-
putations of the position estimates using Orthogonal DGPS
(Chang and Paige, 2003) and Kalman Filter based recursive
GPS algorithms (Grewall et al., 2001). In the first case no it-
erative LS method is required for positioning which leads to
further reduction of the computational effort and the power
consumption. In the second case using the square root ver-
sion of the Kalman filter (Merwe and Wan, 2001) QRD can
be applied and the required approximation accuracy (number
of itg) can be investigated to obtain desired position accuracy.
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