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ABSTRACT
The notion of interval-valued m-polar fuzzy sets (abbreviated IVmPF) is much wider than the notion of m-polar fuzzy sets. In
this paper, we apply the theory of IVmPF on BCK/BCI-algebras. We introduce the concepts of IVmPF subalgebras, IVmPF ideals
and IVmPF commutative ideals and some essential properties are discussed. We characterize IVmPF subalgebras in terms of
fuzzy subalgebras and subalgebras of BCK/BCI-algebras. We show that in BCK-algebra, IVmPF ideals are IVmPF subalgebras
and that the converse is not valid. We provide a condition under which an IVmPF subalgebra becomes an IVmPF ideal. Further,
we characterize IVmPF ideals in terms of fuzzy ideals and ideals of BCK/BCI-algebras. Moreover, we prove that in any BCK-
algebra, an IVmPF commutative ideal is an IVmPF fuzzy ideal but not the converse. Also, we provide conditions under which an
IVmPF ideal becomes an IVmPF commutative ideal.
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1. INTRODUCTION

In 1966, Imai and Iséki introduced the concept of BCK∕BCI-
algebras, which is a generalization of propositional calculus and the
set-theoretic difference. The literature on the theory of BCK∕BCI-
algebras has been developed since then, and more focus has been
placed on the ideal theory of BCK∕BCI-algebras in particular. In
BCK∕BCI-algebras and other related algebraic structures, different
kinds of concepts were investigated in various ways (see, e.g., [1–8]).

The fuzzy set theory proposed by Zadeh [9] has been extended to a
lot of areas. In addition, a variety of extensions and generalizations
of fuzzy sets have been introduced such as the following well known
sets: bipolar fuzzy sets, hesitant fuzzy sets, intuitionistic fuzzy sets,
interval-valued fuzzy sets and fuzzy multisets, etc. The interval-
valued fuzzy set introduced by Zadeh takes the values of the mem-
bership functions as intervals instead of numbers. The study of
interval-valued fuzzy algebraic structures started in [10] by intro-
ducing the concept of interval-valued fuzzy subgroups. Jun [11]
extended the concept of interval-valued fuzzy sets to BCK∕BCI-
algebras and introduced the notions of interval-valued subalgebras
and ideals. After that, the notion of interval-valued fuzzy sets in
BCK∕BCI-algebras with different aspects has been studied by sev-
eral authors, for example, see [12–14].

Zhang introduced the notion of bipolar fuzzy sets which permits
the membership degree of an element over two intervals [−1, 0] and
[0, 1], that is, every element assigns negative and positive degree
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of memberships. By applying the notion of bipolar fuzzy sets to
BCK∕BCI-algebras, Lee [15] introduced the notions of bipolar fuzzy
subalgebra and bipolar fuzzy ideal of BCK∕BCI-algebras. Using
(𝛼, 𝛽)-bipolar fuzzy generalized bi-ideals, Ibrar et al. [16] charac-
terized regular ordered semigroups whereas Bashir et al. [17] char-
acterized the regular ordered ternary semigroups. For more related
concepts on bipolar fuzzy sets, we refer to [18–22].

As in many problems, information often comes from several vari-
ables and there are often multi-attribute data that cannot be han-
dled using current theories, a lot of approaches have been done
to solve this problem. For example, Chen et al. [23] presented the
m-polar fuzzy set, an expansion of the bipolar fuzzy set and as a
new approach Akram et al. [24] introduced a technique in decision
making based on m-polar fuzzy sets.

The m-polar fuzzy algebraic structures study began with the con-
cept of m-polar fuzzy Lie subalgebras [25]. After that, the the-
ory of m-polar fuzzy Lie ideals was studied in Lie algebras [26].
The concept of the m-polar fuzzy groups was given in [27]. More-
over, m-polar fuzzy matroids have been studied in [28]. Fur-
ther, m-polar fuzzy sets have been studied in different areas (see
[29–33]). Recently, Al-Masarwah and Ahmad introduced the
notion of m-polar fuzzy (commutative) ideals [34] and m-polar
(𝛼, 𝛽)-fuzzy ideals [35] in BCK∕BCI-algebras. As a continues work
they introduced a new form of generalized m-polar fuzzy ideals
in [36] and studied normalization of m-polar fuzzy subalgebras in
[37]. A new advanced extensions are formed by merging two fuzzy
information in one set as neutrosophic bipolar fuzzy sets, bipolar
valued hesitant fuzzy sets and interval- valued m-polar fuzzy sets
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(IVmPF). For some recent work on these extensions, we refer the
reader to [38–43].

The power of the theory of IVmPF as an advanced extension with
all the work done on different algebraic structure motivated the
authors to apply the theory of IVmPF on BCK∕BCI-algebras. The
novelty in this study lies in using the proposed model on BCK∕BCI-
algebras. The authors introduced and investigated the notions of
interval-valuedm-polar fuzzy subalgebras, interval-valuedm-polar
fuzzy ideals and interval-valued m-polar fuzzy commutative ideals
in Sections 3, 4, 5, respectively. A summary of proposed and future
work were given in Section 6.

2. PRELIMINARIES

An algebra (X; ∗, 0) of type (2, 0) is called aBCI-algebra if ∀𝜈, 𝜅, ℏ ∈
X, it satisfies(
K1

)
((𝜈 ∗ ℏ) ∗ (𝜈 ∗ 𝜅)) ∗ (𝜅 ∗ ℏ) = 0,(

K2
)
(𝜈 ∗ (𝜈 ∗ ℏ)) ∗ ℏ = 0,(

K3
)
𝜈 ∗ 𝜈 = 0,(

K4 ) 𝜈 ∗ ℏ = 0 and ℏ ∗ 𝜈 = 0 ⇒ 𝜈 = ℏ,

If a BCI-algebra X satisfies(
K5

)
0 ∗ 𝜈 = 0 ∀ 𝜈 ∈ X

then X is a BCK-algebra.

The following conditions hold in any BCK∕BCI-algebra X and for
all 𝜈, 𝜅, ℏ ∈ X:(
P1
)
𝜈 ∗ 0 = 𝜈,(

P2
)
(𝜈 ∗ ℏ) ∗ 𝜅 = (𝜈 ∗ 𝜅) ∗ ℏ,(

P3
)
𝜈 ≤ ℏ ⇒ 𝜈 ∗ 𝜅 ≤ ℏ ∗ 𝜅 and 𝜅 ∗ ℏ ≤ 𝜅 ∗ 𝜈,(

P4
)

0 ∗ (𝜈 ∗ ℏ) = (0 ∗ 𝜈) ∗ (0 ∗ ℏ),(
P5
)

0 ∗ (0 ∗ (𝜈 ∗ ℏ)) = 0 ∗ (ℏ ∗ 𝜈),(
P6
)
(𝜈 ∗ 𝜅) ∗ (ℏ ∗ 𝜅) ≤ (𝜈 ∗ ℏ),(

P7
)
𝜈 ∗ (𝜈 ∗ (𝜈 ∗ ℏ)) = 𝜈 ∗ ℏ,(

P8
)

0 ∗ (0 ∗ ((𝜈 ∗ 𝜅) ∗ (ℏ ∗ 𝜅))) = (0 ∗ ℏ) ∗ (0 ∗ 𝜈),(
P9
)

0 ∗ (0 ∗ (𝜈 ∗ ℏ) = (0 ∗ ℏ) ∗ (0 ∗ 𝜈) ,

where 𝜈 ≤ 𝜅 ⇔ 𝜈 ∗ 𝜅 = 0 ∀ 𝜈, 𝜅 ∈ X. Clearly, (X,≤) is a partially
ordered set.

A nonempty subset B of X is called a subalgebra of X if 𝜈 ∗ 𝜅 ∈ B
∀ 𝜈, 𝜅 ∈ B.

A nonempty subset L of X is called an ideal of X if(
L1
)

0 ∈ L,(
L2
)
∀ 𝜈, 𝜅 ∈ X, 𝜈 ∗ 𝜅 ∈ L and 𝜅 ∈ L ⇒ 𝜈 ∈ L.

Let X be a BCK/BCI-algebra. A fuzzy set of X is a mapping
𝜉 ∶ X → [0, 1]. A fuzzy set 𝜉 is called a fuzzy subalgebra if
(∀ 𝜈, 𝜅 ∈ X) 𝜉 (𝜈 ∗ 𝜅) ≥ 𝜉 (𝜈) ∧ 𝜉 (𝜅) and it is called a fuzzy ideal
if 𝜉 (0) ≥ 𝜉 (𝜈) and 𝜉 (𝜈) ≥ 𝜉 (𝜈 ∗ 𝜅) ∧ 𝜉 (𝜅) for all 𝜈, 𝜅 ∈ X.

Further, 𝜉 is called a fuzzy commutative ideal if 𝜉 (0) ≥ 𝜉 (𝜈) and
𝜉 (𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ≥ 𝜉 ((𝜈 ∗ 𝜅) ∗ ℏ) ∧ 𝜉 (ℏ).

By the interval number ñ, we mean an interval denoted as
[
n−, n+

]
,

where 0 ≤ n− ≤ n+ ≤ 1. We write S [0, 1] to denote the set of all
interval numbers. The interval [n, n] is indicated by the number n ∈
[0, 1] for whatever follows. For the interval numbers ñi =

[
n−i , n

+
i
]
,

m̃i =
[
m−

i ,m
+
i
]
∈ S [0, 1] , i ∈ I, we describe

(a) ñi ∧ m̃i =
[
n−i ∧m−

i , n
+
i ∧m+

i
]
;

(b) ñi ∨ m̃i =
[
n−i ∨m−

i , n
+
i ∨m+

i
]
;

(c) ñ1 ≤ ñ2 ⇔ n−1 ≤ n−2 and n+1 ≤ n+2 ;

(d) ñ1 = ñ2 ⇔ n−1 = n−2 and n+1 = n+2 .

Let X be a BCK/BCI-algebra. A mapping 𝒢 ∶ X → S [0, 1] is an
interval-valued fuzzy set (briefly, IVF set) of X, where for all 𝜈 ∈
X, 𝒢 (𝜈) =

[
𝒢 − (𝜈) ,𝒢 + (𝜈)

]
, 𝒢 − and 𝒢 + are fuzzy sets of X with

𝒢 − (𝜈) ≤ 𝒢 + (𝜈).

An IVF set is called an IVF subalgebra if (∀ 𝜈, 𝜅 ∈ X)𝒢 (𝜈 ∗ 𝜅) ≥
𝒢 (𝜈) ∧ 𝒢 (𝜅) and it is called an IVF ideal if 𝒢 (0) ≥ 𝒢 (𝜈) and
𝒢 (𝜈) ≥ 𝒢 (𝜈 ∗ 𝜅) ∧𝒢 (𝜅) ∀ 𝜈, 𝜅 ∈ X. Moreover, 𝒢 is called an IVF
commutative ideal if 𝒢 (0) ≥ 𝒢 (𝜈) and 𝒢 (𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ≥
𝒢 ((𝜈 ∗ 𝜅) ∗ ℏ) ∧ 𝒢 (ℏ) ∀ 𝜈, 𝜅, ℏ ∈ X.

3. INTERVAL-VALUED m-POLAR FUZZY
SUBALGEBRAS

The notion of an IVmPF subalgebra in BCK∕BCI-algebras is intro-
duced and characterized in terms of subalgebra and fuzzy subalge-
bra of BCK∕BCI-algebras.

Definition 3.1. Let X be a nonempty set. An IVmPF set of X is a
mapping 𝒢 ∶ X → S[0, 1]m defined as

𝒢 (𝜈) =
(
𝜋1◦𝒢 (𝜈) , 𝜋2◦𝒢 (𝜈) ,… , 𝜋m◦𝒢 (𝜈)

)
where for i ∈ {1, 2,… ,m}, 𝜋i◦𝒢 ∶ X → S [0, 1] is the ith-
projection mapping.

That is,

𝒢 (𝜈) =
([
𝒢 −

1 (𝜈) ,𝒢 +
1 (𝜈)

]
,
[
𝒢 −

2 (𝜈) ,𝒢 +
2 (𝜈)

]
,… ,

[
𝒢 −
m (𝜈) , 𝒢 +

m (𝜈)
])

for all 𝜈 ∈ X, 𝒢 −
i and 𝒢 +

i are fuzzy sets of X with 𝒢 −
i (𝜈) ≤ 𝒢 +

i (𝜈)
for all 𝜈 ∈ X and i ∈ {1, 2,… ,m}.

We define an order relation on S[0, 1]m as pointwise, that is,

𝜈 ≤ 𝜅 ⇔ 𝜋i (𝜈) ≤ 𝜋i (𝜅)

where 𝜋i ∶ S[0, 1]m → S [0, 1] is the ith-projection mapping
and i ∈ {1, 2,… ,m}. For an element [̃𝛼, 𝛽] ∈ S[0, 1]m, we
mean that ([𝛼, 𝛽] , [𝛼, 𝛽] , ..., [𝛼, 𝛽]), while the element [̂𝛼, 𝛽] =([
𝛼1, 𝛽1

]
,
[
𝛼2, 𝛽2

]
, ...,

[
𝛼m, 𝛽m

])
represents an arbitrary element of

S[0, 1]m. Clearly, the elements [̃0, 0] and [̃1, 1] are the smallest and
largest elements in S[0, 1]m.
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Definition 3.2. An IVmPF set 𝒢 of X is called an IVmPF
subalgebra if

(∀𝜈, 𝜅 ∈ X) 𝒢 (𝜈 ∗ 𝜅) ≥ 𝒢 (𝜈) ∧ 𝒢 (𝜅) ,

that is,

(∀ 𝜈, 𝜅 ∈ X, i ∈ {1, 2,… ,m}) 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ≥ 𝜋i◦𝒢 (𝜈) ∧ 𝜋i◦𝒢 (𝜅) .

Example 1.

Consider a BCK-algebra in which X = {0,℘, 𝜅,𝓁} and ∗ is given
by the following table:

∗ 0 ℘ 𝜅 𝓁
0 0 0 0 0
℘ ℘ 0 0 ℘
𝜅 𝜅 ℘ 0 𝜅
𝓁 𝓁 𝓁 𝓁 0

Let [̂𝜔,𝜑]=
([
𝜔1, 𝜑1

]
,
[
𝜔2, 𝜑2

]
, ...,

[
𝜔m, 𝜑m

])
, [̂𝛼, 𝛽]=

([
𝛼1, 𝛽1

]
,[

𝛼2, 𝛽2
]
, ...,

[
𝛼m, 𝛽m

])
∈ S[0, 1]m such that [̂𝜔,𝜑] ≥ [̂𝛼, 𝛽]. Now

define an IVmPF set 𝒢 on X as

𝒢 (𝜈) =

⎧⎪⎪⎨⎪⎪⎩

([
𝜔1, 𝜑1

]
,
[
𝜔2, 𝜑2

]
,… ,

[
𝜔m, 𝜑m

])
if 𝜈 = 0,([

𝛼1, 𝛽1
]
,
[
𝛼2, 𝛽2

]
,… ,

[
𝛼m, 𝛽m

])
if 𝜈 = ℘,

([0, 0] , [0, 0] , … , [0, 0]) if 𝜈 ∈ {𝜅,𝓁} .

It is easy to verify that 𝒢 is an IVmPF subalgebra.

Lemma 3.3. If 𝒢 is an IVmPF subalgebra of X, then

𝒢 (0) ≥ 𝒢 (𝜈) ∀𝜈 ∈ X.

Proof. Let 𝜈 ∈ X. Then, we have

𝜋i◦𝒢 (0) = 𝜋i◦𝒢 (𝜈 ∗ 𝜈)
≥ 𝜋i◦𝒢 (𝜈) ∧ 𝜋i◦𝒢 (𝜈)
= 𝜋i◦𝒢 (𝜈) ,

as required.

Theorem 3.4. An IVmPF set 𝒢 =
([
𝒢 −

1 ,𝒢 +
1
]
,
[
𝒢 −

2 ,𝒢 +
2
]
,… ,[

𝒢 −
m ,𝒢

+
m
])

is an IVmPF subalgebra of X ⇔ 𝒢 −
i and 𝒢 +

i are fuzzy
subalgebras of X for all i’s.

Proof. (⇒) Assume that 𝒢 =
([
𝒢 −

1 ,𝒢 +
1
]
,
[
𝒢 −

2 ,𝒢 +
2
]
,… ,[

𝒢 −
m ,𝒢

+
m
])

is an IVmPF subalgebra of X. Then for any 𝜈, 𝜅 ∈ X,

𝜋i◦𝒢 (𝜈 ∗ 𝜅) ≥ 𝜋i◦𝒢 (𝜈) ∧ 𝜋i◦𝒢 (𝜅) ∀i ∈ {1, 2,… ,m} ,

implies[
𝒢 −
i (𝜈 ∗ 𝜅) ,𝒢 +

i (𝜈 ∗ 𝜅)
] ≥ [

𝒢 −
i (𝜈) ,𝒢 +

i (𝜈)
]
∧
[
𝒢 −
i (𝜅) ,𝒢 +

i (𝜅)
]

=
[
𝒢 −
i (𝜈) ∧ 𝒢 −

i (𝜅) ,𝒢 +
i (𝜈) ∧ 𝒢 +

i (𝜅)
]
.

Therefore, 𝒢 −
i (𝜈 ∗ 𝜅) ≥ 𝒢 −

i (𝜈) ∧ 𝒢 −
i (𝜅) and 𝒢 +

i (𝜈 ∗ 𝜅) ≥
𝒢 +
i (𝜈) ∧ 𝒢 +

i (𝜅). Hence, 𝒢 −
i and 𝒢 +

i are fuzzy subalgebras of X for
all i ∈ {1, 2,… ,m}.

(⇐) For the converse, suppose that 𝒢 −
i and 𝒢 +

i are fuzzy subalge-
bras of X for all i’s. So for any 𝜈, 𝜅 ∈ X, we have

𝜋i◦𝒢 (𝜈 ∗ 𝜅) =
[
𝒢 −
i (𝜈 ∗ 𝜅) ,𝒢 +

i (𝜈 ∗ 𝜅)
]

≥ [
𝒢 −
i (𝜈) ∧ 𝒢 −

i (𝜅) ,𝒢 +
i (𝜈) ∧ 𝒢 +

i (𝜅)
]

=
[
𝒢 −
i (𝜈) ,𝒢 +

i (𝜈)
]
∧
[
𝒢 −
i (𝜅) ,𝒢 +

i (𝜅)
]

= 𝜋i◦𝒢 (𝜈) ∧ 𝜋i◦𝒢 (𝜅) .

Hence, 𝒢 is an IVmPF subalgebra of X.

Definition 3.5. Let 𝒢 be any IVmPF set. For [̂𝛼, 𝛽] =([
𝛼1, 𝛽1

]
,
[
𝛼2, 𝛽2

]
, ...,

[
𝛼m, 𝛽m

])
∈ S[0, 1]m define a level subset

U
(
𝒢 ; [̂𝛼, 𝛽]

)
as follows:

U
(
𝒢 ; [̂𝛼, 𝛽]

)
=
{
x ∈ X|𝜋i◦𝒢 (x) ≥ [

𝛼i, 𝛽i
]
for all i ∈ {1, 2, ...,m}

}
.

Theorem 3.6. An IVmPF set𝒢 is an IVmPF subalgebra of X⇔ each
nonempty level subset U

(
𝒢 ; [̂𝛼, 𝛽]

)
is a subalgebra of X ∀[̂𝛼, 𝛽] =([

𝛼1, 𝛽1
]
,
[
𝛼2, 𝛽2

]
, ...,

[
𝛼m, 𝛽m

])
∈ S[0, 1]m.

Proof. (⇒) Take any 𝜈, 𝜅 ∈ U
(
𝒢 ; [̂𝛼, 𝛽]

)
. Therefore, 𝜋i◦𝒢 (𝜈) ≥[

𝛼i, 𝛽i
]

and 𝜋i◦𝒢 (𝜅) ≥ [
𝛼i, 𝛽i

]
for all i ∈ {1, 2, ...,m}. Having 𝒢 an

IVmPF subalgebra of X, implies

𝜋i◦𝒢 (𝜈 ∗ 𝜅) ≥ 𝜋i◦𝒢 (𝜈) ∧ 𝜋i◦𝒢 (𝜅)
≥ [

𝛼i, 𝛽i
]
∧
[
𝛼i, 𝛽i

]
=
[
𝛼i, 𝛽i

]
.

Therefore, 𝜈 ∗ 𝜅 ∈ U
(
𝒢 ; [̂𝛼, 𝛽]

)
.

(⇐) Assume that U
(
𝒢 ; [̂𝛼, 𝛽]

)
is a subalgebra of X ∀[̂𝛼, 𝛽] ∈

S[0, 1]m. On contrary, let 𝜋i◦𝒢 (𝜈 ∗ 𝜅) < 𝜋i◦𝒢 (𝜈) ∧ 𝜋i◦𝒢 (𝜅) for
some 𝜈, 𝜅 ∈ X. So ∃[̂𝛾, 𝜆] =

([
𝛾1, 𝜆1

]
,
[
𝛾2, 𝜆2

]
, ...,

[
𝛾m, 𝜆m

])
∈

S[0, 1]m such that 𝜋i◦𝒢 (𝜈 ∗ 𝜅) <
[
𝛾i, 𝜆i

] ≤ 𝜋i◦𝒢 (𝜈) ∧ 𝜋i◦𝒢 (𝜅)
for each i ∈ {1, 2, ...,m} implies 𝜈, 𝜅 ∈ U

(
𝒢 ; [̂𝛾, 𝜆]

)
but 𝜈 ∗ 𝜅 ∉

U
(
𝒢 ; [̂𝛾, 𝜆]

)
, which is a contradiction. Therefore, 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ≥

𝜋i◦𝒢 (𝜈) ∧ 𝜋i◦𝒢 (𝜅) for all i ∈ {1, 2, ...,m} and 𝜈, 𝜅 ∈ X.
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Example 2.

Consider a BCK-algebra in which X = {0,℘,𝒥 , 𝜅,𝓁} and ∗ is
defined by the following table:

∗ 0 ℘ 𝒥 𝜅 𝓁
0 0 0 0 0 0
℘ ℘ 0 ℘ 0 0
𝒥 𝒥 𝒥 0 𝒥 0
𝜅 𝜅 𝜅 𝜅 0 0
𝓁 𝓁 𝓁 𝜅 𝒥 0

Now define an IVmPF set 𝒢 on X as

𝒢 (𝜈) =

⎧⎪⎪⎨⎪⎪⎩

̃[0.8, 0.8] = ([0.8, 0.8] , [0.8, 0.8] , ..., [0.8, 0.8]) if 𝜈 = 0,
̃[0.4, 0.4] = ([0.4, 0.4] , [0.4, 0.4] , ..., [0.4, 0.4]) if 𝜈 = ℘,
̃[0.5, 0.5] = ([0.5, 0.5] , [0.5, 0.5] , ..., [0.5, 0.5]) if 𝜈 = 𝒥 ,
̃[0.7, 0.7] = ([0.7, 0.7] , [0.7, 0.7] , ..., [0.7, 0.7]) if 𝜈 = 𝜅,
̃[0.3, 0.3] = ([0.3, 0.3] , [0.3, 0.3] , ..., [0.3, 0.3]) if 𝜈 = 𝓁.

Therefore,

U
(
𝒢 ; [̂𝛼, 𝛽]

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

X, if [̃0, 0] < [̂𝛼, 𝛽] ≤ ̃[0.3, 0.3];
{0,℘, 𝜅} , if ̃[0.3, 0.3] < [̂𝛼, 𝛽] ≤ ̃[0.4, 0.4];
{0, 𝜅} , if ̃[0.4, 0.4] < [̂𝛼, 𝛽] ≤ ̃[0.5, 0.5];
{0, 𝜅} , if ̃[0.5, 0.5] < [̂𝛼, 𝛽] ≤ ̃[0.7, 0.7];
{0} , if ̃[0.7, 0.7] < [̂𝛼, 𝛽] ≤ ̃[0.8, 0.8];
∅, if ̃[0.8, 0.8] < [̂𝛼, 𝛽] ≤ [̃1, 1].

Since for all [̂𝛼, 𝛽] ∈ S[0, 1]m, U
(
𝒢 ; [̂𝛼, 𝛽]

)
is a subalgebra of X.

Therefore by Theorem 3.6, 𝒢 is an IVmPF subalgebra.

4. INTERVAL-VALUED m-POLAR FUZZY
IDEALS

The notion of an IVmPF ideal in BCK∕BCI-algebras is introduced
and associated properties of IVmPF ideals and IVmPF subalgebras
are considered.

Definition 4.1. An IVmPF set 𝒢 is called an IVmPF ideal if the
following conditions satisfy for all 𝜈, 𝜅 ∈ X:

(1) 𝒢 (0) ≥ 𝒢 (𝜈),

(2) 𝒢 (𝜈) ≥ 𝒢 (𝜈 ∗ 𝜅) ∧ 𝒢 (𝜅),

that is,

(1) 𝜋i◦𝒢 (0) ≥ 𝜋i◦𝒢 (𝜈),

(2) 𝜋i◦𝒢 (𝜈) ≥ 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅),

∀i ∈ {1, 2,… ,m} .

Example 3.

Consider a BCI-algebra in which X = {0, 1,℘, 𝜅,𝓁} and ∗ is
defined by the following table:

∗ 0 1 ℘ 𝜅 𝓁
0 0 0 ℘ 𝜅 𝓁
1 1 0 ℘ 𝜅 𝓁
℘ ℘ ℘ 0 𝓁 𝜅
𝜅 𝜅 𝜅 𝓁 0 ℘
𝓁 𝓁 𝓁 𝜅 ℘ 0

Now define an IV5PF set 𝒢 on X as

𝒢 (𝜈) =

⎧⎪⎨⎪⎩
([0.6, 0.7] , [0.5, 0.8] , [0.3, 0.4] , [0.7, 0.8] , [0.6, 0.7]) if 𝜈 = 0,
([0.5, 0.6] , [0.3, 0.5] , [0.2, 0.3] , [0.5, 0.6] , [0.4, 0.6]) if 𝜈 = 1,
([0.2, 0.4] , [0.1, 0.2] , [0.1, 0.2] , [0.2, 0.3] , [0.2, 0.3]) if 𝜈 ∈ {℘,𝓁},
([0.3, 0.4] , [0.2, 0.3] , [0.1, 0.2] , [0.3, 0.5] , [0.4, 0.5]) if 𝜈 = 𝜅,

It is routine to verify that 𝒢 is an IV5PF ideal.

Lemma 4.2. Let 𝒢 be an IVmPF ideal of X and 𝜈, 𝜅 ∈ X such that
𝜈 ≤ 𝜅. Then,

𝒢 (𝜈) ≥ 𝒢 (𝜅) .

Proof. Let 𝜈, 𝜅 ∈ X such that 𝜈 ≤ 𝜅. Then,

𝜋i◦𝒢 (𝜈) ≥ 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅)
= 𝜋i◦𝒢 (0) ∧ 𝜋i◦𝒢 (𝜅)
= 𝜋i◦𝒢 (𝜅) .

Hence, 𝒢 (𝜈) ≥ 𝒢 (𝜅).

Lemma 4.3. Let 𝒢 be an IVmPF ideal of X and 𝜈, 𝜅, ℏ ∈ X such
that 𝜈 ∗ 𝜅 ≤ ℏ. Then,

𝒢 (𝜈) ≥ 𝒢 (𝜅) ∧ 𝒢 (ℏ) .

Proof. Let 𝜈, 𝜅, ℏ ∈ X such that 𝜈 ∗ 𝜅 ≤ ℏ. Then by Lemma 4.2,
we have

𝜋i◦𝒢 (𝜈 ∗ 𝜅) ≥ 𝜋i◦𝒢 (ℏ) .

As 𝒢 is an IVmPF ideal of X, so

𝜋i◦𝒢 (𝜈) ≥ 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅)
≥ 𝜋i◦𝒢 (ℏ) ∧ 𝜋i◦𝒢 (𝜅) .

It follows that 𝒢 (𝜈) ≥ 𝒢 (𝜅) ∧ 𝒢 (ℏ) .

Theorem 4.4. In a BCK4-algebra X, every IVmPF ideal of X is an
IVmPF subalgebra.
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Proof. Suppose that 𝒢 is any IVmPF ideal and let 𝜈, 𝜅 ∈ X. As
𝜈 ∗ 𝜅 ≤ 𝜈 in X, so by Lemma 4.2, 𝜋i◦𝒢 (𝜈) ≤ 𝜋i◦𝒢 (𝜈 ∗ 𝜅). Since
𝒢 is an IVmPF ideal of X, we have

𝜋i◦𝒢 (𝜈 ∗ 𝜅) ≥ 𝜋i◦𝒢 (𝜈)
≥ 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅)
= 𝜋i◦𝒢 (𝜈) ∧ 𝜋i◦𝒢 (𝜅) .

Hence, 𝒢 is an IVmPF subalgebra.

Remark 1. The converse of Theorem 4.4 is not true in general.

Example 4.

Consider a BCK-algebra in which X = {0,℘, 𝜅,𝓁} and ∗ is
described by the following table:

∗ 0 ℘ 𝜅 𝓁
0 0 0 0 0
℘ ℘ 0 ℘ 0
𝜅 𝜅 𝜅 0 0
𝓁 𝓁 𝓁 𝓁 0

Now define an IV3PF set 𝒢 on X as:

𝒢 (𝜈) =

⎧⎪⎨⎪⎩
([0.7, 0.8] , [0.3, 0.5] , [0.2, 0.3]) if 𝜈 = 0,
([0.5, 0.6] , [0.1, 0.3] , [0.1, 0.2]) if 𝜈 = ℘,
([0.3, 0.4] , [0.1, 0.1] , [0.1, 0.1]) if 𝜈 = 𝜅,
([0.6, 0.7] , [0.2, 0.4] , [0.1, 0.3]) if 𝜈 = 𝓁.

By routine calculation one can verify that 𝒢 is an IV3PF subal-
gebra but not an IV3PF ideal because [0.5, 0.6] = 𝜋1◦𝒢 (℘) ≱
𝜋1◦𝒢 (℘ ∗ 𝓁) ∧ 𝜋1◦𝒢 (𝓁) = [0.6, 0.7].

The following result provides a condition for an IVmPF subalgebra
to be an IVmPF ideal.

Theorem 4.5. Let 𝒢 be an IVmPF subalgebra of X . Then 𝒢 is an
IVmPF ideal ⇔ for all 𝜈, 𝜅, ℏ ∈ X such that 𝜈 ∗ 𝜅 ≤ ℏ implies
𝒢 (𝜈) ≥ 𝒢 (𝜅) ∧ 𝒢 (ℏ).

Proof. (⇒) Follows from Lemma 4.3.

(⇐) Let𝒢 be an IVmPF subalgebra such that for all 𝜈, 𝜅, ℏ ∈ Xwith
𝜈 ∗ 𝜅 ≤ ℏ implies 𝒢 (𝜈) ≥ 𝒢 (𝜅) ∧𝒢 (ℏ). As 𝜈 ∗ (𝜈 ∗ 𝜅) ≤ 𝜅, so by
hypothesis

𝒢 (𝜈) ≥ 𝒢 (𝜈 ∗ 𝜅) ∧ 𝒢 (𝜅) .

Hence, 𝒢 is an IVmPF ideal of X.

In the following result, we give a relation between an IVmPF ideal
and fuzzy ideals of X.

Theorem 4.6. An IVmPF set 𝒢 =
([
𝒢1

−,𝒢1
+] , [𝒢2

−,𝒢2
+] ,

… ,
[
𝒢m

−,𝒢m
+]) in X is an IVmPF ideal of X ⇔ 𝒢 −

i and 𝒢 +
i are

fuzzy ideals of X for all i’s.

Proof. (⇒) Assume that 𝒢 (𝜈) =
([
𝒢1

− (𝜈) ,𝒢1
+ (𝜈)

]
,[

𝒢2
− (𝜈) ,𝒢2

+ (𝜈)
]
,… ,

[
𝒢m

− (𝜈) ,𝒢m
+ (𝜈)

])
in X is an IVmPF ideal

of X. For any 𝜈 ∈ X, we have

𝜋i◦𝒢 (0) ≥ 𝜋i◦𝒢 (𝜈) ∀i ∈ {1, 2,… ,m} ,

implies that [
𝒢 −
i (0) ,𝒢 +

i (0)
] ≥ [

𝒢 −
i (𝜈) ,𝒢 +

i (𝜈)
]
.

It follows that 𝒢 −
i (0) ≥ 𝒢 −

i (𝜈) and 𝒢 +
i (0) ≥ 𝒢 +

i (𝜈). Take any
𝜈, 𝜅 ∈ X. By hypothesis, we have

𝜋i◦𝒢 (𝜈) ≥ 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅) ∀i ∈ {1, 2,… ,m},

implies that[
𝒢 −
i (𝜈) ,𝒢 +

i (𝜈)
] ≥ [

𝒢 −
i (𝜈 ∗ 𝜅) ,𝒢 +

i (𝜈 ∗ 𝜅)
]
∧
[
𝒢 −
i (𝜅) ,𝒢 +

i (𝜅)
]

=
[
𝒢 −
i (𝜈 ∗ 𝜅) ∧ 𝒢 −

i (𝜅) ,𝒢 +
i (𝜈 ∗ 𝜅) ∧ 𝒢 +

i (𝜅)
]
.

Therefore, 𝒢 −
i (𝜈) ≥ 𝒢 −

i (𝜈 ∗ 𝜅) ∧ 𝒢 −
i (𝜅) and 𝒢 +

i (𝜈) ≥
𝒢 +
i (𝜈 ∗ 𝜅) ∧ 𝒢 +

i (𝜅). Hence, 𝒢 −
i and 𝒢 +

i are fuzzy ideals of X.

(⇐) For the converse, suppose that 𝒢 −
i and 𝒢 +

i are fuzzy ideals of
X. Then for all 𝜈, 𝜅 ∈ X,

𝜋i◦𝒢 (0) =
[
𝒢 −
i (0) ,𝒢 +

i (0)
]

≥ [
𝒢 −
i (𝜈) ,𝒢 +

i (𝜈)
]

= 𝜋i◦𝒢 (𝜈)

and

𝜋i◦𝒢 (𝜈) =
[
𝒢 −
i (𝜈) ,𝒢 +

i (𝜈)
]

≥ [
𝒢 −
i (𝜈 ∗ 𝜅) ∧ 𝒢 −

i (𝜅) ,𝒢 +
i (𝜈 ∗ 𝜅) ∧ 𝒢 +

i (𝜅)
]

=
[
𝒢 −
i (𝜈 ∗ 𝜅) ,𝒢 +

i (𝜈 ∗ 𝜅)
]
∧
[
𝒢 −
i (𝜅) ,𝒢 +

i (𝜅)
]

= 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅) .

Hence, 𝒢 is an IVmPF ideal.

The following result provides a correspondence between an IVmPF
ideal of X and an ideal of X.

Theorem 4.7. An IVmPF set 𝒢 is an IVmPF ideal of X ⇔ each
nonempty level subset U

(
𝒢 ; [̂𝛼, 𝛽]

)
is an ideal of X ∀[̂𝛼, 𝛽] =([

𝛼1, 𝛽1
]
,
[
𝛼2, 𝛽2

]
, ...,

[
𝛼m, 𝛽m

])
∈ S[0, 1]m.

Proof. (⇒) Let us suppose that 𝒢 is an IVmPF ideal of X and
𝜈 ∈ U

(
𝒢 ; [̂𝛼, 𝛽]

)
. Then 𝜋i◦𝒢 (𝜈) ≥ [

𝛼i, 𝛽i
]
. By hypothesis,

𝜋i◦𝒢 (0) ≥ 𝜋i◦𝒢 (𝜈) ≥ [
𝛼i, 𝛽i

]
. Thus, 0 ∈ U

(
𝒢 ; [̂𝛼, 𝛽]

)
. Next,

take any 𝜈 ∗ 𝜅 ∈ U
(
𝒢 ; [̂𝛼, 𝛽]

)
and 𝜅 ∈ U

(
𝒢 ; [̂𝛼, 𝛽]

)
. Therefore,

𝜋i◦𝒢 (𝜈 ∗ 𝜅) ≥ [
𝛼i, 𝛽i

]
and 𝜋i◦𝒢 (𝜅) ≥ [

𝛼i, 𝛽i
]
. As 𝒢 is an IVmPF

ideal, so

𝜋i◦𝒢 (𝜈) ≥ 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅)
≥ [

𝛼i, 𝛽i
]
∧
[
𝛼i, 𝛽i

]
=
[
𝛼i, 𝛽i

]
.

It follows that 𝜈 ∈ U
(
𝒢 ; [̂𝛼, 𝛽]

)
. Hence, U

(
𝒢 ; [̂𝛼, 𝛽]

)
is an ideal.
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(⇐) Now let U
(
𝒢 ; [̂𝛼, 𝛽]

)
be an ideal of X ∀[̂𝛼, 𝛽] ∈ S[0, 1]m.

If 𝜋i◦𝒢 (0) < 𝜋i◦𝒢 (𝜈) for some 𝜈 ∈ X. So ∃[̂𝛿, 𝛾] =([
𝛿1, 𝛾1

]
,
[
𝛿2, 𝛾2

]
, ...,

[
𝛿m, 𝛾m

])
∈ S[0, 1]m such that 𝜋i◦𝒢 (0) <[

𝛿i, 𝛾i
] ≤ 𝜋i◦𝒢 (𝜈) for all i ∈ {1, 2, ...,m} implies 𝜈 ∈ U

(
𝒢 ; [̂𝛿, 𝛾]

)
but 0 ∉ U

(
𝒢 ; [̂𝛿, 𝛾]

)
, which is a contradiction. Therefore,

𝜋i◦𝒢 (0) ≥ 𝜋i◦𝒢 (𝜈) for all 𝜈 ∈ X and i ∈ {1, 2, ...,m}.
Again, if 𝜋i◦𝒢 (𝜈) < 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅) for some 𝜈, 𝜅 ∈
X. So ∃[̂𝛿, 𝛾] =

([
𝛿1, 𝛾1

]
,
[
𝛿2, 𝛾2

]
, ...,

[
𝛿m, 𝛾m

])
∈ S[0, 1]m such

that 𝜋i◦𝒢 (𝜈) <
[
𝛿i, 𝛾i

] ≤ 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅) for all i ∈
{1, 2, ...,m} implies 𝜈 ∗ 𝜅 ∈ U

(
𝒢 ; [̂𝛿, 𝛾]

)
and 𝜅 ∈ U

(
𝒢 ; [̂𝛿, 𝛾]

)
but 𝜈 ∉ U

(
𝒢 ; [̂𝛿, 𝛾]

)
, which is again a contradiction. There-

fore, 𝜋i◦𝒢 (𝜈) ≥ 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅) for all 𝜈, 𝜅 ∈ X and
i ∈ {1, 2, ...,m}.

5. INTERVAL-VALUED m-POLAR
COMMUTATIVE IDEALS

The notion of an IVmPF commutative ideal of BCK∕BCI-algebras
is defined. Relations among the IVmPF subalgebras, IVmPF ideals
and IVmPF commutative ideals are discussed.

Definition 5.1. An IVmPF set 𝒢 is called an IVmPF commutative
ideal if the following conditions satisfy for all 𝜈, 𝜅, ℏ ∈ X:

(1) 𝒢 (0) ≥ 𝒢 (𝜈),

(2) 𝒢 (𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ≥ 𝒢 ((𝜈 ∗ 𝜅) ∗ ℏ) ∧ 𝒢 (ℏ),

that is,

(1) 𝜋i◦𝒢 (0) ≥ 𝜋i◦𝒢 (𝜈),

(2) 𝜋i◦𝒢 (𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ≥ 𝜋i◦𝒢 ((𝜈 ∗ 𝜅) ∗ ℏ) ∧ 𝜋i◦𝒢 (ℏ),

∀i ∈ {1, 2,… ,m}.

Example 5.

Consider the BCK-algebra X of Example 1. Let [̂𝜔,𝜑] =([
𝜔1, 𝜑1

]
,
[
𝜔2, 𝜑2

]
,… ,

[
𝜔m, 𝜑m

])
, [̂𝛼, 𝛽]=

([
𝛼1, 𝛽1

]
,
[
𝛼2, 𝛽2

]
,… ,[

𝛼m, 𝛽m
])

, [̂𝛿, 𝛾] =
([
𝛿1, 𝛾1

]
,
[
𝛿2, 𝛾2

]
,… ,

[
𝛿m, 𝛾m

])
∈ S[0, 1]m

such that [̂𝜔,𝜑] ≥ [̂𝛼, 𝛽] ≥ [̂𝛿, 𝛾]. Now define an IVmPF set 𝒢 on
X as:

𝒢 (𝜈) =

⎧⎪⎨⎪⎩
[̂𝜔,𝜑] =

([
𝜔1, 𝜑1

]
,
[
𝜔2, 𝜑2

]
,… ,

[
𝜔m, 𝜑m

])
if 𝜈 = 0,

[̂𝛼, 𝛽] =
([
𝛼1, 𝛽1

]
,
[
𝛼2, 𝛽2

]
,… ,

[
𝛼m, 𝛽m

])
if 𝜈 ∈ {℘, 𝜅} ,

[̂𝛿, 𝛾] =
([
𝛿1, 𝛾1

]
,
[
𝛿2, 𝛾2

]
,… ,

[
𝛿m, 𝛾m

])
if 𝜈 = 𝓁.

It is easy to verify that 𝒢 is an IVmPF commutative ideal.

Theorem 5.2. In any BCK-algebra X, every IVmPF commutative
ideal of X is an IVmPF ideal.

Proof. For any IVmPF commutative ideal 𝒢 of X and 𝜈, 𝜅, ℏ ∈ X,
we have

𝜋i◦𝒢 (𝜈) = 𝜋i◦𝒢 (𝜈 ∗ (0 ∗ (0 ∗ 𝜈)))
≥ 𝜋i◦𝒢 ((𝜈 ∗ 0) ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅)
= 𝜋i◦𝒢 (𝜈 ∗ 𝜅) ∧ 𝜋i◦𝒢 (𝜅) .

Hence, 𝒢 is an IVmPF ideal.

Corollary 5.3. Every IVmPF commutative ideal of X is an IVmPF
subalgebra of X.

Remark 2. In general, the converse of Theorem 5.2 is not true as
shown next.

Example 6.

Consider a BCK-algebra in which X = {0,℘, , 𝜅,𝓁} and ∗ is
described with the following table:

∗ 0 ℘ 𝒥 𝜅 𝓁
0 0 0 0 0 0
℘ ℘ 0 ℘ 0 0
𝒥 𝒥 𝒥 0 0 0
𝜅 𝜅 𝜅 𝜅 0 0
𝓁 𝓁 𝓁 𝜅 𝒥 0

Let [̂𝜃, 𝜆]=
([
𝜃1, 𝜆1

]
,
[
𝜃2, 𝜆2

]
,… ,

[
𝜃m, 𝜆m

])
, [̂𝜓, 𝜙]=

([
𝜓1, 𝜙1

]
,[

𝜓2, 𝜙2
]
,… ,

[
𝜓m, 𝜙m

])
, [̂𝜌, 𝜎] =

([
𝜌1, 𝜎1

]
,
[
𝜌2, 𝜎2

]
,… ,[

𝜌m, , , 𝜎m,
])

∈ S[0, 1]m such that [̂𝜃, 𝜆] ≥ [̂𝜓, 𝜙] ≥ [̂𝜌, 𝜎]. Now
define an IVmPF set 𝒢 on X as:

𝒢 (𝜈) =

⎧⎪⎨⎪⎩
[̂𝜃, 𝜆] =

([
𝜃1, 𝜆1

]
,
[
𝜃2, 𝜆2

]
,… ,

[
𝜃m, 𝜆m

])
if 𝜈 = 0,

[̂𝜓, 𝜙] =
([
𝜓1, 𝜙1

]
,
[
𝜓2, 𝜙2

]
,… ,

[
𝜓m, 𝜙m

])
if 𝜈 = ℘,

[̂𝜌, 𝜎] =
([
𝜌1, 𝜎1

]
,
[
𝜌2, 𝜎2

]
,… ,

[
𝜌m, 𝜎m

])
if 𝜈 ∈

{
j, 𝜅,𝓁

}
.

It can be shown that 𝒢 is an IVmPF ideal but not an
IVmPF commutative ideal because

[
𝜌1, 𝜎1

]
= 𝜋1◦𝒢 (𝒥 ) =

𝜋1◦𝒢 (𝒥 ∗ (𝜅 ∗ (𝜅 ∗ 𝒥 )))≱ 𝜋1◦𝒢 ((𝒥 ∗ 𝜅) ∗ 0) ∧ 𝜋1◦𝒢 (0) =
𝜋1◦𝒢 (0) =

[
𝜃1, 𝜆1

]
.

Following two results provide conditions for an IVmPF ideal to be
an IVmPF commutative ideal.

Theorem 5.4. Let 𝒢 be an IVmPF ideal of X. Then 𝒢 is an IVmPF
commutative ideal⇔ for all 𝜈, 𝜅 ∈ X,

𝒢 (𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ≥ 𝒢 (𝜈 ∗ 𝜅) .

Proof. (⇒) Let 𝒢 be an IVmPF commutative ideal. Then for all
𝜈, 𝜅, ℏ ∈ X, we have

𝒢 (𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ≥ 𝒢 ((𝜈 ∗ 𝜅) ∗ ℏ) ∧ 𝒢 (ℏ) .

Taking ℏ = 0, we get

𝒢 (𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ≥ 𝒢 ((𝜈 ∗ 𝜅) ∗ 0) ∧ 𝒢 (0)
= 𝒢 (𝜈 ∗ 𝜅) ∧ 𝒢 (0)
= 𝒢 (𝜈 ∗ 𝜅) .
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(⇐) Let 𝒢 be an IVmPF ideal such that 𝒢 (𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ≥
𝒢 (𝜈 ∗ 𝜅) for all 𝜈, 𝜅 ∈ X. By assumption, we have for all 𝜈, 𝜅,
ℏ ∈ X

𝒢 (𝜈 ∗ 𝜅) ≥ 𝒢 ((𝜈 ∗ 𝜅) ∗ ℏ) ∧ 𝒢 (ℏ) .

Therefore, 𝒢 (𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ≥ 𝒢 ((𝜈 ∗ 𝜅) ∗ ℏ) ∧ 𝒢 (ℏ), as
required.

Theorem 5.5. Let X be a commutative BCK-algebra. Then every
IVmPF ideal of X is an IVmPF commutative ideal.

Proof. Suppose that 𝒢 is an IVmPF ideal of X. Then for all
𝜈, 𝜅, ℏ ∈ X,

((𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ∗ ((𝜈 ∗ 𝜅) ∗ ℏ)) ∗ ℏ
= ((𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ∗ ℏ) ∗ ((𝜈 ∗ 𝜅) ∗ ℏ)≤ (𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ∗ (𝜈 ∗ 𝜅)
= (𝜈 ∗ (𝜈 ∗ 𝜅)) ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))
= 0

It follows that ((𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ∗ ((𝜈 ∗ 𝜅) ∗ ℏ)) ≤ ℏ. As 𝒢 is
an IVmPF ideal of X, then by Lemma 4.3, 𝒢 (𝜈 ∗ (𝜅 ∗ (𝜅 ∗ 𝜈))) ≥
𝒢 ((𝜈 ∗ 𝜅) ∗ ℏ) ∧ 𝒢 (ℏ).

6. CONCLUSION

In this paper, by applying the theory of IVmPF on BCK/BCI-
algebra, the notions of interval-valued m-polar fuzzy subalge-
bras, interval-valued m-polar fuzzy ideals and interval-valued
m-polar fuzzy commutative ideals are introduced and some essen-
tial properties are discussed. Characterizations of interval-valued
m-polar fuzzy subalgebras and interval-valued m-polar fuzzy ide-
als are considered. Moreover, the relations among interval-valued
m-polar fuzzy subalgebras, interval-valued m-polar fuzzy ideals
and interval-valuedm-polar fuzzy commutative ideals are obtained.
This work can be a basis for further analysis of the interval-valued
m-polar fuzzy structures in related algebraic structures. For future
study, this concept may be applied to study some application fields
like decision-making, knowledge base system, data analysis, and so
on. In our opinion, these definitions and main results can be sim-
ilarly extended to some other algebraic systems such as subtrac-
tion algebras, B-algebras, MV-algebras, d-algebras, Q-algebras, and
so on.
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