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ABSTRACT
The main objectives of this article include the formal statement of a new mathematical model of uncertain knowledge and the
presentation of its potential applications. The novel hybrid model is called complex Pythagorean fuzzy N-soft set (CPFNSS)
because it enjoys both the parametric structure ofN-soft sets and themost prominent features of complex Pythagorean fuzzy sets
in order to capture the nuances of two-dimensional inexact information. We demonstrate that this model serves as a competent
tool for ranking-based modeling of parameterized fuzzy data. We propose some basic set-theoretical operations on CPFNSSs
and explore some of their practical properties. Furthermore, we elaborate the Einstein and algebraic operations on complex
Pythagorean fuzzyN-soft values (CPFNSVs).We interpret its relationships with contemporary theories to vindicate the versatil-
ity of the proposed model. Moreover, we develop three algorithms to unfold the application of proposed theory in multi-criteria
decision-making (MCDM). Some illustrative applications give a practical justification for these strategies. Finally, we conduct
a comparative analysis of the performance of these algorithms with existing MCDM techniques, namely, choice values and D-
choice values of Pythagorean fuzzy N-soft set (PFNSS), which validates the effectiveness of the proposed techniques.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Decision-making (DM) can be interpreted as a systematic process of solving real-world problems which provides an optimal solution after
examining the feasible set of alternatives. DM approaches have gained popularity as they are widely used in various disciplines, including
medical sciences, engineering, economics andmany other areas of science and technology. Recently, theDMprocess has becomemore com-
plex due to the presence of uncertainty and ambiguity in collected information which can bother the decision-makers to decide smoothly.
The traditional DM strategies were powerless to deal with such uncertain and vague data. The pioneering solution to such problems was
provided by Zadeh [53] by setting the foundations of fuzzy set (FS) theory in which each element is assigned by a membership degree lying
between 0 and 1. Atanassov [11] generalized the idea of FS into intuitionistic fuzzy set (IFS) by adding nonmembership degree (𝜆) to the
membership degree (μ) of FS, with the condition μ + 𝜆 ≤ 1. Yager [49,50] established the Pythagorean fuzzy set (PFS) theory, which relaxes
the aforementioned condition of IFS to μ2 + 𝜆2 ≤ 1. No doubt Pythagorean fuzzy expressions are raising the interest of many scholars, also
in terms of their applications to DM. For example, Huang et al. [23] introduced a Pythagorean fuzzy MULTIMOORA method that uses a
novel distance measure and a score function. They implemented this method for the evaluation of disk productions and energy projects.
Akram et al. [6] have investigated risk evaluation in failure modes and effects analysis (FMEA) with the help of hybrid TOPSIS and ELEC-
TRE I approaches under Pythagorean fuzzy information. Zhang and Xu [55] developed the TOPSIS method under Pythagorean fuzzy envi-
ronment and implemented this method to evaluate the quality of private airline services. Zhou and Chen [56] presented the PF-TOPSIS
method by utilizing a novel distance measure and illustrated its application for the commercialization of technology enterprises. Wang and
Li [46] proposed a multi attribute DM method and power Bonferroni mean (PBM) operator for PF-information and applied this method
to select the best online payment service providers. Wang and Chen [44] introduced the Pythagorean fuzzy LINMAP-based compromis-
ing method and elaborated the MCGDM problem for the selection of railway projects. Lin et al. [27] extended the TOPSIS method under
the linguistic Pythagorean fuzzy environment by using a novel correlation coefficient and an entropy measure. They also highlighted some
potential applications. Lin et al. [25] extended the TOPSIS and VIKOR methods for the probabilistic linguistic term information by using
score function based on concentration degree. Lin et al. [26] put forward the directional correlation coefficient measures for Pythagorean
fuzzy information and illustrated their potential applications in medical diagnosis and cluster analysis.
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The theory of FSs and its generalizations were applied and explored bymany researchers as they overcame the limitations of crisp set theory
and served as precise tools to deal with specific types of imprecise data. However, these theories were not able to handle the inconsistent
data of periodic nature until Ramot et al. [37] generalized the notion of FS by establishing a new theory of complex fuzzy sets (CFSs). In
this theory the range of the membership function was extended from the unit interval to the unit disc of the complex plane. To overcome
some deficiencies of CFS, Alkouri and Salleh [10] proposed the notion of complex intuitionistic fuzzy set (CIFS) by introducing complex-
valued membership (μei𝛼) and nonmembership (𝜆ei𝛽) degrees, in which the amplitude and phase terms are restricted by the conditions 0 ≤
μ + 𝜆 ≤ 1 and 0 ≤ 𝛼

2𝜋
+ 𝛽

2𝜋
≤ 1, respectively. Ullah et al. [43] broadened the space of CIFS by presenting the idea of complex Pythagorean

fuzzy set (CPFS) and introduced new constraint conditions 0 ≤ 𝜇2 + 𝜆2 ≤ 1 and 0 ≤ (
𝛼
2𝜋

)2
+
(

𝛽
2𝜋

)2 ≤ 1. The CPFS is an effective tool to
capture the inconsistent data of periodic nature and it excels due to its relaxed conditions, excellent features and advantageous properties.
This remarkable concept is extensively used in various territories includingDMproblems, networking, image processing, clustering, pattern
recognition, engineering and many other fields of computer science. Lin et al. [29] introduced the linguistic q-rung orthopair FSs and their
interactional partitioned Heronian mean aggregation operators. Wang and Garg [45] presented the multiple attribute DM approach by
utilizing the interactive Archimedean norm operations and elaborated this method with the help of practical application.

The existing models such as FS [53], rough sets [34], CFS [37], CIFS [10] and CPFS [43] and many others, have been developed to capture
various types of uncertainties and vagueness embedded in a system in an efficient way. However, all these theories have their own structure,
impact, properties and inherent limitations. One major limitation of these models is the neglection of parametrization associated with
these theories. To fix this problem, Molodtsov [33] established an entirely new theory of soft set (SS) which provides a parameterized
mathematical framework relaxed from the above-stated limitations. The literature on soft set theory was further extended after observing
its rich potential for practical applications in various directions. This theory soon attracted the attention of many researchers because it
has been implemented in many areas of uncertainty such as mathematical analysis, forecasting, optimization theory, algebraic structures,
information systems, data analysis and in DM applications. Yang et al. [52] introduced new fusion techniques under continuous interval-
valued q-rung orthopair fuzzy environment and demonstrated its application for the selection of suitable SmartWatch design. Lin et al. [28]
proposed integrated probabilistic linguistic multi-criteria decision-making (MCDM)method for the assessment of internet-of-things (IoT)
programs. Rodríguez et al. [40] presented a novel consensus reaching process (CRP) model to capture the large-scale DM problems and
applied it for intelligent CRP support system.

The development of soft set theory fascinated the researchers to amalgamate the soft set with other mathematical models. Peng et al. [35]
proposed a generalization of soft set, namely, Pythagorean fuzzy soft set (PFSS) by fusing the soft set (SS) with PFS and interpreted this
concept by some potential applications. Thirunavukarasu et al. [42] contributed to the literature by presenting the notion of complex fuzzy
soft set (CFSS) and highlighting its applications. Kumar and Bajaj [24] put forward the complex intuitionistic fuzzy soft set (CIFSS) and
discussed some entropies and distance measures. Lin et al. [30] proposed a new probability density based ordered weighted averaging
(PDOWA) operator and demonstrated its application for the assessment of smart phones. Liu et al. [31,32] introduced hybrid models of
long-term intertemporal hesitant fuzzy soft sets (LIT-HFSS) and hesitant linguistic expression soft sets (HLESS) alongwith significant group
DM algorithms. Rodríguez et al. [39] proposed the comprehensive minimum cost models based on both distance measure and consensus
degree to address the consistent fuzzy preference relations. Chen et al. [12] identified and prioritized the factors affecting the comfort of
in-cabin passenger on fast-moving rail in China by using fuzzy linguistic group DMmethod.

In view of the theories stated above, it is clear that maximum research focus on the advanced models stimulated by soft sets was put on
either its original binary interpretation (only 0 or 1 are allowed) or else real numbers within the unit interval [0, 1]. Despite of this, several
daily life DM problems contain multinary but discrete type structured data. These multinary evaluations are frequently used in rating or
ranking-based systems. In such systems, it is observed that ranking of alternatives such as hotels, websites, dramas, movies, music, games,
magazines and books can be represented by a number of stars, dots, check marks, hearts, natural numbers and even by icons [9,16].

Obviously, this multinary parameterized data cannot be tackled by the above-mentioned soft set inspired models. Therefore, a different
model was required in order to deal with such type of data. Motivated by all these facts, Fatimah et al. [16] developed the N-soft set (NSS)
theory along with DM algorithms that emphasize the importance of ordered grades in practical examples. Later, Akram et al. [1,2] launched
the advanced hybrid theories of hesitantN-soft set (HNSS) and fuzzyN-soft set (FNSS) bymerging the concept ofN-soft set with additional
mathematical traits such as hesitancy and fuzziness of set, respectively. Akram et al. [3] combines all these features into hesitant fuzzy N-
soft sets, and Akram et al. [4] introduced another hybrid model, namely, intuitionistic fuzzyN-soft set (IFNSS) by the suitable combination
of N-soft sets with intuitionistic fuzzy expressions. Akram et al. [7] presented hesitant fuzzy N-soft ELECTRE-II model. Zhang et al. [54]
developed the hybrid theory of Pythagorean fuzzy N-soft sets (PFNSSs) that merges the concepts of N-soft set and PFS. And Fatimah and
Alcantud [15] have just presented the multi-fuzzy N-soft set model with applications to DM.

To summarize, the motivation of this article boils down to the following elements:

∙ The idea of NSS captures the characterization of the universe of objects in a multinary parametric manner. Although this concept
improves upon soft set theory, still it has no potential to handle the fuzziness of parameterized characterizations.

∙ The CPFS theory tackles the uncertainty and periodicity of data at the same time, but it also has some deficiencies due to the
inadequacy of parametrization.



M. Akram et al. / International Journal of Computational Intelligence Systems 14(1) 1263–1291 1265

∙ Although the PFNSS model deals with imprecision in terms of multinary parameterized descriptions of the universe of objects, this
tool is limited to model the fuzziness in just one dimension because of the lack of a phase term.

∙ The concept of complex intuitionistic fuzzy N-soft set (CIFNSS) provides an effective model with a large ability to capture the
vagueness of parameterized data. However it is restricted by the conditions 0 ≤ 𝜇 + 𝜆 ≤ 1 and 0 ≤ 𝛼

2𝜋
+ 𝛽

2𝜋
≤ 1.

∙ The complex Pythagorean fuzzy soft set (CPFSS) theory presents a binary parameterized tool that copes with uncertainty and
ambiguity of data with great generality. But this theory is unable to model the multinary framework of evaluations.

Motivated by all these concerns, this article introduces a novel mathematical hybrid model, namely, complex PFNSS. It merges the remark-
able features of both CPFS and NSS theories. The proposed model is especially designed for ranking-based evaluations of two-dimensional
parameterized DM problems. Moreover, the fundamental set-theoretic operations and significant properties of the proposed model are
discussed. The relationships between the introduced model and existing models are brought to light. Then, Einstein operators and some
other operations for complex Pythagorean fuzzy N-soft values (CPFNSVs) are designed and properly interpreted. With these techniques,
three advanced DM algorithms are developed. Then, we illustrate their suitability with the help of some potential applications. Finally, a
comparative analysis with existing methodologies is conducted in order to justify the reliability of the proposed strategies of solution.

In a nutshell, the main contributions of this article are:

∙ This research article introduces a modern, productive and most general model abbreviated as complex Pythagorean fuzzy N-soft set
(CPFNSS). It enables us to tackle the imprecision and periodicity of parameterized data having multinary but discrete structure.

∙ The rationality and feasibility of the appropriate DM algorithms that benefit from this new framework is demonstrated with the help of
some potential applications.

∙ A comparative study with existing MCDM techniques, namely, choice values of PFNSS and D-choice values of PFNSS, validates the
authenticity of the proposed techniques and justifies the consistency of the results.

This research article is structured as follows: Section 2 presents the preliminaries which include the fundamental definitions related to the
CPFS, SS, NSS and PFNSS set. Section 3 introduces our new competent model and its basic set-theoretic operations. Further, it explores the
relationships of proposed model with existing models. Section 4 investigates the Einstein and algebraic operations on CPFNSVs. Section 5
establishes three DMalgorithms and throws light on their application by the means of explanatory numerical examples for the selection of
best laptop and plant location, respectively. Furthermore, Section 6 presents a comparison of our proposed techniques with existingMCDM
techniques, namely, choice values of PFNSS and D-choice values of PFNSS. Finally, the purpose of Section 7 is to conclude this research
article.

2. PRELIMINARIES

In this section, we present some elementary definitions required for the advanced developments.

Definition 2.1. [43] Let Z be a universe of discourse. A CPFS𝔔 on Z can be characterized as

𝔔 =
{(

z, 𝜇𝔔(z)ei𝛼𝔔(z), 𝜆𝔔(z)ei𝛽𝔔(z)
)||| z ∈ Z

}
,

where i =
√
−1, the amplitude terms 𝜇𝔔(z), 𝜆𝔔(z) ∈ [0, 1] and phase terms 𝛼𝔔(z), 𝛽𝔔(z) ∈ [0, 2𝜋] satisfy the conditions 0 ≤ 𝜇2

𝔔(z) +

𝜆2𝔔(z) ≤ 1 and 0 ≤ (
𝛼Ω(z)
2𝜋

)2
+
(

𝛽𝔔(z)
2𝜋

)2 ≤ 1. For all z ∈ Z, 𝜒𝔔(z) =
√

1 − 𝜇2
𝔔(z) − 𝜆2𝔔(z) e

i2𝜋

√
1−

( 𝛼𝔒(z)
2𝜋

)2

−
( 𝛽𝔔(z)

2𝜋

)2

represents the degree
of indeterminacy. The pair of membership and nonmembership degree

(
𝜇𝔔(z)ei𝛼𝔔(z), 𝜆𝔔(z)ei𝛽𝔔(z)

)
is called a complex Pythagorean fuzzy

number (CPFN).

Definition 2.2. [33] Let Z be a universe of discourse and K be a set of parameters, S ⊆ K. A pair𝔖 = (F, S) is said to be a soft set over Z if
F ∶ S → (Z), where  (Z) is the family of all subsets of Z. A soft set𝔖 over the universe Z can be represented as follows:

𝔖 =
{(

sq, F
(
sq
))||| sq ∈ S, F

(
sq
)
∈ (Z)

}
.

Definition 2.3. [16] Let Z be a universe of discourse and K be a set of parameters. Let S ⊆ K andD = {0, 1,… ,N − 1} be a set of ordered
grades with N ∈ {2, 3,…} . A triplet 𝔏 = (F, S,N) is called set on N-soft set on Z if F ∶ S → 2Z×D with the property that for each s ∈ S and
z ∈ Z there exist a unique

(
z, ds

)
∈ Z × D such that

(
z, ds

)
∈ F(s), z ∈ Z, ds ∈ D. The N-soft set 𝔏 over the universe Z can be represented

as follows:

𝔏 =
{(

sq, F
(
sq
))||| sq ∈ S, F

(
sq
)
∈ 2Z×D

}
.
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Definition 2.4. [54] Let Z be a universe of discourse and K be a set of parameters. Let S ⊆ K andD = {0, 1,… ,N − 1} be a set of ordered
grades with N ∈ {2, 3,…}. A triple (f, L,N) is called a PFNSS on Z if L = (F, S,N) is NSS on Z and f ∶ S → Z×D , where Z×D is the
collection of all PFSs over Z × D. In other words, PFNSS (f,L,N) is defined as follows:

(f, L,N) =
{(

sq, f
(
sq
))||| sq ∈ S, f

(
sq
)
∈ Z×D

}
,

where f
(
sq
)
=

{((
zp, dpq

)
, 𝜇pq

(
zp, dpq

)
, 𝜆pq

(
zp, dpq

))||| (zp, dpq) ∈ Z × D
}

represents the PFS over Z × D. The membership and non-
membership degrees 𝜇pq

(
zp, dpq

)
, 𝜆pq

(
zp, dpq

)
∈ [0, 1] satisfy the condition 0 ≤ 𝜇2

pq
(
zp, dpq

)
+ 𝜆2pq

(
zp, dpq

) ≤ 1. For all
(
zp, dpq

)
∈ Z×D,

𝜒pq
(
zp, dpq

)
=
√

1 − 𝜇2
pq
(
zp, dpq

)
− 𝜆2pq

(
zp, dpq

)
represents the degree of indeterminacy.

Definition 2.5. [55] Let 𝔜 =
(
𝜇𝔜, 𝜆𝔜

)
be a Pythagorean fuzzy number (PFN) over the universe of discourse Z. The score function and

accuracy function of𝔜 are defined as follows:

𝕊(𝔜) = 𝜇2
𝔜 − 𝜆2𝔜 and 𝔸(𝔜) = 𝜇2

𝔜 + 𝜆2𝔜, (1)

where 𝕊(𝔜) belongs to the closed interval [−1, 1] and 𝔸(𝔜) belongs to the closed interval [0, 1].

For other terminologies and applications, the readers are referred to [5, 8, 13, 14, 17, 18, 19, 20, 21, 22, 36, 38, 41, 47, 48, 51].

3. COMPLEX PYTHAGOREAN FUZZY N-SOFT SET

Definition 3.1. Let Z be a universe of discourse and K be a set of parameters. Let S ⊆ K and D = {0, 1, . . . , N − 1} be a set of ordered
grades with N ∈ {2, 3, . . . }. A triplet𝔜 = (h, L, N) is called a complex PFNSS on Z if L = (H, S, N) is NSS on Z and h : S →  Z × D, whereZ × D is the collection of all CPFSs over Z × D. The CPFNSS(h, L, N) can be defined as follows:

𝔜 =
{⟨

sq, h
(
sq
)⟩||| sq ∈ S, h

(
sq
)
∈ Z×D

}
,

where h
(
sq
)
=

{((
zp, dpq

)
, 𝜇pq

(
zp, dpq

)
ei𝛼pq(zp,dpq), 𝜆pq

(
zp, dpq

)
ei𝛽pq(zp,dpq)

)|||| (zp, dpq) ∈ Z × D
}

represents the CPFS over Z × D. The

amplitude terms μpq(zp, dpq ), 𝜆pq(zp, dpq) ∈ [0, 1] and phase returns 𝛼pq(zp, dpq), 𝛽pq(zp,dpq) ∈ [0, 2π] satisfy the conditions

0 ≤ 𝜇2
pq
(
zp, dpq

)
+ 𝜆2pq

(
zp, dpq

) ≤ 1,

0 ≤ (
𝛼pq(zp,dpq)

2𝜋

)2
+
(

𝛽pq(zp,dpq)
2𝜋

)2 ≤ 1,

where i =
√
−1. For all (zp, dpq) ∈ Z × D, the degree of indeterminacy is represented by 𝜒pq

(
zp, dpq

)
=

√
1 − 𝜇2

pq
(
zp, dpq

)
− 𝜆2pq

(
zp, dpq

)
e
i2𝜋

√√√√1−

(
𝛼pq(zp,dpq)

2𝜋

)2

−

(
𝛽pq(zp,dpq)

2𝜋

)2

.

In other words, CPFNSS is a parameterized family of CPFSs of Z × D, that is, for each parameter sq ∈ S, we can interpret that h(sq) is the
CPFS of Z × D.

Now, we give tabular representation of complex PFNSS:

Let Z be a set of r objects and S be a set of w attributes, then tabular representation of CPFNSS is given in Table 1.

Table 1 Tabular representation of CPFNSS.
(h, L, N) s1 s2 ... s𝜔

z1 ⟨d11,(μ11ei𝛼 11, 𝜆11ei𝛽 11)⟩ ⟨d12,(μ12ei𝛼 12, 𝜆12ei𝛽 12)⟩ ... ⟨d1𝜔,(μ1𝜔ei𝛼 1𝜔, 𝜆1𝜔ei𝛽 1𝜔)⟩
z2 ⟨d21,(μ21ei𝛼 21, 𝜆21ei𝛽 21)⟩ ⟨d22,(μ22ei𝛼 22, 𝜆22ei𝛽 22)⟩ ... ⟨d2𝜔,(μ2𝜔ei𝛼 2𝜔, 𝜆2𝜔ei𝛽 2𝜔)⟩
. . . . .
. . . . .
. . . . .
zr ⟨dr1,(μr1ei𝛼 r1, 𝜆r1ei𝛽 r1)⟩ ⟨dr2,(μr2ei𝛼 r2, 𝜆r2ei𝛽 r2)⟩ ... ⟨dr 𝜔,(μr 𝜔ei𝛼 r 𝜔, 𝜆r 𝜔ei𝛽 r 𝜔)⟩
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Definition 3.2. CPFNSS can be regarded as r × w table, where r = |Z|, w = |S| whose pqth element is called a complex Pythagorean fuzzy
N-soft value (CPFNSV) and it has the form, 𝜏pq = ⟨dpq, (μpqei𝛼pq, 𝜆pqi𝛽pq)⟩, where p = 1, 2, . . . , r; q = 1, 2, . . . , w.

Definition 3.3. The score function for CPFNSV, 𝜏pq = ⟨dpq, (μpqei𝛼pq, 𝜆ei𝛽pq)⟩ is represented by𝔖 and defined as follows:

𝔖
(
𝜏pq

)
=

(
dpq

N − 1

)2

+
(
𝜇2
pq − 𝜆2pq

)
+ 1

4𝜋2

(
𝛼2
pq − 𝛽2pq

)
, (2)

where𝔖
(
𝜏pq

)
∈ [−2, 3].

Definition 3.4. The accuracy function for CPFNSV, 𝜏pq = ⟨dpq, (μpqei𝛼pq, 𝜆pqi𝛽pq)⟩ is represented by𝔄 and defined as follows:

𝔄
(
𝜏pq

)
=

(
dpq

N − 1

)2

+
(
𝜇2
pq + λ2pq

)
+ 1

4𝜋2

(
𝛼2
pq + 𝛽2pq

)
, (3)

where𝔄(𝜏pq) ∈ [0, 3].

Definition 3.5. Let 𝜏11 = ⟨d11, (μ11ei𝛼11, 𝜆11i𝛽11)⟩ and 𝜏12 = ⟨d12, (μ12ei𝛼12, 𝜆12i𝛽12)⟩ be any two CPFNSVs, then the comparison between
𝜏11 and 𝜏12 is defined as follows:

(1) If𝔖
(
𝜏11

)
< 𝔖

(
𝜏12

)
, then𝜏11 ≺ 𝜏12 (𝜏11 is inferior to 𝜏12);

(2) If𝔖
(
𝜏11

)
> 𝔖

(
𝜏12

)
, then 𝜏11 ≻ 𝜏12 (𝜏11 is superior to 𝜏12);

(3) If𝔖
(
𝜏11

)
= 𝔖

(
𝜏12

)
, then

∙ If𝔄
(
𝜏11

)
< 𝔄

(
𝜏12

)
, then 𝜏11 ≺ 𝜏12 (𝜏11 is inferior to 𝜏12);

∙ If𝔄
(
𝜏11

)
> 𝔄

(
𝜏12

)
, then 𝜏11 ≻ 𝜏12 (𝜏11 is superior to 𝜏12);

∙ If𝔄
(
𝜏11

)
= 𝔄

(
𝜏12

)
, then 𝜏11 ∼ 𝜏12 (𝜏11 is equivalent to 𝜏12).

The significance and motivation of this proposed model is illustrated by the following numerical example. In order to develop intuition for
this new concept, this example has been kept relatively simple. This simple example elaborates the difficulties of the existing Pythagorean
fuzzy N-soft model, proposed by Zhang et al. [54] and demonstrates the competency of the proposed model in real-world DM problems.

Example 3.6.

A company wants to invest with another company to increase income. The selection of that company is determined by star rankings and
ratings awarded by the experts of the selection panel. These ratings are based on the performance of companies in the last 12 months. Let Z
= {z1, z2, z3, z4} be a collection of four companies and S = {s1 = growth rate, s2 = export, s3 = interest rates} be a set of attributes which are
used to assign ratings to companies.

A 5-soft set can be identified from Table 2, where

∙ Four stars represent “Excellent,”

∙ Three stars represent “Very Good,”

∙ Two stars represent “Good,”

∙ One star represents “Normal,”

∙ Big dot represents “Poor.”

The numbers D = {0, 1, 2, 3, 4} can easily be associated with the graded evaluation carried out by stars as follows:

∙ 0 stands for “ ∙ ,”

∙ 1 stands for “ ⋆, ”

∙ 2 stands for “ ⋆ ⋆,”

∙ 3 stands for “ ⋆ ⋆ ⋆ ,”

∙ 4 stands for “ ⋆ ⋆ ⋆ ⋆.”
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The rating of companies provided by the selection panel is given in Table 2.

Now, the tabular form of its corresponding 5-soft set is presented in Table 3.

The selection panel thoroughly analyzes the companies to determine their rankings based onmembership (μ) and nonmembership degrees
(𝜆). So, we obtain Pythagorean fuzzy 5-soft set PF5SS, with the grading criteria followed by score degree of Pythagorean fuzzy number
𝕊
(
𝔜pq

)
, where𝔜pq =

(
𝜇pq, λpq

)
, p = 1, 2, 3, 4, q = 1, 2, 3. This grading criteria is defined as follows:

−1.0 ≤ 𝕊
(
𝔜pq

)
< −0.6 when dpq = 0,

−0.6 ≤ 𝕊
(
𝔜pq

)
< −0.2 when dpq = 1,

−0.2 ≤ 𝕊
(
𝔜pq

)
< 0.2 when dpq = 2,

0.2 ≤ 𝕊
(
𝔜pq

)
< 0.6 when dpq = 3,

0.6 ≤ 𝕊
(
𝔜pq

) ≤ 1.0 when dpq = 4.

According to above criteria, we can obtain Table 4 of grading criteria.

Then, PF5SS is given as follows: (
h𝔓, L, 5

)
=
{(

s1, h
(
s1
))

,
(
s2, h

(
s2
))

,
(
s3, h

(
s3
))}

, where

h
(
s1
)
=
{⟨(

z1, 3
)
, 0.7, 0.3

⟩
,
⟨(

z2, 0
)
, 0.1, 0.9

⟩
,
⟨(

z3, 1
)
, 0.3, 0.7

⟩
,
⟨(

z4, 4
)
, 0.9, 0.1

⟩}
,

h
(
s2
)
=
{⟨(

z1, 4
)
, 0.9, 0.1

⟩
,
⟨(

z2, 3
)
, 0.6, 0.4

⟩
,
⟨(

z3, 0
)
, 0.1, 0.9

⟩
,
⟨(

z4, 2
)
, 0.4, 0.6

⟩}
,

h
(
s3
)
=
{⟨(

z1, 0
)
, 0.1, 0.9

⟩
,
⟨(

z2, 1
)
, 0.3, 0.7

⟩
,
⟨(

z3, 4
)
, 0.8, 0.2

⟩
,
⟨(

z4, 3
)
, 0.7, 0.3

⟩}
.

The tabular form of PF5SS is presented in Table 5.

The experts of the selection panel evaluate all the companies and assign membership and non-membership degrees μ(z, d), 𝜆(z, d), respec-
tively, to each company. Now, suppose an expert observes that “The growth rate of a company z1 is high in the first 8 months but slightly
declines in the last 4 months.” Then, the values of μ(z1, 3) = 0.7, and 𝜆(z1, 3) = 0.3 are ambiguous and all the information regarding the
time frame of reference would be lost. Thus μ(z1, 3), 𝜆(z1, 3) can be assigned by complex values which incorporate all of the information
provided by the expert. Hence, we establish complex Pythagorean fuzzy 5-soft set (CPF5SS) instead of Pythagorean fuzzy 5-soft set for the
evaluation of such difficulty.

Table 2 Rating of companies.
Z/S s1 s2 s3
z1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ∙
z2 ∙ ⋆ ⋆ ⋆ ⋆
z3 ⋆ ∙ ⋆ ⋆ ⋆⋆
z4 ⋆ ⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆

Table 3 5-soft set.
(H, S, 5) s1 s2 s3
z1 3 4 0
z2 0 3 1
z3 1 0 4
z4 4 2 3

Table 4 Grading criteria.
D μpq 𝜆pq
0 [0, 0.2) (0.8, 1]
1 [0.2, 0.4) (0.6, 0.8]
2 [0.4, 0.6) (0.4, 0.6]
3 [0.6, 0.8) (0.2, 0.4]
4 [0.8, 1] [0, 0.2]
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Now, the following value may, attributed to μ(z1, 3) and 𝜆(z1, 3):

𝜇
(
z1, 3

)
= 0.7ei

8
12

⋅2𝜋 = 0.7ei1.3𝜋 ,

𝜆
(
z1, 3

)
= 0.3ei

4
12

⋅2𝜋 = 0.3ei0.6𝜋 .

Here, phase term represents the information regarding the time frame of reference under consideration. Therefore, CPF5SS (h, L, 5) is
introduced by integrating CPFS with the 5-soft set for the two-dimensional graded evaluation of companies. Now, we redefine the grading
criteria followed by score degree of CPF5SVs𝔖

(
𝜏pq

)
, where 𝜏pq = ⟨dpq, (μpqei𝛼pq, 𝜆pqei𝛽pq)⟩, p = 1, 2, 3, 4, q = 1, 2, 3 as follows:

−2.0 ≤ 𝔖
(
𝜏pq

)
< −1.0 when dpq = 0,

−1.0 ≤ 𝔖
(
𝜏pq

)
< 0.0 when dpq = 1,

0.0 ≤ 𝔖
(
𝜏pq

)
< 1.0 when dpq = 2,

1.0 ≤ 𝔖
(
𝜏pq

)
< 2.0 when dpq = 3,

2.0 ≤ 𝔖
(
𝜏pq

) ≤ 3.0 when dpq = 4.

According to above criteria, we can obtain Table 6 of corresponding redefined grading criteria.

Finally, CPF5SS is defined as follows:

(h, L, 5) =
{(

s1, h
(
s1
))

,
(
s2, h

(
s2
))

,
(
s3, h

(
s3
))}

, where

h
(
s1
)
=
{⟨(

z1, 3
)
, 0.7ei1.3𝜋 , 0.3ei0.6𝜋

⟩
,
⟨(

z2, 0
)
, 0.1ei0.1𝜋 , 0.9ei1.9𝜋

⟩
,
⟨(

z3, 1
)
, 0.3ei0.7𝜋 , 0.7ei1.4𝜋

⟩
,
⟨(

z4, 4
)
, 0.9ei1.7𝜋 , 0.1ei0.3𝜋

⟩}
,

h
(
s2
)
=
{⟨(

z1, 4
)
, 0.9ei1.7𝜋 , 0.1ei0.3𝜋

⟩
,
⟨(

z2, 3
)
, 0.6ei1.2𝜋 , 0.4ei0.8𝜋

⟩
,
⟨(

z3, 0
)
, 0.1ei0.3𝜋 , 0.9ei1.8𝜋

⟩
,
⟨(

z4, 2
)
, 0.4ei0.8𝜋 , 0.6ei1.2𝜋

⟩}
,

h
(
s3
)
=
{⟨(

z1, 0
)
, 0.1ei0.2𝜋 , 0.9ei1.9𝜋

⟩
,
⟨(

z2, 1
)
, 0.3ei0.5𝜋 , 0.7ei1.3𝜋

⟩
,
⟨(

z3, 4
)
, 0.8ei1.6𝜋 , 0.2ei0.4𝜋

⟩
,
⟨(

z4, 3
)
, 0.7ei1.3𝜋 , 0.3ei0.7𝜋

⟩}
.

Clearly, CPF5SS can be represented in tabular form by Table 7.

Table 5 Pythagorean fuzzy 5-soft set.
(h𝔓, L, 5) s1 s2 o3
z1 ⟨3, (0.7, 0.3)⟩ ⟨4, (0.9, 0.1)⟩ ⟨0, (0.1, 0.9)⟩
z2 ⟨0, (0.1, 0.9)⟩ ⟨3, (0.6, 0.4)⟩ ⟨1, (0.3, 0.7)⟩
z3 ⟨1, (0.3, 0.7)⟩ ⟨0, (0.1, 0.9)⟩ ⟨4, (0.8, 0.2)⟩
z4 ⟨4, (0.9, 0.1)⟩ ⟨2, (0.4, 0.6)⟩ ⟨3, (0.7, 0.3)⟩

Table 6 Redefined grading criteria.
Grades Amplitude Terms Phase Terms

D μpq 𝜆pq 𝛼pq 𝛽pq
0 [0, 0.2) (0.8, 1] [0π, 0.4π) (1.6π, 2π]
1 [0.2, 0.4) (0.6, 0.8] [0.4π, 0.8π) (1.2π, 1.6π]
2 [0.4, 0.6) (0.4, 0.6] [0.8π, 1.2π) (0.8π, 1.2π]
3 [0.6, 0.8) (0.2, 0.4] [1.2π, 1.6π) (0.4π, 0.8π]
4 [0.8, 1] [0, 0.2] [1.6π, 2π] [0π, 0.4π]

Table 7 Tabular representation of CPF5SS.
(h, L, 5) s1 s2 s3
z1 ⟨3, (0.7ei1.3π , 0.3ei0.6π)⟩ ⟨4, (0.9ei1.7π , 0.1ei0.3π)⟩ ⟨0, (0.1ei0.2π , 0.9ei1.9π)⟩
z2 ⟨0, (0.1ei0.1π , 0.9ei1.9π)⟩ ⟨3, (0.6ei1.2π , 0.4ei0.8π)⟩ ⟨1, (0.3ei0.5π , 0.7ei1.3π)⟩
z3 ⟨1, (0.3ei0.7π , 0.7ei1.4π)⟩ ⟨0, (0.1ei0.3π , 0.9ei1.8π)⟩ ⟨4, (0.8ei1.6π , 0.2ei0.4π)⟩
z4 ⟨4, (0.9ei1.7π , 0.1ei0.3π)⟩ ⟨2, (0.4ei0.8π , 0.6ei1.2π)⟩ ⟨3, (0.7ei1.3π , 0.3ei0.7π)⟩
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Remark 3.7.

(1) Any CPF2SS (h, L, 2) can be naturally identified with CPFSS. We associate CPF2SS h : S → 2Z×{0,1} with CPFSS h
′

: S → CPF(Z), which
is defined by

h′
(
sq
)
=
{(

zp, 𝜇pq
(
zp
)
ei𝛼pq(zp), 𝜆pq

(
zp
)
ei𝛽pq(zp)

)|||| ⟨((zp, 1) , 𝜇pq
(
zp, 1

)
ei𝛼pq(zp,1), 𝜆pq

(
zp, 1

)
ei𝛽pq(zp,1)

)⟩
∈ h

(
sq
)}

,

for every sq ∈ S.

(2) A CPFNSS (h, L, N) on a nonempty set Z is said to be efficient if ⟨(zp, N − 1), μ(zp, N − 1)ei𝛼(zp,N − 1), 𝜆(zp, N − 1)ei𝛽(zp , N − 1)⟩ ∈ h(sq),
for some sq ∈ S, zp ∈ Z.

(3) Grade 0∈D in Definition 3.1, represents the lowest score. It does not mean that there is incomplete information or lack of assessment.

We now explore the conception of complementarity of Complex PFNSSs.

Definition 3.8. Let (h, L, N) be a CPFNSS over the universe Z, where L = (H, S, N) is the NSS on Z. Then, its Complex Pythagorean fuzzy
complement (hc, L, N) is defined as

(hc, L,N) =
{⟨

sq, hc
(
sq
)⟩ |||sq ∈ S, hc

(
sq
)
∈ Z×D

}
, where

hc(sq) =
{⟨(

zp, dpq
)
, 𝜆

(
zp, dpq

)
ei𝛽(zp,dpq), 𝜇

(
zp, dpq

)
ei𝛼(zp,dpq)

⟩ |||(zp, dpq) ∈ Z × D
}
.

Definition 3.9. Let (h, L, N) be a CPFNSS over the universe Z, where L = (H, S, N) be the NSS on Z. Then, its weak complex Pythagorean
fuzzy complement (hc, Lc, N) can be interpreted as

(hc, Lc,N) =
{⟨

sq, hc
(
sq
)⟩ |||sq ∈ S, hc

(
sq
)
∈ Z×D} ,

where hc
(
sq
)
=
{⟨(

zp, dpq
)
, λ

(
zp, dpq

)
ei𝛽(zp,dpq), 𝜇

(
zp, dpq

)
ei𝛼(zp,dpq)

⟩ |||(zp, dpq) ∈ Z × D
}
and for all sq ∈ S, Hc(sq) ∩ H(sq) = ϕ.

Example 3.10.

Consider the CPF5SS as defined in Example 3.6. Then, its complex Pythagorean fuzzy complement (hc, L, 5) andweak complex Pythagorean
fuzzy complement (hc, Lc, 5) are given by Tables 8 and 9, respectively.

Table 8 Complex Pythagorean fuzzy complement.
(hc, L, 5) s1 s2 s3
z1 ⟨3, (0.3ei0.7π , 0.7ei1.3π)⟩ ⟨4, (0.1ei0.3π , 0.9ei1.7π)⟩ ⟨0, (0.9ei1.9π , 0.1ei0.2π)⟩
z2 ⟨0, (0.9ei1.9eπ , 0.1ei0.1π)⟩ ⟨3, (0.4ei0.8π , 0.6ei1.2π)⟩ ⟨1, (0.7ei1.3eπ , 0.3ei0.5π)⟩
z3 ⟨1, (0.7ei1.4π , 0.3ei0.7π)⟩ ⟨0, (0.9ei1.8π , 0.1ei0.3π)⟩ ⟨4, (0.2ei0.4π , 0.8ei1.6π)⟩
z4 ⟨4, (0.1ei0.3π , 0.9ei1.7π)⟩ ⟨2, (0.6ei1.2π , 0.4ei0.8π)⟩ ⟨3, (0.3ei0.7π , 0.7ei1.3π)⟩
Table 9 Weak complex Pythagorean fuzzy complement.
(hc, Lc, 5) s1 s2 s3
z1 ⟨1, (0.3ei0.7π , 0.7ei1.3π)⟩ ⟨2, (0.1ei0.3π , 0.9ei1.7π)⟩ ⟨1, (0.9ei1.9π , 0.1ei0.2π)⟩
z2 ⟨4, (0.9ei1.9π , 0.1ei0.1π)⟩ ⟨4, (0.4ei0.8π , 0.6ei1.2π)⟩ ⟨3, (0.7ei1.3π , 0.3ei0.5π)⟩
z3 ⟨0, (0.7ei1.4π , 0.3ei0.7π)⟩ ⟨1, (0.9ei1.8π , 0.1ei0.3π)⟩ ⟨2, (0.2ei0.4π , 0.8ei1.6π)⟩
z4 ⟨2, (0.1ei0.3π , 0.9ei1.7π)⟩ ⟨3, (0.6ei1.2π , 0.4ei0.8π)⟩ ⟨4, (0.3ei0.7π , 0.7ei1.3π)⟩
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Definition 3.11. Let (h, L, N) be a CPFNSS over the universe Z, where L = (H, S, N) is the NSS on Z. Then, its top complex Pythagorean
fuzzy weak complement, denoted by (ht, Lt, N) is defined as

(
ht, Lt,N

)
=

⎧⎪⎨⎪⎩
ht
(
sq
)
=

⟨(
zp,N − 1

)
, 𝜆

(
zp, dpq

)
ei𝛽(zp,dpq), 𝜇

(
zp, dpq

)
ei𝛼(zp,dpq)

⟩
, if dpq < N − 1

ht
(
sq
)
=

⟨(
zp, 0

)
, 𝜆

(
zp, dpq

)
ei𝛽(zp,dpq), 𝜇

(
zp, dpq

)
ei𝛼(zp,dpq)

⟩
, if dpq = N − 1

(4)

Definition 3.12. Let (h, L,N) be a CPFNSS over the universe Z, where L = (H, S,N) is the NSS on Z. Then, its bottom complex Pythagorean
fuzzy weak complement, denoted by (hb, Lb, N) is defined as

(
hb, Lb,N

)
=

⎧⎪⎨⎪⎩
hb

(
sq
)
=

⟨(
zp, 0

)
, 𝜆

(
zp, dpq

)
ei𝛽(zp,dpq), 𝜇

(
zp, dpq

)
ei𝛼(zp,dpq)

⟩
, if dpq > 0,

hb
(
sq
)
=

⟨(
zp,N − 1

)
, 𝜆

(
zp, dpq

)
ei𝛽(zp,dpq), 𝜇

(
zp, dpq

)
ei𝛼(zp,dpq)

⟩
, if dpq = 0.

(5)

Example 3.13.

Consider the CPF5SS as defined in Example 3.6. Then, its top complex Pythagorean fuzzy weak complement (ht, Lt, 5) and bottom complex
Pythagorean fuzzy weak complement (hb, Lb, 5) are given by Tables 10 and 11, respectively.

Definition 3.14. Let (h1, L1, N1) and (h2, L2, N2) be two CPFNSSs over the universe Z, where L1 = (H1, A, N1) and L2 = (H2, B, N2) are
NSSs on Z. Then, their restricted intersection denoted by (h1, L1,N1)∩R(h2, L2,N2) = (g, L1 ∩R L2, min(N1,N2)), where L1 ∩R L2 = (G,A ∩ B,
min(N1, N2)) is defined as

∀sq ∈A∩ B, zp ∈ Z,
⟨(

zp, dpq
)
, x, y

⟩
∈ g

(
sq
)
⇔ dpq = min

(
d1pq, d

2
pq

)
, x = min

(
𝜇C

(
zp, d1pq

)
, 𝜇D

(
zp, d2pq

))
, eimin

(
𝛼C

(
zp,d1pq

)
,𝛼D

(
zp,d2pq

))
, y =

max
(
𝜆C

(
zp, d1pq

)
, 𝜆D

(
zp, d2pq

))
eimax

(
𝛽C

(
zp,d1pq

)
,𝛽D

(
zp,d2pq

))
, if

⟨(
zp, d1pq

)
, 𝜇C

(
zp, d1pq

)
ei𝛼C

(
zp,d1pq

)
, 𝜆C

(
zp, d1pq

)
ei𝛽C

(
zp,d1pq

)⟩
∈ h1

(
sq
)
and⟨(

zp, d2pq
)
, 𝜇D

(
zp, d2pq

)
ei𝛼D

(
zp,d2pq

)
, 𝜆D

(
zp, d2pq

)
ei𝛽D

(
zp,d2pq

)⟩
∈ h2

(
sq
)
, C and D are CPFSs on H1(sq) and H2(sq), respectively.

Definition 3.15. Let (h1, L1, N1) and (h2, L2, N2) be two CPFNSSs over the universe Z, where L1 = (H1, A, N1) and L2 = (H2, B, N2) are
NSSs on Z. Then, their extended intersection denoted by (h1, L1,N1)∩𝜀 (h2, L2,N2) = (f, L1 ∩𝜀L2, max(N1,N2)), where L1 ∩EL2 = (F, A ∪ B,
max(N1, N2)) is defined as

f
(
sq
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h1
(
sq
)
, if sq ∈ A − B

h2
(
sq
)
, if sq ∈ B − A⟨(

zp, dpq
)
, x, y

⟩
, such that dpq = min

(
d1pq, d

2
pq

)
x = min

(
𝜇C

(
zp, d1pq

)
, 𝜇D

(
zp, d2pq

))
eimin

(
𝛼C

(
zp,d1pq

)
,𝛼D

(
zp,d2pq

))
y = max

(
𝜆C

(
zp, d1pq

)
, 𝜆D

(
zp, d2pq

))
ei max

(
𝛽C

(
zp, d1pq

)
, 𝛽D

(
zp, d2pq

))
where

⟨(
zp, d1pq

)
, 𝜇C

(
zp, d1pq

)
ei𝛼C

(
zp,d1pq

)
, 𝜆C

(
zp, d1pq

)
ei𝛽C

(
zp,d1pq

)⟩
∈ h1

(
sq
)

and
⟨(

zp, d2pq
)
, 𝜇D

(
zp, d2pq

)
ei𝛼D

(
zp,d2pq

)
, 𝜆D

(
zp, d2pq

)
ei𝛽D

(
zp,d2pq

)⟩
∈ h2

(
sq
)
,

C and D are CPFSs on H1
(
sq
)
and H2

(
sq
)
, respectively.

Table 10 Top complex Pythagorean fuzzy weak complement.

(ht, Lt, 5) s1 s2 s3
z1 ⟨4, (0.3ei0.7π , 0.7ei1.3π)⟩ ⟨0, (0.1ei0.3π , 0.9ei1.7π)⟩ ⟨4, (0.9ei1.9π , 0.1ei0.2π)⟩
z2 ⟨4, (0.9ei1.9π , 0.1ei0.1π)⟩ ⟨4, (0.4ei0.8π , 0.6ei1.2π)⟩ ⟨4, (0.7ei1.3π , 0.3ei0.5π)⟩
z3 ⟨4, (0.7ei1.4π , 0.3ei0.7π)⟩ ⟨4, (0.9ei1.8π , 0.1ei0.3π)⟩ ⟨0, (0.2ei0.4π , 0.8ei1.6π)⟩
z4 ⟨0, (0.1ei0.3π , 0.9ei1.7π)⟩ ⟨4, (0.6ei1.2π , 0.4ei0.8π)⟩ ⟨4, (0.3ei0.7π , 0.7ei1.3π)⟩
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Example 3.16.

Consider the tabular form of CPF6SS (h1, L1, 6) and CPF4SS (h2, L2, 4) as given in Tables 12 and 13, respectively, where L1 = (H1, A, 6),
L2 = (H2, B, 4) are 6-soft set and 4-soft set over Z, respectively. Then, their restricted intersection (g, L1 ∩R L2, 4) and extended intersection
(f, L1 ∩𝜀 L2, 6) are presented in Tables 14 and 15, respectively.

Definition 3.17. Let (h1, L1, N1) and (h2, L2, N2) be two CPFNSSs over the universe Z, where L1 = (H1, A, N1) and L2 = (H2, B, N2) are
NSSs on Z. Then, their restricted union denoted by (h1, L1, N1) ∪R (h2, L2, N2) = (w, L1 ∪RL2, max(N1, N2)), where L1 ∪RL2 = (W, A ∩ B,
max(N1, N2)) is defined as

for all sq ∈ A ∩ B, zp ∈ Z, ⟨(zp, dpq), x, y⟩ ∈ w(sq) ⇔ dpq dpq = max
(
d1pq, d

2
pq

)
, x =

max
(
𝜇C

(
zp, d1pq

)
, 𝜇D

(
zp, d2pq

))
eimax

(
𝛼C

(
zp,d1pq

)
,𝛼D

(
zp,d2pq

))
, y = min

(
𝜆C

(
zp, d1pq

)
, 𝜆D

(
zp, d2pq

))
eimin

(
𝛽C

(
zp,d1pq

)
,𝛽D

(
zp,d2pq

))
, if⟨(

zp, d1pq
)
, 𝜇C

(
zp, d1pq

)
ei𝛼C

(
zp,d1pq

)
, 𝜆C

(
zp, d1pq

)
ei𝛽C

(
zp,d1pq

)⟩
∈ h1

(
sq
)
and

⟨(
zp, d2pq

)
, 𝜇D

(
zp, d2pq

)
ei𝛼D

(
zp,d2pq

)
, 𝜆D

(
zp, d2pq

)
ei𝛽D

(
zp,d2pq

)⟩
∈

h2
(
sq
)
C and D are CPFSs on H1(sq) and H2(sq), respectively.

Table 11 Bottom complex Pythagorean fuzzy weak complement.

(hb, Lb, 5) s1 s2 s3
z1 ⟨0, (0.3ei0.7π , 0.7ei1.3π)⟩ ⟨0, (0.1ei0.3π , 0.9ei1.7π)⟩ ⟨4, (0.9ei1.9π , 0.1ei0.2π)⟩
z2 ⟨4, (0.9ei1.9π , 0.1ei0.1π)⟩ ⟨0, (0.4ei0.8π , 0.6ei1.2π)⟩ ⟨0, (0.7ei1.3π , 0.3ei0.5π)⟩
z3 ⟨0, (0.7ei1.4π , 0.3ei0.1π)⟩ ⟨4, (0.9ei1.8π , 0.1ei0.3π)⟩ ⟨0, (0.2ei0.4π , 0.8ei1.6π)⟩
z4 ⟨0, (0.1ei0.3π , 0.9ei1.7π)⟩ ⟨0, (0.6ei1.2π , 0.4ei0.8π)⟩ ⟨0, (0.3ei0.7π , 0.7ei1.3π)⟩

Table 12 CPF6SS.
(h1, L1, 6) s1 s2 s3

z1 ⟨3, (0.59ei1.23π , 0.42ei0.78π)⟩ ⟨4, (0.76ei1.45π , 0.32ei0.66π)⟩ ⟨3, (0.61ei1.30π , 0.48ei0.88π)⟩
z2 ⟨5, (0.95ei1.82π , 0.14ei0.12π)⟩ ⟨2, (0.43ei0.66π , 0.64ei1.32π)⟩ ⟨0, (0.15ei0.28π , 0.85ei1.88π)⟩
z3 ⟨1, (0.26ei0.33π , 0.82ei1.65π)⟩ ⟨0, (0.12ei0.29π , 0.92ei1.78π)⟩ ⟨1, (0.28ei0.51π , 0.81ei1.45π)⟩
z4 ⟨4, (0.73ei1.45π , 0.32ei0.66π)⟩ ⟨5, (0.85ei1.78π , 0.12ei1.30π)⟩ ⟨2, (0.41ei0.81π , 0.62ei1.12π)⟩

Table 13 CPF6SS.
(h2, L2, 4) s1 s2 s4

z1 ⟨2, (0.65ei1.25π , 0.41ei0.85π)⟩ ⟨3, (0.85ei1.85π , 0.35ei0.46π)⟩ ⟨1, (0.35ei0.5π , 0.61ei1.50π)⟩
z2 ⟨1, (0.41ei0.82π , 0.71ei1.29π)⟩ ⟨2, (0.55ei1.45π , 0.15ei0.62π)⟩ ⟨0, (0.21ei0.12π , 0.85ei1.62π)⟩
z3 ⟨0, (0.91ei0.42π , 0.82ei1.81π)⟩ ⟨1, (0.45ei0.71π , 0.65ei1.44π)⟩ ⟨3, (0.92ei1.92π , 0.12ei0.43π)⟩
z4 ⟨3, (0.81ei1.68π , 0.21ei0.12π)⟩ ⟨0, (0.14ei0.14π , 0.98ei1.92π)⟩ ⟨2, (0.71ei1.34π , 0.41ei0.71π)⟩

Table 14 Restricted intersection.
(g, L1∩L2, 4) s1 s2

z1 ⟨2, (0.59ei1.23π , 0.42ei0.85π)⟩ ⟨3, (0.76ei1.45π , 0.35ei0.66π)⟩
z2 ⟨1, (0.41ei0.82π , 0.71ei1.29π)⟩ ⟨2, (0.43ei0.66π , 0.64ei1.32π)⟩
z3 ⟨0, (0.91ei0.33π , 0.82ei1.81π)⟩ ⟨0, (0.12ei0.29π , 0.92ei1.78π)⟩
z4 ⟨3, (0.73ei1.45π , 0.32ei0.66π)⟩ ⟨0, (0.14ei0.14π , 0.98ei1.92π)⟩

Table 15 Extended intersection.
(f, L1 ∩𝜀 L2, 6) s1 s2 s3 s4

z1 ⟨2, (0.59ei1.23π , 0.42ei0.85π)⟩ ⟨3, (0.76ei1.45π , 0.35ei0.66π)⟩ ⟨3, (0.61ei1.30π , 0.48ei0.88π)⟩ ⟨1, (0.35ei0.50π , 0.61ei1.50π)⟩
z2 ⟨1, (0.41ei0.82π , 0.71ei1.29π)⟩ ⟨2, (0.43ei1.66π , 0.64ei1.32π)⟩ ⟨0, (0.15ei0.28π , 0.85ei1.88π)⟩ ⟨0, (0.21ei0.12π , 0.85ei1.62π)⟩
z3 ⟨0, (0.19ei0.33π , 0.82ei1.81π)⟩ ⟨0, (0.12ei0.29π , 0.92ei1.78π)⟩ ⟨1, (0.28ei0.51π , 0.81ei1.45π)⟩ ⟨3, (0.92ei1.92π , 0.12ei0.43π)⟩
z4 ⟨3, (0.73ei1.45π , 0.32ei0.66π)⟩ ⟨0, (0.14ei0.14π , 0.98ei1.92π)⟩ ⟨2, (0.41ei0.81π , 0.62ei1.12π)⟩ ⟨2, (0.71ei1.34π , 0.41ei0.71π)⟩
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Definition 3.18. Let (h1, L1, N1) and (h2, L2, N2) be two CPFNSSs over the universe Z, where L1 = (H1, A, N1) and L2 = (H2, B, N2) are
NSSs on Z. Then, their extended union denoted by (h1, L1, N1) ∪E (h2, L2, N2) = (z, L1 ∪𝜀L2, max(N1, N2)), where L1 ∪𝜀L2 = (Z, A ∪ B,
max(N1, N2)) is defined as

z
(
sq
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h1
(
sq
)
, if sq ∈ A − B,

h2
(
sq
)
, if sq ∈ B − A,⟨(

zp, dpq
)
, x, y

⟩
, such that dpq = max

(
d1pq, d

2
pq

)
,

x = max
(
𝜇C

(
zp, d1pq

)
, 𝜇D

(
zp, d2pq

))
eimax

(
𝛼C

(
zp,d1pq

)
,𝛼D

(
zp,d2pq

))
,

y = min
(
𝜆C

(
zp, d1pq

)
, 𝜆D

(
zp, d2pq

))
eimin

(
𝛽C

(
zp,d1pq

)
,𝛽D

(
zp,d2pq

))
,

where
⟨(

zp, d1pq
)
, 𝜇C

(
zp, d1pq

)
ei𝛼C

(
zp,d1pq

)
, 𝜆C

(
zp, d1pq

)
ei𝛽C

(
zp,d1pq

)⟩
∈ h1

(
sq
)
,

and
⟨(

zp, d2pq
)
, 𝜇D

(
zp, d2pq

)
ei𝛼D

(
zp,d2pq

)
, 𝜆D

(
zp, d2pq

)
ei𝛽D

(
zp,d2pq

)⟩
∈ h2

(
sq
)
,

C and D are CPFSs on H1
(
sq
)
and H2

(
sq
)
, respectively.

Example 3.19.

Consider the CPF6SS and CPF4SS as given in Example 3.16. Then, their restricted union (w, L1 ∪R L2, 6) and extended union (z, L1 ∪𝜀L2,
6) are presented in Tables 16 and 17, respectively.

Remark 3.20. The Definitions 3.14, 3.15, 3.17, and 3.18 of restricted(or extended) intersection and union will satisfy the grading criteria
if and only if N1 = N2

The concept of CPFNSS can be related to extant theories including complex PFSS, PFNSS,N-soft set and soft set. We shall establish all these
relationships in this section. In order to derive CPFSS and SS from CPFNSS, we use the following definitions:

Definition 3.21. Let (h, L, N) be a CPFNSS over a universe of discourse Z, where L = (H, S, N) is theNSS onZ. Let 0 <T <N be a threshold.
Then, CPFSS over Z associated with (h, L, N) and T denoted by (hT, S) is defined as follows:

hT
(
sq
)
=

⎧⎪⎪⎨⎪⎪⎩

⟨
𝜇pqei𝛼pq , 𝜆pqei𝛽pq

⟩
, if

⟨
dpq,

(
𝜇pqei𝛼pq , 𝜆pqei𝛽pq

)⟩
∈ h

(
sq
)
and dpq ≥ T,{⟨

0.0ei0.0𝜋 , 0.5ei1.0𝜋
⟩
, if dpq

N
≥ 0.5⟨

0.0ei0.0𝜋 , 1.0ei2.0𝜋
⟩
, if dpq

N
< 0.5.

Specifically, (h1, S) is said to be bottom CPFSS and (hN−1, S) is said to be top CPFSS associated with CPFNSS.

Definition 3.22. Let 0 < T < N and 𝜌 ∈ [−2, 2] be thresholds. The soft set over Z associated with (h, L, N) and (T, 𝜌), denoted by
(h(T, 𝜌), S) is defined by the assignment:

h(T,𝜌)
(
sq
)
=
{
z ∈ Z ∶ 𝔖

(
hT

(
sq
))

> 𝜌
}
, for each sq ∈ S

Table 16 Restricted union.
(w, L1 ∪ L2, 6) s1 s2
z1 ⟨3, (0.65ei1.25π , 0.41ei0.78π)⟩ ⟨4, (0.85ei1.85π , 0.32ei0.46π)⟩
z2 ⟨5, (0.95e1.82π , 0.14ei0.12π)⟩ ⟨2, (0.55e1.45π , 0.15ei0.62π)⟩
z3 ⟨1, (0.26ei0.42π , 0.82ei1.65π)⟩ ⟨1, (0.45ei0.71π , 0.65ei1.44π)⟩
z4 ⟨4, (0.81ei1.68π , 0.21ei0.12π)⟩ ⟨5, (0.85ei1.78π , 0.12ei0.30π)⟩

Table 17 Extended union.
(z, L1 ∪𝜀 L2, 6) s1 s2 s3 s4
z1 ⟨3, (0.65ei1.25π , 0.41ei0.78π)⟩ ⟨4, (0.85ei1.85π , 0.32ei0.46π)⟩ ⟨3, (0.61ei1.30π , 0.48ei0.88π)⟩ ⟨1, (0.35ei0.50π , 0.61ei1.50π)⟩
z2 ⟨5, (0.95ei1.82π , 0.14ei0.12π)⟩ ⟨2, (0.55ei1.45π , 0.15ei0.62π)⟩ ⟨0, (0.15ei0.28π , 0.85ei1.88π)⟩ ⟨0, (0.21ei0.12π , 0.85ei1.62π)⟩
z3 ⟨1, (0.26ei0.42π , 0.82ei1.65π)⟩ ⟨1, (0.45ei0.71π , 0.65ei1.44π)⟩ ⟨1, (0.28ei0.51π , 0.81ei1.45π)⟩ ⟨3, (0.92ei1.92π , 0.12ei0.43π)⟩
z4 ⟨4, (0.81ei1.68π , 0.21ei0.12π)⟩ ⟨5, (0.85ei1.78π , 0.12ei0.30π) ⟩ ⟨2, (0.41ei0.81π , 0.62ei1.12π)⟩ ⟨2, (0.71ei1.34π , 0.41ei0.71π)⟩
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where𝔖
(
hT

(
sq
))

is the score function of hT(sq) =
⟨
𝜇T
pqe

i𝛼Tpq , 𝜆Tpqe
i𝛽Tpq

⟩
.

Example 3.23.

Consider the CPF5SS (h, L, 5), represented by Table 7. We have 0 < T < 5, from Definition 3.21. The CPFSS associated with threshold
T = 2 is given by Table 18. Meanwhile, while taking (T, 𝜌) = (3, 0.2), we can obtain the soft set (h(3,0.2), S) which is given in Table 19.

In view of above analysis, it is observed that CPFNSS can be converted into CPFSS and SS under certain conditions. In other words, CPFNSS
is the generalization of CPFSS and SS.

Remark 3.24.

(1) Let Z be a universe of discourse, K be a set of parameters and S ⊆ K. Let (h, L, N) be a CPFNSS on Z. Then, the NSS associated with
CPFNSS (h, L, N) is L, where L = (H, S, N).
This simple assignment shows that CPFNSS generalizes NSS, therefore SS as well.

(2) Every complex intuitionistic fuzzy N-soft set (CIFNSS) is also a CPFNSS but converse is not true, because,

∙ If 0 ≤ μ + 𝜆 ≤ 1, then 0 ≤ μ2 + 𝜆2 ≤ 1, for all μ, 𝜆 ∈ [0, 1].

∙ If 0 ≤ 𝛼 + 𝛽 ≤ 2π, then 0 ≤
(

𝛼
2π

)2
+
(

𝛽
2π

)2
≤ 1, for all 𝛼, 𝛽 ∈ [0, 2π].

This implies that CPFNSS generalizes the CIFNSS.

(3) CPFNSS is also a PFNSS when both phase terms of membership and nonmembership degrees are zero, that is, when 𝛼pq = 0 = 𝛽pq in
Definition 3.1, we get the definition of PFNSS which is given as follows:

(h, L,N) =
{⟨

sq, h
(
sq
) |sq ∈ S, h

(
sq
)
∈ Z×D} ,

where h(sq) = {((zq, dpq), μpq(zq, dpq), 𝜆pq(zq, dpq)|(zq, dpq)∈Z ×D} represents the PFS andZ×D be the family of all PFSs overZ ×D
Also, it is known that PFNSSs generalize the IFNSSs, FNSSs, NSSs, SSs, PFSSs and IFSSs. Therefore, we can also claim that CPFNSSs
generalize all those models.

4. OPERATIONS

We now present operations on complex Pythagorean fuzzy N-soft values.

Definition 4.1. Let τ1q =
⟨
d1q,

(
𝜇1qei𝛼1q , 𝜆1qei𝛽1q

)⟩
(q = 1, 2), and 𝜏 = ⟨d, (μei𝛼 , 𝜆ei𝛽)⟩ be any three CPFNSVs and Ω > 0 be any real

number. Then, the following operations are defined over CPFNSVs as follows:

(1) 𝜏11 ⊕ 𝜏12 =

⟨
max

(
d11, d12

)
,

(√
𝜇2
11 + 𝜇2

12 − 𝜇2
11𝜇

2
12 e

i2𝜋
√( 𝛼11

2𝜋

)2
+
( 𝛼12
2𝜋

)2
−
( 𝛼11
2𝜋

)2( 𝛼12
2𝜋

)2

, 𝜆11𝜆12e
i2𝜋

(
𝛽11
2𝜋

𝛽12
2𝜋

))⟩
;

Table 18 CPFSS associated with (h, L, 5) and threshold T = 2.

(h2, S) s1 s2 s3
z1 ⟨0.7ei1.3π , 0.3ei0.7π⟩ ⟨0.97ei1.7π , 0.1ei0.3π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩
z2 ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.6ei0.0π , 0.4ei2.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩
z3 ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.8ei1.6π , 0.2ei0.4π⟩
z4 ⟨0.9ei1.7π , 0.1ei0.3π⟩ ⟨0.4ei0.8π , 0.6ei1.2π⟩ ⟨0.7ei1.3π , 0.3ei0.7π⟩

Table 19 SS associated with (h, L, 5) and
thresholds T = 3, 𝜌 = 0.2.
(h(3,0.2), S) s1 s2 s3
z1 1 1 0
z2 0 1 0
z3 0 0 1
z4 1 0 1
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(2) 𝜏11 ⊗ 𝜏12 =

⟨
min

(
d11, d12

)
,
⎛⎜⎜⎝𝜇11𝜇12e

i2𝜋
(

𝛼11
2𝜋

𝛼12
2𝜋

)
,
√

𝜆211 + 𝜆212 − 𝜆211𝜆
2
12 e

i2𝜋

√(
𝛽11
2𝜋

)2

+
(
𝛽12
2𝜋

)2

−
(
𝛽11
2𝜋

)2( 𝛽12
2𝜋

)2⎞⎟⎟⎠
⟩

;

(3) Ω𝜏 =

⟨
d,
⎛⎜⎜⎝
√

1 − (1 − 𝜇2)Ω e
i2π

√
1−

(
1−

( 𝛼
2𝜋

)2
)Ω

, 𝜆Ωe
i2π

(
𝛽
2π

)Ω⎞⎟⎟⎠
⟩

;

(4) 𝜏Ω =

⟨
d,
⎛⎜⎜⎜⎝𝜇

Ωei2π
( 𝛼
2𝜋

)Ω

,
√

1 − (1 − 𝜆2)Ω e
i2π

√√√√1−

(
1−

(
𝛽
2π

)2
)Ω⎞⎟⎟⎟⎠

⟩
.

Definition 4.2. Consider any three CPFNSVs, 𝜏 =
⟨
d,
(
𝜇ei𝛼 , 𝜆ei𝛽

)⟩
, 𝜏1q =

⟨
1q,

(
𝜇1qei𝛼1q , 𝜆1qei𝛽1q

)⟩
(q = 1, 2) and Ω > 0 be any real

number. Then, the following Einstein operations are defined over CPFNSVs as follows:

(1) 𝜏11 ⊕e 𝜏12 =

⟨
max

(
d11, d12

)
,

⎛⎜⎜⎜⎜⎜⎜⎝
√

𝜇2
11+𝜇

2
12

1+𝜇2
11𝜇

2
12
e

i2𝜋

√√√√√√√√
( 𝛼11
2𝜋

)2
+

( 𝛼12
2𝜋

)2

1+

( 𝛼11
2𝜋

)2( 𝛼12
2𝜋

)2

, 𝜆11𝜆12√
1+(1−𝜆211)(1−𝜆212)

e

i2𝜋

(
𝛽11
2𝜋

)(
𝛽12
2𝜋

)
√√√√1+

(
1−

(
𝛽11
2𝜋

)2
)(

1−
(
𝛽12
2𝜋

)2
) ⎞⎟⎟⎟⎟⎟⎟⎠

⟩
;

(2) 𝜏11 ⊕e 𝜏12 =

⟨
min

(
d11, d12

)
,

⎛⎜⎜⎜⎜⎜⎜⎝
𝜇11𝜇12√

1+(1−𝜇2
11)(1−𝜇2

12)
e

i2𝜋

(
𝛼11
2𝜋

)(
𝛼12
2𝜋

)
√

1+
(
1−

( 𝛼11
2𝜋

)2
)(

1−
( 𝛼12
2𝜋

)2
)
,
√

𝜆211+𝜆
2
12

1+𝜆211𝜆
2
12
ei2𝜋

√√√√ (
𝛽11
2𝜋

)2
+
(

𝛽12
2𝜋

)2

1+
(

𝛽11
2𝜋

)2( 𝛽12
2𝜋

)2

⎞⎟⎟⎟⎟⎟⎟⎠
⟩

;

(3) Ω ⋅ e𝜏 =

⟨
d,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(1+𝜇2)Ω−(1−𝜇2)Ω

(1+𝜇2)Ω+(1−𝜇2)Ω
e

i2𝜋

√√√√√√√√
(
1+

( 𝛼
2𝜋

)2)Ω
−

(
1−

( 𝛼
2𝜋

)2)Ω

(
1+

( 𝛼
2𝜋

)2)Ω
+

(
1−

( 𝛼
2𝜋

)2)Ω

,
√
2𝜆Ω√

(2−𝜆2)Ω+(𝜆2)Ω
e

i2𝜋

√
2
(

𝛽
2𝜋

)Ω

√√√√(
2−

(
𝛽
2𝜋

)2
)Ω

+

((
𝛽
2𝜋

)2
)Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⟩
;

(4) 𝜏Ω =

⟨
d,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2𝜇Ω√

(2−𝜇2)Ω+(𝜇2)Ω
e

i2𝜋

√
2
( 𝛼
2𝜋

)Ω

√(
2−

( 𝛼
2𝜋

)2
)Ω

+
(( 𝛼

2𝜋

)2
)Ω

,
√

(1+𝜆2)Ω−(1−𝜆2)Ω

(1+𝜆2)Ω+(1−𝜆2)Ω
e

i2𝜋

√√√√√√√√√√
⎛⎜⎜⎝1+

( 𝛽
2𝜋

)2⎞⎟⎟⎠
Ω

−
⎛⎜⎜⎝1−

( 𝛽
2𝜋

)2⎞⎟⎟⎠
Ω

⎛⎜⎜⎝1+
( 𝛽
2𝜋

)2⎞⎟⎟⎠
Ω

+
⎛⎜⎜⎝1−

( 𝛽
2𝜋

)2⎞⎟⎟⎠
Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⟩
;

These operations developed on the basis of Einstein t-norm and t-conorm, are more advantageous in DM as they provide considerable
accurate and consistent results as compared to algebraic operations.

Theorem 4.1. Let 𝜏 =
⟨
d,
(
𝜇ei𝛼 , 𝜆ei𝛽

)⟩
, 𝜏11 =

⟨
d11,

(
𝜇11ei𝛼11 , 𝜆11ei𝛽11

)⟩
and 𝜏12 =

⟨
d12,

(
𝜇12ei𝛼12 , 𝜆12ei𝛽12

)⟩
be any three CPFNSVs and

Ω,Ω1,Ω2 > 0 be any three real numbers, then

(1) 𝜏11 ⊗e 𝜏12 = 𝜏12 ⊗e 𝜏11,

(2) 𝜏11 ⊗e 𝜏12 = 𝜏12 ⊗e 𝜏11,

(3) Ω.e
(
𝜏11 ⊕e 𝜏12

)
= Ω.e𝜏11 ⊕e Ω.e𝜏12,

(4)
(
𝜏11 ⊗e 𝜏12

)Ω =
(
𝜏11

)Ω ⊗e
(
𝜏12

)Ω,
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(5)
(
Ω1.e ⊕e Ω2.e

)
𝜏 = Ω1.e𝜏 ⊕e Ω2.e𝜏,

(6) 𝜏Ω1 ⊗e 𝜏Ω2 = 𝜏Ω1+Ω2 .

Proof :

(1) 𝜏11 ⊕e 𝜏12 =

⟨
max

(
d11, d12

)
,

⎛⎜⎜⎜⎜⎜⎜⎝
√

𝜇2
11+𝜇

2
12

1+𝜇2
11𝜇

2
12
e

i2𝜋

√√√√√√√√
( 𝛼11
2𝜋

)2
+

( 𝛼12
2𝜋

)2

1+

( 𝛼11
2𝜋

)2( a12
2𝜋

)2

, 𝜆12𝜆11√
1+(1−𝜆212)(1−𝜆211)

e

i2𝜋

(
𝛽11
2𝜋

)(
𝛽12
2𝜋

)
√√√√1+

(
1−

(
𝛽11
2𝜋

)2
)(

1−
(
𝛽12
2𝜋

)2
) ⎞⎟⎟⎟⎟⎟⎟⎠

⟩

=

⟨
max

(
d12, d11

)
⎛⎜⎜⎜⎜⎜⎜⎝
√

𝜇2
12+𝜇

2
11

1+𝜇2
12𝜇

2
11
e

i2𝜋

√√√√√√√√
( 𝛼12
2𝜋

)2
+

( 𝛼11
2𝜋

)2

1+

( 𝛼12
2𝜋

)2( 𝛼11
2𝜋

)2

, 𝜆12𝜆11√
1+(1−𝜆212)(1−𝜆211)

e

i2𝜋

(
𝛽12
2𝜋

)(
𝛽11
2𝜋

)
√√√√1+

(
1−

(
𝛽12
2𝜋∣

)2
)(

1−
(
𝛽11
2𝜋

)2
) ⎞⎟⎟⎟⎟⎟⎟⎠

⟩

= 𝜏12 ⊕e 𝜏11
Similarly, we can prove (2).

(3) First, consider the L.H.S,

𝜏11 ⊕e 𝜏12 =

⟨
max

(
d11, d12

)
⎛⎜⎜⎜⎜⎜⎜⎝

√
𝜇2
11 + 𝜇2

12

1 + 𝜇2
11𝜇

2
12
e

i2𝜋

√√√√√√√√
( 𝛼11
2𝜋

)2
+

( 𝛼12
2𝜋

)2

1+

( 𝛼11
2𝜋

)2( 𝛼12
2𝜋

)2

,
𝜆11𝜆12√

1 +
(
1 − 𝜆211

) (
1 − 𝜆212

) e
i2𝜋

(
𝛽11
2𝜋

)(
𝛽12
2𝜋

)
√√√√1+

(
1−

(
𝛽11
2𝜋

)2
)(

1−
(
𝛽12
2𝜋

)2
) ⎞⎟⎟⎟⎟⎟⎟⎠

⟩
.

Above equation can be converted into following equation:

𝜏11 ⊕e 𝜏12 =

⟨
max

(
d11, d12

)
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
(1+𝜇2

11)(1+𝜇2
12)− (1−𝜇2

11)(1−𝜇2
12)

(1+𝜇2
11)(1+𝜇2

12)+ (1−𝜇2
11)(1−𝜇2

12)
e

i2𝜋

√√√√√√√√√
⎛⎜⎜⎝1+

( 𝛼11
2𝜋

)2⎞⎟⎟⎠
⎛⎜⎜⎝1+

( 𝛼12
2𝜋

)2⎞⎟⎟⎠−
⎛⎜⎜⎝1−

( 𝛼11
2𝜋

)2⎞⎟⎟⎠
⎛⎜⎜⎝1−

( 𝛼12
2𝜋

)2⎞⎟⎟⎠⎛⎜⎜⎝1+
( 𝛼11
2𝜋

)2⎞⎟⎟⎠
⎛⎜⎜⎝1+

( 𝛼12
2𝜋

)2⎞⎟⎟⎠+
⎛⎜⎜⎝1−

( 𝛼11
2𝜋

)2⎞⎟⎟⎠
⎛⎜⎜⎝1−

( 𝛼12
2𝜋

)2⎞⎟⎟⎠ ,

√
2𝜆11𝜆12√

(2−𝜆211)(2−𝜆212)+𝜆211𝜆212
e

i2𝜋

√
2
(

𝛽11
2π

)(
𝛽12
2π

)
√√√√(

2−
(
𝛽11
2𝜋

)2
)(

2−
(
𝛽12
2𝜋

)2

+
(
𝛽11
2𝜋

)2
)(

𝛽12
2𝜋

)2

⎞⎟⎟⎟⎟⎟⎟⎠
⟩

.

Let us consider,

a =
(
1 + 𝜇2

11
) (

1 + 𝜇2
12
)
, b =

(
1 − 𝜇2

11
) (

1 − 𝜇2
12
)
, c =

(
1 +

(
𝛼11
2𝜋

)2
)(

1 +
(

𝛼12
2𝜋

)2
)
, f =

(
1 −

(
𝛼11
2𝜋

)2
)(

1 −
(

𝛼12
2𝜋

)2
)
,

u = 𝜆211𝜆
2
12, v =

(
2 − 𝜆211

) (
2 − 𝜆212

)
, w =

(
𝛽11
2𝜋

)2( 𝛽12
2𝜋

)2
, x =

(
2 −

(
𝛽11
2𝜋

)2
)(

2 −
(

𝛽12
2𝜋

)2
)
.
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Then,

𝜏11 ⊕e 𝜏12 =

⟨
max

(
d11, d12

)
,

(√
a−b
a+b

e
i2𝜋

√
c−f
c+f ,

√
2u
v+u

ei2𝜋
√

2w
w+x

)⟩
.

Ω.e
(
𝜏11 ⊕e 𝜏12

)
=

⟨
max

(
d11, d12

)
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√ (
1+

(
a−b
a+b

))Ω
−
(
1−

(
a−b
a+b

))Ω

(
1+

(
a−b
a+b

))Ω
+
(
1−

(
a−b
a+b

))Ω e

i2𝜋

√√√√√√√√√
⎛⎜⎜⎝1+

⎛⎜⎜⎝
c−f
c+f

⎞⎟⎟⎠
⎞⎟⎟⎠
Ω

−
⎛⎜⎜⎝1−

⎛⎜⎜⎝
c−f
c+f

⎞⎟⎟⎠
⎞⎟⎟⎠
Ω

⎛⎜⎜⎝1+
⎛⎜⎜⎝
c−f
c+f

⎞⎟⎟⎠
⎞⎟⎟⎠
Ω

+
⎛⎜⎜⎝1−

⎛⎜⎜⎝
c−f
c+f

⎞⎟⎟⎠
⎞⎟⎟⎠
Ω

,
√
2
(√

2u
v+u

)Ω

√(
2− 2u

v+u

)Ω
+
(

2u
v+u

)Ω
e

i2𝜋

√
2

(√
2m
x+w

)Ω

√(
2−

2w
x+w

)Ω

+
(

2w
x+w

)Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⟩

=

⟨
max

(
d11, d12

)
,

(√
aΩ−bΩ
aΩ+bΩ

e
i2𝜋

√
cΩ−fΩ

cΩ+fΩ ,
√

2uΩ
vΩ+uΩ

e
i2𝜋

√
2wΩ

xΩ+wΩ

)⟩

=

⟨
max

(
d11, d12

)
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
(1+𝜇2

11)
Ω(1+𝜇2

12)
Ω−(1−𝜇2

11)
Ω(1−𝜇2

12)
Ω

(1+𝜇2
11)

Ω(1+𝜇2
12)

Ω+(1−𝜇2
11)

Ω(1−𝜇2
12)

Ω e

i2𝜋

√√√√√√√√√
⎛⎜⎜⎝1+

( 𝛼11
2𝜋

)2⎞⎟⎟⎠
Ω⎛⎜⎜⎝1+

( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

−
⎛⎜⎜⎝1−

( 𝛼11
2𝜋

)2⎞⎟⎟⎠
Ω⎛⎜⎜⎝1−

( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

⎛⎜⎜⎝1+
( 𝛼11
2𝜋

)2⎞⎟⎟⎠
Ω⎛⎜⎜⎝1+

( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

+
⎛⎜⎜⎝1−

( 𝛼11
2𝜋

)2⎞⎟⎟⎠
Ω⎛⎜⎜⎝1−

( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

,

√
2𝜆Ω11𝜆

Ω
12√

(2−𝜆211)
Ω(2−𝜆212)

Ω+(𝜆211)
Ω(𝜆212)

Ω
e

i2𝜋

√
2
(
𝛽11
2𝜋

)Ω( 𝛽12
2𝜋

)Ω

√√√√(
2−

(
𝛽11
2𝜋

)2
)Ω(

2−
(
𝛽12
2𝜋

)2
)Ω

+

((
𝛽11
2𝜋

)2
)Ω((

𝛽12
2𝜋

)2
)Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⟩
.

Now, consider the R.H.S,

Ω.e𝜏11 =

⟨
d11,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(1+𝜇2

11)
Ω− (1−𝜇2

11)
Ω

(1+𝜇2
11)

Ω+ (1−𝜇2
11)

Ω e

i2𝜋

√√√√√√√√√√
⎛⎜⎜⎝1+

( 𝛼11
2𝜋

)2⎞⎟⎟⎠
Ω

−
⎛⎜⎜⎝1−

( 𝛼11
2𝜋

)2⎞⎟⎟⎠
Ω

⎛⎜⎜⎝1+
( 𝛼11
2𝜋

)2⎞⎟⎟⎠
Ω

+
⎛⎜⎜⎝1−

( 𝛼|1
2𝜋

)2⎞⎟⎟⎠
Ω

,
√
2𝜆Ω11√

(2−𝜆211)
Ω+(𝜆211)

Ω
e

i2𝜋

√
2
(
𝛽11
2𝜋

)Ω

√√√√(
2−

(
𝛽11
2𝜋

)2
)Ω

+

((
𝛽11
2𝜋

)2
)Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

⟩

Ω.e𝜏12 =

⟨
d12,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(1+𝜇2

12)
Ω−(1−𝜇2

12)
Ω

(1+𝜇2
12)

Ω+(1−𝜇2
12)

Ω e

i2𝜋

√√√√√√√√√
⎛⎜⎜⎝1+

( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

−
⎛⎜⎜⎝1−

( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

⎛⎜⎜⎝1+
( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

+
⎛⎜⎜⎝1−

( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

,
√
2𝜆Ω12√

(2−𝜆212)
Ω+(𝜆212)

Ω
e

i2𝜋

√
2
(
𝛽12
2𝜋

)Ω

√√√√(
2−

(
𝛽12
2𝜋

)2
)Ω

+

((
𝛽12
2𝜋

)2
)Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

⟩

Let us consider,

a1 =
(
1 + 𝜇2

11
)Ω, b1 = (

1 − 𝜇2
11
)Ω, c1 = (

1 +
(

𝛼11
2𝜋

)2
)Ω

, f1 =
(
1 −

(
𝛼11
2𝜋

)2
)Ω

,

w1 =
(
𝜆211

)Ω, x1 =
(
2 − 𝜆211

)Ω, y1 = ((
𝛽11
2𝜋

)2
)Ω

, z1 =
(
2 −

(
𝛽11
2𝜋

)2
)Ω

.
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and

a2 =
(
1 + 𝜇2

12
)Ω, b2 = (

1 − 𝜇2
12
)Ω, c2 =

(
1 +

(
𝛼12
2𝜋

)2
)Ω

, f2 =
(
1 −

(
𝛼12
2𝜋

)2
)Ω

,

w2 =
(
𝜆212

)Ω, x2 =
(
2 − 𝜆212

)Ω, y2 =
((

𝛽12
2𝜋

)2
)Ω

, z2 =
(
2 −

(
𝛽12
2𝜋

)2
)Ω

.

Then, the above equations can be rewritten as follows:

Ω.e𝜏11 =

⟨
d11 ⋅

(√
a1−b1
a1+b1

e
i2𝜋

√
c1−f1
c1+f1 ,

√
2w1

x1+w1
ei2𝜋

√
2y1

z1+y1

)⟩
.

Ω.e𝜏12 =

⟨
d12,

(√
a2−b2
a2+b2

e
i2𝜋

√
c2−f2
c2+f2 ,

√
2w2

x2+w2
e12𝜋

√
2y2

z2+y2

)⟩
.

Now,

Ω.e𝜏11 ⊕e Ω.e𝜏12 =

⟨
max

(
d11, d12

)
,

⎛⎜⎜⎜⎜⎝
√√√√√ a1−b1

a1+b1
+
a2−b2
a2+b2

1+
( a1−b1
a1+b1

)( a2−b2
a2+b2

) ei2𝜋
√√√√√ c1−f1

c1+f1
+ c2−f2
c2+f2

1+
(

c1−f1
c1+f1

)(
c2−f2
c2+f2

)
,

√√√√√ 4w1w2

(x1+w1)(x2+w2)
1+

(
1−

2w1
x1+w1

)(
1−

2w2
x2+w2

) ei2𝜋
√√√√ 4y1y2

(z1+y1)(z2+y2)
1+

(
1− 2y1

z1+y1

)(
1− 2y2

z2+y2

)
⎞⎟⎟⎟⎟⎠
⟩

=

⟨
max

(
d11, d12

)
,

(√
a1a2−b1b2
a1a2+b1b2

e
i2𝜋

√
c1c2−f1 f2
c1c2+f1 f2 ,

√
2w1w2

x1x2+w1w2
ei2𝜋

√
2y1y2

z1z2+y1y2

)⟩

=

⟨
max

(
d11, d12

)
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
(1+𝜇2

11)
Ω(1+𝜇2

12)
Ω−(1−𝜇2

11)
Ω(1−𝜇2

12)
Ω

(1+𝜇2
11)

Ω(1+𝜇2
12)

Ω+(1−𝜇2
11)

Ω(1−𝜇2
12)

Ω e

i2𝜋

√√√√√√√√√
⎛⎜⎜⎝1+

( 𝛼11
2𝜋

)2⎞⎟⎟⎠
Ω⎛⎜⎜⎝1+

( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

−
⎛⎜⎜⎝1−

( 𝛼11
2𝜋

)2⎞⎟⎟⎠
Ω⎛⎜⎜⎝1−

( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

⎛⎜⎜⎝1+
( 𝛼11
2𝜋

)2⎞⎟⎟⎠
Ω⎛⎜⎜⎝1+

( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

+
⎛⎜⎜⎝1−

( 𝛼11
2𝜋

)2⎞⎟⎟⎠
Ω⎛⎜⎜⎝1−

( 𝛼12
2𝜋

)2⎞⎟⎟⎠
Ω

,

√
2𝜆Ω11𝜆

Ω
12√

(2−𝜆211)
Ω(2−𝜆212)

Ω+(𝜆211)
Ω(𝜆212)

Ω
e

i2𝜋

√
2
⎛⎜⎜⎝
𝛽11
2𝜋

⎞⎟⎟⎠
Ω⎛⎜⎜⎝

𝛽12
2𝜋

⎞⎟⎟⎠
Ω

√√√√√√√√
⎛⎜⎜⎜⎝2−

⎛⎜⎜⎝
𝛽11
2𝜋

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠

Ω⎛⎜⎜⎜⎝2−
⎛⎜⎜⎝
𝛽12
2𝜋

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠

Ω

+

⎛⎜⎜⎜⎝
⎛⎜⎜⎝
𝛽11
2𝜋

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠

Ω⎛⎜⎜⎜⎝
⎛⎜⎜⎝
𝛽12
2𝜋

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠

Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⟩
.

Hence, proved that Ω.e(𝜏11 ⊕e 𝜏12) = Ω.e𝜏11 ⊕e Ω.e𝜏12.
Similarly, we can prove (4).

(5) Consider Ω1, Ω2 > 0,

(
Ω1.e ⊕e Ω2.e

)
𝜏 =

⟨
d,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(1+𝜇2)Ω1+Ω2−(1−𝜇2)Ω1+Ω2

(1+𝜇2)Ω1+Ω2+(1−𝜇2)Ω1+Ω2
e

i2𝜋

√√√√√√√√√√√√

(
1+

( 𝛼
2𝜋

)2)Ω1+Ω2
−
⎛⎜⎜⎝1−

( 𝛼−
2𝜋

)2⎞⎟⎟⎠
Ω1+Ω2

⎛⎜⎜⎝1+
( 𝛼1
2𝜋

)2⎞⎟⎟⎠
Ω1+Ω2+

⎛⎜⎜⎝1−
( 𝛼1
2𝜋

)2⎞⎟⎟⎠
Ω1+Ω2

,
√
2𝜆Ω1+Ω2√

(2−𝜆2)Ω1+Ω2+(𝜆2)Ω1+Ω2
e

i2𝜋

√
2
(

𝛽
2𝜋

)Ω1+Ω2

√√√√(
2−

(
𝛽
2𝜋

)2
)Ω1+Ω2

+

((
𝛽
2𝜋

)2
)Ω1+Ω2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⟩
.
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Now, Consider R.H.S, we have

Ω1,e𝜏 =

⟨
d,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(1+𝜇2)Ω1−(1−𝜇2)Ω1

(1+𝜇2)Ω1+(1−𝜇2)Ω1
e

i2𝜋

√√√√√√√√
(
1+

( 𝛼
2𝜋

)2)Ω1
−

(
1−

( 𝛼
2𝜋

)2)Ω1

(
1+

( 𝛼
2𝜋

)2)Ω1
+

(
1−

( 𝛼
2𝜋

)2)Ω1

,
√
2𝜆Ω1√

(2−𝜆2)Ω1+(𝜆2)Ω1
e

i2𝜋

√
2
(

𝛽
2𝜋

)Ω1

√√√√(
2−

(
𝛽
2𝜋

)2
)Ω1

+

((
𝛽
2𝜋

)2
)Ω1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⟩
.

Ω2⋅e𝜏 =

⟨
d,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(1+𝜇2)Ω2−(1−𝜇2)Ω2

(1+𝜇2)Ω2+(1−𝜇2)Ω2
e

i2𝜋

√√√√√√√√
(
1+

( 𝛼
2𝜋

)2)Ω2
−

(
1−

( 𝛼
2𝜋

)2)Ω2

(
1+

( 𝛼
2𝜋

)2)Ω2
+

(
1−

( 𝛼
2𝜋

)2)Ω2

,
√
2𝜆Ω2√

(2−𝜆2)Ω2+(𝜆2)Ω2
e

i2𝜋

√
2
(

𝛽
2𝜋

)Ω2

√√√√(
2−

(
𝛽
2𝜋

)2
)Ω2

+

((
𝛽
2𝜋

)2
)Ω2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⟩
.

Let us consider, for k = 1, 2

ak =
(
1 + 𝜇2)Ωk , bk =

(
1 − 𝜇2)Ωk , ck =

(
1 +

(
𝛼
2𝜋

)2
)Ωk

, fk =
(
1 −

(
𝛼
2𝜋

)2
)Ωk

,

wk =
(
𝜆2
)Ωk , xk =

(
2 − 𝜆2

)Ωk , yk =
((

𝛽
2𝜋

)2
)Ωk

, zk =
(
2 −

(
𝛽
2𝜋

)2
)Ωk

.

Ω1.e𝜏 ⊕e Ω2.e𝜏 =

⟨
max

(
d11, d12

)
,

⎛⎜⎜⎜⎜⎝
√√√√√ a1−b1

a1+b1
+
a2−b2
a2+b2

1+
( a1−b1
a1+b1

)( a2−b2
a2+b2

) e
i2𝜋

√√√√√ c1−f1
c1+f1

+ c2−f2
c2+f2

1+
(

c1−f1
c1+f1

)(
c2−f2
c2+f2

)
,

√√√√√ 4w1w2

(x1+w1)(x2+w2)
1+

(
1−

2w1
x1+w1

)(
1−

2w2
x2+w2

) ei2𝜋
√√√√ 4y1y2

(z1+y1)(z2+y2)
1+

(
1− 2y1

z1+y1

)(
1− 2y2

z2+y2

)
⎞⎟⎟⎟⎟⎠
⟩

=

⟨
max

(
d11, d12

)
,

(√
a1a2−b1b2
a1a2+b1b2

e
i2𝜋

√
c1c2−f1 f2
c1c2+f1 f2 ,

√
2w1w2

x1x2+w1w2
ei2𝜋

√
2y1y2

z1z2+y1y2

)⟩

=

⟨
d,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(1+𝜇2)Ω1+Ω2−(1−𝜇2)Ω1+Ω2

(1+𝜇2)Ω1+Ω2+(1−𝜇2)Ω1+Ω2
e

i2𝜋

√√√√√√√√
(
1+

( 𝛼
2𝜋

)2)Ω1+Ω2
−

(
1−

( 𝛼
2𝜋

)2)Ω1+Ω2

(
1+

( 𝛼
2𝜋

)2)Ω1+Ω2
+

(
1−

( 𝛼
2𝜋

)2)Ω1+Ω2

,
√
2𝜆Ω1+Ω2√

(2−𝜆2)Ω1+Ω2+(𝜆2)
Ω1+Ω2

e

i2𝜋

√
2
(

𝛽
2𝜋

)Ω1+Ω2

√√√√(
2−

(
𝛽
2𝜋

)2
)Ω1

+Ω2+

((
𝛽
2𝜋

)2
)Ω1+Ω2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⟩
.

Hence, proved that (Ω1.e⊕e Ω2.e)𝜏 = Ω1.e𝜏 ⊕e Ω1.e𝜏 .
Similarly, we can prove (6).☐

5. APPLICATIONS

In this section, we establish specific DM strategies that operate on the proposed CPFNSSmodel. These algorithms are designed for identifi-
cation of the best alternative ofMCDMproblems from a rational set of alternatives. Further, in order to prove their validity and effectiveness,
we apply them to real DM situations. The step-by-step procedure of DM Algorithms 1, 2 and 3 are presented as follows.

The algorithm of choice values of CPFNSS

Algorithm 1
(1) Input Z = {z1, z2, . . . , zr} as a universe of objects.
(2) Input S = {s1, s2, . . . , sw} as a set of attributes.
(3) Input the N-soft set (H, S, N) with D = {0, 1, . . . , N − 1}, where N ∈ {2, 3, . . .} Then, for each zp ∈ Z, sq ∈ S, there exist unique dpq ∈ D.
(4) Input CPFNSS (h, L, N), where L = (H, S, N).
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(5) Compute 𝜉p =
w∑
q=1

𝜏pq , where 𝜏pq =
⟨
dpq,

(
𝜇pqei𝛼pq , 𝜆pqei𝛽pq

)⟩
and Einstein addition of two 𝜏pq is defined as

follows:𝜏11 ⊕e 𝜏12 =

⟨
max

(
d11, d12

)
,

⎛⎜⎜⎜⎜⎜⎜⎝
√

𝜇2
11+𝜇

2
12

1+𝜇2
11𝜇

2
12
e

i2𝜋

√√√√√√√√
( 𝛼11
2𝜋

)2
+

( 𝛼12
2𝜋

)2

1+

( a11
2𝜋

)2( 212
2𝜋

)2

, 𝜆11𝜆12√
1+(1−𝜆211)(1−𝜆212)

e

i2𝜋

(
𝛽11
2𝜋

)(
𝛽12
2𝜋

)
√√√√1+

(
1−

(
𝛽11
2𝜋

)2
)(

1−
(
𝛽12
2𝜋

)2
) ⎞⎟⎟⎟⎟⎟⎟⎠

⟩
.

(6) For each zp, compute its choice value𝔖p
(
𝜉p
)
=
( dp

N−1

)2
+
(
𝜇2
p − 𝜆2p

)
+ 1

4𝜋2

(
𝛼2
p − 𝛽2p

)
, for each p = 1, 2,… , r .

(7) Compute all the indices k for which𝔖k = maxp 𝔖p.
(8) Any of the alternatives for which𝔖k = maxp 𝔖p can be chosen.

The algorithm of T-choice values of CPFNSS

Algorithm 2
(1) Input Z = {z1, z2, . . . , zr} as a universe of objects.
(2) Input S = {s1, s2, . . . , sw} as a set of attributes.
(3) Input the NSS (H, S, N) with D = {0, 1, . . . , N − 1}, where N ∈ {2, 3, . . .}. Then, for each zp ∈ Z, sq ∈ S, there exist unique dpq ∈ D.
(4) Input CPFNSS (h, L, N), where L = (H, S, N).
(5) Input T threshold.

(6) ComputehT
(
sq
) (

zp
)
=

⎧⎪⎪⎨⎪⎪⎩

⟨
𝜇pqei𝛼pq , 𝜆pqei𝛽pq

⟩
, if

⟨
dpq,

(
𝜇pqei𝛼pq , 𝜆pqei𝛽pq

)⟩
∈ h

(
sq
)
and dpq ≥ T ,{⟨

0.0ei0.0𝜋 , 0.5ei1.0𝜋
⟩
, if dpq

N
≥ 0.5⟨

0.0ei0.0𝜋 , 1.0ei2.0𝜋
⟩
, if dpq

N
< 0.5

(7) Compute 𝜉Tp =
w∑
q=1

𝜏Tpq, where 𝜏
T
pq =

⟨
𝜇T
pqe

i𝛼Tpq , 𝜆Tpqe
i𝛽Tpq

⟩
and Einstein addition of two 𝜏Tpq is defined as follows:

𝜏T11 ⊕e 𝜏T12 =

⟨√
(𝜇T

11)
2+(𝜇T

12)
2

1+(𝜇T
11)

2(𝜇T
12)

2 e

i2𝜋

√√√√√√√√√√√√
⎛⎜⎜⎜⎝
𝛼T11
2𝜋

⎞⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎝
𝛼T12
2𝜋

⎞⎟⎟⎟⎠
2

1+
⎛⎜⎜⎜⎝
𝛼T11
2𝜋

⎞⎟⎟⎟⎠
2⎛⎜⎜⎜⎝
𝛼T12
2𝜋

⎞⎟⎟⎟⎠
2

, 𝜆T11𝜆
T
12√

1+
(
1−(𝜆T11)

2
)(

1−(𝜆T12)
2
) e

i2𝜋

(
𝛽T11
2𝜋

)(
𝛽T12
2𝜋

)
√√√√√1+

⎛⎜⎜⎝1−
(

𝛽T11
2𝜋

)2⎞⎟⎟⎠
⎛⎜⎜⎝1−

(
𝛽T12
2𝜋

)2⎞⎟⎟⎠⟩ .

(8) For each zp, compute its T-choice value𝔖T
p
(
𝜉p
)
=
((

𝜇T
p

)2
−
(
𝜆Tp

)2
)
+ 1

4𝜋2

((
𝛼T
p

)2
−
(
𝛽Tp

)2
)
, for each p = 1, 2,… , r .

(9) Compute all the indices k for which𝔖T
k = maxp 𝔖T

p .

(10) Any of the alternatives for which𝔖T
k = maxp 𝔖T

p can be chosen.

The algorithm of comparison table of CPFNSS

Algorithm 3
(1) Input Z = {z1, z2, . . . , zr} as a universe of objects.
(2) Input S = {s1, s2, . . . , sw} as a set of attributes.
(3) Consider a CPFNSS in tabular form.
(4) Compute the comparison table for score degree of CPFNSVs.
(5) Compute the final outcome.
(6) Find the maximum final outcome, then we will choose the alternative zp, if it appears in p-th row, 1 ≤ p ≤ r.

5.1. Selection of the Best Laptop

Suppose that the laptop of a research scholar is not working properly and his research work is badly affected bymalfunctioning of his laptop.
In order to fix this problem, he wants to purchase the best laptop of the year. Productive selection of laptops can only be done by the ideal
matching of his requirements. This effective selection will ensure the high-quality performance of the laptop and he will do his research
work effectively. Consider the set of five laptops Z = {z1, z2, z3, z4, z5} under consideration and let S = {s1 = Price, s2 = Graphics, s3 = Storage,
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s4 = Battery life} be the set of parameters related to laptops in Z, which are used for the grading of laptops. A 6-soft set can be identified
from Table 20, where

∙ Five check marks represent “Superb,”

∙ Four check marks represent “Excellent,”

∙ Three check marks represent “Very Good,”

∙ Two check marks represent “Good,”

∙ One check mark represents “Normal,”

∙ Big dot represents “Poor.”

The numbers D = {0, 1, 2, 3, 4, 5} can easily be associated with this graded evaluation followed by check marks as follows:

∙ 0 stands for “∙,”

∙ 1 stands for “✓,”

∙ 2 stands for “✓✓,”

∙ 3 stands for “✓✓✓,”

∙ 4 stands for “✓✓✓✓,”

∙ 5 stands for “✓✓✓✓✓,”

The rating of laptops is given in Table 20.

Now, the tabular form of its corresponding 6-soft set is presented in Table 21.

In this respect, the grading criteria based on the parameters of laptops is given below:

−2.0 ≤ 𝔖
(
𝜏pq

)
< −1.17 when dpq = 0

−1.17 ≤ 𝔖
(
𝜏pq

)
< −0.34 when dpq = 1

−0.34 ≤ 𝔖
(
𝜏pq

)
< 0.50 when dpq = 2

0.50 ≤ 𝔖
(
𝜏pq

)
< 1.33 when dpq = 3

1.33 ≤ 𝔖
(
𝜏pq

)
< 2.17 when dpq = 4

2.17 ≤ 𝔖
(
𝜏pq

) ≤ 3.0 when dpq = 5

where𝔖
(
𝜏pq

)
=
( dpq

N−1

)2
+
(
𝜇2
pq − 𝜆2pq

)
+ 1

4𝜋2

(
𝛼2
pq − 𝛽2pq

)
and 𝜏pq =

⟨
dpq,

(
𝜇pqei𝛼pq , 𝜆pqei𝛽pq

)⟩
; p = 1, 2, 3, 4, 5, q = 1, 2, 3, 4.

Table 20 Rating of laptops.
Z/S s1 s2 s3 s4
z1 ✓✓✓ ✓✓✓✓ ∙ ✓✓✓✓✓
z2 ∙ ✓ ✓✓ ✓✓✓
z3 ✓✓✓✓ ✓✓✓✓✓ ✓✓✓ ✓✓✓✓✓
z4 ✓✓✓✓✓ ✓✓ ∙ ✓
z5 ✓ ✓✓✓ ✓✓ ✓✓✓✓

Table 21 Associated 6-soft set.
(h, s, 6) s1 s2 s3 s4
z1 3 4 0 5
z2 0 1 2 3
z3 4 5 3 5
z4 5 2 0 1
z5 1 3 2 4
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Therefore, by Definition 3.1, CPF6SS is defined as

(h, L, 6) =
{(

s1, h
(
s1
))

,
(
s2, h

(
s2
))

,
(
s3, h

(
s3
))

,
(
s4, h

(
s4
))}

, where

h
(
s1
)
=
{⟨(

z1, 3
)
, 0.58ei1.22𝜋 , 0.41ei0.77𝜋

⟩
,
⟨(

z2, 0
)
, 0.05ei0.22𝜋 , 0.92ei1.77𝜋

⟩
,
⟨(

z3, 4
)
, 0.82ei1.55𝜋 , 0.31ei0.55𝜋

⟩
,⟨(

z4, 5
)
, 0.86ei1.76𝜋 , 0.14ei0.28𝜋

⟩
,
⟨(

z5, 1
)
, 0.22ei0.58𝜋 , 0.73ei1.52𝜋

⟩}
,

h
(
s2
)
=
{⟨(

z1, 4
)
, 0.78ei1.42𝜋 , 0.27ei0.44𝜋

⟩
,
⟨(

z2, 1
)
, 0.31ei0.44𝜋 , 0.78ei1.42𝜋

⟩
,
⟨(

z3, 5
)
, 0.92ei1.75𝜋 , 0.08ei0.22𝜋

⟩
,⟨(

z4, 2
)
, 0.38ei0.72𝜋 , 0.61ei1.03𝜋

⟩
,
⟨(

z5, 3
)
, 0.63ei1.28𝜋 , 0.46ei0.84𝜋

⟩}
,

h
(
s3
)
=
{⟨(

z1, 0
)
, 0.12ei0.24𝜋 , 0.83ei1.68𝜋

⟩
,
⟨(

z2, 2
)
, 0.42ei0.68𝜋 , 0.55ei1.22𝜋

⟩
,
⟨(

z3, 3
)
, 0.61ei1.05𝜋 , 0.43ei0.79𝜋

⟩
,⟨(

z4, 0
)
, 0.13ei0.11𝜋 , 0.89ei1.92𝜋

⟩
,
⟨(

z5, 2
)
, 0.45ei0.92𝜋 , 0.63ei1.13𝜋

⟩}
,

h
(
s4
)
=
{⟨(

z1, 5
)
, 0.88ei1.78𝜋 , 0.12ei0.22𝜋

⟩
,
⟨(

z2, 3
)
, 0.58ei1.12𝜋 , 0.44ei0.88𝜋

⟩
,
⟨(

z3, 5
)
, 0.98ei1.78𝜋 , 0.09ei0.25𝜋

⟩
,⟨(

z4, 1
)
, 0.24ei0.52𝜋 , 0.82ei1.55𝜋

⟩
,
⟨(

z5, 4
)
, 0.72ei1.60𝜋 , 0.25ei0.63𝜋

⟩}
.

Now, CPF6SS can be represented in tabular form by Table 22.

Choice values of CPF6SS

The calculated choice values of CPF6SS for the selection of best laptop is given in Table 23.

According to choice values of CPF6SS, the laptops can be ranked in following order:

z3 ≻ z1 ≻ z4 ≻ z5 ≻ z2.

Hence, we conclude that z3 is the best laptop of the year having maximum choice value𝔖p.

T-choice values of CPF6SS

The calculated T-choice values of CPF6SS is given in Table 24, where we choose T= 5.

Table 22 Tabular representation of CPF6SS.
(h, L, 6) s1 s2 s3 s4
z1 ⟨3, (0.58ei1.22π , 0.41ei0.77π)⟩ ⟨4, (0.78ei1.42π , 0.27ei0.44π )⟩ ⟨0, (0.12ei0.24π , 0.83ei1.68π)⟩ ⟨5, (0.88ei1.78π , 0.12ei0.22π)⟩
z2 ⟨0, (0.05ei0.22π , 0.92ei1.77π)⟩ ⟨1, (0.31ei0.44π , 0.78ei0.42π)⟩ ⟨2, (0.42ei0.68π , 0.55ei1.22π)⟩ ⟨3, (0.58ei1.12π , 0.44ei0.88π)⟩
z3 ⟨4, (0.82ei1.55π , 0.31ei0.55π)⟩ ⟨5, (0.92ei1.75π , 0.08ei0.22π)⟩ ⟨3, (0.61ei1.05π , 0.43ei0.79π)⟩ ⟨5, (0.98ei1.78π , 0.09ei0.25π)⟩
z4 ⟨5, (0.86ei1.76π , 0.14ei0.28π)⟩ ⟨2, (0.38ei0.72π , 0.61ei1.03π)⟩ ⟨0, (0.13ei0.11π , 0.89ei1.92π)⟩ ⟨1, (0.24ei0.52π , 0.82ei1.55π)⟩
z5 ⟨1, (0.22ei0.58π , 0.73ei1.52π)⟩ ⟨3, (0.63ei1.28π , 0.46 i0.84π)⟩ ⟨2, (0.45ei0.92π , 0.63ei1.13π)⟩ ⟨4, (0.72ei1.60π , 0.25ei0.63π)⟩

Table 23 Choice values of CPF6SS.
(h, L, 6) s1 s2 s3 s4 𝜉p 𝔖p

z1 ⟨3, (0.58ei1.22π,
0.41ei0.77π)⟩ ⟨4, (0.78ei1.42π ,

0.27ei0.44π)⟩ ⟨0, (0.12ei0.24π ,
0.83ei1.68π)⟩ ⟨5, (0.88ei1.78π ,

0.12ei0.22π)⟩ ⟨5, (0.9851ei1.9662π ,
0.0051ei0.0072π)⟩ 2.937

z2 ⟨0, (0.05ei0.22π ,
0.92ei1.77π)⟩ ⟨1, (0.31ei0.44π ,

0.78ei1.42π)⟩ ⟨2, (0.42ei0.68π ,
0.55ei1.22π)⟩ ⟨3, (0.58ei1.12π ,

0.44ei0.88π)⟩ ⟨3, (0.7457ei1.3609π ,
0.1103ei0.2056π)⟩ 1.356

z3 ⟨4, (0.82ei1.55π ,
0.31ei0.55π)⟩ ⟨5, (0.92ei1.75π ,

0.08ei0.22π)⟩ ⟨3, (0.61ei1.05π ,
0.43ei0.79π)⟩ ⟨5, (0.98ei1.78π ,

0.09ei0.25π)⟩ ⟨5, (0.9998ei1.9956π ,
0.0003ei0.0011π)⟩ 2.995

z4 ⟨5, (0.86ei1.76π ,
0.14ei0.28π)⟩ ⟨2, (0.38ei0.72π ,

0.61ei1.03π)⟩ ⟨0, (0.13ei0.11π ,
0.89ei1.92π)⟩ ⟨1, (0.24ei0.52π ,

0.82ei1.55π)⟩ ⟨5, (0.9078ei1.8365π ,
0.0387ei0.0666π)⟩ 2.664

z5 ⟨1, (0.22ei0.58π ,
0.73ei1.52π)⟩ ⟨3, (0.63ei1.28π ,

0.46ei0.84π)⟩ ⟨2, (0.45ei0.92π ,
0.63ei1.13π)⟩ ⟨4, (0.72ei1.60π ,

0.25ei0.63π)⟩ ⟨4, (0.9206ei1.9013π ,
0.0261ei0.0558π)⟩ 2.389
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According to Table 24, the ranking of laptops is given as follows:

z3 > z1 > z4 > z5 > z2.

Hence, we infer that z3 is selected as best laptop of the year having maximum 5-choice𝔖5
p.

Comparison table of CPF6SS

A comparison table is a square table whose both horizontal and vertical entries are tagged by the universe of objects z1, z2, . . . zr . The
number of parameters for which score degree of zp exceeds or equal to the score degree of zq specify the entry epq of comparison table. The
tabular representation of score degrees of CPF6SVs of Table 22 is given by Table 25. The comparison table of score degrees is presented in
Table 26. The final outcome for each laptop is calculated by subtracting the column sum from the row sum of Table 27.

From Table 27, we infer that the laptops can be ranked in following order:

z3 ≻ z1 ≻ z5 ≻ z4 ≻ z2.

Hence, we conclude that z3 is the best laptop of the year having maximum final outcome.

Table 24 5-choice values of CPF6SS.

(h5, S) s1 s2 s3 s4 𝜉5p 𝔖5
p

z1 ⟨0.0ei0.0π , 0.5ei1.0π⟩ ⟨0.0ei0.0π , 0.5ei1.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.88ei1.78π , 0.12ei0.22π⟩ ⟨0.88ei1.78π , 0.01ei0.03π⟩ 1.5661

z2 ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 0.5e𝜄1.0π⟩ ⟨0.0ei0.0π , 0.5ei1.0π⟩ −0.5

z3 ⟨0.0ei0.0π , 0.5ei1.0π⟩ ⟨0.92ei1.75π , 0.08ei0.22π⟩ ⟨0.0ei0.0π , 0.5ei1.0π⟩ ⟨0.98ei1.78π , 0.09ei0.25π⟩ ⟨0.99ei1.96π , 0.0006ei0.002π⟩ 1.9404

z4 ⟨0.86ei1.76π , 0.14ei0.28π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.86ei1.76π , 0.14ei0.28π⟩ 1.4748

z5 ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 0.5ei1.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 0.5ei1.0π⟩ ⟨0.0ei0.0π , 0.2ei0.4π⟩ −0.08

Table 25 Score degrees of CPF6SVs.
𝔖pq s1 s2 s3 s4
z1 0.7521 1.6312 −1.3657 2.5400
z2 −1.6150 −0.9280 −0.2226 0.6228
z3 1.7413 2.5935 0.6668 2.7287
z4 2.4748 −0.2033 −1.6937 −1.1078
z5 −0.9380 0.7785 −0.1420 1.6366

Table 26 Comparison table of score degrees.
. z1 z2 z3 z4 z5
z1 4 3 0 3 3
z2 1 4 0 2 0
z3 4 4 4 3 4
z4 1 2 1 4 1
z5 1 4 0 3 4

Table 27 Final outcome with grades.
Grade sum(h) Row sum(r) Column sum(c) Final out-

come (r − c)
z1 12 13 11 2
z2 6 7 17 −10
z3 17 19 5 14
z4 8 9 15 −6
z5 10 12 12 0
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5.2. Selection of the Plant Location

Plant location is one of the most important managerial DM problems as it strongly influences the profitability and future expansion of
business. It has a great importance for both newly and already established firms. Suppose that a multinational enterprise wants to start up
a new manufacturing plant to serve their increased set of demands. Consider the universe of five locations Z = {z1, z2, z3, z4, z5 under
consideration and let S = {s1, s2, s3, s4} be the set of factors affecting the selection of plant location, where

s1 : Cost of production: The total cost of production is the most important factor in plant location. This criteria includes all the expen-
ditures required for land, raw material, transportation, distribution and labor. Plant location with minimum cost of production is
selected.

s2 : Supply of labor: The adequate number of laborers with specific skills is essential for the evaluation of plant location. Plant location
nearer to the source of manpower should be preferable.

s3 : Infrastructure: The infrastructure facilities are the backbone of all industries. This includes telecommunication, transport, support
services and regular supply of fuel.

s4 : Proximity to markets: Proximity to markets is mandatory for the location of plants. It reduces the cost of transportation of furnished
goods and offers quick services to customers.

The purpose of this study is to determine the best location for the establishment of a new plant. An ideal selection of plant location will
minimize the cost of production and distribution to a large extent which in turn optimize the profit of enterprise. Now, A 5-soft set can be
obtained from Table 28, where

∙ Four check marks represent “Superb,”

∙ Three check marks represent “Excellent,”

∙ Two check marks represent “Good,”

∙ One check mark represents “Normal,”

∙ Big dot represents ‘Poor’.

This graded evaluation by stars can easily be identified with numbers D = {0, 1, 2, 3, 4}, where

∙ 0 stands for “ ∙,”

∙ 1 stands for “ ⋆,”

∙ 2 stands for “ ⋆ ⋆,”

∙ 3 stands for “ ⋆ ⋆ ⋆,”

∙ 4 stands for “ ⋆ ⋆ ⋆ ⋆,”

Table 28 Rating of plant locations.
Z/S s1 s2 s3 s4
z1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆
z2 ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆
z3 ∙ ⋆⋆ ⋆⋆ ⋆
z4 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆⋆ ∙
z5 ⋆ ⋆ ⋆⋆ ∙ ⋆ ⋆ ⋆ ⋆⋆

Table 29 Associated 5-soft set.
(H, S, 5) s1 s2 s3 s4
z1 3 4 3 4
z2 2 1 3 1
z3 0 2 2 1
z4 3 4 4 0
z5 4 0 3 2
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The rating of plant locations is given in Table 28.

Now, the tabular form of its corresponding 5-soft set is presented in Table 29.

In this respect, the grading criteria based on the parameters of plant locations is given below:

−2.0 ≤ 𝔖
(
𝜏pq

)
< −1.0 when dpq = 0,

−1.0 ≤ 𝔖
(
𝜏pq

)
< 0.0 when dpq = 1,

0.0 ≤ 𝔖
(
𝜏pq

)
< 1.0 when dpq = 2,

1.0 ≤ 𝔖
(
𝜏pq

)
< 2.0 when dpq = 3,

2.0 ≤ 𝔖
(
𝜏pq

) ≤ 3.0 when dpq = 4,

where𝔖
(
𝜏pq

)
=
( dpq

N−1

)2
+
(
𝜇2
pq − 𝜆2pq

)
+ 1

4𝜋2

(
𝛼2
pq − 𝛽2pq

)
and 𝜏pq =

⟨
dpq,

(
𝜇pqei𝛼pq , 𝜆pqei𝛽pq

)⟩
; p = 1,2,3,4,5, q = 1,2,3,4.

Therefore, by Definition 3.1, CPF5SS is defined as

(h, L, 5) =
{(

s1, h
(
s1
))

,
(
s2, h

(
s2
))
),
(
s3, h

(
s3
))

,
(
s4, h

(
s4
))}

, where

h
(
s1
)
=
{⟨(

z1, 3
)
, 0.75ei1.25𝜋 , 0.38ei0.45𝜋

⟩
,
⟨(

z2, 2
)
, 0.55ei0.83𝜋 , 0.58ei0.99𝜋

⟩
,
⟨(

z3, 0
)
, 0.15ei0.37𝜋 , 0.99ei1.65𝜋

⟩
,⟨(

z4, 3
)
, 0.65ei1.58𝜋 , 0.35ei0.52𝜋

⟩
,
⟨(

z5, 4
)
, 0.95ei1.92𝜋 , 0.13ei0.28𝜋

⟩}
,

h
(
s2
)
=
{⟨(

z1, 4
)
, 0.99ei1.76𝜋 , 0.13ei0.23𝜋

⟩
,
⟨(

z2, 1
)
, 0.38ei0.45𝜋 , 0.78ei1.22𝜋

⟩
,
⟨(

z3, 2
)
, 0.48ei0.93𝜋 , 0.51ei0.84𝜋

⟩
,{⟨(

z4, 4
)
, 0.88ei1.75𝜋 , 0.15ei0.32𝜋

⟩
,
⟨(

z5, 0
)
, 0.09ei0.35𝜋 , 0.93ei1.92𝜋

⟩
,

h
(
s3
)
=
{⟨(

z1, 3
)
, 0.68ei1.34𝜋 , 0.33e𝜄0.75𝜋

⟩
,
⟨(

z2, 3
)
, 0.77ei1.44𝜋 , 0.28ei0.62𝜋

⟩
,
⟨(

z3, 2
)
, 0.53ei0.85𝜋 , 0.48ei0.91𝜋

⟩
,{⟨(

z4, 4
)
, 0.89e𝜄1.83𝜋 , 0.99ei0.22𝜋

⟩
,
⟨(

z5, 3
)
, 0.68ei1.42𝜋 , 0.29ei0.66𝜋

⟩
,

h
(
s4
)
=
{⟨(

z1, 4
)
, 0.85ei1.88𝜋 , 0.17ei0.34𝜋

⟩
,
⟨(

z2, 1
)
, 0.29e𝜄0.73𝜋 , 0.75ei1.53𝜋

⟩
,
⟨(

z3, 1
)
, 0.34ei0.62𝜋 , 0.76ei1.37𝜋

⟩
,{⟨(

z4, 0
)
, 0.19ei0.28𝜋 , 0.83ei1.88𝜋

⟩
,
⟨(

z5, 2
)
, 0.44ei0.92𝜋 , 0.57ei0.87𝜋

⟩
.

Now, CPF5SS can be represented in tabular form by Table 30.

Choice values of CPF5SS

The calculated choice values of CPF5SS for the selection of best plant location is given in Table 31.

According to choice values of CPF5SS, the ranking of locations of plant is given as follows:

z1 ≻ z4 ≻ z5 ≻ z2 ≻ z3.

Thus, we infer that z1 is the best location of the plant having maximum choice value𝔊P.

Table 30 Tabular representation of the CPF5SS.
(H, S, 5) s1 s2 s3 s4
z1 ⟨3,(0.75ei1.25π,0.38ei0.45π)⟩ ⟨4,(0.99ei1.76π,0.13ei0.23π)⟩ ⟨3,(0.68ei1.34π,0.33ei0.75π)⟩ ⟨4,(0.85ei1.88π,0.17ei0.34π)⟩
z2 ⟨2,(0.55ei0.83π,0.58ei0.99π)⟩ ⟨1,(0.38ei0.45π,0.78ei1.22π)⟩ ⟨3,(0.77ei1.44π,0.28ei0.62π)⟩ ⟨1,(0.29ei0.73π,0.75ei1.53π)⟩
z3 ⟨0,(0.15ei0.37π,0.99ei1.65π)⟩ ⟨2,(0.48ei0.93π,0.51ei0.84π)⟩ ⟨2,(0.53ei0.85π,0.48ei0.91π)⟩ ⟨1,(0.34ei0.62π,0.76ei1.37π)⟩
z4 ⟨3,(0.65ei1.92π,0.35ei0.28π)⟩ ⟨4,(0.88ei0.35π,0.15ei1.92π)⟩ ⟨4,(0.89ei1.42π,0.99ei0.66π)⟩ ⟨0,(0.19ei0.92π,0.83ei0.87π)⟩
z5 ⟨4,(0.95ei1.92π,0.13ei0.28π)⟩ ⟨0,(0.09ei0.35π,0.93 ei1.92π)⟩ ⟨3,(0.68ei1.42π,0.29ei0.66π)⟩ ⟨2,(0.44ei0.22π,0.57ei0.87π)⟩
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T-choice values of CPF5SS

The calculated T-choice values of CPF5SS is given in Table 32, where we choose T = 4.

According to Table 32, the locations of plant can be ranked in following order:

z1 ≻ z4 ≻ z5 ≻ z2 ≻ z3.

Thus, we infer that z1 is selected as a suitable location of plant having maximum 4-choice value𝔖4
p.

Comparison table of CPF5SS

The tabular representation of score degrees of CPF5SVs of Table 30 is given by Table 33. The comparison table of score degrees is presented
in Table 34. The final outcome for each plant location is calculated by subtracting the column sum from the row sum of Table 35.

From Table 35, we infer that the locations of plant can be ranked as follows:

z1 ≻ z4 ≻ z5 ≻ z2 ≻ z3.

Table 31 Tabular representation of the CPF5SS.
(H, S, 5) s1 s2 s3 s4 𝜉p 𝔊P

z1 ⟨3,(0.75ei1.25π,
0.38ei0.45π)⟩ ⟨4,(0.99ei1.76π,

0.13ei0.23π)⟩ ⟨3,(0.68⟨ei1.34π,
0.33ei0.75π)⟩ ⟨4,(0.85ei1.88π,

ei0.34π)⟩ ⟨4,(0.99ei1.99π,
0.0008ei0.0009π)⟩ 2.9701

z2 ⟨2,(0.55ei0.83π,
0.58ei0.99π)⟩ ⟨2,(0.55ei0.83π,

0.58ei0.99π)⟩ ⟨3,(0.77ei1.44π,
0.28ei0.62π)⟩ ⟨4,(0.85ei1.88π,

0.17ei0.34π)⟩ ⟨4,(0.99ei1.99π,
0.0008ei0.0009π)⟩ 2.3054

z3 ⟨0,(0.15ei0.37π,
0.99ei1.65π)⟩ ⟨2,(0.48ei0.93π,

0.51ei0.84π)⟩ ⟨2,(0.53ei0.85π,
0.48ei0.91π)⟩ ⟨1,(0.34ei0.62π,

0.76ei1.37π)⟩ ⟨2,(0.75ei1.39π,
0.11ei0.11π)⟩ 1.5304

z4 ⟨3,(0.65ei1.58π,
0.35ei0.52π)⟩ ⟨4,(0.88ei1.75π,

0.15ei0.32π )⟩ ⟨4,(0.89ei1.83π,
0.99ei0.22π)⟩ ⟨0,(0.19ei0.28π,

0.83ei1.88π)⟩ ⟨4,(0.99ei1.99π,
0.02ei0.004π)⟩ 2.9697

z5 ⟨4,(0.95ei1.92π,
0.13ei0.28π)⟩ ⟨0,(0.09ei0.35π,

0.93ei1.92π )⟩ ⟨3,(0.68ei1.42π,
0.29ei0.66π)⟩ ⟨2,(0.44ei0.92π,

0.57ei0.87π)⟩ ⟨4,(0.98ei1.74π,
0.009ei0.01π)⟩ 2.7171

Table 32 4-choice values of CPF5SS.

(h4, S) s1 s2 s3 s4 𝜉4p 𝔖4
p

z1 ⟨0.0ei0.0π , 0.5ei1.0π⟩ ⟨0.99ei1.76π , 0.13ei0.23π⟩ ⟨0.0ei0.0π , 0.5ei1.0π⟩ ⟨0.85ei1.88π , 0.17ei0.34π⟩ ⟨0.99ei1.98π , 0.0016ei0.0033π⟩ 1.9601

z2 ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 0.5ei1.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 0.5ei1.0π⟩ −0.5000

z3 ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ −2.000

z4 ⟨0.0ei0.5π , 1.0ei1.0π⟩ ⟨0.88ei1.75π , 0.15ei0.32π⟩ ⟨0.89ei1.83π , 0.99ei0.22π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.98ei1.97π , 0.04ei0.009π⟩ 1.9290

z5 ⟨0.95ei1.92π , 0.13ei0.28π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.0ei0.0π , 0.5ei1.0π⟩ ⟨0.0ei0.0π , 1.0ei2.0π⟩ ⟨0.95ei1.92π , 0.04ei0.106π⟩ 1.8196

Table 33 Score degrees of CPF5SVs.
𝔖pq s1 s2 s3 s4
z1 1.3206 2.7243 1.2242 2.5483
z2 0.4133 −0.7229 1.4993 −0.8679
z3 −1.6040 0.26010 0.2741 −0.7726
z4 1.4190 2.4919 1.6371 −1.5168
z5 2.7876 −1.7477 1.3360 0.1440

Table 34 Comparison table of score degrees.
. z1 z2 z3 z4 z5
z1 4 3 4 2 2
z2 1 4 2 1 2
z3 0 2 4 1 1
z4 2 3 3 4 2
z5 2 2 3 2 4



M. Akram et al. / International Journal of Computational Intelligence Systems 14(1) 1263–1291 1287

Hence, we conclude that z1 will be the best location of a manufacturing plant having maximum final outcome.

6. COMPARATIVE ANALYSIS

In this section, a comparative analysis of our proposed techniques with existing MCDM techniques, namely, choice values of PFNSS and
D-choice values of PFNSS is presented. We illustrate the authenticity and validity of our presented methods by evaluating the numerical
example named “Selection of plant location” using choice values of PFNSS and D-choice values of PFNSS techniques.

Choice values of PFNSS method

We now solve the numerical example 5.2 with the technique, namely, choice values of PFNSS that was proposed by Zhang et al. [54].

First, construct the Pythagorean fuzzy 5-soft set (PF5SS) from Table 30 by taking phase terms of all their CPFNSVs equal to zero to apply
the “Choice values of PFNSS” technique. The constructed PF5SS

(
h𝔓, S, 5

)
is given in Table 36.

Further, compute the choice values 𝜁p of each zp as follows:

𝜁p =

⟨ 4∑
q=1

dpq,
4∑

q=1
R⋆
pq

⟩
, (6)

where R⋆
pq =

1
2
+ rpq

(
1
2
− 2𝜃pq

𝜋

)
, rpq =

√
𝜇2
pq + 𝜆2pq be the commitment strength and 𝜃pq = tan−1

(
𝜆pq
𝜇pq

)
be the angle between commitment

strength rpq and membership degree μpq. These computed choice values 𝜁p are given in Table 37.

According to choice values of PF5SS, the ranking of locations of plant is given as follows:

z1 ≻ z4 ≻ z5 ≻ z2 ≻ z3.

Hence, we conclude that z1 is the best location of plant having maximum choice value 𝜁p.

Table 35 Final outcome with grades.
. Grade sum(h) Row sum(r) column sum(c) Final outcome(r –

c)
z1 14 15 9 6
z2 7 10 14 −4
z3 5 8 16 −8
z4 11 14 10 4
z5 9 13 11 2

Table 36 Tabular representation of the PF5SS.(
h𝔓, S, 5

) s1 s2 s3 s4

z1 ⟨3,(0.75, 0.38)⟩ ⟨4, (0.99, 0.13)⟩ ⟨3, (0.68, 0.33)⟩ ⟨4, (0.85, 0.17)⟩
z2 ⟨2, (0.55, 0.58)⟩ ⟨1, (0.38, 0.78)⟩ ⟨3, (0.77, 0.28)⟩ ⟨1, (0.29, 0.75)⟩
z3 ⟨0, (0.15, 0.99)⟩ ⟨2, (0.48, 0.51)⟩ ⟨2, (0.53, 0.48)⟩ ⟨1, (0.34, 0.76)⟩
z4 ⟨3, (0.65, 0.35)⟩ ⟨4, (0.88, 0.15)⟩ ⟨4, (0.89, 0.99)⟩ ⟨0, (0.19, 0.83)⟩
z5 ⟨4, (0.95, 0.13)⟩ ⟨0, (0.09, 0.93)⟩ ⟨3, (0.68, 0.29)⟩ ⟨2, (0.44, 0.57)⟩

Table 37 Choice value of PF5SS.(
h𝔓, S, 5

)
s1 s2 s3 s4 𝜁p

z1 ⟨3, (0.75, 0.38)⟩ ⟨4, (0.99, 0.13)⟩ ⟨3, (0.68, 0.33)⟩ ⟨4, (0.85, 0.17)⟩ ⟨14, 3.0704⟩
z2 ⟨2, (0.55, 0.58)⟩ ⟨1, (0.38, 0.78)⟩ ⟨3, (0.77, 0.28)⟩ ⟨1, (0.29, 0.75)⟩ ⟨7, 1.8174⟩
z3 ⟨0, (0.15, 0.99)⟩ ⟨2, (0.48, 0.51)⟩ ⟨2, (0.53, 0.48)⟩ ⟨1, (0.34, 0.76)⟩ ⟨5, 1.4107⟩
z4 ⟨3, (0.65, 0.35)⟩ ⟨4, (0.88, 0.15)⟩ ⟨4, (0.89, 0.99)⟩ ⟨0, (0.19, 0.83)⟩ ⟨11, 2.1383⟩
z5 ⟨4, (0.95, 0.13)⟩ ⟨0, (0.09, 0.93)⟩ ⟨3, (0.68, 0.29)⟩ ⟨2, (0.44, 0.57)⟩ ⟨9, 2.1077⟩
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D-choice values of PFNSS

We now solve the numerical example 5.2 with the technique, namely, D-choice values of PFNSS that was proposed by Zhang et al. [54].
Construct Pythagorean fuzzy 5-soft set from Table 30 by taking phase terms of all their CPFNSVs equal to zero to apply the “D-Choice
values of PFNSS” technique. The constructed PF5SS is given in Table 36.

Further, compute the D-choice value 𝜁Dp of each zp as follows:

𝜁Dp =

4∑
q=1

𝔖
(
hDpq

)
4

, where𝔖
(
hDpq

)
= 𝜇2

pq − 𝜆2pq, (7)

hDpq =
⎧⎪⎨⎪⎩
⟨
𝜇pq, 𝜆pq

⟩
, if

⟨
dpq,

(
𝜇pq, 𝜆pq

)⟩
∈ h

(
sq
)
and dpq ≥ D,{⟨0.0, 0.5⟩ , if dpq

N
≥ 0.5,⟨0.0, 1.0⟩ , if dpq

N
< 0.5.

(8)

The calculated D-choice values of PF5SS is given in Table 38, where we choose T = 4.

According to Table 38, the locations of plant can be ranked in following order:

z1 ≻ z4 ≻ z5 ≻ z2 ≻ z3.

Thus, we infer that z1 is selected as a suitable location of plant having maximum 4-choice value 𝜁4p .

6.1. Discussion
∙ We conduct a comparison with existing MCDM techniques, namely, choice values of PFNSS and D-choice values of PFNSS to

demonstrate the proficiency of proposed techniques. The results of compared methods are presented in Table 39.

∙ All the compared and proposed techniques prioritize z1 as the most profitable location for the start-up of a new manufacturing plant of
an enterprise. Also, ranking of plant locations remains the same in all these techniques which depicts the authenticity and validity of
our proposed techniques in MADM problems.

∙ The comparison among the results of proposed and existing DM techniques is displayed in Figure 1 by plotting an illustrative bar chart
among locations of plant and their order of ranking which demonstrate the reliability and proficiency of the proposed techniques.

∙ Our presented strategies are most generalized and flexible methods as they integrate existing MADM techniques, namely, choice values
of PFNSS and D-choice values of PFNSS by capturing both aspects of two-dimensional vague information.

Table 38 4-choice values of PF5SS.(
h4𝔓, S, 5

)
s1 s2 s3 s4 𝜁4p

z1 ⟨0.0, 0.5⟩ ⟨0.99, 0.13⟩ ⟨0.0, 0.5⟩ ⟨0.85, 0.17⟩ 0.2892
z2 ⟨0.0, 1.0⟩ ⟨0.0, 1.0⟩ ⟨0.0, 0.5⟩ ⟨0.0, 1.0⟩ −0.8125
z3 ⟨0.0, 1.0⟩ ⟨0.0, 1.0⟩ ⟨0.0, 1.0⟩ ⟨0.0, 1.0⟩ −1.0000
z4 ⟨0.0, 0.5⟩ ⟨0.88, 0.15⟩ ⟨0.89, 0.99⟩ ⟨0.0, 1.0⟩ −0.1715
z5 ⟨0.95, 0.13⟩ ⟨0.0, 1.0⟩ ⟨0.0, 0.5⟩ ⟨0.0, 1.0⟩ −0.3411

Table 39 Comparative analysis.
Methods Ranking Best Location
Proposed choice values of CPFNSS method z1 ≻ z4 ≻ z5 ≻ z2 ≻ z3 z1
Proposed T-choice values CPFNSS method z1 ≻ z4 ≻ z5 ≻ z2 ≻ z3 z1
Proposed comparison table method z1 ≻ z4 ≻ z5 ≻ z2 ≻ z3 z1
Choice values of PFNSS method [54] z1 ≻ z4 ≻ z5 ≻ z2 ≻ z3 z1
D-choice values of PFNSS method [54] z1 ≻ z4 ≻ z5 ≻ z2 ≻ z3 z1
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Figure 1 Comparative analysis.

∙ Our proposed techniques have potential to deal with Pythagorean fuzzy N-soft information by taking phase terms equal to zero. Also,
they provide the same results as provided by compared techniques. However, compared methods are not capable enough to deal with
complex Pythagorean fuzzy N-soft information because of inadequacy of phase terms and they are restricted to capture only one
dimensional information. This special trait models our presented techniques superior and stronger than existing DM techniques.

∙ The proposed CPFNSS provides a parameterized mathematical framework for the modeling of fuzziness and vagueness of data. It also
has the potential to deal with the obscurity of two-dimensional information, that is, it can capture the uncertainty and periodicity of
data at the same time. It is specially designed for the ranking and rating based evaluations of inconsistent and imprecise data.

7. CONCLUSION

In this research article, a novel theory has been established by the fusion of complex PFS theory with N-soft sets. The powerful and gen-
eralized model that arises, abbreviated as CPFNSS, has been introduced to provide a parameterized mathematical tool for the modeling
of two-dimensional vague information. It has extrapolated the existing models due to its multinary but discrete evaluations of imprecise
parameterized data having complexmembership and nonmembership grades. Firstly, we have put forward the formal definition of CPFNSS
along with its elementary operations.We have argued that the proposedmodel has an edge over the existing techniques as it overcomes defi-
ciencies of NSS, PFNSS, CPFS and CIFNSS. Then, we have presented the fundamental Einstein and some algebraic operations of CPFNSVs.
Another major contribution of this study is the development of three MCDM approaches for the selection of favorable alternative under
CPFNS environment. We have put into practice the presented methodologies on two real life applications to exhibit the significance of our
model. Finally, their validity has been demonstrated by comparative analyses with existing MCDM techniques. Admittedly, our presented
theory has some limitations because the space of the proposed model is bounded by some constraint conditions. Due to this, the proposed
DM methods are restricted to address the MCDM problems within the confined space of the proposed model. Also, the calculations per-
formed by these methods are quite massive and cumbersome. Thus in the future, we are planning to extend our research to the more gen-
eralized mathematical theories covering a broader range of space and reduce the lengthy calculations of these DMtechniques by computer
programing.We also intend to developmoreMCDM strategies, including TOPSISmethod, VIKORmethod and ELECTRE Imethod under
such a rich and flexible environment of CPFNSS.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.



1290 M. Akram et al. / International Journal of Computational Intelligence Systems 14(1) 1263–1291

AUTHORS’ CONTRIBUTIONS

MuhammadAkramproposed themethodology; FaizaWasim investigated the results; AhmadN.Al-Kenani reviewed the results. All authors
read and approved the final manuscript.

ACKNOWLEDGMENTS

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (RG-24-130-38).
The authors, therefore, gratefully acknowledge DSR technical and financial support.

REFERENCES

[1] M. Akram, A. Adeel, J.C.R. Alcantud, Group decision-making methods based on hesitant N-soft sets, Expert Syst. Appl. 115 (2019), 95–105.
[2] M. Akram, A. Adeel, J.C.R. Alcantud, Fuzzy N-soft sets: a novel model with applications, J. Intell. Fuzzy Syst. 35 (2018), 4757–4771.
[3] M. Akram, A. Adeel, J.C.R. Alcantud, Hesitant fuzzy N-soft sets: a new model with applications in decision-making, J. Intell. Fuzzy Syst. 36

(2019), 6113–6127.
[4] M. Akram, G. Ali, J.C.R. Alcantud, New decision-making hybrid model: intuitionistic fuzzy N-soft rough sets, Soft Comput. 23 (2019),

9853–9868.
[5] M. Akram, H. Garg, K. Zahid, Extensions of ELECTRE-I and TOPSIS methods for group decision-making under complex Pythagorean fuzzy

environment, Iranian J. Fuzzy Syst. 17 (2020), 147–164.
[6] M. Akram, A. Luqman, J.C.R. Alcantud, Risk evaluation in failure modes and effects analysis: hybrid TOPSIS and ELECTRE I solutions with

Pythagorean fuzzy information, Neural Comput. Appl. (2021).
[7] M. Akram, A. Adeel, A.N. Al-Kenani, J.C.R. Alcantud, Hesitant fuzzyN-soft ELECTRE-II model: a new framework for decision-making,

Neural Comput. Appl. (2020).
[8] M. Akram, S. Naz, A novel decision-making approach under complex Pythagorean fuzzy environment, Math. Comput. Appl. 24 (2019), 73.
[9] J.C.R. Alcantud, F. Feng, R.R. Yager, An N-soft set approach to rough sets, IEEE Trans. Fuzzy Syst. 28 (2020), 2996–3007.
[10] A.S. Alkouri, A.R. Salleh, Complex intuitionistic fuzzy sets, AIP Conf. Proc. 1482 (2012), 464–470.
[11] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87–96.
[12] Z.S. Chen, X.L. Liu, R.M. Rodríguez, X.J. Wang, K.S. Chin, K.L. Tsui, L. Martínez, Identifying and prioritizing factors affecting in-cabin

passenger comfort on high-speed rail in China: afuzzy-based linguistic approach, Appl. Soft Comput. 95 (2020),106558.
[13] Z.S. Chen, Y. Yang, X.J. Wang, K.S. Chin, K.L. Tsui, Fostering linguistic decision-making under uncertainty: a proportional interval type-2

hesitant fuzzy TOPSIS approach based on Hamacher aggregation operators and andness optimization models, Inf. Sci. 500 (2019), 229–258.
[14] Z.S. Chen, C. Yu, K.S. Chin, L. Martínez, An enhanced ordered weighted averaging operators generation algorithm with applications for

multi-criteria decision making, Appl. Math. Model. 71 (2019), 467–490.
[15] F. Fatimah, J.C.R. Alcantud, The multi-fuzzy N-soft set and its applications to decision-making, Neural Comput. Appl. (2021).
[16] F. Fatimah, D. Rosadi, R.B.F. Hakim, J.C.R. Alcantud, N-soft sets and their decision making algorithms, Soft Comput. 22 (2018), 3829–3842.
[17] F. Feng, Soft rough sets applied to multi criteria group decision making, Ann. Fuzzy Math. Inform. 2 (2011), 69–80.
[18] F. Feng, M. Akram, B. Davvaz, V.L. Fotea, Attribute analysis of information systems based on elementary soft implications, Knowl.-Based Syst.

70 (2014), 281–292.
[19] F. Feng, X. Liu, V. Leoreanu-Fotea, Y.B. Jun, Soft sets and soft rough sets, Inf. Sci. 181 (2011), 1125–1137.
[20] H. Garg, Linguistic Pythagorean fuzzy sets and its applications in multi attribute decision making process, Int. J. Intell. Syst. 33 (2018),

1234–1263.
[21] H. Garg, Hesitant Pythagorean fuzzy sets and their aggregation operators in multiple-attribute decision-making, Int. J. Uncertain. Quant. 8

(2018), 267–289.
[22] H. Garg, A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision-making processes, Int. J. Intell. Syst.

31 (2016), 1234–1253.
[23] C. Huang, M. Lin, Z. Xu, Pythagorean fuzzy MULTIMOORA method based on distance measure and score function: its application in mul-

ticriteria decision making process, Knowl. Inf. Syst. 62 (2020), 4373–4406.
[24] T. Kumar, R.K. Bajaj, On complex intuitionistic fuzzy soft sets with distance measures and entropies, J. Math. 2014 (2014), 1–12.
[25] M. Lin, Z. Chen, Z. Xu, X. Gou, F. Herrera, Score function based on concentration degree for probabilistic linguistic term sets: an application

to TOPSIS and VIKOR, Inf. Sci. 551 (2021), 270–290.
[26] M. Lin, C. Huang, R. Chen, H. Fujita, X. Wang, Directional correlation coefficient measures for Pythagorean fuzzy sets: their applications to

medical diagnosis and cluster analysis, Complex Intell. Syst. 7 (2021), 1025–1043.
[27] M. Lin, C. Huang, Z. Xu, TOPSIS method based on correlation coefficient and entropy measure for linguistic Pythagorean fuzzy sets and its

application to multiple attribute decision making, Complexity. 2019 (2019), 1–16.
[28] M. Lin, C. Huang, Z. Xu, R. Chen, Evaluating IoT platforms using integrated probabilistic linguistic MCDMmethod, IEEE Internet Things J.

7 (2020), 11195–11208.

https://doi.org/10.1016/j.eswa.2018.07.060
https://doi.org/10.3233/JIFS-18244
https://doi.org/10.3233/JIFS-181972
https://doi.org/10.3233/JIFS-181972
https://doi.org/10.1007/s00500-019-03903-w
https://doi.org/10.1007/s00500-019-03903-w
https://doi.org/10.1007/s00521-020-05350-3
https://doi.org/10.1007/s00521-020-05350-3
https://doi.org/10.1007/s00521-020-05498-y
https://doi.org/10.1007/s00521-020-05498-y
https://doi.org/10.3390/mca24030073
https://doi.org/10.1109/TFUZZ.2019.2946526
https://doi.org/10.1063/1.4757515
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/j.asoc.2020.106558
https://doi.org/10.1016/j.asoc.2020.106558
https://doi.org/10.1016/j.ins.2019.05.074
https://doi.org/10.1016/j.ins.2019.05.074
https://doi.org/10.1016/j.apm.2019.02.042
https://doi.org/10.1016/j.apm.2019.02.042
https://doi.org/10.1007/s00521-020-05647-3
https://doi.org/10.1007/s00500-017-2838-6
https://doi.org/10.1016/j.knosys.2014.07.010
https://doi.org/10.1016/j.knosys.2014.07.010
https://doi.org/10.1016/j.ins.2010.11.004
https://doi.org/10.1002/int.21979
https://doi.org/10.1002/int.21979
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020979
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020979
https://doi.org/10.1002/int.21827
https://doi.org/10.1002/int.21827
https://doi.org/10.1007/s10115-020-01491-y
https://doi.org/10.1007/s10115-020-01491-y
https://doi.org/10.1155/2014/972198
https://doi.org/10.1016/j.ins.2020.10.061
https://doi.org/10.1016/j.ins.2020.10.061
https://doi.org/10.1007/s40747-020-00261-1
https://doi.org/10.1007/s40747-020-00261-1
https://doi.org/10.1155/2019/6967390
https://doi.org/10.1155/2019/6967390
https://doi.org/10.1109/JIOT.2020.2997133
https://doi.org/10.1109/JIOT.2020.2997133


M. Akram et al. / International Journal of Computational Intelligence Systems 14(1) 1263–1291 1291

[29] M. Lin, X. Li, L. Chen, Linguistic q-rung orthopair fuzzy sets and their interactional partitioned Hero-nian mean aggregation operators, Int.
J. Intell. Syst. 35 (2020), 217–249.

[30] M. Lin, W. Xu, Z. Lin, R. Chen, Determine OWA operator weights using kernel density estimation, Econ. Res.-Ekon. Istraz. 33 (2020),
1441–1464.

[31] Y. Liu, J.C.R. Alcantud, R.M. Rodríguez, K. Qin, L. Martínez, Intertemporal hesitant fuzzy soft sets: application to group decision making, Int.
J. Fuzzy Syst. 22 (2020), 619–635.

[32] Y. Liu, R.M. Rodríguez, J.C.R. Alcantud, K. Qin, L. Martínez, Hesitant linguistic expression soft sets: application to group decision making,
Comput. Ind. Eng. 136 (2019), 575–590.

[33] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999), 19–31.
[34] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci. 11 (1982), 341–356.
[35] X. Peng, Y. Yang, J. Song, Pythagorean fuzzy soft set and its application, Comput. Eng. 41 (2015), 224–229.
[36] D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic, IEEE Trans. Fuzzy Syst. 11 (2003), 450–461.
[37] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst. 10 (2002), 171–186.
[38] D. Rani, H. Garg, Complex intuitionistic fuzzy power aggregation operators and their applications in multicriteria decision-making, Expert

Syst. 35 (2018), e12325.
[39] R.M. Rodríguez, A. Labella, B. Dutta, L.Martínez, Comprehensiveminimumcostmodels for large scale group decisionmakingwith consistent

fuzzy preference relations, Knowl.-Based Syst. 215 (2021), 106780.
[40] R.M. Rodríguez, A. Labella, G.D. Tre, L. Martínez, A large scale consensus reaching process managing group hesitation, Knowl.-Based Syst.

159 (2018), 86–97.
[41] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, NY, USA, 1983.
[42] P. Thirunavukarasu, R. Suresh, V. Ashokkumar, Theory of complex fuzzy soft set and its applications, Int. J. Innov. Res. Sci. Technol. 3 (2017),

13–18.
[43] K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recog-

nition, Complex Intell. Syst. 6 (2020), 15–27.
[44] J.C. Wang, T.Y. Chen, A novel Pythagorean fuzzy LINMAP-based compromising approach for multiple criteria group decision-making with

preference over alternatives, Int. J. Comput. Intell. Syst. 13 (2020), 444–463.
[45] L. Wang, H. Garg, Algorithm for multiple attribute decision-making with interactive archimedean norm operations under Pythagorean fuzzy

uncertainty, Int. J. Comput. Intell. Syst. 14 (2021), 503–527.
[46] L. Wang, N. Li, Pythagorean fuzzy interaction power Bonferroni mean aggregation operators in multiple attribute decision making, Int. J.

Intell. Syst. 35 (2020), 150–183.
[47] G. Wei, M. Lu, Pythagorean fuzzy power aggregation operators in multiple attribute decision making, Int. J. Intell. Syst. 33 (2018), 169–186.
[48] R.R. Yager, A.M. Abbasov, Pythagorean membership grades, complex numbers and decision making, Int. J. Intell. Syst. 28 (2013), 436–452.
[49] R.R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst. 22 (2013), 958–965.
[50] R.R. Yager, Pythagorean fuzzy subsets, in 2013 Joint IFSAWorld Congress andNAFIPS AnnualMeeting (IFSA/NAFIPS), Edmonton, Canada,

2013, pp. 57–61.
[51] R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Trans. Syst. Man Cybern. 18 (1988),

183–190.
[52] Y. Yang, Z.S. Chen, R.M. Rodriguez, W. Pedrycz, K.S. Chin, Novel fusion strategies for continuous interval-valued q-rung orthopair fuzzy

information: a case study in quality assessment of SmartWatch appearance design, Int. J. Mach. Learn. Cybern. (2021).
[53] L.A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965), 338–353.
[54] H. Zhang, D.J. Hua, C. Yan, Multi-attribute group decision-making methods based on Pythagorean fuzzy N-soft sets, IEEE Access. 8 (2020),

62298–62309.
[55] X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decision making with pythagorean fuzzy sets, Int. J. Intell. Syst. 29 (2014),

1061–1078.
[56] F. Zhou, T.Y. Chen, A novel distancemeasure for Pythagorean fuzzy sets and its applications to the technique for order preference by similarity

to ideal solutions, Int. J. Comput. Intell. Syst. 12 (2019), 955–969.

https://doi.org/10.1002/int.22136
https://doi.org/10.1002/int.22136
https://doi.org/10.1080/1331677X.2020.1748509
https://doi.org/10.1080/1331677X.2020.1748509
https://doi.org/10.1007/s40815-020-00798-w
https://doi.org/10.1007/s40815-020-00798-w
https://doi.org/10.1016/j.cie.2019.07.040
https://doi.org/10.1016/j.cie.2019.07.040
https://doi.org/10.1016/S0898-1221(99)00056-5
https://doi.org/10.1007/BF01001956
https://doi.org/10.3969/j.issn.1000-3428.2015.07.043
https://doi.org/10.1109/TFUZZ.2003.814832
https://doi.org/10.1109/91.995119
https://doi.org/10.1111/exsy.12325
https://doi.org/10.1111/exsy.12325
https://doi.org/10.1016/j.knosys.2021.106780
https://doi.org/10.1016/j.knosys.2021.106780
https://doi.org/10.1016/j.knosys.2018.06.009
https://doi.org/10.1016/j.knosys.2018.06.009
https://doi.org/10.1007/s40747-019-0103-6
https://doi.org/10.1007/s40747-019-0103-6
https://doi.org/10.2991/ijcis.d.200408.001
https://doi.org/10.2991/ijcis.d.200408.001
https://doi.org/10.2991/ijcis.d.201215.002
https://doi.org/10.2991/ijcis.d.201215.002
https://doi.org/10.1002/int.22204
https://doi.org/10.1002/int.22204
https://doi.org/10.1002/int.21946
https://doi.org/10.1002/int.21584
https://doi.org/10.1109/TFUZZ.2013.2278989
https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
https://doi.org/10.1109/21.87068
https://doi.org/10.1109/21.87068
https://doi.org/10.1007/s13042-020-01269-2
https://doi.org/10.1007/s13042-020-01269-2
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1109/ACCESS.2020.2984583
https://doi.org/10.1109/ACCESS.2020.2984583
https://doi.org/10.1002/int.21676
https://doi.org/10.1002/int.21676
https://doi.org/10.2991/ijcis.d.190820.001
https://doi.org/10.2991/ijcis.d.190820.001

	A Hybrid Decision-Making Approach Under Complex Pythagorean Fuzzy N-Soft Sets
	1. INTRODUCTION
	2. PRELIMINARIES
	3. COMPLEX PYTHAGOREAN FUZZY N-SOFT SET
	4. OPERATIONS
	5. APPLICATIONS
	5.1. Selection of the Best Laptop
	5.2. Selection of the Plant Location

	6. COMPARATIVE ANALYSIS
	6.1. Discussion

	7. CONCLUSION


