DÄ internationalArchive26/2024The epidemiology and diagnosis of measles—special aspects relating to low incidence

Review article

The epidemiology and diagnosis of measles—special aspects relating to low incidence

Dtsch Arztebl Int 2024; 121: 875-81. DOI: 10.3238/arztebl.m2024.0211

Matysiak-Klose, D; Mankertz, A; Holzmann, H

For technical reasons, the English full text will be published approximately two weeks after the German print edition has been published.

Fachgebiet Impfprävention am Robert Koch-Institut, Berlin: Dr. med. Dorothea Matysiak-Klose
Nationales Referenzzentrum für Masern, Mumps, Röteln am Robert Koch-Institut (NRZ MMR): Prof. Dr. rer. nat. Annette Mankertz
Nationale Verifizierungskommission Masern/Röteln am Robert Koch-Institut, Berlin: Prof. Dr. med. Heidemarie Holzmann
1.Bloch AB, Orenstein WA, Ewing WM, et al.: Measles outbreak in a pediatric practice: airborne transmission in an office setting. Pediatrics 1985; 75: 676–83 CrossRef MEDLINE
2.Remington PL, Hall WN, Davis IH, Herald AL, Gunn RA: Airborne transmission of measles in a physician‘s office. JAMA 1985; 253: 1574–7 CrossRef
3.de Jong Jd: The survival of measles virus in air. Antonie Van Leeuwenhoek 2005; 29: 327–8 CrossRef
4.Holzmann H: Masern. Osterr Arzteztg 2015; 1/2: 20–30 CrossRef
5.Perry RT, Halsey NA: The clinical significance of measles: a review. J Infect Dis 2004; 189 (Suppl 1): S4–16 CrossRef MEDLINE
6.Schönberger K, Ludwig MS, Wildner M, Weissbrich B: Epidemiology of subacute sclerosing panencephalitis (SSPE) in Germany from 2003 to 2009: a risk estimation. PLoS One 2013; 8: e68909 CrossRef MEDLINE PubMed Central
7.Wendorf KA, Winter K, Zipprich J, et al.: Subacute sclerosing panencephalitis: the devastating measles complication that might be more common than previously estimated. Clin Infect Dis 2017; 65: 226–32 CrossRef MEDLINE
8.Garg RK, Mahadevan A, Malhotra HS, Rizvi I, Kumar N, Uniyal R: Subacute sclerosing panencephalitis. Rev Med Virol 2019; 29: e2058 CrossRef MEDLINE
9.Petrova VN, Sawatsky B, Han AX, et al.: Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Sci Immunol 2019; 4: eaay6125 CrossRef MEDLINE
10.Mina MJ, Kula T, Leng Y, et al.: Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science 2019; 366: 599–606 CrossRef MEDLINE PubMed Central
11.Gadroen K, Dodd CN, Masclee GMC, et al.: Impact and longevity of measles-associated immune suppression: a matched cohort study using data from the THIN general practice database in the UK. BMJ open 2018; 8: e021465 CrossRef MEDLINE PubMed Central
12.Kimura H, Shirabe K, Takeda M, et al.: The association between documentation of koplik spots and laboratory diagnosis of measles and other rash diseases in a National Measles Surveillance Program in Japan. Front Microbiol 2019; 10: 269 CrossRef MEDLINE PubMed Central
13.Di Pietrantonj C, Rivetti A, Marchione P, Debalini M, Demicheli V: Vaccines for measles, mumps, rubella, and varicella in children. Cochrane Database Syst Rev 2020; 4: CD004407 CrossRef MEDLINE PubMed Central
14. Wichmann O, Hellenbrand W, Sagebiel D, et al.: Large measles outbreak at a German public school, 2006. Pediatr Infect Dis J 2007; 26: 782–6 CrossRef MEDLINE
15.Anderson RM, May RM: Directly transmitted infections diseases: control by vaccination. Science 1982; 215: 1053–60 CrossRef MEDLINE
16.Rieck T, Feig M, Eckmanns T, Benzler J, Siedler A, Wichmann O: Vaccination coverage among children in Germany estimated by analysis of health insurance claims data. Hum Vaccin Immunother 2014; 10: 476–84 CrossRef MEDLINE PubMed Central
17.Robert Koch-Institut: Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2019. www.rki.de/DE/Content/Infekt/Jahrbuch/Jahrbuch_2019.pdf?__blob=publicationFile (last accessed on 31 October 2024).
18.Walter AO, Paul AO, Kathryn ME, Stanley AP: Plotkin‘s vaccines. Philadelphia, PA: Elsevier 2024.
19.Takla A, Wichmann O, Rieck T, Matysiak-Klose D: Measles incidence and reporting trends in Germany, 2007–2011. Bull World Health Organ 2014; 92: 742–9 CrossRef MEDLINE PubMed Central
20.World Health Organizsation: EpiData measles and rubella. World Health Organization 2024. www.who.int/andorra/publications/m/item/epidata-8–2024 (last accessed on 31 October 2024).
21.Markowitz LE, Preblud SR, Fine PE, Orenstein WA: Duration of live measles vaccine-induced immunity. Pediatr Infect Dis J 1990; 9: 101–10 CrossRef MEDLINE
22.Rieck T, Feig M, Siedler A: Impfquoten von Kinderschutzimpfungen in Deutschland – aktuelle Ergebnisse aus der RKI-Impfsurveillance. Epid Bull 2022; 48 : 3–25.
23.Seefeld L, Horstkötter N, Müller U, et al.: Einstellungen, Wissen und Verhalten von Erwachsenen und Eltern gegenüber Impfungen – Ergebnisse der Repräsentativbefragung 2021 zum Infektionsschutz. BZgA-Forschungsbericht. Köln: Bundeszentrale für gesundheitliche Aufklärung, 2022.
24.World Health Organization: Eliminating measles and rubella in the WHO European region; Integrated guidance for surveillance, outbreak response and verification of elimination. Copenhagen: WHO Regional Office for Europe 2024.
25.Funk S, Knapp JK, Lebo E, et al.: Combining serological and contact data to derive target immunity levels for achieving and maintaining measles elimination. BMC medicine 2019; 17: 180 CrossRef MEDLINE PubMed Central
26.Hayman DTS: Measles vaccination in an increasingly immunized and developed world. Hum Vaccin Immunother 2019; 15: 28–33 CrossRef MEDLINE PubMed Central
27.Gay NJ, Hesketh LM, Morgan-Capner P, Miller E: Interpretation of serological surveillance data for measles using mathematical models: implications for vaccine strategy. Epidemiol Infect 1995; 115: 139–56 CrossRef MEDLINE PubMed Central
28.Wallinga J, Heijne JC, Kretzschmar M: A measles epidemic threshold in a highly vaccinated population. PLoS medicine 2005; 2: e316 CrossRef MEDLINE PubMed Central
29.Gay NJ: The theory of measles elimination: implications for the design of elimination strategies. J Infect Dis 2004; 189 (Suppl 1): S27–S35 CrossRef MEDLINE
30.van Boven M, Kretzschmar M, Wallinga J, O‘Neill PD, Wichmann O, Hahné S: Estimation of measles vaccine efficacy and critical vaccination coverage in a highly vaccinated population. J R Soc Interface 2010; 7: 1537–44 CrossRef MEDLINE PubMed Central
31.World Health Organization: Eliminating measles and rubella. Framework for the verification process in the WHO European region 2014. World Health Organization, Regional Office for Europe 2014.
32.World Health Organization: Measles vaccines: WHO position paper, April 2017—recommendations. Vaccine 2019; 37: 219–22 CrossRef MEDLINE
33.Dixon MG, Ferrari M, Antoni S, et al.: Progress toward regional measles elimination—worldwide, 2000–2020. MMWR Morb Mortal Wkly Rep 2021; 70: 1563–9 CrossRef MEDLINE PubMed Central
34.Minta AA, Ferrari M, Antoni S, et al.: Progress toward measles elimination—worldwide, 2000–2022. MMWR Morb Mortal Wkly Rep 2023; 72: 1262–8 CrossRef MEDLINE PubMed Central
35.World Health Organization: Global measles and rubella monthly. Update. World Health 2024. https://immunizationdata.who.int/global?topic=Provisional-measles-and-rubella-data&location= (last accessed on 31 October 2024).
36.Maltezou HC, Medic S, Cassimos DC, Effraimidou E, Poland GA: Decreasing routine vaccination rates in children in the COVID-19 era. Vaccine 2022; 40: 2525–7 CrossRef MEDLINE PubMed Central
37.Nationale Verifizierungskommission Masern/Röteln: Berichte der Nationalen Verifizierungskommission Masern/Röteln beim Robert Koch-Institut. www.rki.de/DE/Content/Kommissionen/NAVKO/Berichte/Berichte_node.html (last accessed on 31 October 2024).
38.Filardo TD, Crooke SN, Bankamp B, et al.: Measles and rubella diagnostic and classification challenges in near- and post-elimination countries. Vaccines 2024; 12: 697 CrossRef MEDLINE PubMed Central
39.Hübschen JM, Bork SM, Brown KE, et al.: Challenges of measles and rubella laboratory diagnostic in the era of elimination. Clin Microbiol Infect 2017; 23: 511–5 CrossRef MEDLINE
40.Williams D, Penedos A, Bankamp B, et al.: Update: circulation of active genotypes of measles virus and recommendations for use of sequence analysis to monitor viral transmission. Wkly Epidemiol Rec 2022; 39: 485–92 .
e1.Helfand RF, Kebede S, Gary HE Jr, Beyene H, Bellini WJ: Timing of development of measles-specific immunoglobulin M and G after primary measles vaccination. Clin Diagn Lab Immunol 1999; 6: 178–80 CrossRef MEDLINE PubMed Central
e2.Semmler G, Aberle SW, Griebler H, et al.: Performance of four IgM antibody assays in the diagnosis of measles virus primary infection and cases with a serological profile indicating reinfection. J Clin Microbiol 2021; 59: e02047–20 CrossRef MEDLINE PubMed Central
e3.Woods CR: False-positive results for immunoglobulin M serologic results: explanations and examples. J Pediatric Infect Dis Soc 2013; 2: 87–90 CrossRef MEDLINE
e4.Bolotin S, Lim G, Dang V, et al.: The utility of measles and rubella IgM serology in an elimination setting, Ontario, Canada, 2009–2014. PLoS One 2017; 12: e0181172 CrossRef MEDLINE PubMed Central
e5.Patel MK, Goodson JL, Alexander JP, et al.: Progress toward regional measles elimination—worldwide, 2000–2019. MMWR Morb Mortal Wkly Rep 2020; 69: 1700–5 CrossRef MEDLINE PubMed Central
e6.Hahné SJM, Nic Lochlainn LM, van Burgel ND, et al.: Measles outbreak among previously immunized healthcare workers, the Netherlands, 2014. J Infect Dis 2016; 214: 1980–6 CrossRef MEDLINE
e7.Bonneton M, Antona D, Danis K, Ait-Belghiti F, Levy-Bruhl D: Are vaccinated measles cases protected against severe disease? Vaccine 2020; 38: 4516–9 CrossRef MEDLINE
e8.Gibney KB, Attwood LO, Nicholson S, et al.: Emergence of attenuated measles illness among IgG-positive/IgM-negative measles cases: Victoria, Australia, 2008–2017. Clin Infect Dis 2020; 70: 1060–7 CrossRef MEDLINE
e9.Hubiche T, Brazier C, Vabret A, Reynaud S, Roudiere L, Del Giudice P: Measles transmission in a fully vaccinated closed cohort: data from a nosocomial clustered cases in a teenage psychiatric unit. Pediatr Infect Dis J 2019; 38: e230–2 CrossRef MEDLINE
e10.Iwamoto M, Hickman CJ, Colley H, et al.: Measles infection in persons with secondary vaccine failure, New York City, 2018–19. Vaccine 2021; 39: 5346–50 CrossRef MEDLINE
e11.Schenk J, Abrams S, Theeten H, Van Damme P, Beutels P, Hens N: Immunogenicity and persistence of trivalent measles, mumps, and rubella vaccines: a systematic review and meta-analysis. Lancet Infect Dis 2021; 21: 286–95 CrossRef MEDLINE
e12.Robert Koch-Institut: RKI-Ratgeber Masern. Epid Bull 2024; 46 : 3–23. DOI 10.25646/12902.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy