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ABSTRACT
In order to enable the implementation of the computer vision-based perception techniques in the physical-based simulation
environment, visual sensors need to be simulated physically. Among others, fish-eye cameras are commonly used visual sensors
to provide an omni-directional field of view. The existing methods cannot simulate the output of a specific real fish-eye imaging
system. In this paper, we present a postprocessing fish-eye imaging system simulation method. According to the stereographic
projection model, a mapping is established between the ideal fish-eye image and a cube-map rendered by the graphic engine.
The distortion of the real camera is measured and added to the ideal image, in order to simulate the output of a specific camera.
Experimental result shows that our simulation method can give output close enough to the image captured by a specific fish-eye
camera. The practicality of our method is validated in an actual application of vehicle omniview system.

© 2021 The Authors. Published by Atlantis Press B.V.
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1. INTRODUCTION

Over the years, physical-based simulation tools are widely used in
many industrial fields, such as intelligent vehicle [1] and robotics
[2]. In the early stages of development of intelligent vehicle sys-
tems, making prototype experiments in a virtual environment can
help reducing the experiment cost, protecting the safety of persons
and devices, and avoiding the legal and moral risk. There are sev-
eral intelligent vehicle-dedicated simulation platforms on the mar-
ket. Pro-SiVIC of CIVITEC is a sensor simulator. It can simulate
various complex scenarios like roundabouts, multiple vehicles and
pedestrians, and different weather conditions. Some applications
[3] use Pro-SiVIC simulator to test cooperative algorithms on intel-
ligent vehicles. CarSim [4–6] of the Mechanical Simulation Com-
pany, providing dynamics vehicle models, is designed to validate
driving assistance algorithms. PreScan [7] of Tass International is
also a simulator that is specialized on sensor modeling. It has a
full-spectrum camera simulation for reliable virtual development
and validation of automated driving applications. In the indus-
trial production, off-line programming of the industrial robots in
simulation software can reduce the frequency of stoppage of the
production line, so as to reduce the impact on production
efficiency. While almost every robot manufacturer offers a
brand-specific simulation tool, there are also many third-party
simulators like CoppeliaSim [8], Robotmaster [9], Delfoi [10], etc.
In the abovementioned intelligent or automatic systems, various
sensors are mounted to provide information about the surrounding
situations. Among others, visual sensors are the most commonly

*Corresponding author. Email: quyou12@mails.jlu.edu.cn

used ones [11]. The functions of these sensors need to be repro-
duced physically in the simulation tools.

Nowadays, in many applications such as intelligent surveillance
[12,13] and autonomous navigation [14,15], an omni-directional
field of view (FOV) is often required in order to see more in one
shot. Comparedwith other omni-directional imaging systems, such
as multi-camera devices [16,17] and catadioptric cameras [18,19],
fish-eye cameras, which combine fish-eye lenses and conventional
cameras, are cheaper, smaller, and easier to set up, and thus are
becoming increasingly popular in the computer vision community.

There are few simulation methods dedicated to the fish-eye cam-
eras. The Pro-SiVIC platform chooses two techniques to simulate
omni-directional cameras. The first one generates fish-eye images
by merging 6 images rendered by the OpenGL library, which takes
no account of the imaging geometry of real cameras. The second
one uses a mesh to form the desired shapes and reflect the envi-
ronment on it. It also cannot be used to generate the output of a
specific fish-eye camera. Ref. [20] presented a three-dimensional
simulationmethod for fish-eye lens distortion in a vehicle rear-view
camera. This method can only generate the image of straight lines,
and needs the field number of the target fish-eye lens, which is not
always available. In summary, for the following reasons, it is neces-
sary to propose a new simulation method for fish-eye cameras:

1. Physical-based simulation technology is widely used in the
field of intelligent system;

2. Fish-eye camera is widely used in computer vision technology,
the latter is one of the main technologies in intelligent systems;
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3. So, it is necessary to provide a method to simulate a specific
fish-eye camera in the physical-based simulation environment;

4. However, there are few existingmethods to simulate the output
of a specific fish-eye camera.

In this paper, we proposed a postprocessing method to simulate the
output of a specific fish-eye imaging system. The graphic engine
is used to generate a cube-map centered on the principal point of
the fish-eye camera, and then the relationship between the pixels
on the simulated fish-eye image and the cube-map is established
according to the fish-eye imagingmodel, i.e., the stereographic pro-
jection model. Then the simulated fish-eye image is generated. The
essence of this method is to transform the image pre-generated by
the engine, which is called “postprocessing method.” To make the
simulated image closer to the real output of a specific device, the
deviation from the ideal projection model to the imaging geome-
try of a real camera is estimated quantificationally and applied to
the fish-eye image. Experimental result shows that our simulation
method can give output close enough to the image captured by a
specific fish-eye camera. The practicality of ourmethod is validated
in an actual application of vehicle omniview system.

This paper is organized as follows: Section 2 introduces the projec-
tion models used to describe a fish-eye imaging system. The pro-
posed simulation method is detailed in Section 3. After providing
experimental results and validations in Section 4, Section 5 con-
cludes the paper.

2. PRELIMINARIES

2.1. Projection Models

Aprojectionmodel is amapping from the 3Dobject pointP(X,Y,Z)
to its corresponding 2D image point p(x, y). A pinhole camera is
always described by the perspective projection model. If we denote
the focal length of the camera as f, the perspective projection could
be formulated as

[ xy] = − f
Z [

X
Y] (1)

In addition to the projection model, imaging system design usu-
ally involvesmany other considerations, e.g., size, cost, and uniform
illumination. Assembly defects are also introduced during camera
manufacture. These will make the actual output of cameras devi-
ates from the ideal projection model to varying degrees. This devi-
ation is often treated as distortion. In classical camera calibration
methods, the most commonly used distortion model is the Brown–
Conrady polynomial model [21]:

[ xdyd
] = [ xuyu

]
(
1 + k1r2 + k2r4 +⋯+ knr2n

)
. (2)

Here, [xd, yd]T is the actual position of the image point, [xu, yu]Tis
the position of the corresponding point without distortion, and r
denotes the distance from [xu, yu]T to the distortion center c =
[xc, yc]T, which is also the principle point here. Further, kn is the nth
radial distortion coefficient. When the distortion is small, usually
two coefficients k1 and k2 are sufficient. We can say that the distor-
tion of a camera is a mapping from [xu, yu]T to [xd, yd]T and can be
characterized by a set of parameters 𝜆 = {xc, yc, k1, k2}.

The FOV of a pinhole camera is restricted by the size of the sensor.
To take the entire scene of a 180∘ FOV into a limited sensor, fish-
eye lenses are designed to severely bend the incident ray coming
from an ultra-wide angle and therefore cannot be described prop-
erly by the linear model given by (1). A two-stage procedure using
a sphere (say, a viewing sphere), whose center coincides with the
optical center of the camera and whose radius is equal to the cam-
era’s focal length, is introduced to describe a nonlinear projection
model [22]. The procedure is demonstrated in Figure 1.

First, a 3D point P is projected perspectively through the center O
onto point Ps on the sphere. Then Ps is projected to a 2D point p on
the image plane𝜋 fromanother pointO′ on the optical axisON. The
position ofO′ alongON defines a series of projection models. Here
O′ coincides with N in Figure 1. A projection model can be clearly
represented as a mapping r = 𝜌(𝛼), where 𝛼 is the incident angle of
ray emitted from P, and r is the radial distance as mentioned. The
representative models below have been widely discussed:

𝜌(𝛼) = tan𝛼 (perspective projection),
𝜌(𝛼) = 2f tan 𝛼2 (stereographic projection),

𝜌(𝛼) = f𝛼 (equidistance projection),
𝜌(𝛼) = f sin𝛼 (sine-law projection),
𝜌(𝛼) = f sin 𝛼2 (perspective projection).

(3)

Note that the perspective projection can also be described by this
procedure. In Ref. [23], the author prefers to stereographic projec-
tion rather than other alternative ones because it can represent a
wider FOV while preserving a suitable range of shape properties of
the projected objects, including the circularity, the local symmetry,
the shape of small regions, and the angle at which two curves inter-
sect. These properties are very useful in applications such as intel-
ligent surveillance and automatic navigation. Thus, in this paper,
the stereographic projection model is chosen for our estimation
method. It is exactly the model shown in Figure 1.

2.2. Geometric Invariants Under
Stereographic Projection

Simple geometric targets, such as straight lines or spheres, are often
utilized in the distortion estimation methods because the shape of

Figure 1 Two-stage procedure for describing a
projection model. A 3D point is first projected onto
the viewing sphere, followed by another perspective
projection from some point on the optical axis onto
the image plane.
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the images of these targets is known under a certain projection
model. For stereographic projection, this is shown in Figure 2.

When projected onto the viewing sphere from its center O, the
image of a space line L is a great circle determined by the sphere sur-
face and the planeOL. On the other hand, the image of a sphere S on
the surface of the viewing sphere is a small circle. Let (nx, ny, nz, d0)
be the plane containing the small circle. Here, (nx, ny, nz) is the nor-
mal vector of the plane, and d0 is the distance from O to the plane.
Obviously, the great circle is actually a special case of the small circle
in which d0 is zero. When projected from N onto the image plane
𝜋, the function of a point on the image of S can be derived as

x2 + y2 − 4f2
fnz − d0

(nxx + nyy + fnz + d0) = 0. (4)

We set d0 = 0 to obtain the formula of the image of L:

x2 + y2 − 4f2
fnz

(nxx + nyy + fnz) = 0. (5)

Notice that both (4) and (5) are the general equations of a circle.
So the conclusion is that the image of a space line section under
the stereographic projection is a circular arc (a portion of a circle),
and the image of a sphere is a circle. These are the main geometric
invariants used in our estimation method.

3. SIMULATION METHOD DETAILS

In this section, we propose a fish-eye image generation method
based on the engine-rendered image postprocessing. First, an ideal
fish-eye image is generated. To get the value of a particular pixel
in the output image, the corresponding incident ray is back-traced
into the virtual environment according to the projection model. To
simplify the implementation, a cube-map centering at the center of
the viewing sphere is rendered with the help of a 3D graphic engine.
Then, the distortion parameters of the target camera are estimated

Figure 2 Images of a line and a sphere under the
stereographic projection. The projection of a space
line on the viewing sphere, as well as the projection of
a sphere (dotted line), is a circle. Circles on the
viewing sphere maintain their shape when projected
onto the image plane from the northern pole of the
viewing sphere (solid line on the image plane ).

and used to distort the ideal image in order to connect the simula-
tion to the specific imaging system.

3.1. Generate the Ideal Fish-Eye Image

The common method to generate images of a virtual scene is back-
ward ray-tracing. For fish-eye camera simulation, it is the inverse
procedure of the projection model described in last section. For a
given 2D point p on 𝜋, a direction vector starting from O is found.
A ray in this direction is traced until it hits a surface in the scene at a
point P. The value of p can be computed according to the properties
of P (material, color, orientation, lighting, etc.). Let the polar coor-
dinate of point p is denoted by (r, 𝜙), where r is the radial distance,
and 𝜙 is determined by

𝜙 = arctan
yp
xp
. (6)

From the stereographic projection function given in (3), the inci-
dent angle 𝛼 of the light ray corresponding to p is

𝛼 = 2 ∗ arctan r
2f (7)

where f is the focal length of the fish-eye camera. Then we have the
direction vector we want:

O⃗P = (sin(𝛼) ∗ cos(𝜙), sin(𝛼) ∗ sin(𝜙), cos(𝛼)). (8)

Actually, in order to achieve a more realistic rendering effect, the
tracing may not stop at P. It will go between objects in the scene
until it reaches a light source. This is a tedious work, and difficult
to implement. So we let the 3D engine to do this job. This is a so
called postprocessing method, because it is based on the preren-
dered images.

We define 6 identical pinhole cameras in the virtual scene, all posi-
tioned at the center of the viewing sphere. The cameras are arranged
orthogonally. If the orientation of the fish-eye camera is (0, 0, 1),
then the orientations of the 6 pinhole cameras are (0, 0, 1), (0, 0,
−1), (0, 1, 0), (0, −1, 0), (1, 0, 0), (−1, 0, 0), respectively. The cam-
eras all have an FOV of 90 degrees in both horizontal and vertical
directions. The deployment of the cameras is shown in Figure 3.

In this way, the images rendered through these six cameras form a
cube-map. In our simulation, only five cameras are sufficient. The
camera looking backward is omitted because we just need an FOV
of 180 degrees in front of our fish-eye camera. O⃗P is transformed
into the coordinate frames of the five cameras to see if it hits one of
the image planes at a pointm(xm, ym), as shown in Figure 4.

This creates a mapping between the simulated fish-eye camera and
the five cameras. This mapping doesn’t change from frame to frame
in real-time rendering, thus can be stored in a mapping table. Each
camera is assigned an ID, and for a pixel in the output image, its cor-
responding entry in the lookup table is like (ID, xm, ym). The pixel
value can then be obtained from the position in the pointed image.
The rendered outputs of the five cameras and the simulated ideal
fish-eye image is given in Figure 5.
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Figure 3 The viewing sphere and the deployment of
the six pinhole cameras. The cameras are moved from
their original position (i.e., the center of the viewing
sphere) along the axis to make the figure clearer.

Figure 4 Mapping from the fish-eye image plane to
the five orthogonal cameras. The incident light ray is
back-traced and hits one of the faces of the cube-map
at a point .

Figure 5 The rendered outputs of the five cameras
and the simulated ideal fish-eye image.

3.2. Image Distortion

Figure 6(a) shows the ideal image of several spheres generated by
the method described in last section. According to the property
of the stereographic projection, the image of a sphere is a circle.
However, it is not the case in a real fish-eye image as shown in
Figure 6(b).

In this section, we detail our distortion estimation method. The
estimation of the distortion center and the distortion coefficients

Figure 6 (a) The simulated ideal fish-eye image of
several spheres. (b) Image of spheres captured by a
real fish-eye camera.

are performed in a hierarchically iterative manner because it has
been shown that including the distortion center in the nonlinear
optimization may make the system unstable with the presence of
noise [21]. In the outer loop, feature points extracted from images
of parallel lines are undistorted with the latest estimated distortion
parameters and then used to update the distortion center. If the
new center is close enough to the current one, the algorithm termi-
nates. Otherwise, in the inner loop, with the latest distortion center,
a genetic algorithm (GA) module is adopted to optimize the dis-
tortion coefficients based on the geometric invariants discussed in
Section 2.2.

3.2.1. Estimation of the distortion center

We estimate the distortion center with the help of the vanishing
points. A vanishing point is the intersection of a group of parallel
straight lines under the stereographic projection model. A straight
line in space can be given as a point direction form equation as

L(t) = qt + b, (9)

where q = [qX, qY, qZ]T is the direction vector, and b =
[bX, bY, bZ]T is a fixed point on the line. Further, t is a parameter
indicating any given point on the line. By combining (1) and (9),
we have the projection of a straight line on the perspective image
plane:

[ x(t)y(t)] = − f
qZt + bZ

[ qXt + bX
qYt + bY

] . (10)

Let r(t) denotes the radial distance from [x(t), y(t)]T to the distor-
tion center. If we assume that the distortion center coincides with
the origin [0, 0]T, then we have r(t) = √x2(t) + y2(t).

From the perspective and stereographic projection functions in (3),
the radial distance of the corresponding point [x′(t), y′(t)]T under
the stereographic projection is

r′(t) = 2f tan
arctan r(t)

f

2 . (11)

Rearranging gives

r′(t) = 2f√
f2 + r2(t) − f

r(t) . (12)
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The projection of a given 3D point under different projectionmod-
els alwaysmoves along the radial direction. Therefore, the projected
2D points are related by their radial distance:

[ x′(t)y′(t)] =
r′(t)
r(t) [

x(t)
y(t)] . (13)

Inserting (10) and (12) into (13) gives

[ x′(t)y′(t)] =
1 − D

(qXt + bX)2 + (qYt + bY)2
⋅ 2f ⋅ [ qXt + bX

qYt + bY
] . (14)

where D = √(qXt + bX)2 + (qYt + bY)2 + (qZt + bZ)2.

The limit of (14) as |t| → ∞ then gives two vanishing points, v1
and v2, of a group of parallel lines projected onto the stereographic
image plane, i.e.,

[ xvyv
] = lim

t→±∞
[ x′(t)y′(t)] =

1 ∓√q2X + q2Y + q2Z
q2X + q2Y

⋅ 2f ⋅ [ qXqY
] , (15)

If we consider the two points as two vectors from the distortion cen-
ter, examining the angle 𝜙 between these two vectors gives

𝜙 = arccos
v1 ⋅ v2
|v1| |v2|

= 𝜋, (16)

whichmeans that the two vanishing points lie in opposite directions
from the distortion center. Thus, the line joining v1 and v2must pass
through the distortion center. The position of the distortion center
is determined as follows:

i. Extract points. An edge detection algorithm such as Sobel or
Canny is used to extract the points on the image of lines. As
shown in Figure 7(a), the extracted points are grouped into sev-
eral sets:

PL = {{lij = (xij, yij)}
mi

j=1
}
n

i=1
,

where for each i = 1,… , n the set {lij}
mi
j=1 is a collection of

extracted points belonging to the image of the ith space line.

ii. Undistort the points and do circle fitting. PL is undistorted
according to (2) with the currently available distortion param-
eters, if they exist. Circles are fitted to each set of the result-
ing points PL in a least square manner. Let the circle fitted
to the point set {l

i
j}
mi
j=1 be Ci. Ideally, all {Ci}ni=1 will converge

exactly at a pair of vanishing points. However, this is not the
case because of the error introduced by the distortion andmea-
surement noise, as shown in Figure 7(b). Thus, the estimation
of the vanishing points needs a nonlinear optimization.

iii. Initialize the vanishing points. An initial guess is required
for the optimization. The intersections of every two circles in
{Ci}ni=1 are calculated to be the candidates of initial vanishing
points. All these candidates are examined to pick the best one.
To do this, we do circle fitting again to PL . For a pair of candi-
date vanishing points ( ̂v1, ̂v2) that is being examined, the circle
Ĉi fitted to the point set {l

i
j}
mi
j=1 is forced to pass through both

Figure 7 Estimation of the distortion center:
(a) Points on the images of lines are extracted and
grouped into several sets. (b) The fitting circles have
many pairs of intersections, and the one with the
lowest score is chosen as the initial position of the
vanishing points. (c) The initial points are optimized
and then linked. (d) At least three pairs of vanishing
points need to be estimated to determine the
distortion center.

of these two points. Ĉi is then adjusted to minimize the error
function:

𝜖i =
mi

∑
j=1

((
xij − xi0

)2
+
(
yij − yi0

)2
− Ri2

)
, (17)

where [x0i , y0i ]T and Ri are the center and radius of Ĉi respec-
tively. Summing the minimized fitting errors calculated from
every point set in PL gives

E = 1
∑n

i=1 𝜖i
. (18)

E is taken as the score of the pair ( ̂v1, ̂v2). The pair with the
highest score is chosen as the initial position of the vanishing
points.

iv. Optimize the vanishing points. The initial positions of v1
and v2 are then refined with the Levenberg–Marquardt algo-
rithm. Eq. (18) is used again as the objective function. To ensure
the stable convergence of the optimization, the two vanishing
points are refined alternately. When v1 is being refined, the
position of v2 is fixed. Once v1 converges, v1 is fixed and v2 is
refined. This repeats until both v1 and v2 converge. Figure 7(c)
shows the final position of v1 and v2.

v. Estimate the distortion center. Several other pairs of vanishing
points are determined from other pictures of the parallel lines
in the same way. The lines joining each pair of vanishing points
intersect with each other, and the centroid of the intersections
is located as the distortion center, as shown in Figure 7(d).
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3.2.2. Estimation of the distortion coefficients

In this subsection, the geometric invariants discussed in Section 2.2
are used to estimate the distortion coefficients of the fish-eye cam-
eras. We need to define an object function by which, when min-
imized, the distortion parameters are optimized to put the points
extracted from the image of the geometric targets back onto given
shapes. Our object function is defined via the images of spheres as
well as straight lines. As we will show later in Section 4, spheres are
more appropriate to serve as the geometric target for the distortion
estimation of fish-eye cameras, especially with the presence of mea-
surement noise.

The first two steps are similar to the ones described in last subsec-
tion. Pictures of the target objects (lines in space or spheres) are
captured, and edge points Ptar are extracted. Ptar is then undistorted
with a set of distortion parameters ̂𝜆 = {x̂c, ̂yc, k̂1, k̂2}, and circles
are fitted to the resulting points Ptar.

Measurement noise in the extracted pointswill be amplified nonlin-
early due to the distortion if the objective function is defined in the
space of the undistorted points [24]. Thus, in this paper, we define
the object function in the space of distorted image points to ensure
the robustness of the estimationmethod with the presence of noise.
As shown in Figure 8, pij is one of the points in Ptar, p

i
j is the corre-

sponding point in Ptar, andCi is the circle fitted to {pij}
mi
j=1.We search

for a point p̂ij near p
i
j which, after being undistorted with ̂𝜆, will lie

exactly on Ci at p̂ij. Then the object function is defined as follows:

e =
n

∑
i=1

mi

∑
j=1

∥ pij − p̂ij ∥2 . (19)

The GA is used here to minimize (19). A simple GA using single-
point crossover and single-pointmutation is sufficient for our prob-
lem.Any other nonlinear optimization algorithmcould also be used
here. Once the distortion parameters are determined, the distorted
position of the pixels in the ideal image can be found, and the map-
ping relationships between the output image and the cube-map
recorded in the mapping table need to be adjusted accordingly.

Figure 8 Setup for determining objective function..

4. EXPERIMENTAL RESULTS AND
DISCUSSION

In this section, three sets of experimental results are presented
to show the robustness of our estimation method. In the first
experiment, all image points are artificially generated, thus the
distortion-free position of the image points is known. In the sec-
ond experiment, a 3D engine is employed to construct a virtual
scene containing the geometric targets. Themethod is applied to the
images rendered by the 3D engine. The procedures that may intro-
duce noise, including image acquisition and point extraction, are
involved. This makes the experiment closer to the real situation.We
then apply our method to the real images, and give a quantitative
evaluation of our simulation method. Finally, an actual application
of vehicle omniview system is implemented to show the practicality
of our method.

The GA module searches the distortion coefficients in the inter-
vals k1 ∈ [−1E−5, 1E−5] and k2 ∈ [−1E−12, 1E−12]. This is large
enough to cover the distortion of fish-eye cameras with respect
to the stereographic projection model. The precisions of k1 and
k2 are approximately 3E−10 and 3E−17, respectively. The size of
the population is 50, and the initial population is generated ran-
domly. The roulette-wheel selection strategy is adopted. The inci-
dence probabilities of crossover and mutation are 0.75 and 0.06,
respectively.

4.1. Experiment on Fully Synthetic Points

In this experiment, we show how the number of the target objects
affects the estimation result with the presence of noise of different
levels. The effectiveness of lines and spheres as the target is also
compared. A fish-eye camera using an 800*800 CCD sensor is con-
sidered. With a focal length of 160 pixels, the whole FOV of 180∘
can be fitted within the sensor under the stereographic projection.
The ideal distrotion-free image of parallel space lines and spheres
are shown in Figure 9(a). We assume that all the lines in space are
parallel to the image plane, which will not affect the objectiveness
of the result, so the vanishing points are at the angular position of
90∘, i.e. on the edge of a FOV of 180∘. The images of spheres is rel-
atively simple, only circles with random positions and radii. Points
evenly sampled on these arcs, denoted as PLG and PSG, are grouped
like PL.

Next, PLG and PSG are distorted with known parameters to obtain
PLD and PSD, as shown in Figure 9(b). Here, for simplicity, we let
the distortion center coincide with the center of the image, i.e.
[xc, yc]T = [0, 0]T. Figure 9(c) shows that an independent, zero
mean, zero-correlated, two-dimensional Gaussian noise is added to
PLD and PSD. The points with noise are denoted as P′LD and P′SD.

In a single run of the estimation, a group of three P′LDs is gener-
ated to serve as PL which is used to estimate the distortion center.
A P′SD or another P′LD is generated to serve as Ptar. In order to make
the experiment more rigorous, we generate another PSD(notice, not
P′SD here) other than that used in the estimation to evaluate the esti-
mation result. This PSD is undistorted by the estimated distortion
parameters to get PSD. The average distance d between PSD and its
corresponding ground truth PSG can intuitively reflect the accuracy
of our method. So a test set used here is {P′LD ∗ 3, P′SD(orP′LD), PSD}.
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We vary the noise level w in increment of 1 pixel starting from 1
pixel, and vary the number of the targets n under different noise lev-
els. For each (w, n) pair, the proposed method is performed on 100
random test sets. Figure 10 reports the inter-quartile range (IQR) of
d when P′SD is used as Ptar.

Although becoming larger with the increasing noise level, d is con-
trolled no more than 3.5 pixels, even when w reaches up to 5 pixels.
Whenw is lower than 2 pixels, ourmethod achieves sub-pixel accu-
racy. We can see that when more spheres are involved, the perfor-
mance of themethod is enhanced. Both the accuracy and the stabil-
ity of the algorithm are increased when the number of the spheres

Figure 9 Illustration of the experiment using fully
synthetic data. (a) Points on the ideal image. (b)
Points in (a) are distorted. (c) Distorted points are
contaminated by Gaussian random noise.

Figure 10 The inter-quartile range (IQR) of is fixed
at 0.

reaches 6. The distortion is a polynomial of the radial distance r.
The estimation of the distortion parameters is essentially a process
of polynomial fitting. More targets will provide more image points
which can cover a larger range of r. This improves the stability of
the polynomial fitting. These results demonstrate that our method
is robust to noise when the spheres are employed.

On the other hand, when a group of lines is used as the target, the
result is not so good, as show in Figure 11. Even if the number of the
lines increases, the improvement of the result is limited. The main
reason for this is that the image of a space line under stereographic
projection is only a portion of a circle, and circle fitting with points
lying on a portion of a circle is an ill-conditioned problem. When a
circle is fitted to these points, owing to the stronger fitting capacity
of quadratics and the lack of geometric constraints, the objective
function (19) has a great chance of reaching the minimum even if
the undistorted points are very far from the ground truth. This will
cause the iteration to converge to the wrong parameters. However,
the image of a sphere is itself a complete circle; thus, the problem
described above will not exist when spheres are used.

4.2. Experiment on Simulated Images

The complete process of the method is carried out in this experi-
ment, including the extraction of the image points. The experimen-
tal setup is the same as that described in Section 4.1 except that
the ground truth of the points doesn’t exist. The parameters of the
distortion are still known. Therefore, in this section, we directly
examine the estimated parameters. To obtain the simulated images,
two virtual scenes are created by the OGRE engine, as shown in
Figure 12(a) and 12(b).

Scene 1 contains a plane target textured by some stripes to pro-
vide parallel lines. Scene 2 contains several identical spheres placed
at random positions. We don’t care about the interval between the
lines and the size of the spheres. We have modified the engine to
render blurry images. A Gaussian Blur with a radius of 2 pixels is
applied here, and the coefficients k1 and k2 are set to 3E−6 and
6E−13, respectively. Three images of scene 1 and one image of scene
2 comprise a test set. The proposed method is performed 100 times
on a single test set to investigate its stability. The estimated distor-
tion center is c = [−0.047 ± 0.89, −0.036 ± 0.88]T , which is rel-
atively stable. Figure 13 shows the results of the distortion coeffi-
cients.

Figure 11 The inter-quartile range (IQR) of is
set to 1.
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Figure 12 (a) and (b) Scenes containing a plane
textured by black-and-white stripes and some spheres,
respectively. (c) and (d) Distorted fish-eye images of
(a) and (b), rendered by the modified OGRE engine.

Figure 13 (a) and (b) Results of 100 runs of our
method with the same test set. Both is fixed at 0.

The result shows that when both of the coefficients are estimated,
the value of k2 fluctuates, and so does k1. On the other hand, when
k2 is fixed to 0, the stability of the estimation is enhanced. This
explains why the stability of the algorithm is improved when only
k1 is estimate, especially when the noise level increases, as shown in
Figure 10. Thus, it is recommended that k2 should be omitted when
an actual estimation is performed.

4.3. Experiment on Real Images

In this subsection, we give a quantitative evaluation of our simula-
tion method. The error between the relative distortion of the real
and the simulated image is measured.

The device used in the experiment is an inexpensive fish-eye cam-
era. The size of its sensor is 704*576 in pixels. The distortion param-
eters are estimated from the pictures of the targets, as shown in
Figure 14.

The estimation result is c = [25.82, −6.83]T and (k1, k2) =
(−1.61E−6, 2.5E−13).
A chessboard pattern is capturedwith the target device, and the cor-
responding simulated image is given, as shown in Figure 15.

Corners are extracted from both of the images. The ratio between
the radial distance of the corners in the observed image and their
distortion-free positions is a relative measure of distortion. The
similarity between the real and the simulated image can then be
determined by comparing this ratio, as shown in Figure 16.

For points near the image center (radial distance smaller than 60%),
the relative error is very small. The error increases with the radial
distance, which could have been expected due to the limited num-
ber of terms used in the distortion polynomial. At the edge of the
images, the error between the real and the simulated images is about
1.2%. This is a good enough result.

Figure 14 Images captured by a real fish-eye
camera used to estimate the distortion.

Figure 15 An image of a chessboard pattern
captured by the real fish-eye camera and the
corresponding simulated image.
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4.4. Validation of Practicality

In this subsection, the practicality of our method is validated
through an actual application of vehicle omniview system. In a
common vehicle omniview system, there are often four fish-eye
cameras mounted: one in the front of the vehicle, one in the back
of the vehicle, one in the left outside mirror, and one in the right
outside mirror. These four simulated fish-eye images are shown in
Figure 17(a). The imaging system simulated above is used here.
The ground is textured with chessboard pattern to clarify the result.
The inverse perspective transformation is adopted to transform the
image parts containing the ground into top views according to the
parameters of the cameras. The top views are then fused into one
single omniview image, as shown in Figure 17(b).

As we can see, compared with the sides of the vehicle, the top views
of the ground in front and rear of the vehicle are more blurred and
mismatched. The main reason of this is the mounting angle of the

Figure 16 The ratio between the ideal and distorted
position of the corners in the real and simulated
image and the relative error calculated between the
two images.

Figure 17 (a) The simulated images from the four
fish-eye cameras mounted on the vehicle. (b) The
omniview image generated from the images in (a).

cameras. Both of the side cameras look straight downward, while
the cameras on both ends of the vehicle raise their line of sight in
order to avoid being occlude by the bumpers. The image parts of
ground in these images are closer to the edge, where the distortion
is more severe. The quality of the top view transformed from these
images is poor. To solve this, we can modify the algorithm, change
the camera mounting position, or even consider other cameras. In
this way, problems can be found before the assembling of the actual
system and the cost is saved.

5. CONCLUSION

In this paper, we presented a postprocessingmethod to simulate the
output image of fish-eye cameras. The proposedmethod establishes
a pixel-wise mapping between the simulated image and the cube-
map rendered by a graphic engine, according to the stereographic
projectionmodel. For a given pixel position in the simulated image,
a direction vector starting from the origin is determined. Its pixel
value can be obtained from the pixel pointed by this vector in one
of the prerendered images. The output of this step is an ideal fish-
eye image. It has nothing to do with any specific camera. After the
mapping is established, the distortion parameters of the camera is
taken into account.We proposed a robust estimationmethod of the
distortion parameters of the fish-eye imaging system. It outputs the
position of the distortion center on the image plane of the cam-
era, and the coefficients of a polynomial describing the radial dis-
tortion in the fish-eye image. The method was tested on synthetic,
simulated, and real images. The experimental results showed that
our method can yield accurate parameters even in the presence of
noise. The estimated distortion parameters are then used to adjust
the mapping relationship. A major contribution of this work is the
camera-specific simulation that optimizes the efficiency of the algo-
rithm development and the cost of the selection and preinstallation
of the equipment in intelligent perception systems using fish-eye
cameras. Also, the proposed simulation method is easy to imple-
ment and less expensive than existing commercial simulators.
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