
International Journal of Computational Intelligence Systems
Vol. 14(1), 2021, pp. 1373–1387

DOI: https://doi.org/10.2991/ijcis.d.210412.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

Research Article

Communication-Efficient Distributed SGD with
Error-Feedback, Revisited

Tran Thi Phuong1,2,3,*, , Le Trieu Phong3,

1Faculty of Mathematics and Statistics, Ton Duc Thang University, No.19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam
2Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
3National Institute of Information and Communications Technology (NICT) 4-2-1, Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan

ART I C L E I N FO
Article History

Received 15 Jul 2020
Accepted 31 Mar 2021

Keywords

Optimizer
Distributed learning
SGD
Error-feedback
Deep neural networks

ABSTRACT
We show that the convergence proof of a recent algorithm called dist-EF-SGD for distributed stochastic gradient descent with
communication efficiency using error-feedback of Zhenget al., Communication-efficient distributed blockwisemomentumSGD
with error-feedback, in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019 (NeurIPS 2019), 2019, pp. 11446–11456, is problematic mathematically. Concretely, the original error
bound for arbitrary sequences of learning rate is unfortunately incorrect, leading to an invalidated upper bound in the conver-
gence theorem for the algorithm. As evidences, we explicitly provide several counter-examples, for both convex and nonconvex
cases, to show the incorrectness of the error bound.We fix the issue by providing a new error bound and its corresponding proof,
leading to a new convergence theorem for the dist-EF-SGD algorithm, and therefore recovering its mathematical analysis.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

1.1. Background

For training deep neural networks over large-scale and distributed
datasets, distributed stochastic gradient descent (distributed SGD)
is a vital method. In distributed SGD, a central server updates the
model parameters using information transmitted from distributed
workers, as illustrated in Figure 1.

Communication between the server and distributed workers can be
a bottleneck in distributed SGD. Alleviating the bottleneck is a con-
siderable concern of the community, so that variants of distributed
SGD using gradient compression have been proposed to reduce the
communication cost between workers and the server.

Recently, Zheng et al. [1] proposed an algorithm named dist-
EF-SGD recalled inAlgorithm1, inwhich gradients are compressed
before transmission, and errors between real and compressed gra-
dients in one step of the algorithm are re-used in future steps.

1.2. Our Contributions

In this paper, we point out a flaw in the convergence proof of Algo-
rithm 1 given in Zheng et al. [1]. We then fix the flaw by providing
a new convergence theorem with a new proof for Algorithm 1.

*Corresponding author. Email: tranthiphuong@tdtu.edu.vn

Zheng et al. [1] stated the following theorem for any sequence of
learning rate {𝜂t}.

Theorem A (Theorem 1 of [1], problematic). Suppose that
Assumptions 1-3 (given together with related notations in Section 2)
hold. Assume that the learning rate 0 < 𝜂t < 3

2L
for all t ⩾ 0. For

sequence xt generated from Algorithm 1, we have the following upper
bound on the expected Euclidean norm of gradients:

E
[‖‖‖∇f (xo)‖‖‖2] ⩽ 4(f(x0)−f⋆)∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

)
+ 2L𝜎2

M

T−1∑
t=0

𝜂2t∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

)
+ 32L2(1−𝛿)G2

𝛿2

[
1 + 16

𝛿2

] T−1∑
t=0

𝜂t𝜂2t−1∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

)
where o ∈ {0,...,T − 1} is an index such that the probability

Pr(o = k) =
𝜂k

(
3 − 2L𝜂k

)∑T−1

t=0
𝜂t
(
3 − 2L𝜂t

) ,∀k = 0,… ,T − 1.

Problem in Theorem A.Unfortunately, the proof of Theorem A as
given in [1] becomes invalidated when the learning rate sequence
{𝜂t} is decreasing. In that proof, a lemma is employed to han-
dle decreasing learning rate sequences. However, in Section 3 we

https://doi.org/10.2991/ijcis.d.210412.001\relax
https://www.atlantis-press.com/journals/ijcis/
https://orcid.org/0000-0002-0383-8891
https://orcid.org/0000-0003-2219-1867
http://creativecommons.org/licenses/by-nc/4.0/

1374 T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387

Figure 1 The computation model of distributed SGD. Multiple workers
communicate with a central parameter server synchronously. Each worker, after
local computations on its data, uploads selected results to the server. The server
aggregates all uploaded results from the workers, and sends back the aggregated
result from its computations to all workers. These are iterated for multiple rounds.

present several counter-examples showing that lemma does not
hold.Wemove on to fix that lemma and finally obtain the following
result as our correction for Theorem A.

Theorem 1. (Our correction for TheoremA)With all notations and
assumptions are identical to Theorem A, we have

E
[‖‖‖∇f (xo)‖‖‖2] ⩽ 4

(
f
(
x0
)
− f⋆

)∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

)
+2L𝜎2

M

T−1∑
t=0

𝜂2t∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

)
+ 8(1 − 𝛿)(2 − 𝛿)G2L2

𝛿
∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

) T−1∑
t=0

𝜂t𝜂
2
t−1

t−1∑
k=0

𝜂2t−1−k
𝜂2t−1

𝛼k

+ 16(1 − 𝛿)(2 − 𝛿)3G2L2

𝛿2
∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

)×
T−1∑
t=0

𝜂t𝜂
2
t−1

t−1∑
j=0

𝛼t−1−j
j∑

k=0

𝜂2j−k
𝜂2t−1

𝛼k,

where 𝛼 = 1 − 𝛿
2
and o ∈ {0,… ,T − 1} is an index

Algorithm 1Distributed SGD with Error-Feedback (dist-EF-SGD) [1]
1: Input: Loss functionℒ , learning rate {𝜂t} with 𝜂−1 = 0; number of
workersM; compressor 𝒞 (⋅)
2: Initialize: initial parameter x0 ∈ ℝd; error e0,i = 0 ∈ ℝd on each
worker i; error ẽ0 = 0 ∈ ℝd on server
3: for t ∈ {0,… ,T − 1} do
4: ∙ on each worker 1 ⩽ i ⩽M:
5: pick data 𝜉t,i from the dataset
6: gt,i = ∇ℒ

(
xt, 𝜉t,i

)
▷ stochastic gradient

7: pt,i = gt,i +
𝜂t−1
𝜂t
et,i ▷ gradient added with previous error

8: push Δt,i = 𝒞
(
pt,i

)
to server ▷ gradient compression at worker,

and transmission

9: pull Δ̃t from server
10: xt+1 = xt − 𝜂tΔ̃t ▷ local weight update
11: et+1,i = pt,i − Δt,i ▷ local error-feedback to next step
12: ∙ on central parameter server:
13: pull ∆t,i from each worker i

14: p̃t =
1
M

∑M

i=1
Δt,i +

𝜂t−1
𝜂t

ẽt ▷ gradient average with error

15: push Δ̃t = 𝒞
(
p̃t
)
to each worker ▷ gradient compression at

server
16: ẽt+1 = p̃t − Δ̃t ▷ error on server
17: end for

such that the probability

Pr(o = k) =
𝜂k

(
3 − 2L𝜂k

)∑T−1

t=0
𝜂t
(
3 − 2L𝜂t

) ,∀k = 0,… ,T − 1.

In addition, we show that the upper bound in Theorem 1 becomes
O
(

1√
MT

)
for a proper choice of decreasing sequence {𝜂t} in Corol-

lary 2. Moreover the upper bound in Theorem 1 matches previous
results given in Zheng et al. [1] when {𝜂t} is nondecreasing (Corol-
lary 1).

1.3. Paper Roadmap

We begin with notations and settings in Section 2. In Section 3, we
provide counter-examples to justify the issue in [1] for both non-
convex and convex cases.We then correct the issue in Section 4 and
then present a proof for Theorem 1 in Section 5.

1.4. Related Works

The use of gradient compression for reducing the communication
cost is widely considered in distributed machine learning recently.
One line of research is to compress the gradient only on the worker

T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387 1375

side before sending the result to the parameter server, namely one-
side compression. The parameter server receives and aggregates
these results and sends back the aggregated result to all workers.
Some recent papers such as [2–5] are in this line of research.

Another line of research uses gradient compression on both work-
ers and server, namely two-side compression. In these two-side
compression methods, the workers send the compressed local gra-
dients or some corrected forms of them to the parameter server, and
the parameter server compresses the aggregated result before send-
ing it back to all workers. Papers [1,6,7] use two-side compression
with an identical method of gradient compression for both workers
and the parameter server. Paper [8] considers two-side compres-
sion with flexible compression for both workers and the parameter
server.

2. PRELIMINARIES

Let ⟨⋅, ⋅⟩ be the inner product of vectors. The Cauchy–Schwarz
inequality states that for all vectors u, v it holds that | ⟨u, v⟩ |2 ⩽⟨u, u⟩ × ⟨v, v⟩. The Young inequality 𝛾 > 0 (sometimes called the
Peter–Paul inequality) states that (a + b)2 ⩽ (1 + 𝛾)a2 + (1 + 1/𝛾)b2
∀a, b ∈ ℝ. Let ‖⋅‖ be the Euclidean norm of a vector.

For completeness, we recall the algorithm of Zheng et al. [1] in
Algorithm 1 and its explanation as follows. At iteration t, the scale
𝜂t−1
𝜂t

of the local accumulated error vector et,i is added to the gradient
gt,i (line 7 of Algorithm 1) for the compression step. Each worker i
stores these local accumulated error vector et,i and local corrected
gradient vector pt,i for the next iteration. The compressed ∆t,i of pt,i
are pushed to the parameter server. The parameter server aggre-
gates these ∆t,i and uses the aggregated result to update the global
error-corrected vector p̃t (line 14 of Algorithm 1), which in turn is
used to update the global accumulated error vector ẽt+1 (line 16 of
Algorithm 1). Each worker receives the compressed Δ̃t of p̃t from
the parameter server and uses it to update the parameter xt+1.

In order to construct Algorithm 1, Zheng et al. [1] used the idea
of Karimireddy et al. [9] that combined gradient compression with
error correction. The innovative ideas of Zheng et al. [1] were to
apply compression on the parameter server and to use the scale 𝜂t−1

𝜂t
in line 7 of Algorithm 1. Unfortunately the scale 𝜂t−1

𝜂t
caused an issue

in the proof of convergence theorem of Algorithm 1. We examine
this issue in details in Section 3.

2.1. Compressor and Assumptions

Following [5,9], an operator 𝒞 ∶ ℝd → ℝd is a 𝛿-compressor for a
number 𝛿 ∈ (0, 1) if

E𝒞 ∥ 𝒞 (x) − x ∥2⩽ (1 − 𝛿) ∥ x ∥2 (1)

where the expectation E𝒞 is taken over the randomness of 𝒞 .

Given a loss function , define f (x) = E𝜉[(x, 𝜉)] where x ∈ ℝd

is the (neural network) model parameters, and 𝜉 is the data batch
drawn from some unknowndistribution.We consider the following
assumptions on f, which are standard and have been used in previ-
ous works [1,9].

Assumption 1. f is lower-bounded, i.e., f* = inf
x∈ℝd

f(x) < ∞, and
L-smooth, i.e., f is differentiable and there exists a constant L⩾ 0 such
that

∥ ∇f(x) − ∇f(y) ∥⩽ L ∥ x − y ∥, ∀x, y ∈ ℝd. (2)

By [10], the L-smooth condition in (2) implies that ∀x, y ∈ ℝd,

f(x) ⩽ f(y) + ⟨∇f(y), x − y⟩ + L
2
‖‖x − y‖‖2 . (3)

Assumption 2. Let Et denote the expectation at iteration t. Then
Et[gt,i] =∇f (xt) and the stochastic gradient gt,i has bounded gradient,
i.e.,

Et

[‖‖‖gt,i − ∇f
(
xt
)‖‖‖2] ⩽ 𝜎2.

Assumption 3. The full gradient ∇f is uniformly bounded, i.e.,‖‖‖∇f (xt)‖‖‖2 ⩽ 𝜔2.

Under Assumptions 2 and 3, we have

Et

[‖‖gt,i‖‖2] ⩽ G2 = 𝜎2 + 𝜔2, (4)

because Et

[‖‖‖gt,i − ∇f
(
xt
)‖‖‖2] ⩽ 𝜎2, ‖‖‖∇f(xt)‖‖‖2 ⩽ 𝜔2, and the fact

that E
[‖X − E[X]‖2] + ‖E[X]‖2 = E

[‖X‖2].
2.2. Supporting Lemmas

We need a few supporting lemmas for proving Theorem 1.

Lemma 1. Let 0 < M ∈ ℕ and xi ∈ ℝd. Then

‖‖‖‖‖‖ 1
M

M∑
i=1

xi
‖‖‖‖‖‖
2

⩽ 1
M

M∑
i=1

‖‖xi‖‖2.
Proof. Since xi ∈ ℝd, xi has the form xi =

(
xi,1, xi,2,… , xi,d

)
∈

ℝd. We have‖‖‖‖‖‖ 1
M

M∑
i=1

xi
‖‖‖‖‖‖
2

= 1
M2

‖‖‖‖‖‖
M∑
i=1

xi
‖‖‖‖‖‖
2

= 1
M2

‖‖‖‖‖‖
(M∑

i=1
xi,1,

M∑
i=1

xi,2,… ,
M∑
i=1

xi,d

)‖‖‖‖‖‖
2

= 1
M2

d∑
j=1

(M∑
i=1

xi,j

)2

.

Applying the Cauchy–Schwarz inequality on
(∑M

i=1
xi,j

)2
gives us

(M∑
i=1

xi,j

)2

⩽ M
M∑
i=1

x2i,j.

1376 T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387

Therefore

‖‖‖‖‖‖ 1
M

M∑
i=1

xi
‖‖‖‖‖‖
2

⩽ 1
M

d∑
j=1

(M∑
i=1

x2i,j

)

= 1
M

M∑
i=1

(d∑
j=1

x2i,j

)

= 1
M

M∑
i=1

‖‖xi‖‖2
which ends the proof. ☐

Lemma 2. Let {at}, {𝛼t}, {𝛽 t} be non-negative sequences in ℝ such
that a0 = 0 and, for all t ⩾ 0,

at+1 ⩽ 𝛼tat + 𝛽t. (5)

Then

at+1 ⩽ 𝛽t +
t∑

j=1

t∏
i=j

𝛼i𝛽j−1.

In particular, if 𝛽 t = 𝛽 for all t, then

at+1 ⩽ 𝛽

(
1 +

t∑
j=1

t∏
i=j

𝛼i

)
.

Proof. By (5), we have

a1 ⩽ 𝛼0a0 + 𝛽0 = 𝛽0.

Proving by induction, assume that then we have

at ⩽ 𝛽t−1 +
t−1∑
j=1

t−1∏
i=j

𝛼i𝛽j−1, (6)

then we have

at+1 ⩽ 𝛼tat + 𝛽t (by (5))

⩽ 𝛽t + 𝛼t

(
𝛽t−1 +

t−1∑
j=1

t−1∏
i=j

𝛼i𝛽j−1

)
(by (6))

= 𝛽t + 𝛼t𝛽t−1 +
t−1∑
j=1

t∏
i=j

𝛼i𝛽j−1

= 𝛽t +
l∑

j=1

∏
i=j

𝛼i𝛽j−1,

which ends the proof. ☐

3. THE ISSUE IN ZHENG ET AL. [1]

In order to prove the convergence theorem for Algorithm 1, Zheng
et al. [1] have used the following lemma.

Lemma A (Lemma 2 of [1], incorrect). For any t ⩾ 0, ẽt, et,i, 𝜂t
fromAlgorithm 1, compressor parameter 𝛿 at (1), and gradient bound
G at (4),

E
⎡⎢⎢⎣
‖‖‖‖‖‖ẽt + 1

M

M∑
i=1

et,i
‖‖‖‖‖‖
2⎤⎥⎥⎦ ⩽

8(1 − 𝛿)G2

𝛿2
(
1 + 16

𝛿2
)
.

Intuitively, Lemma A can become incorrect because its right-hand
side only depends on the gradient boundG and compressor param-
eter 𝛿, and does not capture the scaling factor 𝜂t−1/𝜂t of the errors
ẽt and et,i of Algorithm 1. More formally, the following claim states
that Lemma A is invalidated when the learning rate sequence {𝜂t} is
decreasing.

Claim 1. Lemma A (i.e., Lemma 2 of [1]) does not hold. More pre-
cisely, referring to Algorithm 1, there exist a sequence of loss functions (

xt, 𝜉
)
, a decreasing sequence

{
𝜂t
}
t⩾−1, a number 𝛿 with respect to

a compressor 𝒞 , and a step t such that

E
⎡⎢⎢⎣
‖‖‖‖‖‖ẽt + 1

M

M∑
i=1

et,i
‖‖‖‖‖‖
2⎤⎥⎥⎦ >

8(1 − 𝛿)G2

𝛿2
(
1 + 16

𝛿2
)
. (7)

Claim 1 is justified by the following counter-examples, in which we
intentionally utilize the fact that the quotient 𝜂t−1/𝜂t as in line 7 of
Algorithm 1 can be large with decreasing learning rate sequences.

Counter-example 1. (Convex case) For t ⩾ 0 and xt, 𝜉 ∈ ℝ, we
consider the sequence of loss functions

 (
xt, 𝜉

)
= 𝜑

(
xt
)
= 1

4
xt

in the constraint set [−1, 1], the decreasing sequence of learning rate{
𝜂t
}
t⩾−1 with

𝜂−1 = 0,
{
𝜂t =

1
48t + 2

}
t⩾0

,

the compressor 𝒞 ∶ ℝ → ℝ such that ∀x ∈ ℝ

𝒞 (x) = x
0.77

.

Then at t = 1, Claim 1 holds true.

Proof. (Justification of Counter-example 1) It is trivial that the
loss function satisfies all the Assumptions 1, 2, and 3. The upper
bound gradient of f is G = 1

4
because we have gt,i =

1
4
∀t, i.

∙ The function 𝒞 with 𝒞 (x) = x
0.77

is a compressor with respect
to 𝛿 = 0.9. Indeed, we have

T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387 1377

‖𝒞 (x) − x‖2 ⩽ (1 − 𝛿) ‖x‖2
⇔ ‖‖‖ x

0.77
− x‖‖‖2 ⩽ (1 − 𝛿) ‖x‖2

⇔ ‖‖‖ 1
0.77

− 1‖‖‖2 ⩽ 1 − 𝛿.

The last inequality is equivalent to

𝛿 ⩽ 1 −
‖‖‖‖ 1
0.77

− 1
‖‖‖‖2 = 0.9107775341541.

Therefore 𝛿 = 0.9 suffices.

To continue, let us consider the number of workers isM = 2. Initially
e0,i = 0 on each worker i ∈ {1,2} and ẽ0 = 0 on server. Because
the stochastic gradients are the same on each worker, the results
of computations on each worker are the same. So it is sufficient to
consider the computations on worker 1 in details.

∙ At t = 0 we have the computations on the workers and the
server as follows.

– On worker 1:

p0,1 = g0,1 +
𝜂−1
𝜂0
e0,1

= g0,1 =
1
4
,

Δ0,1 = 𝒞
(
p0,1

)
= p0,1

0.77
= 0.3246753246753,

e1,1 = p0,1 − Δ0,1 = −0.07467532467532.

– On worker 2, p0,2 = p0,1, ∆0,2 = ∆0,1, and e1,2 = e1,1.

– On server:

p̃0 =
1
2

(
Δ0,1 + Δ0,2

)
+ 𝜂−1

𝜂0
ẽ0

= Δ0,1 = 0.3246753246753,

Δ̃0 = 𝒞
(
p̃0
)

= p̃0
0.77

= 0.42165626581210,

ẽ1 = p̃0 − Δ̃0 = −0.09698094113678.

∙ At t = 1 we have the computations on the workers and the
server as follows:

– On worker 1:

p1,1 = g1,1 +
𝜂0
𝜂1
e1,1

= −1.6168831168831,

Δ1,1 = 𝒞
(
p1,1

)
= p1,1

0.77
= −2.0998482037443,

e2,1 = p1,1 − Δ1,1 = 0.48296508686119.

– On worker 2: p1,2 = p1,1, ∆1,2 = ∆1,1, and e2,2 = e2,1.

– On server:

p̃1 =
1
2

(
Δ1,1 + Δ1,2

)
+ 𝜂0

𝜂1
ẽ1

= Δ1,1 +
𝜂0
𝜂1
ẽ1,

= −4.52437173216,

Δ̃1 = 𝒞
(
p̃1
)

= p̃1
0.77

= −5.8758074443687,

ẽ2 = p̃1 − Δ̃1 = 1.3514357122048.

Now we compute the left- and right-hand sides of (7) with t = 2.

‖‖‖ẽ2 + 1
2

(
e2,1 + e2,2

)‖‖‖2
= ‖‖ẽ2 + e2,1‖‖2
= 3.365026291613992

and

8(1−𝛿)G2

𝛿2

(
1 + 16

𝛿2

)
=

8(0.1)
(

1
4

)2

0.92

(
1 + 16

0.92

)
= 1.2810547172687086.

Thus ‖‖‖‖ẽ2 + 1
2
(
e2,1 + e2,2

)‖‖‖‖2 > 8(1 − 𝛿)G2

𝛿2
(
1 + 16

𝛿2
)
,

and then Claim 1 follows. ☐

Counter-example 2. (Convex case) For t ⩾ 0 and xt,𝜉 ∈ℝ, we con-
sider the sequence of loss functions

 (
xt, 𝜉

)
= 𝜑

(
xt
)
= x2t

in the constraint set [−1, 1], the decreasing sequence of learning rate
{𝜂t}t⩾−1 with

𝜂−1 = 0,
{
𝜂t =

3
4

(1
26t + 2

)}
t⩾0

,

1378 T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387

and the following compressor 𝒞 ∶ ℝ → ℝ with parameter 𝛿 = 0.9
as in counter-example 1,

𝒞 (x) = x
0.77

.

Then at t = 1, Claim 1 holds true.

Proof. (Justification of Counter-example 2) It is trivial that the
loss function is 2-smooth and satisfies all the Assumptions 1,
2, and 3. Since ∇f (x) = 2x and gt,i = 2xt,∀t, i, we have the upper
bound gradient of f in the constraint set [−1, 1] as G = 2. Let us
consider the number of workers M = 2. Initially e0,i = 0 on each
worker i ∈ {1, 2} and ẽ0 = 0 server. Let us take x0 = 1. Because
the stochastic gradients are the same on each worker, the results
of computations on each worker are the same. So it is sufficient to
consider the computations on worker 1 in details.

∙ At t = 0 we have the computations on the workers and the
server as follows:

– On worker 1:

p0,1 = g0,1 +
𝜂−1
𝜂0
e0,1

= g0,1 = 2,

Δ0,1 = 𝒞
(
p0,1

)
= p0,1

0.77
= 2.5974025974025974,

e1,1 = pp0,1 − Δ0,1 = −0.5974025974025974.

– On worker 2, p0,2 = p0,1, ∆0,2 = ∆0,1, and e1,2 = e1,1.

– On server:

p̃0 =
1
2

(
Δ0,1 + Δ0,2

)
+ 𝜂−1

𝜂0
ẽ0

= Δ0,1 = 2.5974025974025974,

Δ̃0 = 𝒞
(
p̃0
)

= p̃0
0.77

= 3.3732501264968797,

x1 = x0 − 𝜂0Δ̃0

= −0.26496879743632995,

ẽ1 = p̃0 − Δ̃0 = −0.7758475290942823.

∙ At t = 1 we have the computations on the workers and the
server as follows:

– On worker 1:

g1,1 = ∇f
(
x1
)
= −0.5299375948726599,

p1,1 = g1,1 +
𝜂0
𝜂1
e1,1

= −8.893573958509023,

Δ1,1 = 𝒞
(
p1,1

)
= p1,1

0.77
= −11.550096050011717,

e2,1 = p1,1 − Δ1,1 = 2.656522091502694.

– On worker 2, p1,2 = p1,1, ∆1,2 = ∆1,1, and e2,2 = e2,1.

– On server:

p̃1 =
1
2

(
Δ1,1 + Δ1,2

)
+ 𝜂0

𝜂1
ẽ1

= Δ1,1 +
𝜂0
𝜂1
ẽ1

= −22.41196145733167,

Δ̃1 = 𝒞
(
p̃1
)

= p̃1
0.77

= −29.106443451080093,

ẽ2 = p̃1 − Δ̃1 = 6.694481993748422.

Nowwe compute the left- and right-hand sides of (7) with t = 2.We
have ‖‖‖ẽ2 + 1

2

(
e2,1 + e2,2

)‖‖‖2
= ‖‖ẽ2 + e2,1‖‖2
= 87.44127740238307

and

8(1−𝛿)G2

𝛿2

(
1 + 16

𝛿2

)
= 8(0.1)22

0.92

(
1 + 16

0.92

)
= 81.98750190519735.

Thus ‖‖‖‖ẽ2 + 1
2
(
e2,1 + e2,2

)‖‖‖‖2 > 8(1 − 𝛿)G2

𝛿2
(
1 + 16

𝛿2
)
,

and then Claim 1 follows. ☐

Counter-example 3. (nonconvex case) For t ⩾ 0,xt,𝜉 ∈ ℝ, we con-
sider the sequence of loss functions

ℒ (xt, 𝜉) = 𝜑(xt) =
1

1 + e−xt
,

the decreasing sequence of learning rate {𝜂t}t⩾−1 with

𝜂−1 = 0,
{
𝜂t =

3
2

(1
48t + 2

)}
t⩾0

,

T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387 1379

and the following compressor 𝒞 ∶ ℝ → ℝ with parameter 𝛿 = 0.9
as in counter-example 1,

𝒞 (x) = x
0.77

.

Then at t = 1, Claim 1 holds true.

Proof. (Justification of Counter-example 3) First, we check that
Assumptions 1-3 are satisfied.

∙ The function ϕ is lower-bounded because 0 ⩽ ϕ(x) ⩽ 1, ∀x ∈ℝ.
The upper bound of ∇ϕ(x) is G = 1

4
, since

∇𝜑(x) ⩽ 1
4
⇔ 𝜑(x)(1 − 𝜑(x)) ⩽ 1

4

⇔ −𝜑(x)2 + 𝜑(x) − 1
4
⩽ 0

⇔ −
(
𝜑(x) − 1

2

)2
⩽ 0,

(8)

which holds true for all x ∈ ℝ.

∙ The function ϕ is L-smooth, with L = 1. Indeed, for all x, y ∈ ℝ,
we have

|∇𝜑(x) − ∇𝜑(y)|
= |𝜑(x)(1 − 𝜑(x)) − 𝜑(y)(1 − 𝜑(y))|
= |𝜑(x) − 𝜑(y) + (𝜑(y) − 𝜑(x))(𝜑(y) + 𝜑(x))|
= |[𝜑(x) − 𝜑(y)][1 − (𝜑(x) + 𝜑(y))]|.

Since 0 ⩽ 𝜑(𝜉) ⩽ 1 (∀𝜉), we have 0 ⩽ 𝜑(x) + 𝜑(y) ⩽ 2. There-
fore −1 ⩽ 1 − (𝜑(x) + 𝜑(y)) ⩽ 1, and hence

|[𝜑(x) − 𝜑(y)][1 − (𝜑(x) + 𝜑(y))]| ⩽ |𝜑(x) − 𝜑(y)|.
This means that in order to prove |∇𝜑(x) − ∇𝜑(y)| ⩽ |x − y|, it is
sufficient to prove

|𝜑(x) − 𝜑(y)| ⩽ |x − y|. (9)

If x ⩾ y, we obtain ϕ(x) ⩾ ϕ(y). Therefore

(9) ⇔ 𝜑(x) − 𝜑 (y) ⩽ x − y
⇔ 𝜑(x) − x ⩽ 𝜑(y) − y

Let 𝜙(x) = ϕ(x)−x. Because ∇𝜙(x) = ∇𝜑(x) − 1 ⩽ 1
4
− 1 < 0 by

(8), we have 𝜙(x) is a decreasing function. Therefore the inequality
𝜑(x) − x ⩽ 𝜑(y) − y holds true, and hence (9) is proven. By the
same technique, we obtain (9) for the case x < y.

To continue, let us consider the number of workersM = 2. We ini-
tialize e0;i = 0 on each worker i ∈ {1, 2} and ẽ0 = 0 on server. Let us
take x0 = 0. Because the stochastic gradients are the same on each
worker, the results of computations on each worker are the same. So

it is sufficient to consider the computations on worker 1 in details.
We have

g0,1 = g0,2 = ∇𝜑
(
x0
)
= 0.25.

∙ At t = 0 we have the computations on the workers and the
server as follows:

– On worker 1:

p0,1 = g0,1 +
𝜂−1
𝜂0
e0,1

= g0,1 = 0.25,

Δ0,1 = 𝒞
(
p0,1

)
= p0,1

0.77
= 0.3246753246753247,

e1,1 = p0,1 − Δ0,1 = −0.07467532467532467.

– On worker 2, p0,2 = p0,1, ∆0,2 = ∆0,1, and e1,2 = e1,1.

– On server:

p̃0 =
1
2

(
Δ0,1 + Δ0,2

)
+ 𝜂−1

𝜂0
ẽ0

= Δ0,1 = 0.3246753246753247,

Δ̃0 = 𝒞
(
p̃0
)

= p̃0
0.77

= 0.42165626581210996,

x1 = x0 − 𝜂0Δ̃0

= −0.3162421993590825,

ẽ1 = p̃0 − Δ̃0 = −0.09698094113678529.

∙ At t = 1 we have the computations on the workers and the
server as follows.

– On worker 1:

g1,1 = ∇𝜑
(
x1
)
= 0.243852158038919

p1,1 = g1,1 +
𝜂0
𝜂1
e1,1

= −1.6230309588441978,

Δ1,1 = 𝒞
(
p1,1

)
= p1,1

0.77
= −2.1078324140833735,

e2,1 = p1,1 − Δ1,1 = 0.4848014552391757.

– On worker 2, p1,2 = p1,1, ∆1,2 = ∆1,1, and e2,2 = e2,1.

– On server:

1380 T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387

p̃1 =
1
2

(
Δ1,1 + Δ1,2

)
+ 𝜂0

𝜂1
ẽ1

= Δ1,1 +
𝜂0
𝜂1
ẽ1

= −4.532355942503006,

Δ̃1 = 𝒞
(
p̃1
)

= p̃1
0.77

= −5.886176548705203,

ẽ2 = p̃1 − Δ̃1 = 1.3538206062021967.

Nowwe compute the left- and right-hand sides of (7) with t = 2.We
have

‖‖‖ẽ2 + 1
2

(
e2,1 + e2,2

)‖‖‖2 = ‖‖ẽ2 + e2,1‖‖2
= 3.3805310848189216

and, with 𝛿 = 0.9,

8(1−𝛿)G2

𝛿2

(
1 + 16

𝛿2

)
=

8(0.1)
(

1
4

)2

0.92

(
1 + 16

0.92

)
= 1.2810547172687086.

Thus

‖‖‖‖ẽ2 + 1
2
(
e2,1 + e2,2

)‖‖‖‖2 > 8(1 − 𝛿)G2

𝛿2
(
1 + 16

𝛿2
)
,

and hence Claim 1 follows. ☐

4. CORRECTING THE ERROR BOUND OF
ZHENG ET AL. [1]

In general, the error E
[‖‖‖‖ẽt+1 + 1

M

∑M

i=1
et+1,i

‖‖‖‖2
]
is bounded as fol-

lows:

Theorem 2. (Fix for Lemma 2 of [1]) With ẽt, et,i, 𝜂t, and 𝛿 from
Algorithm 1, for arbitrary {𝜂t}, we have

E
⎡⎢⎢⎣
‖‖‖‖‖‖ẽt+1 + 1

M

M∑
i=1

et+1,i
‖‖‖‖‖‖
2⎤⎥⎥⎦

2

⩽ 2(1−𝛿)(2−𝛿)G2

𝛿

t∑
k=0

𝜂2t−k
𝜂2t

𝛼k

+ 4(1−𝛿)(2−𝛿)3G2

𝛿2

t∑
j=0

𝛼t−j
j∑

k=0

𝜂2j−k
𝜂2t

𝛼k,

where 𝛼 = 1 − 𝛿
2
and gradient bound G is at (4).

Remark 1. [Sanity check of the new upper bound] The right-hand
side of Theorem 2 can become large together with decreasing lean-
ing rate sequences. Therefore, the error bounds of the sequences

in counter-examples 1-3 do satisfy Theorem 2. Indeed, the upper
bound on the error in Theorem 2 at t = 1 is

U = 2(2−𝛿)(1−𝛿)G2

𝛿

(
1 + 𝜂20

𝜂21

(
1 − 𝛿

2

))
+ 4(1−𝛿)(2−𝛿)3G2

𝛿2

(
1 + 2 𝜂20

𝜂21

(
1 − 𝛿

2

))
.

Concretely, at sanity check,

∙ in counter-example 1:

U = 33.550763888888895

which is indeed larger than

‖‖‖‖‖‖ẽ2 + 1
M

M∑
i=1

e2,i
‖‖‖‖‖‖
2

= 3.365026291613992.

∙ in counter-example 2:

U = 675.8530370370372

which is indeed larger than

‖‖‖‖‖‖ẽ2 + 1
M

M∑
i=1

e2,i
‖‖‖‖‖‖
2

= 87.44127740238307.

∙ in counter-example 3:

U = 33.550763888888895

which is indeed larger than

‖‖‖‖‖‖ẽ2 + 1
M

M∑
i=1

e2,i
‖‖‖‖‖‖
2

= 3.3805310848189216.

Proof. [Proof of Theorem 2]We have

E
⎡⎢⎢⎣
‖‖‖‖‖‖ẽt+1 + 1

M

M∑
i=1

et+1,i
‖‖‖‖‖‖
2⎤⎥⎥⎦

⩽ 2E
[‖‖ẽt+1‖‖2] + 2E

⎡⎢⎢⎣
‖‖‖‖‖‖ 1
M

M∑
i=1

et+1,i
‖‖‖‖‖‖
2⎤⎥⎥⎦

⩽ 2E
[‖‖ẽt+1‖‖2] + 2

M

M∑
i
E
[‖‖et+1,i‖‖2] ,

(10)

where the first inequality is by the fact that (a + b)2 ⩽ 2a2 + 2b2,∀a,b,
and the second inequality is by Lemma 1. We will separately bound
the two terms of (10). Firstly, we consider 1

M

∑M

i=1
E
[‖‖et+1,i‖‖2].We

have

1
M

M∑
i=1

E
[‖‖et+1,i‖‖2] = 1

M

M∑
i=1

E
[‖‖‖𝒞 (

pt,i
)
− pt,i

‖‖‖2 (11)

T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387 1381

⩽ 1 − 𝛿
M

M∑
i=1

E
[‖‖pt,i‖‖2] (12)

= 1 − 𝛿
M

M∑
i=1

E
[‖‖‖‖gt,i + 𝜂t−1

𝜂t
et,i

‖‖‖‖2
]

(13)

⩽ (1−𝛿)(1+𝛾)
M

M∑
i=1

E
[‖‖‖‖𝜂t−1𝜂t

et,i
‖‖‖‖2
]

+ (1−𝛿)(1+1∕𝛾)
M

M∑
i=1

E
[‖‖gt,i‖‖2]

(14)

⩽ (1 − 𝛿)(1 + 𝛾) 𝜂
2
t−1
𝜂2t

(
1
M

M∑
i=1

E
[‖‖et,i‖‖2]

)
+(1 − 𝛿)(1 + 1∕𝛾)G2,

(15)

where (11) and (13) is by the setting of et+1,i and pt,i in Algorithm 1,
(12) is by the definition of compressor𝒞 , (14) is by Young inequal-
ity with any 𝛾 > 0, and (15) is by (4). Now, for all t ⩾ 0, applying
Lemma 2 to the inequality (15) with

at+1 =
1
M

M∑
i=1

E
[‖‖et+1,i‖‖2] ,

𝛼t = (1 − 𝛿)(1 + 𝛾) 𝜂
2
t−1
𝜂2t

,

𝛽 = (1 − 𝛿)(1 + 1∕𝛾)G2,

we have

1
M

M∑
i=1

E
[‖‖et+1,i‖‖2] ⩽ 𝛽

(
1 +

t∑
j=1

t∏
i=j

𝛼i

)

Moreover, since

1 +
t∑

j=1

t∏
i=j

𝛼i

= 1 +
t∑

j=1

t∏
i=j

(1 − 𝛿)(1 + 𝛾)
𝜂2i−1
𝜂2i

= 1 +
t∑

j=1

𝜂2j−1
𝜂2t

[(1 − 𝛿)(1 + 𝛾)]t−(j−1)

=
t+1∑
j=1

𝜂2j−1
𝜂2t

[(1 − 𝛿)(1 + 𝛾)]t−(j−1)

=
t∑

k=0

𝜂2t−k
𝜂2t

[(1 − 𝛿)(1 + 𝛾)]k,

we obtain

1
M

M∑
i=1

E
[‖‖et+1,i‖‖2]

⩽ (1 − 𝛿)(1 + 1∕𝛾)G2
t∑

k=0

𝜂2t−k
𝜂2t

[(1 − 𝛿)(1 + 𝛾)]k.

By choosing 𝛾 = 𝛿
2(1−𝛿)

, we have

(1 − 𝛿)(1 + 1∕𝛾) = (1 − 𝛿)(2 − 𝛿)
𝛿

and

(1 − 𝛿)(1 + 𝛾) = 1 − 𝛿
2
.

Therefore

1
M

M∑
i=1

E
[‖‖et+1,i‖‖2]

⩽ (2−𝛿)(1−𝛿)G2

𝛿

t∑
k=0

𝜂2t−k
𝜂2t

𝛼k,

(16)

where 𝛼 = 1 − 𝛿
2
. Next, we consider the term E

[‖‖ẽt+1‖‖2] of (10).
By the setting of et+1,i and pt,i in Algorithm 1 and the definition of
compressor 𝒞 , we have

E
[‖‖ẽt+1‖‖2]

= E
[‖‖‖𝒞 (

p̃t
)
− p̃t

‖‖‖2]
⩽ (1 − 𝛿)E

[‖‖p̃t‖‖2]
= (1 − 𝛿)E

⎡⎢⎢⎣
‖‖‖‖‖‖ 1
M

M∑
i=1

𝒞
(
pt,i

)
+

𝜂t−1
𝜂t

ẽt
‖‖‖‖‖‖
2⎤⎥⎥⎦

⩽ (1 − 𝛿)(1 + 𝛾) 𝜂
2
t−1
𝜂2t

E
[‖‖ẽt‖‖2]

+(1 − 𝛿)(1 + 1∕𝛾)E
⎡⎢⎢⎣
‖‖‖‖‖‖ 1
M

M∑
i=1

𝒞
(
pt,i

)‖‖‖‖‖‖
2⎤⎥⎥⎦ ,

where the last inequality is by Young inequality for any 𝛾 > 0. Look-

ing at E
[‖‖‖‖ 1

M

∑M

i=1
𝒞

(
pt,i

)‖‖‖‖2
]
, we have

E
⎡⎢⎢⎣
‖‖‖‖‖‖ 1
M

M∑
i=1

𝒞
(
pt,i

)‖‖‖‖‖‖
2⎤⎥⎥⎦

⩽ 1
M

M∑
i=1

E
[‖‖‖𝒞 (

pt,i
)‖‖‖2]

(17)

⩽ 1
M

M∑
i=1

(
2E

[‖‖‖𝒞 (
pt,i

)
− pt,i

‖‖‖2] + 2E
[‖‖pt,i‖‖2]) (18)

⩽ 1
M

M∑
i=1

(
2(1 − 𝛿)E

[‖‖pt,i‖‖2] + 2E
[‖‖pt,i‖‖2])

= 2(2 − 𝛿) 1
M

M∑
i=1

E
[‖‖pt,i‖‖2] ,

(19)

1382 T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387

where (17) is by Lemma 1, (18) is by the fact that (a + b)2 ⩽ 2a2 +
2b2,∀a,b, (19) is by the definition of compressor𝒞 . ThereforeMore-
over, (12) and (16) yield. Therefore

E
[‖‖ẽt+1‖‖2] ⩽ (1 − 𝛿)(1 + 𝛾) 𝜂

2
t−1
𝜂2t

E
[‖‖ẽt‖‖2]

+2(2 − 𝛿)(1 − 𝛿)(1 + 1∕𝛾) 1
M

M∑
i=1

E
[‖‖pt,i‖‖2] .

Moreover, (12) and (16) yield

1 − 𝛿
M

M∑
i=1

E
[‖‖pt,i‖‖2] ⩽ (2 − 𝛿)(1 − 𝛿)G2

𝛿

t∑
k=0

𝜂2t−k
𝜂2t

𝛼k.

Therefore

E
[‖‖ẽt+1‖‖2]

⩽ (1 − 𝛿)(1 + 𝛾) 𝜂
2
t−1
𝜂2t

E
[‖‖ẽt‖‖2]

+
2(2 − 𝛿)2(1 − 𝛿)(1 + 1∕𝛾)G2

𝛿

t∑
k=0

𝜂2t−k
𝜂2t

𝛼k.

With 𝛾 = 𝛿
2(1−𝛿)

, since (1− 𝛿)(1+ 1∕𝛾) = (1−𝛿)(2−𝛿)
𝛿

and (1− 𝛿)(1+
𝛾) = 1 − 𝛿

2
= 𝛼, we have

E
[‖‖ẽt+1‖‖2] ⩽ 𝛼 𝜂2t−1

𝜂2t
E
[‖‖ẽt‖‖2]

+ 2(1 − 𝛿)(2 − 𝛿)3G2

𝛿2

t∑
k=0

𝜂2t−k
𝜂2t

𝛼k.

By applying Lemma 2 with

at = E
[‖‖ẽi‖‖2] ,

𝛼t = 𝛼 𝜂2t−1
𝜂2t

,

𝛽t =
2(1−𝛿)(2−𝛿)3G2

𝛿2

t∑
k=0

𝜂2t−k
𝜂2t

𝛼k,

we obtain

E
[‖‖ẽt+1‖‖2] ⩽ 𝛽t +

t∑
j=1

(t∏
i=j

𝛼i𝛽j−1

)
.

Since

t∏
i=j

𝛼i𝛽j−1 =
t∏
i=j

𝛼
𝜂2i−1
𝜂2i

𝛽j−1

= 𝛼t−(j−1) 𝜂
2
j−1

𝜂2t
𝛽j−1,

we have

E
[‖‖ẽt+1‖‖2] ⩽ 𝛽t +

t∑
j=1

𝛼t−(j−1)
𝜂2j−1
𝜂2t

𝛽j−1

=
t+1∑
j=1

𝛼t−(j−1)
𝜂2j−1
𝜂2t

𝛽j−1.

Therefore,

E
[‖‖ẽt+1‖‖2]

⩽
t+1∑
j=1

𝛼t−(j−1)
𝜂2j−1
𝜂2t

2(1 − 𝛿)(2 − 𝛿)3G2

𝛿2

j−1∑
k=0

𝜂2j−1−k
𝜂2j−1

𝛼k

= 2(1 − 𝛿)(2 − 𝛿)3G2

𝛿2

t+1∑
j=1

𝛼t−(j−1)
j−1∑
k=0

𝜂2j−1−k
𝜂2t

𝛼k

= 2(1 − 𝛿)(2 − 𝛿)3G2

𝛿2

t∑
j=0

𝛼t−j
j∑

k=0

𝜂2j−k
𝜂2t

𝛼k.

(20)

Substituting (16) and (20) to (10), we obtain

E
⎡⎢⎢⎣
‖‖‖‖‖‖ẽt+1 + 1

M

M∑
i=1

et+1,i
‖‖‖‖‖‖
2⎤⎥⎥⎦

⩽ 2(2 − 𝛿)(1 − 𝛿)G2

𝛿

t∑
k=0

𝜂2t−k
𝜂2t

𝛼k

+ 4(1 − 𝛿)(2 − 𝛿)3G2

𝛿2

t∑
j=0

𝛼t−j
j∑

k=0

𝜂2j−k
𝜂2t

𝛼k,

as claimed in Theorem 2. ☐

As a sanity check, Theorem 2 matches the results given in [1] when
the learning rate is nondecreasing. As a result, Theorems 1 and A
agree when the learning rate is nondecreasing.

Corollary 1. (Sanity check of Theorem 2, cf. Lemma 6 of [1] with
μ = 0) In Theorem 2, if {𝜂t} is a nondecreasing sequence such that
𝜂t > 0,∀t ⩾ 0, then

E
⎡⎢⎢⎣
‖‖‖‖‖‖ẽt+1 + 1

M

M∑
i=1

et+1,i
‖‖‖‖‖‖
2⎤⎥⎥⎦ ⩽

8(1 − 𝛿)G2

𝛿2
(
1 + 16

𝛿2
)
.

Proof. Since {𝜂t} is nondecreasing, we have
𝜂2t−k
𝜂2t

⩽ 1. Moreover,

since 𝛼 = 1 − 𝛿
2
∈ (0, 1), we obtain

t∑
k=0

𝜂2t−k
𝜂2t

𝛼k ⩽
t∑

k=0
𝛼k ⩽ 2

𝛿
(21)

T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387 1383

and

t∑
j=0

𝛼t−j
j∑

k=0

𝜂2j−k
𝜂2t

𝛼k ⩽
t∑

j=0
𝛼t−j

j∑
k=0

𝛼k

⩽
t∑

j=0
𝛼t−j

(2
𝛿

)
⩽ 4

𝛿2
.

Replacing (21) and (22) to Theorem 2, we have the result stated in
Corollary 1. ☐

5. CORRECTING THE CONVERGENCE
THEOREM OF ZHENG ET AL. [1]

Because the error bound plays a crucial role in the proof of the
convergence theorem of dis-EF-SGD, fixing [1, Lemma 2] as in
Theorem 2 leads to the consequence that the convergence theorem
need to be fixed as well.

Proof. (Proof of Theorem 1) Following [1], we consider the iter-
ation

x̃t = xt − 𝜂t−1

(
ẽt +

1
M

M∑
i=1

et,i

)
,

where xt, ẽt and et,i are generated from Algorithm 1. Then, by [1,
Lemma 1],

x̃t+1 = x̃t − 𝜂t
1
M

M∑
i=1

gt,i. (22)

Since f is L-smooth, by (3), we have Moreover, we have

Et
[
f
(
x̃t+1

)]
⩽ f

(
x̃t
)
+
⟨
∇f

(
x̃t
)
,Et

[
x̃t+1 − x̃t

]⟩
+ L

2
Et

[‖‖x̃t+1 − x̃t‖‖2]
= f

(
x̃t
)
− 𝜂t

⟨
∇f

(
x̃t
)
,Et

[
1
M

M∑
i=1

gt,i

]⟩

+ L𝜂2t
2
Ef

⎡⎢⎢⎣
‖‖‖‖‖‖ 1
M

M∑
i=1

gt,i
‖‖‖‖‖‖
2⎤⎥⎥⎦ ,

(23)

Moreover, we have

Et

⎡⎢⎢⎣
‖‖‖‖‖‖ 1
M

M∑
i=1

gt,i
‖‖‖‖‖‖
2⎤⎥⎥⎦

= ‖‖‖∇f (xt)‖‖‖2 + Et

⎡⎢⎢⎣
‖‖‖‖‖‖ 1
M

M∑
i=1

gt,i − ∇f
(
xt
)‖‖‖‖‖‖

2⎤⎥⎥⎦ ,
(24)

which follows from the fact that E
[
∥ X − E[X] ∥2

]
=

E
[
∥ X ∥2

]
− ∥ E[X] ∥2. Substituting (24) to (23), we obtain

Et
[
f
(
x̃t+1

)]
⩽ f

(
x̃t
)
− 𝜂t

⟨
∇f

(
x̃t
)
,∇f

(
xt
)⟩

+ L𝜂2t
2
‖‖‖∇f (xt)‖‖‖2

+ L𝜂2t
2
Et

⎡⎢⎢⎣
‖‖‖‖‖‖ 1
M

M∑
i=1

gt,i − ∇f
(
xt
)‖‖‖‖‖‖

2⎤⎥⎥⎦ .
(25)

Following [1], we assume that
{
gt,i − ∇f

(
xt
)}

1⩽i⩽M are indepen-
dent random vectors. Then the assumption Et

[
gt,i

]
= ∇f

(
xt
)
of

Assumption 2 implies that gt,i − ∇ f (xt) are random vectors with 0
means. Therefore

Et

⎡⎢⎢⎣
‖‖‖‖‖‖

M∑
i=1

(
gt,i − ∇f

(
xt
))‖‖‖‖‖‖

2⎤⎥⎥⎦ =
M∑
i=1

Et

[‖‖‖gt,i − ∇f
(
xt
)‖‖‖2]

and hence we have

Et

⎡⎢⎢⎣
‖‖‖‖‖‖ 1
M

M∑
i=1

gt,i − ∇f
(
xt
)‖‖‖‖‖‖

2⎤⎥⎥⎦
= Et

⎡⎢⎢⎣
‖‖‖‖‖‖ 1
M

M∑
i=1

(
gt,i − ∇f

(
xt
))‖‖‖‖‖‖

2⎤⎥⎥⎦
= 1

M2 Et

⎡⎢⎢⎣
‖‖‖‖‖‖

M∑
i=1

(
gt,i − ∇f

(
xt
))‖‖‖‖‖‖

2⎤⎥⎥⎦
= 1

M2

M∑
i=1

Et

[‖‖‖gt,i − ∇f
(
xt
)‖‖‖2]

⩽ 𝜎2M
M2 = 𝜎2

M
.

Substituting the above bound to (25) gives us

Et
[
f
(
x̃t+1

)]
⩽ f

(
x̃t
)
− 𝜂t

⟨
∇f

(
x̃t
)
,∇f

(
xt
)⟩

+ L𝜂2t
2
‖‖‖∇f (xt)‖‖‖2 + L𝜂2t 𝜎

2

2M
.

(26)

Moreover, we have

−𝜂t
⟨
∇f

(
x̃t
)
,∇f

(
xt
)⟩

= 𝜂t
⟨
∇f

(
xt
)
− ∇f

(
x̃t
)
,∇f

(
xt
)⟩

− 𝜂t
⟨
∇f

(
xt
)
,∇f

(
xt
)⟩

= 𝜂t
⟨
∇f

(
xt
)
− ∇f

(
x̃t
)
,∇f

(
xt
)⟩

− 𝜂t
‖‖‖∇f (xt)‖‖‖

⩽ 𝜂t𝜌
2
‖‖‖∇f (xt)‖‖‖2 + 𝜂t

2𝜌
‖‖‖∇f (xt) − ∇f

(
x̃t
)‖‖‖2

−𝜂t
‖‖‖∇f (xt)‖‖‖2

(27)

1384 T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387

⩽ −𝜂t
(
1 − 𝜌

2

)‖‖‖∇f (xt)‖‖‖2 + 𝜂tL2

2𝜌
‖‖xt − x̃t‖‖2 , (28)

where (27) is by the fact that ⟨a,b⟩≤ (𝜌/2) ||a|| 2 + (𝜌−1/2)||b||2 for all
a,b and real number 𝜌 > 0, and (28) is by Assumption 1. Replacing
(28) to (26) gives us

Et
[
f
(
x̃t+1

)]
⩽ f

(
x̃l
)
− 𝜂t

(
1 − L𝜂t+𝜌

2

)‖‖‖∇f (xl)‖‖‖2
+ 𝜂tL2

2𝜌
‖‖xt − x̃t‖‖2 + L𝜂2t 𝜎

2

2M
.

Taking 𝜌 = 1
2
, we have

Et
[
f
(
x̃t+1

)]
⩽ f

(
x̃t
)
− 𝜂t

(
3
4
− L𝜂t

2

)‖‖‖∇f (xt)‖‖‖2
+𝜂tL2 ‖‖xt − x̃t‖‖2 + L𝜂2t 𝜎

2

2M
.

(29)

Since xt − x̃t = 𝜂t−1
(
ẽt +

1
M

∑M

i=1
et,i

)
by (22), after rearranging

the terms and taking total expectation, we obtain

𝜂t
(

3
4
− L𝜂t

2

)
E
[‖‖‖∇f (xt)‖‖‖2]

⩽ E
[
f
(
x̃t
)
− f

(
x̃t+1

)]
+ L𝜂2t 𝜎

2

2M

+ 𝜂t𝜂2t−1L
2E

⎡⎢⎢⎣
‖‖‖‖‖‖ẽt + 1

M

M∑
i=1

et,i
‖‖‖‖‖‖
2⎤⎥⎥⎦ .

Applying Theorem 2 gives us

𝜂t
(

3
4
− L𝜂t

2

)
E
[‖‖‖∇f (xt)‖‖‖2] (30)

⩽ E
[
f
(
x̃t
)
− f

(
x̃t+1

)]
+ L𝜂2t 𝜎

2

2M

+𝜂t𝜂2t−1
2(2−𝛿)(1−𝛿)G2L2

𝛿

t−1∑
k=0

𝜂2t−1−k
𝜂2t−1

𝛼k

+𝜂t𝜂2t−1
4(1−𝛿)(2−𝛿)3G2L2

𝛿2

t−1∑
j=0

𝛼t−1−j
j∑

k=0

𝜂2j−k
𝜂2t−1

𝛼k,

where 𝛼 = 1 − 𝛿
2
. Since 𝜂t <

3
2L
,∀t, we have

T−1∑
k=0

𝜂k
4
(
3 − 2L𝜂k

)
> 0.

Taking summation and dividing by
∑T−1

k=0

𝜂k
4
(3−2L𝜂k), (30) yields

T−1∑
t=0

𝜂t
(
3 − 2L𝜂t

)
E
[‖‖‖∇f (xt)‖‖‖2]∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

)
⩽ 4(f(x0)−f⋆)∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

)
+ 2L𝜎2

M

T−1∑
t=0

𝜂2t∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

)
+ 8(2−𝛿)(1−𝛿)G2L2

𝛿
∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

) T−1∑
t=0

𝜂t𝜂
2
t−1

t−1∑
k=0

𝜂2t−1−k
𝜂2t−1

𝛼k

+ 16(1−𝛿)(2−𝛿)3G2L2

𝛿2
∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

)×
T−1∑
t=0

𝜂t𝜂
2
t−1

t−1∑
j=0

𝛼t−1−j
j∑

k=0

𝜂2j−k
𝜂2t−1

𝛼k.

Following Zheng et al. [1], let o∈ {0,...,T − 1} be an index such that

Pr(o = k) = 𝜂k(3−2L𝜂k)∑T−1

t−0
𝜂t
(
3 − 2L𝜂t

)
Then

E
[‖‖‖∇f (xo)‖‖‖2]

= 1∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

) T−1∑
t=0

𝜂t
(
3 − 2L𝜂t

)
E
[‖‖‖∇f (xt)‖‖‖2]

and we obtain the result stated in Theorem 1 ☐

The following corollary establishes the convergence rate O
(

1√
MT

)
of Algorithm 1 when the learning rate is decreasing.

Corollary 2. (Convergence rate with decreasing learning rate)
Under the assumptions of Theorem 1, if

{
𝜂t
}
is a decreasing sequence

such that

𝜂t =
1

((t+1)T)1∕4√
M

+ T1∕3

with sufficiently large T. Then

E
[‖‖‖∇f (xo)‖‖‖2]

⩽ 2
(

1√
MT

+ 1
T2∕3

) [
f
(
x0
)
− f⋆ + L𝜎2

+ 4(1−𝛿)(2−𝛿)G2L2

𝛿2

(
1 + 4

𝛿2

)]
,

which yields E
[‖‖‖∇f (xo)‖‖‖2] ⩽ O

(
1√
MT

)
.

T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387 1385

Proof. Following [1], assume that T ⩾ 16L4M2, we have

𝜂t =
1

((t+1)T)1∕4√
M

+T1∕3
⩽

√
M

((t + 1)T)1∕4

⩽
√
M

(t + 1)1∕4(16L4M2)1∕4

= 1
(t + 1)1∕42L

⩽ 1
2L

.

Therefore 𝜂t < 3
2L
∀t ⩾ 0, which satisfies the assumption of

Theorem 1 on
{
𝜂t
}
. Recall that by Theorem 1, we have

E
[‖‖‖∇f (xo)‖‖‖2]

⩽ 4(f(x0)−f⋆)∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

) + 2L𝜎2

M
∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

) T−1∑
t=0

𝜂2t

+ 8(1−𝛿)(2−𝛿)G2L2

𝛿
∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

) T−1∑
t=0

𝜂t𝜂
2
t−1

t−1∑
k=0

𝜂2t−1−k
𝜂2t−1

𝛼k

+ 16(1−𝛿)(2−𝛿)3G2L2

𝛿2
∑T−1

k=0
𝜂k

(
3 − 2L𝜂k

)×
T−1∑
t=0

𝜂t𝜂
2
t−1

t−1∑
j=0

𝛼t−1−j
j∑

k=0

𝜂2j−k
𝜂2t−1

𝛼k,

(31)

where 𝛼 = 1 − 𝛿
2
and o ∈ {0,… ,T − 1} is an index such that

Pr(o = k) =
𝜂k

(
3 − 2L𝜂k

)∑T−1

k=0
𝜂t
(
3 − 2L𝜂t

) ,∀k = 0,… ,T − 1.

Since

3 − 2L𝜂t ⩾ 3 − 1
(t + 1)1∕4

⩾ 2,

we have

1∑T−1

k=0
𝜂t
(
32L𝜂t

) ⩽ 1

2
∑T−1

k=0
𝜂t
. (32)

Moreover, we have

𝜂t𝜂
2
t−1

t−1∑
k=0

𝜂2t−1−k
𝜂2t−1

𝛼k =
t−1∑
k=0

𝜂t𝜂
2
t−1−k𝛼

k (33)

and

𝜂t𝜂2t−1

t−1∑
j=0

𝛼t−1−j
j∑

k=0

𝜂2j−k
𝜂2t−1

𝛼k

=
t−1∑
j=0

𝛼t−1−j
j∑

k=0
𝜂t𝜂

2
j−k𝛼

k.
(34)

Substituting (32), (33), and (34) to (31) gives us

E
[‖‖‖∇f (xo)‖‖‖2]

⩽ 2(f(x0)− f⋆)∑T−1

t=0
𝜂t

+ L𝜎2

M
∑T−1

t=0
𝜂t

T−1∑
t=0

𝜂2t

+ 4(1−𝛿)(2−𝛿)G2L2

𝛿
∑T−1

t=0
𝜂t

T−1∑
t=0

t−1∑
k=0

𝜂t𝜂
2
t−1−k𝛼

k

+ 8(1−𝛿)(2−𝛿)3G2L2

𝛿2
∑T−1

t=0
𝜂t

×

T−1∑
t=0

t−1∑
j=0

𝛼t−1−j
j∑

k=0
𝜂t𝜂

2
j−k𝛼

k,

(35)

Because

𝜂t𝜂2t−1−k ⩽ 𝜂3t−1−k

= 1(
((t−k)T)1∕4√

M
+ T1∕3

)3

⩽ 1
(T1∕3)3

= 1
T

(36)

and

t−1∑
k=0

𝛼k ⩽
∑
k⩾0

𝛼k = 1
1 − 𝛼

= 2
𝛿
, (37)

we obtain

T−1∑
t=0

t−1∑
k=0

𝜂t𝜂
2
t−1−k𝛼

k ⩽ 1
T

T−1∑
t=0

t−1∑
k=0

𝛼k

⩽ 1
T

T−1∑
t=0

2
𝛿
= 2

𝛿
.

By the same reason as in (36) and (37), we have 𝜂t𝜂2j−k ⩽ 1
T
,∑t−1

j=0
𝛼t−1−j ⩽ 2

𝛿
, and

∑j

k= 0
𝛼k ⩽ 2

𝛿
. Therefore

T−1∑
t=0

t−1∑
j=0

𝛼t−1−j
j∑

k=0
𝜂t𝜂

2
j−k𝛼

k

⩽ 1
T

T−1∑
t=0

t−1∑
j=0

𝛼t−1−j
j∑

k=0
𝛼k

⩽ 1
T

T−1∑
t=0

t−1∑
j=0

𝛼t−1−j
(2
𝛿

)
⩽ 1

T

T−1∑
t=0

4
𝛿2

= 4
𝛿2

.

1386 T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387

Moreover, we have

T−1∑
t=0

𝜂2t =
T−1∑
t=0

1(
((t+1)T)1∕4√

M
+ T1∕3

)2

⩽
T−1∑
t=0

1(
((t+1)T)1∕4√

M

)2

=
T−1∑
t=0

M
[(t + 1)T]1∕2

= M√
T

T∑
t=1

1√
t

⩽ 2M,

where the last inequality is by the fact that
∑T

t=1
1√
t

⩽ 2
√
T.

Therefore

E
[‖‖‖∇f (xo)‖‖‖2] ⩽

2
(
f
(
x0
)
− f⋆

)∑T−1

t=0
𝜂t

+ 2L𝜎2∑T−1

t=0
𝜂t

+8(1 − 𝛿)(2 − 𝛿)G2L2

𝛿2
∑T−1

t=0
𝜂t

+32(1 − 𝛿)(2 − 𝛿)3G2L2

𝛿4
∑T−1

t=0
𝜂t

.

Furthermore, becauce

T−1∑
t=0

𝜂t =
T−1∑
t=0

1
((t+1)T)1∕4

(
√
M)

+ T1∕3
⩾

T−1∑
t=0

1√
T√
M
+ T1∕3

= 1
1√
MT

+T−2∕3
,

we obtain

1∑T−1

t=0
𝜂t

⩽ 1√
MT

+ 1
T2∕3 .

Therefore

E
[‖‖‖∇f (xo)‖‖‖2]
⩽ 2

(
1√
MT

+ 1
T2∕3

) [
f
(
x0
)
− f⋆ + L𝜎2

+ 4(1−𝛿)(2−𝛿)G2L2

𝛿2

(
1 + 4

𝛿2

)]
and hence Corollary 2 follows. ☐

6. CONCLUSION

We show that the convergence proof of dist-EF-SGD of Zheng
et al. [1] is problematic when the sequence of learning rate is

decreasing. We explicitly provide counter-examples with certain
decreasing sequences of learning rate to show the issue in the proof
of Zheng et al. [1]. We fix the issue by providing a new error bound
and a new convergence theorem for the dist-EF-SGD algorithm,
which helps recover its mathematical foundation.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest.

AUTHORS’ CONTRIBUTIONS

Tran Thi Phuong established the research direction. Both authors
contributed to the technical contents, and to the edition of the
manuscript. Both authors read, revised, and approved the final
manuscript.

ACKNOWLEDGMENTS

We are grateful to Shuai Zheng for his communication and verifica-
tion.We also thank the anonymous reviewers for their careful com-
ments. The work of Le Trieu Phong was supported in part by JST
CREST under Grant JPMJCR19F6.

REFERENCES

[1] S. Zheng, Z. Huang, J.T. Kwok, Communication-efficient
distributed blockwise momentum SGD with error-
feedback, in Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS 2019), Vancouver,
Canada. 2019, pp. 11446–11456. https://arxiv.org/abs/1905.
10936

[2] J. Bernstein, J. Zhao, K. Azizzade-nesheli, A. Anandkumar,
signSGD with majority vote is communication efficient and fault
tolerant, in 7th International Conference on Learning Represen-
tations (ICLR 2019), New Orleans, LA, USA. 2019.

[3] D. Basu, D. Data, C. Karakus, S.N. Diggavi, Qsparse-local-
SGD: distributed SGD with quantization, sparsification and local
computations, in Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS 2019), Vancouver, Canada. 2019, pp.
14668–14679.

[4] T. Vogels, S.P. Karimireddy, M. Jaggi, PowerSGD: practical
low-rank gradient compression for distributed optimization, in
Advances in Neural Information Processing Systems, Curran
Associates, Inc., Vancouver, Canada. 2019, pp. 14236–14245.

[5] S.U. Stich, J.-B. Cordonnier, M. Jaggi, Sparsified SGD with mem-
ory, in Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems,
Montréal, Canada. 2018, pp. 4452–4463.

[6] H. Tang, C. Yu, X. Lian, T. Zhang, J. Liu, DoubleSqueeze: parallel
stochastic gradient descent with double-pass error-compensated
compression, in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceed-
ings of the 36th International Conference on Machine Learning,
vol. 97 of Proceedings of Machine Learning Research (PMLR),
PMLR, Long Beach, California, USA. 2019, pp. 6155–6165.

T. T. Phuong and L. T. Phong / International Journal of Computational Intelligence Systems 14(1) 1373–1387 1387

[7] X. Liu, Y. Li, J. Tang, M. Yan, A double residual compression algo-
rithm for efficient distributed learning, in Proceedings ofMachine
Learning Research (PMLR), Palermo, Italy. 2020, pp. 133–143.

[8] T.T. Phuong, L.T. Phong, Distributed SGD with flexible gradient
compression, IEEE Access. 8 (2020), 64707–64717.

[9] S.P. Karimireddy, Q. Rebjock, S.U. Stich, M. Jaggi, Error feed-
back fixes signSGD and other gradient compression schemes, in

Proceedings of the 36th International Conference on Machine
Learning (ICML 2019), Long Beach, California, USA. 2019, pp.
3252–3261. https://arxiv.org/abs/1901.09847

[10] Y. Nesterov, Introductory Lectures on Convex Optimization,
vol. 87, Springer Science and Business Media, Boston, MA,
USA, 2004.

https://doi.org/10.1109/ACCESS.2020.2984633
https://doi.org/10.1109/ACCESS.2020.2984633
https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1007/978-1-4419-8853-9

	Communication-Efficient Distributed SGD with Error-Feedback, Revisited
	1. INTRODUCTION
	1.1. Background
	1.2. Our Contributions
	1.3. Paper Roadmap
	1.4. Related Works

	2. PRELIMINARIES
	2.1. Compressor and Assumptions
	2.2. Supporting Lemmas

	3. THE ISSUE IN ZHENG ET AL. [R11]
	4. CORRECTING THE ERROR BOUND OF ZHENG ET AL. [R11]
	5. CORRECTING THE CONVERGENCE THEOREM OF ZHENG ET AL. [R11]
	6. CONCLUSION

