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ABSTRACT

Rough sets have been widely used in the fields of machine learning and feature selection. However, the classical rough sets have
the problems of difficultly dealing with real-value data and weakly fault tolerance. In this paper, by introducing a neighbor-
hood rough set model, the values of decision systems are granulated into some condition and decision neighborhood granules.
A concept of neighborhood granular swarm is defined in a decision system. Then the sizes of a neighborhood granule and a
neighborhood granular swarm are also given. In order to enhance the fault-tolerant ability of classification systems, we define
some concepts of granule inclusion, variable precision neighborhood approximation sets and positive region. We propose a vari-
able precision neighborhood rough set model, and analyze its property. Furthermore, based on the positive region of a variable
precision neighborhood, we give the significance of an attribute and use it to select feature subsets. A feature subset selection
algorithm to the variable precision neighborhood rough sets is designed. Finally, the feature selection algorithm is carried out
on the UCI datasets, and the selected features are tested by the support vector machine (SVM) classification algorithm. Theo-
retical analysis and experiments show that the proposed method can find the effective and compact feature subsets, which have

abilities of fault tolerance.

1. INTRODUCTION

The classical Rough Set Theory (RST) proposed by Pawlak [1] refers
to the whole study objects as a domain. An equivalence relation
is used to granulate the domain into several exclusive equivalence
classes, called information granules, which are employed in describ-
ing the arbitrary concepts in the domain. At present, the RST has
been widely used in the fields of attribute reduction [2-5], feature
selection [6-9], gene selection [10,11] and classification [12-15],
etc. However, as an effective granular computing model, the RST is
only suitable for dealing with discrete data. It cannot directly pro-
cess continuous data, which seriously affects the areas of practical
applications. For the disposing of continuous data, we can discretize
the continuous data. But this transformation may result to an infor-
mation loss, and the classification accuracy largely depends on a
particular discretization method. In order to solve the problem, the
neighborhood RST [16-18] is introduced to granulate these con-
tinuous data and some neighborhood granules are constructed for
the convenient analyzing and processing real-value data. The neigh-
borhood RST is intuitive, which can directly handle continuous
or real-value data without discretization. Compared with classical
RST, it eliminates the discretization process and extends an appli-
cation scope of the Pawlak RST.

Yao [19] initially proposed the neighborhood RST and Hu et al. [20]
developed its applications in a classification field. It has been widely
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used in attribute reduction [21-24], feature selection and extrac-
tion [25-27], classification and clustering [28-30], gene selection
[31-33], image processing [34,35] and other fields. The neighbor-
hood RST uses the concept of neighborhood positive region. The
objects, that their condition granules are completely contained in
their decision granules, form the neighborhood positive region.
Different neighborhood parameters make the neighborhood pos-
itive regions different. The smaller of the neighborhood parame-
ter and the finer neighborhood granule is. Then the neighborhood
positive region becomes larger. The neighborhood positive region
also relates to the number of attributes. While attributes are grad-
ually increased, the neighborhood granules become smaller. Then
the neighborhood positive region becomes larger. If the neighbor-
hood parameter of a neighborhood classification system is fixed,
then the neighborhood positive region is also unchanged. The
attribute reduction in a neighborhood system refers to the deletion
of redundant attributes in the case of preserving the same neigh-
borhood positive region. However, when some noise are added
to a neighborhood system, the neighborhood positive region is
changed, which affects the accuracy of a classification. For example,
a condition granule is completely contained in a decision granule,
and when a noise is added, the condition granule may be partially
included in the decision granule. Therefore, it is necessary to con-
sider the circumstance of granule partial-inclusion under a noisy
condition. The variable precision RST proposed by Ziarko [36],is a
rough set model with fault-tolerant ability. It can overcome the lim-
itation of classical RST with the hard-to-process noisy data. It is an
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informational filtering, which persists in some correct information
with a great extent and ignores the noisy information. The classifi-
cation precision can be controlled by a variable factor of the positive
region. The variable precision RST has been widely used in many
fields such as decision analysis [37], process control [38], data clus-
tering [39] and attribute selection [40].

Feature selection [41-45] also called feature subset selection
or attribute selection, refers to selecting N features from the
existing M features to obtain the optimization of classification
accuracy in the knowledge classification system. Selecting effective
features from original features to reduce the dimension of a dataset
is an important way to improve the performance of learning algo-
rithms and is also the key data preprocessing step in pattern recog-
nition. RST is a good feature selection tool [46-48], which goal
is using rough set positive region to construct classification accu-
racy. Classical variable precision RST is suitable to feature selec-
tion of noisy data. However, the classical variable precision RST
is mainly applied to the feature selection based on equivalence
relation. While the neighborhood relation is not a strict equiva-
lence relation, the classical variable precision RST is not suitable for
neighborhood knowledge classification systems. Therefore, we use
the neighborhood RST to granulate the real-value data and con-
struct two types of granules, which are neighborhood granules of
condition features and equivalent granules of decision features. Fur-
thermore, we define a novel concept of granule inclusion degree that
the condition granules are partly contained in the decision gran-
ules, which can robustly deal with noisy datasets. Based on the gran-
ule inclusion degree, we construct neighborhood variable precision
positive region sets and the significance of a feature. Permitting a
certain degree of error classification rate in a feature selection task,
we achieve the optimal feature subset. A feature selection algorithm
based on variable precision neighborhood granulation is further
designed, and some UCI datasets are applied to test the classifica-
tion performance of the selected feature subsets. The experiments
show that the feature subsets selected by the proposed algorithm
still have better classification performance for noisy datasets.

The main innovative work of this paper is as follows: (1) In order to
enhance the fault-tolerant ability of classification systems, we define
some concepts of granule inclusion, variable precision neighbor-
hood dependence and approximation sets. (2) Based on these ter-
minologies, a variable precision neighborhood rough set model is
proposed, which is suitable to deal with real-value and noisy data.
(3) Furthermore, we prove the monotonicity of variable precision
neighborhood dependence with increasing features and a feature
subset selection algorithm to the variable precision neighborhood
rough sets is designed.

The remainder sections are structured as follows: An introduction
to neighborhood granulation of classification systems is presented
in Section 2. In Section 3, the granule inclusion degree is intro-
duced. Then we propose a variable precision neighborhood rough
set model. In Section 4, we propose a feature selection method
based on variable precision neighborhood rough sets and design an
algorithm for feature subset selecting. In Section 5, for contribut-
ing to understand our proposed method, we carry out some exper-
iments in decision systems. Finally, this paper is concluded with
some discussions and remarks in Section 6.

2. NEIGHBORHOOD GRANULATION OF
CLASSIFICATION SYSTEMS

The RST proposed by Pawlak, a mathematician of Poland, is one of
the most widely used models in classification systems. In a machine
learning field, huge amounts of real-value data need to be dis-
cretized, but the discretization process easily leads to a loss of clas-
sification information. Aiming at the limitation of Pawlak RST, a
neighborhood RST is introduced to granulate these real-value data.
In RST, an equivalence class is regarded as a granule. As for neigh-
borhood RST, neighborhood granules are constructed.

Definition 1. [20] Let CS = (U, A, D) be a classification sys-
tem, where U = {x1,x;,...,x,} is a set of samples or objects. A =
{ay,ay, ...,a,,} is a set of condition features or attributes. D = {d}
represents a decision feature or attribute. The value of a sample in
the condition feature set A is a real type of data, and the value of
the sample in the decision feature D is a symbolic type or a discrete

type data.

Definition 2. [20] Let CS = (U, A, D) be a classification system,
for any sample x,y € U, a feature subset P C A, where P =
{ai,ay, ..., a,}, a distance function on the feature subset P is defined
as:

Ap(x,y) = (B, (vx a) = vy, apDI,

where v(x, a;) represents the value of the sample x on a feature a;.
If s = 1, it is named Manhattan distance, and if s = 2, it is named
Euclidean distance.

Definition 3. Let CS = (U, A, D) be a classification system, § €
[0,1] is a neighborhood parameter. For any sample x € U and a
condition feature subset P C A, the & neighborhood granule of x
on P is defined as

ng(x) ={ylx,y € U, Ap(x,y) < &},

If Gg = {ng (x)|Vx € U}, then Gg is called a neighborhood granular
swarm of P.

The values on decision features in classification systems are sym-
bolic data. Therefore, the samples are divided into equivalent classes
on the decision features. The neighborhood parameter sets zero,
so these samples are granulated into equivalent granules, which are
called decision equivalent granules, and they are expressed as

ng(x) ={y|x,y € U, Ap(x,y) = 0}

From the above definitions, we can see that a neighborhood granule
is degenerated into an equivalent granule when the neighborhood
parameter is 0. So the equivalent granule is a special neighborhood
granule. The neighborhood granular swarm is a collection of neigh-
borhood granules.

Property 1. The neighborhood granule ng(x) of x satisfies the fol-
lowing properties:

1. ng(x) #*
2. x€ ng(x);

3. ye ng(x) o x € nl‘f(y);
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4. Uerng(x) =U

Definition 4. Let CS = (U, A, D) be a classification system, § €
[0,1] is a neighborhood parameter, for a feature subset P C A, it
determines a neighborhood relation, which is defined as

NRs(P) = {(x,y) € Ux U|Ap(x,y) < 6}

The U/NRs(P) is called a covering of the domain U, which is
induced by a neighborhood relation, and the covering is a collec-
tion of neighborhood granules. Neighborhood relation is a kind of
similarity relation that satisfies reflexive and symmetric properties,
rather than equivalence relation. When a neighborhood parameter
d is equal to 0, the neighborhood relation is degenerated into an
equivalence relation. So the equivalence relation is a special neigh-
borhood relation. The rough sets based on neighborhood relations
can handle the real-value data, while the rough sets based on equiv-
alence relations can only deal with the symbolic data.

Definition 5. Let a classification system be CS = (U,A,D), § €
[0,1] is a neighborhood parameter. For any sample x € U and a
feature subset P C A, let ng(x) be a neighborhood granule, then the
size of granule ng(x) is defined as

s
Size(nS(x)) = %
where |.| represents the cardinality of a set. It is easy to know
that the size of neighborhood granule holds the property: ﬁ <

Size(nd(x)) < 1.

Definition 6. Let a classification system be CS = (U,A,D), § €
[0,1] is a neighborhood parameter. For any sample x € U and a
feature subset P C A, let Gg be a neighborhood granular swarm,

then the size of neighborhood granular swarm Gg is defined as

Size(ng(x,-)) = ﬁ Zizll nf,(x,-)l

1 <l

Sy —
CM(GY) = 1 2z

It is easy to know that the size of neighborhood granular swarm
holds the property: ﬁ < GM(G?) <L

Definition 7. [20] Let a classification system be CS = (U, A, D),
8 € [0,1] is a neighborhood parameter. For any subset of samples
X C U and any subset of features P C A, the neighborhood lower
and upper approximations of X on P are defined as

P (X)s = {x € Ulnd(x) C X3},
P*(X)5 = {x € Ulnd(x) N X # @}.

The order couple < P,(X)s, P*(X)s > is called a neighborhood
rough set, and it approximates to the X set.

Proposition 1. Let a classification system be CS = (U,A,D), § €
[0,1] is a neighborhood parameter. For any sample x € U and two
feature subsets P, Q C A, suppose ng(x), ng(x) are two neighborhood
granules of x on P, Q respectively, then we have

L. IfP C Qthen n3(x) 2 nd(x).

2. If0<y<d<1then ng(x) C ng(x).

Proof. 1. Since P C Q, we have Q = PUR. Let Vx € U, then
nS(x) = {lx,y € U,Ap(x,y) < 8}and nd (x) = {ylx,y €

U, Apyr(x,y) < 8}. According to the definition of distance
function, we know Ap(x,y) < Apyr(x,y). Thus, Ap(x,y) <
Aq(x, ). Therefore, ng(x) o) ng(x).

2. For Vx € U, according to the definition of neighborhood
granule, we know an(x) = {ylx,y € U, Ap(x,y) < y}and
ng(x) = {ylx,y € U,Ap(x,y) < 8}.Since0 <y <8 <1, we
can easily obtain ng(x) C ng(x).

3. VARIABLE PRECISION NEIGHBORHOOD
ROUGH SETS

In 1993, Ziarko proposed the variable precision RST [36],
which10pt is a generalization of the classical RST and it endures cer-
tain classification error rates. However, the variable precision RST
can only deal with symbolic or discrete data, which cannot directly
handle a large number of symbolic or continuous data in real world.
To overcome the deficiency, we introduce neighborhood rough sets,
while relaxing the classification accuracy, and propose a variable
precision neighborhood rough set model.

Definition 8. Let S, T'be two neighborhood granules on domain U,
the granule inclusion degree of S contained in T is defined as

Iserl _ |u=s-ml
lul lul

IS,T) =

The granule inclusion degree reflects an inclusion relation between
two granules. A granule is essentially a set. Figure 1 illustrates a
variation for the granule inclusion degree. Suppose S and T are two
granules in Figure 1. The light red part of the ellipse represents S—T.
From the left to right, the size of S — T decreases, so the size of
U—(S—T) increases. Finally, the granule inclusion degree increases.
It is consistent with that the inclusion degree of S contained in T
increases.

Example 1. Suppose a domain U = {xq,x,, X3, %4,x5}. The § =
{x1, %2, x3}and T = {x1, x,, x5} are two neighborhood granules. The
[U==DI _ gy xg 55|

Ul T T aXs g xS

granule inclusion degree is I(S, T) =
0.8.

Let a classification system be CS = (U, A, D), § € [0,1] is a neigh-

borhood parameter. For any sample x € U, a conditional feature

subset P C A and the decision feature D, suppose ng(x) is a condi-

tion neighborhood granule of x on P, and n?(x) is a decision equiv-

alent granule of x on D. Then we have the granule inclusion degree

of the condition granule contained in the decision granule:
[neend|  [u=md -S|

I(n3(x), n9(x)) = o T Il

Proposition 2. Let a classification system be CS = (U,A,D), § €
[0,1] is a neighborhood parameter. For any sample x € U and two

Figure 1

Mlustration for the granule inclusion degree.
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feature subsets P, Q C A, suppose ng(x), ng(x) are two neighborhood

granules of x on P, Q respectively, and ng(x) is an equivalent granule
on the decision feature D, then we have

L. IfP C Q then I(n3(x), nd(x)) < I(nd(x), nd(x));

2. If0<y <6 <1 then I(n)(x), n%(x)) = I(nS(x), n%(x)).

Proof. 1. It is known from the Proposition 1, if P C Q, then
ng(x) 2 ng(x). Therefore, one can achieve that ng(x) - ng(x) 2
nd(x) — nd(x), U — (nd(x) — nd(x)) C U— (n(x) — n(x)).

U= =)

lul
According to the definition of granule inclusion degree,

[U=r8 - )|
19

. Therefore, I(n8(x), n2(x)) <

5 0
. U— —
Then we can achieve that U=ty =rnp )|

one can achieve that I(ng(x), ng(x)) =

>

S 0
|U=(n8 =)
I(n(x), np(x) = —-——

I(ng(x), ng(x)) is achieved.

2. Similarly, it is easily proved by the Proposition 1. If0 < y <
§ <1, then I(n};(x), nOD(x)) > I(ng(x), ng(x)) is achieved.

Definition 9. Let a classification system be CS = (U,A,D), § €
[0,1] is a neighborhood parameter. For any sample x € U and a
condition feature subset P C A, R, is the neighborhood relation
derived from the feature subset P, and the variable precision neigh-
borhood lower and upper approximation sets of the decision feature
D with respect to the condition feature P are defined as follows:

Rp(D)% = {x € UlI(n3(x), n(x)) > a},05 <a <1,

Ry(D)} = {x € UlI(nS(x), n%(x)) > B},0 < f < 0.5,

The variable precision neighborhood lower approximation set of D
with respect to P is also called the variable precision neighborhood
positive region, which is expressed as

POS%(D)s = R,p(D)%.

The variable precision neighborhood boundary region of D with
respect to P is defined as

BN (D)s = Ry(DY; — R.p(D)S.
The variable precision neighborhood negative region is defined as
NEGIP(D)s = U~ RYD)S.

R;(D)g. The couple <

R*P(D)g,R;(D)g > is called a variable precision neighborhood
rough set. The positive region POSF (D) reflects the classification
accuracy of a classification system. The parameter o indicates a
toleration of the classification accuracy, and the parameter § is a
threshold value of granulation. The variable precision boundary
region embodies the uncertainty of classification, and the variable
precision neighborhood negative region reflects the error rate of
classification.

Apparently for any «a,f, R*p(D)g -

Definition 10. Let a classification system be CS = (U, A, D) and
é € [0,1] be a neighborhood parameter, given any variable pre-
cision threshold «, for any feature subset P C A, the variable

precision neighborhood dependence of decision feature with
respect to condition feature is defined as
|Pos% (D) |
P3(D)s = ——
19
The variable precision neighborhood dependence is similar to the

variable precision positive region, which reflects the variation of
classification accuracy.

Proposition 3. Let a classification system be CS = (U, A,D),
é € [0,1] is a neighborhood parameter. For any two feature subsets
P,Q C A, the variable precision neighborhood positive region satis-
fies the following conclusions:

1. IfP C Q then POSS(D)s C Posg(D)é,-
2. If0 <y <& <1, then POSY (D), 2 POS(D)s.

Proof. 1. From P C Q, according to the Proposition 2 we
can know that I(nf,(x), ng(x)) < I(ng(x), ng(x)). By the def-
inition of variable precision neighborhood lower approxima-
tion, we know R*P(D)g C R*Q(D)g. Therefore, POS5(D)s C

POS% (D) is achieved.

2. From 0 <y < § < 1, according to the Proposition 2 we can
know that I(n(x), n(x)) > I(n3(x), n%(x)). By the definition
of variable precision neighborhood lower approximation, we
know R, P(D);’,‘ DR, P(D)g. Therefore, POS7 (D), 2 POSF(D)s
is achieved.

According to the Proposition 3, we can draw the following conclu-
sions:

Proposition 4. If P, C P, C ..
95, (D)s < ... < ¢F (D)s < p5(D)s.

Proposition 5. If§; < 8, < ... < §,,, then 3 (D)s, > ¢3(D)s,
> @g(D)am.

Proposition 6. Ifa; > ay > ... > a,,, then 93" (D)s < @p*(D)s <
am
. < P3"(D)s.

The Proposition 4 shows that the classification accuracy is increas-
ing with the growing of features. It is not strictly monotonously
increasing, so it may grow to a certain extent, the accuracy of classi-
fication no longer changing. Therefore, some features can be gradu-
ally selected so that the classification accuracy of these features has
been increased to the same classification accuracy of all features.
The Proposition 5 shows that the classification accuracy is decreas-
ing with the increasing value of a granulation parameter. Because
the process of granulation will increase noise, the larger the value
of granulation parameter is, the more noise will be added and the
accuracy of classification will decrease. The Proposition 6 shows
that the accuracy of classification increases while the threshold of
variable precision reduces. Therefore, it is necessary to consider
reducing the threshold of the variable accuracy so as to improve the
classification accuracy when the noise induced by the granulation
parameter increases. The above analysis shows that the variable pre-
cision neighborhood rough set model is more robust to the classi-
fication systems and can handle the data containing noise.

C P, C A, then ¢f (D)s

IA

(\%

A
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4. FEATURE SUBSET SELECTION BASED
ON VARIABLE PRECISION
NEIGHBORHOOD ROUGH SETS

The information entropy, mutual information, rough entropy and
knowledge granularity induced by equivalence relations measure
the roughness of knowledge and reflect the classification ability of
a decision system. However, these measures are suitable to deal
with symbolic data. As for real-value data, we should find new
methods. From the definition of variable precision neighborhood
dependence, we put forward the concept of variable precision
neighborhood reduction for real-value and noisy data in classifi-
cation systems. Furthermore, a feature subset selection algorithm
based on variable precision neighborhood rough sets is designed.

4.1. Feature Reduction Based on Variable
Precision Neighborhood Rough Sets

Definition 11. Let a classification system be CS = (U,A, D), § €
[0,1] is a neighborhood parameter. For a condition feature p € P,
if goff_{p}(D)5 # ©%(D)s, then the feature is an independent feature
in P. Otherwise, the feature is a redundancy feature in P.

A redundant feature provides useless or even spurious classification
information. We delete the feature from a classification system, so
a more compact and concise feature representation is appeared. It
will reduce the dimension and complexity of a big data system.

Definition 12. Let a classification system be CS = (U,A, D), § €
[0,1] is a neighborhood parameter. For a condition feature P C A,
it is a feature reduction if it satisfies the following conditions:

L. p3(D)s = ¢ (D)s;
2. Vp€Pgi(D)s < f(D)s.

The first condition means that the selected features and the whole
features have the same classification accuracy; the second condition
ensures that the selected feature subset does not have redundant
features.

From the above analysis, it is known that the variable precision
neighborhood dependence reflects the classification ability of a fea-
ture subset. And according to the Proposition 4, the variable pre-
cision neighborhood dependence monotonically increases with the
growing of the features. Therefore, the significance of a feature can
be defined based on the variable precision neighborhood depen-
dence.

Definition 13. Let a classification system be CS = (U,A,D), § €
[0,1] is a neighborhood parameter. For a condition feature subset
P C A and a feature p € A — P, the feature significance of p with
respect to P is defined as

sgng(p, P, D) = ¢y (D)s — 95 (D).

The significance of a feature represents a change of the variable pre-
cision neighborhood dependence, before and after the feature is
deleted. The threshold of variable precision shows the tolerance to
the noise data.

4.2. Feature Subset Selection Algorithm
Based on Variable Precision
Neighborhood Rough Sets

From the Propositions 3 and 4, we know that the positive region and
dependence of variable precision neighborhood are monotonic.
Therefore, we can use the deleting or adding method to select the
features. According to the definition of the variable precision neigh-
borhood reduction, we propose a feature subset selection algorithm
based on the variable precision neighborhood rough sets. Following
the significance of feature as a heuristic information, a bottom-up
feature subset selection algorithm is designed.

Algorithm 1: Algorithm VPNRS. A heuristic algorithm to feature selection
based on variable precision neighborhood rough setsInput: A classification
system CS = (U, A, D), a neighborhood parameter § € [0, 1] and a vari-
able precision threshold 0.5 < ¢ < 1.

Output: A feature reduction RED.

(1): Initialization: RED = @, T = @, gagED(D)e; = 0, flag = true
(2): while (flag)

(3): T=RED,P=A—RED

(4): foreachp, € P

(5): T = RED U {py}, max = 0, POS = @&

(6): foreachx; € U

(7): Computing the condition neighborhood granule
n?(xi) by the Euclidean distance
(8): Computing the decision granule ng(xi)
(9): Computing the granule inclusion degree by
[U—n2xp—n )|

I(n?(x,-), nd (x) = T

(10): If I(n9(x;), n9(x;)) > t, then POS = POS U {x;}
(11): End for
(12): POS‘;‘(D)‘S = POS

(13): Computing the variable precision neighborhood dependence
|Pos% (D)
#TDs ="
(14): If (D)5 > max, then
(15): max = (p%(D)a, maxfeature = py.
(16): End if

(17):  End for

(18):  px = maxfeature

(19):  Computing sgng(pk, RED, D) = CPREDU{pk}(D)cS — go%ED(D)a
(20): Ifsgng(pk,RED, D) > 0, then

(21):  RED = RED U py

(22): PREpD)s = ‘Pz%EDupk(D)a

(23): Ifsgn‘g (pk, RED, D) = 0, then

(24): flag = false
(25): End if
(26):  Endif

(27): End while
(28): Return RED

In steps 6 and 7, achieving neighborhood granules costs O(n?  m),
where 7 is the number of samples and m is the number of features.
Further, in step 4, it costs O(m). Therefore, the time complexity of
Algorithm VPNRS is O(n? % m?).
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5. EXPERIMENTAL RESULTS

In this paper, some experiments are tested on four UCI datasets,
which are shown in Table 1.

Due to the different value ranges of the datasets in the table,
the datasets need to be normalized and preprocessed. We use the
maximum-minimum method to ensure that all data are trans-
formed into data between 0 and 1. The maximum-minimum nor-
malization is defined as
fx) = S i

X,

max ™ *min

Experimental results are compared from two aspects. One is the
redundancy of selected feature subsets, and the other is the classifi-
cation accuracy of reduced feature subsets. In the experiments, the
values of neighborhood parameter start from 0.05 to 0.5, while their
intervals are 0.05 and a total of 10 times are tested. In this paper,
the algorithm needs to set the variable precision threshold, which is
tested from 0.5 to 1 with an interval of 0.05, and there are 10 kinds
of accuracy are changed. First, the feature subset selection (feature
reduction) is performed using a variable precision neighborhood
rough set model. And then the classification experiments are per-
formed on the selected feature subsets. The experimental dataset is
randomly divided into ten parts, of which nine parts are used for

Table 1 Experimental datasets.

Datasets |U] |A] Vb
Glass 214 9 6
Pima 768 8 2
Segmentation 210 19 7
Wine 178 13 3

Redundancy

Variable precision threshold o

Redundancy

Variable precision threshold o 05

e
i

i

RN Wil
Uit

i
il
0

KRN,
IS

.
s,
X ly
%%/6,9'!"/'//’/,;/ hk

(c) Segmentation.

W
il

Neighborhood parameter &

0 Neighborhood parameter &

training and the remaining one part for testing. The dataset is tested
with the LIBSVM classifier developed by Professor Lin Chih-Jen.

5.1. Redundancy Comparison of Feature
Reduction

The simplification of a feature reduction is measured by redun-
dancy, and the redundancy is expressed as follows:

_ IreD|

|Al

Among them, A is the set of all condition features, RED is a feature
reduction and |A| represents the cardinality of A. From this defini-
tion, we know that the smaller the redundancy, the better the sim-
plification. The redundancy of a feature reduction varies with the
changes of the neighborhood parameter and the variable precision
threshold, and the experimental results are shown in Figure 2.

From the Figure 2(a), for the Glass dataset, when the neighbor-
hood parameter § sets 0.05-0.2 and the variable precision thresh-
old a sets 0.55-0.75, the redundancy of feature reduction is smaller
and the simplification effect is better. In contrast, the neighborhood
parameter & sets 0.35-0.5 and the variable precision threshold «
sets 0.85-1, the redundancy of feature reduction is larger, and the
simplification effect is poorer.

From the Figure 2(b), for the Pima dataset, when the neighborhood
parameter § sets 0.05-0.2 and the variable precision threshold a sets
0.55-0.75, the redundancy of feature reduction is smaller, and the
simplification effect is better. In contrast, the neighborhood param-
eter J sets 0.4-0.5 and the variable precision threshold « sets 0.8-1,
the redundancy of feature reduction is larger, and the simplification
effect is poorer.
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Figure 2 Redundancy comparisons of different datasets.
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From the Figure 2(c), for the Segmentation dataset, the neighbor-
hood parameter & sets 0.05-0.35 and the variable precision thresh-
old o sets 0.55-0.85, the redundancy of feature reduction is smaller,
and the simplification effect is better. In contrast, the neighborhood
parameter 0 sets 0.4-0.5 and the variable precision threshold « sets
0.9-1, the redundancy of feature reduction is larger, and the sim-
plification effect is poorer.

From the Figure 2(d), for the Wine dataset, when the neighbor-
hood parameter § sets 0.05-0.35 and the variable precision thresh-
old « sets 0.55-0.9, the redundancy of feature reduction is smaller,
and the simplification effect is better. In contrast, the neighborhood
parameter 9 sets 0.4-0.5 and the variable precision threshold « sets
0.95-1, the redundancy of feature reduction is larger, and the sim-
plification effect is poorer.

From the above analysis, we can see that the smaller the neighbor-
hood parameter is, then the smaller the reduction subset redun-
dancy is and the better the reduction effect is. The smaller the
variable precision threshold is, then the smaller the reduction sub-
set redundancy is and the better the reduction effect is. Con-
versely, the larger the neighborhood parameter is, then the larger
the reduction subset redundancy is and the worse the reduction
effect is. The bigger the variable precision threshold is, then the
larger the redundancy of the reduction subset is and the worse the
reduction effect is. At the same time, this is consistent with the
principle of Propositions 5 and 6. When the neighborhood param-
eter becomes bigger, the noise increases. According to the Proposi-
tion 5, the classification accuracy is reduced, and more features are
needed to describe the dataset. When the variable precision thresh-
old is smaller, according to Proposition 6, the classification accu-
racy increases, and fewer features can describe the dataset.
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(c) Segmentation.

5.2. Comparison of Classification Accuracy

The smaller the redundancy, the less the number of features used
for a classifier, which is beneficial to speed up the training of the
classifier. However, the classification accuracy may be reduced and
the effect of classification is not ideal when the selected features are
less. Only when the selected feature subset satisfies the two con-
ditions with small redundancy and high accuracy of classification,
it is an ideal feature subset. Firstly, we get multiple feature sub-
sets under different neighborhood parameter values and different
thresholds, and then test the classification results of these feature
subsets. The classifier is LIBSVM, and the experimental results are
shown in Figure 3.

From the Figure 3(a), for the Glass dataset, when the neighborhood
parameter sets 0.15 and the variable precision threshold sets 0.55,
0.6, and 0.7, the classification accuracy reaches the maximum value
with 0.7143. When the neighborhood parameter sets 0.2 and the
variable precision threshold sets 0.55, the maximum classification
accuracy reaches 0.7143. When the neighborhood parameter sets
0.1 and the variable precision threshold sets 0.7, the classification
accuracy reaches the minimum value with 0.4286.

From the Figure 3(b), for Pima datasets, the classification accuracy
has 9 maximum values, mainly concentrated on a diagonal line of
the plane formed by neighborhood parameters and variable preci-
sion thresholds. They are scattered in points with large neighbor-
hood parameter values and small variable precision values, or with
small neighborhood parameter values and large variable precision
values. The minimum classification accuracy is distributed on the
plane with small neighborhood parameter values and small variable
precision values at the same time.
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Figure 3 Classification accuracies of different datasets.
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From the Figure 3(c), for Segmentation dataset, the classification
accuracy has 3 maximum values, scattered in (5, @) at (0.45,0.8),
(0.45,0.85) and (0.4,1) points. The minimum classification accuracy
is distributed on the plane with small neighborhood parameter val-
ues and small variable precision values at the same time.

From the Figure 3(d), for Wine datasets, the points of maximum
classification accuracy are numerous, mainly concentrated on a
striped line with the variable precision value setting 1 and the neigh-
borhood parameter ranging in 0.1-0.5. The points of minimum
classification accuracy are distributed in a striped line with the
small neighborhood parameter values and the variable precision
threshold ranging in 0.55-0.8.

From the previous experiments, it is known that the simplification
effects of feature subsets are better when the neighborhood parame-
ter values and the variable precision thresholds are small. However,
as shown in the Figure 3, the classification accuracies are smaller
when the neighborhood parameter values and the variable preci-
sion thresholds are small. Therefore, the simplification of a feature
subset is relevant to the performance of a classification. Meanwhile,
from the Figure 3, we can see that when neighborhood param-
eter values and variable precision thresholds are large, there are
many features for classification, but the accuracy of classification is
not the best. Because that the neighborhood granulation will bring
much noise to the datasets. When the neighborhood parameter
value becomes larger, the noise is increased. Although the features
are more, the noise is added due to the increasing of neighborhood
parameter values, so the classification accuracy is affected. From
the Proposition 6, we can see that the decreasing of the variable pre-
cision threshold can improve the classification accuracy. Since the
noise introduced by a granulation process affects the classification
accuracy, we can improve this situation by decreasing the threshold
of variable precision, which counteracts the influence of the added
noise. Therefore, it is necessary to adjust two values of neighbor-
hood parameter and variable precision threshold at the same time,
and select the appropriate features. It will be a good classification
performance.

5.3. Comprehensive Comparisons of
Redundancy and Classification
Accuracy

The experiments in this subsection are compared from two aspects:
redundancy of the selected features and their classification accura-
cies. In general, the classification accuracy is more important than
redundancy. So we use the golden split point to set their weights.
Suppose the redundancy of a feature subset is r, and its classifica-
tion accuracy is ¢, we define a new comprehensive evaluation index
h=1-0.618)% (1 —r)+ 0.618 * ¢, where (1 — r) represents sim-
plification. The experimental results are shown in Figure 4.

From the Figure 4(a), for the Glass dataset, there are 3 maximum
values of the comprehensive index, which are distributed on the
points (8, o) of (0.15,0.55), (0.2,0.55) and (0.15,0.6). The minimum
values of the comprehensive index are mainly distributed on the
plane with & ranging in 0.25-0.55 and « ranging in 0.8-1.

From the Figure 4(b), for the Pima dataset, there are 4 maximum
values of the comprehensive index, which are distributed on the
points (8, a) of (0.05, 0.9), (0.05, 0.95), (0.1, 0.75) and (0.1, 0.8). The

minimum values of the comprehensive index are mainly distributed
on the plane with § ranging in 0.3-0.55 and « ranging in 0.75-1.

From the Figure 4(c), for the Segmentation dataset, there is 1 maxi-
mum value of the comprehensive index, which is distributed on the
point (8, cr) of (0.05, 1). There are 3 minimum values of the com-
prehensive index, which are distributed on the points (8, o) of (0.4,
0.95), (0.45, 0.95) and (0.5, 0.95).

From the Figure 4(d), for the Wine dataset, there are 5 maximum
values of the comprehensive index, which are distributed on the
points (8, @) of (0.2, 0.55), (0.25, 0.55), (0.15, 0.6), (0.2, 0.6) and
(0.15, 0.65). There are 3 minimum values of the comprehensive
index, which are distributed on the points (8, @) of (0.4,1), (0.45,1)
and (0.5,1).

In summary, the maximum values of comprehensive index are
mainly distributed on the points of smaller neighborhood param-
eter values. As for the variable precision threshold, it is not very
sensitive. The smaller the neighborhood parameter is, the smaller
the noise introduced. Therefore, the comprehensive performance of
classification accuracy and simplification is not very sensitive to the
variable precision threshold under the condition of low noise. The
minimum values of the comprehensive index are mainly distributed
on the points where the neighborhood parameter values and the
variable precision thresholds are both large. If the neighborhood
parameter value is large, the noise introduced is much, which indi-
cates that under the condition of much noise, the comprehensive
performance of classification accuracy and simplification is more
sensitive to the variable precision threshold. At this time, we need
to decrease the threshold of variable precision, so that the perfor-
mance of classification accuracy and simplification is improved.

In order to verify the advantage of variable precision neighborhood
rough sets (VPNRS) in processing noisy data, we add Gaussian
noise with (0,0,0.004), where the mean is 0, the variance is 0 and
the noise amount is 0.004. We compare VPNRS with Hu’s neigh-
borhood rough set (NRS) [17] on these noisy data using K-nearest
neighbor (KNN) and SVM classifiers. First, the NRS and VPNRS
are utilized for feature selection, and then the KNN and SVM are
used for classification experiments to compare their classification
accuracies. The results are shown in Table 2.

As it can be seen from the Table 2, for the noisy data, the classifica-
tion accuracies of VPNRS on both classifiers are higher than those
of NRS, indicating that our proposed algorithm has obvious anti-
noise ability.

6. CONCLUSIONS

Aiming at the problem of traditional rough sets hardly dealing with
real data, the neighborhood rough set granulation is introduced

Table 2 Classification accuracies of UCI datasets with Gaussian noise.

Datasets NRS+KNN NRS+SVM  VPNRS + VPNRS +
KNN SVM
Glass 65.12+1.78  66.72+1.33  66.35+2.20  65.35+1.89
Pima 79.26+2.01  78.39+1.67  80.02+2.15  79.37+2.41
Segmentation 85.12+2.12  86.04+2.78  86.07+2.92  87.39+1.97
Wine 91.16+3.23  92.13+£3.06  91.23+3.71  93.67+3.05
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Figure 4 Comprehensive comparisons of different datasets.

to construct some condition neighborhood granules and decision
equivalent granules in decision systems. The size of a granule is
defined, the inclusion relation between a condition granule and
a decision granule is analyzed, and a variable precision neighbor-
hood rough set model based on the inclusive relation is proposed.
Furthermore, the model is used to select feature subsets and a fea-
ture subset selection algorithm based on this model is designed.
The experimental results show that the new proposed feature sub-
set selection method can remove redundant features in decision
systems. The method provides a simplified feature subset for the
classifier and simultaneously maintains a good classification per-
formance. It has certain robustness, and can handle the dataset
containing noise. In the future work, we can apply the feature sub-
set selection method proposed in this paper to the dimensionality
reduction of big data systems.
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