
GDP Festschrift ENTCS, to appear

Event Structures with Symmetry

Glynn Winskel 1

University of Cambridge Computer Laboratory, England

Abstract

A category of event structures with symmetry is introduced and its categorical properties investigated.
Applications to the event-structure semantics of higher order processes, nondeterministic dataflow and the
unfolding of Petri nets with multiple tokens are sketched.

Keywords: Event structures, symmetry, pseudo monads, spans, higher order processes, nondeterministic
dataflow, Petri net unfolding.

1 Introduction

In the paper introducing event structures [15] a ‘curious mismatch’ was noted. There
event structures represent domains, so types. But they also represent processes
which belong to a type. How are we to reconcile these two views?

One answer has arisen in recent work under the banner of ‘domain theory for
concurrency’ (see [17] for a summary). This slogan stands for an attempt to push
the methodology of domain theory and denotational semantics into the areas of
interactive/concurrent/distributed computation, where presently more syntactic,
operational or more informal methodologies prevail. Certain generalized relations
(profunctors [4]) play a strong unifying role and it was discovered that in several
contexts that they could be represented in a more informative operational way by
spans of event structures [16,28,19].

A span of event structures is typically of the form

E
in

��~~
~~

~~
~

out

@@

@@
@@

@

A B

1 Email: Glynn.Winskel@cl.cam.ac.uk

mailto:myuserid@mydept.myinst.myedu

where in and out are maps of event structures—the maps are not necessarily of the
same kind. The event structure E represents a process computing from an input
type, represented by the event structure A, to output type represented by B. A
span with no input amounts to just a single map E

out−→B which we can read as
expressing that the process E has type B. So spans are a way to reconcile the
double role that event structures can take, as processes and as types.

Of course spans should compose. So one would like systematic ways to vary the
in and out maps of spans which ensure they do. One way is to derive the maps by
a Kleisli construction from monads on a fundamental category of event structures.
With respect to suitable monads S and T satisfying a suitable distributivity law,
one can form a bicategory of more general spans

E

||zz
zz

zz
zz

##F
FF

FF
FF

FF

S(A) T (B) .

It becomes important that event structures are able to support a reasonable reper-
toire of monads, including monads which produce multiple, essentially similar,
copies of an event structure. For this the introduction of symmetry seems essential. 2

In fact, there are several reasons for introducing symmetry to event structures
and related models:

• It’s there—at least informally. Symmetry often plays a role in the analysis of
distributed algorithms. In particular, symmetry has always been present at least
informally in the model of strand spaces, and has recently been exploited in ex-
ploring their behaviour [8], and was used to understand their expressivity [6].
Strand spaces are forms of event structures used in the analysis of security proto-
cols. They comprise a collection of strands of input and output events, possibly
with the generation of fresh values. Most often there are collections of strands
which are essentially indistinguishable and can be permuted one for another with-
out changing the strand space’s behaviour.

• To obtain categorical characterizations of unfoldings of Petri nets in which places
may hold with multiplicity greater than one. There are well-known ways to un-
fold such general nets; for example by distinguishing the tokens through ‘colours,’
splitting the places and events accordingly and reducing the problem to the un-
folding in [15]. But the folding maps are not unique (w.r.t. an obvious cofreeness
property). They are however unique ‘up to symmetry.’

• Event structures are sometimes criticized for not being abstract enough. One
precise way in which this manifests itself is that the category of event structures
does not support monads and comonads of the kind discovered for more general
presheaf models [4]. The computation paths of an event structure, its configura-
tions, are ordered by inclusion. In contrast the paths of presheaf models can be

2 Symmetry was introduced into game semantics specifically to support a ‘copying’ comonad [1].

related more generally by maps. Some (co)monads used for presheaf models al-
low the explicit copying of processes and produce a proper category of paths even
when starting with a partial order of paths—this arises because of the similarity
of one copy of a process with another.

The last point is especially pertinent to the versatility of spans of event struc-
tures. This paper presents a definition of a symmetry on an event structure.
Roughly a symmetry will express the similarity of finite behaviours of an event
structure. The introduction of symmetries to event structures will, in effect, put
the structure of a category on their finite configurations, and so broaden the struc-
ture of computation paths event structures can represent. The ensuing category
of event structures with symmetries will support a much richer class of (pseudo)
monads, from which we can then obtain more general kinds of span. The category
of event structures with symmetry with rigid maps emerges as fundamental; other
maps on event structures can be obtained by a Kleisli construction or as instances
of general spans starting from rigid maps.

Several applications, to be developed further in future work, are outlined in
Section 8:

• Event types: One reason why so-called ‘interleaving’ models for concurrency have
gained prevalence is that they support definitions by cases on the initial actions
processes can do; another is that they readily support higher-order processes.
Analogous facilities are lacking, at least in any reasonable generality, in ‘true-
concurrency’ models—models like Petri nets and event structures, in which causal
dependence and independence are represented explicitly. It is sketched how pro-
cesses can be associated with ‘event types’ which specify the kinds of events they
can do, and how event types can support definitions by cases on events. Much
more needs to be done. But the examples do demonstrate the key role that sym-
metry and the copying of processes can play in obtaining flexible event types and
event-based definitions.

• Nondeterministic dataflow and affine-HOPLA: ‘Stable’ spans of event structures,
a direct generalisation of Berry’s stable functions [2], have been used to give
semantics to nondeterministic dataflow [19] and the higher-order process language
affine-HOPLA [16]. Stable spans can be obtained as instances of general spans.
The realization of the ‘demand’ maps used there as a Kleisli construction on rigid
maps provides a striking example of the power of symmetry.

• Petri-net unfoldings: One obvious application is to the unfolding of a general Petri
net to an event structure with symmetry; the symmetry reflects that present in
the original net through the interchangeability of tokens. Another related issue is
the unfolding of higher-dimensional automata, where identifications of edges are
reflected in the symmetry of the events to which they unfold.

2 Event structures

Event structures [15,22,25,26] are a model of computational processes. They repre-
sent a process, or system, as a set of event occurrences with relations to express how
events causally depend on others, or exclude other events from occurring. In one of
their simpler forms they consist of a set of events on which there is a consistency
relation expressing when events can occur together in a history and a partial order
of causal dependency—writing e′ ≤ e if the occurrence of e depends on the previous
occurrence of e′.

An event structure comprises (E,Con,≤), consisting of a countable 3 set E,
of events which are partially ordered by ≤, the causal dependency relation, and a
consistency relation Con consisting of finite subsets of E, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆ X ∈ Con ⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

The events are to be thought of as event occurrences without significant duration;
in any history an event is to appear at most once. We say that events e, e′ are
concurrent if {e, e′} ∈ Con & e 6≤ e′ & e′ 6≤ e. Concurrent events can occur
together, independently of each other.

An event structure represents a process. A configuration is the set of all events
which may have occurred by some stage, or history, in the evolution of the process.
According to our understanding of the consistency relation and causal dependency
relations a configuration should be consistent and such that if an event appears in
a configuration then so do all the events on which it causally depends. Here we
restrict attention to finite configurations.

The configurations, C(E), of an event structure E consist of those subsets x ⊆ E

which are

Consistent: ∀X ⊆ x. X is finite ⇒ X ∈ Con, and

Down-closed: ∀e, e′. e′ ≤ e ∈ x ⇒ e′ ∈ x.

We write Co(E) for the finite configurations of the event structure E.
The configurations of an event structure are ordered by inclusion, where x ⊆ x′,

i.e. x is a sub-configuration of x′, means that x is a sub-history of x′. Note that
an individual configuration inherits an order of causal dependency on its events
from the event structure so that the history of a process is captured through a
partial order of events. The finite configurations correspond to those events which
have occurred by some finite stage in the evolution of the process, and so describe
the possible (finite) states of the process. The axioms on the consistency relation

3 In fact, that the events are countable can be replaced by the weaker condition of consistent-countable,
which suffices for the proofs here and allows extra results, e.g. in Sections 8.2 and 8.4. An event structure is
consistent-countable if there is a function χ from its events to the natural numbers ω such that {e1, e2} ∈ Con
and χ(e1) = χ(e2) implies e1 = e2.

ensure that the down-closure of any finite set in the consistency relation is a finite
configuration and that any event appears in a configuration: given X ∈ Con its
down-closure {e′ ∈ E | ∃e ∈ X. e′ ≤ e} is a finite configuration; in particular, for an
event e, the set [e] =def {e′ ∈ E | e′ ≤ e} is a configuration describing the whole
causal history of the event e.

When the consistency relation is determined by the pairwise consistency of
events we can replace it by a binary relation or, as is more usual, by a complemen-
tary binary conflict relation on events. It can be awkward to describe operations
such as certain parallel compositions directly on the simple event structures here,
essentially because an event determines its whole causal history. One closely related
and more versatile, though perhaps less intuitive and familiar, model is that of stable
families, described in Appendix C. Stable families will play an important technical
role, both in establishing the existence of constructions such as products and pull-
backs of event structures, and in providing more concrete ways to understand the
introduction of symmetry to event structures and its consequences.

Let E and E′ be event structures. A partial map of event structures f : E ⇀ E′

is a partial function on events f : E ⇀ E′ such that for all x ∈ Co(E) its direct
image fx ∈ Co(E′) and

if e1, e2 ∈ x and f(e1) = f(e2) (with both defined), then e1 = e2.

The partial map expresses how the occurrence of an event e in E induces the coinci-
dent occurrence of the event f(e) in E′ whenever it is defined. The partial function
f respects the instantaneous nature of events: two distinct event occurrences which
are consistent with each other cannot both coincide with the occurrence of a com-
mon event in the image. (The maps defined are unaffected if we allow all, not just
finite, configurations, in the definition above.) Partial maps of event structures
compose as partial functions.

For any event e a partial map of event structures f : E ⇀ E′ must send the
configuration [e] to the configuration f [e]. Consequently the map f reflects causal
dependency: whenever f(e) and f(e′) are both defined with f(e′) ≤ f(e), then
e′ ≤ e. It follows that partial maps preserve the concurrency relation, when defined.

We will say the map is total iff the function f is total. Notice that for a total map
f the condition on maps now says it is locally injective, in the sense that w.r.t. any
configuration x of the domain the restriction of f to a function from x is injective;
the restriction of f to a function from x to fx is thus bijective.

We say the map f is rigid iff it is total and for all x ∈ Co(E) and y ∈ Co(E′)

y ⊆ f(x) ⇒ ∃z ∈ Co(E). z ⊆ x and fz = y .

The configuration z is necessarily unique by the local injectivity of f . (Again, the
class of rigid maps would be unaffected if we allow all configurations in the definition
above.)

Proposition 2.1 A total map f : E → E′ of event structures is rigid iff f preserves
causal dependency, i.e., if e′ ≤ e in E then f(e′) ≤ f(e) in E′.

Proof. “If”: Total maps reflect causal dependency. So, if f preserves causal de-
pendency, then for any configuration x of E, the bijection f : x → fx preserves and
reflects causal dependency. Hence for any subconfiguration y of fx, the bijection
restricts to a bijection f : z → y with z a down-closed subset of x. But then z must
be a configuration of E. “Only if”: Let e ∈ E. Then [f(e)] ⊆ f [e]. Hence, as f is
rigid, there is a subconfiguration z of [e] such that fz = [f(e)]. By local injectivity,
e ∈ z, so z = [e]. Hence f [e] = [f(e)]. It follows that if e′ ≤ e then f(e′) ≤ f(e). 2

A rigid map of event structures preserves the causal dependency relation
“rigidly,” so that the causal dependency relation on the image fx is a copy of
that on a configuration x of E—in this sense f is a local isomorphism. This is not
so for general maps where x may be augmented with extra causal dependency over
that on fx. (Special forms of rigid maps appeared as rigid embeddings in Kahn and
Plotkin’s work on concrete domains [12].)

Note that for any partial map of event structures f : A ⇀ B there is a least
event structure B0, its image, included in B, with the inclusion forming a rigid map
j : B0 ↪→ B, so that f factors as j ◦ f0 for map f0—the map f0 will be total or rigid
if the original map f is total or rigid, respectively. Construct B0 to comprise the
events fA with causal dependency inherited from B and with a finite subset of B0

consistent iff it is the image of a consistent set in A.

Definition 2.2 Write E for the category of event structures with total maps. Write
Er and Ep for the categories of event structures with rigid and partial maps, respec-
tively. (We shall concentrate on total maps, and unless it is said otherwise a map
of event structures will be a total map.)

The categories E and Ep are well-known and have a long history. The category
Ep is especially relevant to the semantics of process languages such as CCS and
CSP based on event synchronisation, in particular its product is fundamental to
the semantics of parallel compositions [23,21]. The category of rigid maps Er has
been less studied, and its maps appear overly restrictive at first sight—after all
projections from parallel compositions to their components are rarely rigid as a
parallel composition most often imposes additional causal dependency on events of
its components. However, as we shall see there is a strong case for the primary
nature of rigid maps; other maps of event structures including total and partial
maps can be obtained as rigid maps in Kleisli categories w.r.t. monads on event
structures with rigid maps (though to obtain partial maps in this way we shall first
have to extend event structures with symmetry). The primacy of rigid maps and
the need for symmetry are glimpsed in the following propositions and their proofs.

Proposition 2.3 The inclusion functor Er ↪→ E has a right adjoint. The category
E is isomorphic to the Kleisli category of the monad for the adjunction.

Proof. The right adjoint’s action on objects is given as follows. Let B be an event
structure. For x ∈ C(B), an augmentation of x is a partial order (x, α) where
∀b, b′ ∈ x. b ≤B b′ ⇒ b α b′. We can regard such augmentations as elementary event
structures in which all subsets of events are consistent. Order all augmentations

by taking (x, α) v (x′, α′) iff x ⊆ x′ and the inclusion i : x ↪→ x′ is a rigid map
i : (x, α) → (x′, α′). Augmentations under v form a prime algebraic domain—
see Appendix B; the complete primes are precisely the augmentations with a top
element. Define aug(B) to be its associated event structure.

There is an obvious total map of event structures εB : aug(B) → B taking
a complete prime to the event which is its top element. It can be checked that
post-composition by εB yields a bijection

εB ◦ : Er(A, aug(B)) ∼= E(A,B) .

Hence aug extends to a right adjoint to the inclusion Er ↪→ E .
Write aug also for the monad induced by the adjunction and Kl(aug) for its

Kleisli category. Under the bijection of the adjunction

Kl(aug)(A,B) =def Er(A, aug(B)) ∼= E(A,B) .

The categories Kl(aug) and E share the same objects, and so are isomorphic. 2

Can the category Ep, with partial maps, also be obtained as a Kleisli category
from a monad on Er or E? A first thought would be a ‘monad’ ()∗ adjoining
an ‘undefined event’ ∗ to event structures and to represent partial maps of event
structures from A to B as total maps from A to B∗. But then we would need to
send several consistent events to the same ‘undefined event’ ∗—which is not possible
for maps of event structures. Some enlargement of event structures and their maps
is needed before we can realize partial maps via a Kleisli construction.

Proposition 2.4 The categories Er, E and Ep have products and pullbacks, though
in the case of total and rigid maps there are no terminal objects.

Proof. The nature of products in E and Ep is known from [23] and from these the
existence of pullbacks follows directly—see Appendix C. The existence of products
and pullbacks in Er follows from Appendix C.

The category Ep has the empty event structure as terminal object. To see that
Er and E fail to have a terminal object, consider maps from 2, the event struc-
ture comprising two concurrent events, to any putative terminal object >. By the
properties of maps, rigid or total, their image of 2 in > must be two concurrent
events e0 and e1 for which [e0] = {e0} and [e1] = {e1}. But then there would be at
least two maps from 1, the event structure with a single event, to >—contradicting
uniqueness. (Later, with the introduction of symmetry, there will be a biterminal
object, and then these two maps will be equal up to symmetry.) 2

Open maps

In defining symmetries on event structures we will make use of open maps [11].
Open maps are a generalisation of functional bisimulations, known from transition
systems. They are specified as those maps in a category which satisfy a path-lifting
property w.r.t. a chosen subcategory of paths. Here we take the subcategory of

paths to be the full subcategory of finite elementary event structures (i.e., finite
event structures in which all subsets are consistent).

W.r.t. a category of event structures (i.e., E , Er or Ep), say a map h : A → B,
between event structures A and B, is open iff for all maps j : p → q between finite
elementary event structures, any commuting square

p x //

j

��

A

h
��

q
y

//B

can be split into two commuting triangles

p x //

j

��

A

h
��

q
y

//

z

88qqqqqqq
B.

That the square commutes means that the path h ◦ x in B can be extended via j

to a path y in B. That the two triangles commute means that the path x can be
extended via j to a path z in A which matches y.

Open maps compose and so form a subcategory, are preserved under pullbacks,
and the product of open maps is open. All these facts follow purely diagrammati-
cally [11]. W.r.t. any of the categories of event structures, we can characterise open
maps as rigid maps with an extension property:

Proposition 2.5 In any of the categories E, Er and Ep, a map h : A → B of event
structures is open iff h is rigid and satisfies

∀x ∈ Co(A), y′ ∈ Co(B). hx ⊆ y′ ⇒ ∃x′ ∈ C(E). x ⊆ x′ & hx′ = y′ .

Proof. We show the result for the most general catcategory Ep. (The proofs for
the other categories E and Er use the same ideas.)
“⇒”: Assume h is open in Ep. For x ∈ Co(A), consider the commuting square

x

hx

��

� � //A

h
��

hx
� � //B

got by restricting h to the configuration x—both x and hx are regarded as elemen-
tary event structures with causal dependency inherited from A and B, respectively.
Because h is open, we can factor the square into two commuting triangles:

x

hx

��

� � //A

h
��

hx

<<

� � // B .

Because the upper triangle commutes, the restriction hx of h to x and the ‘diagonal’
(dotted) map must be total. As the ‘diagonal’ reflects causal dependency, hx must
preserve causal dependency for events in x. For any two events a ≤ a′ in A the
finite configuration [e′] contains them both. Hence h preserves causal dependency,
so is rigid.

Suppose hx ⊆ y′ for x ∈ Co(A) and y′ ∈ Co(B). Again, regard x, hx and y′ as
elementary event structures with causal dependency inherited from their ambient
event structures. We obtain the commuting square

x

��

� � //A

h

��

hx� _

��
y

FF

� � //B

where we have also added its factorization into two commuting triangles due to
h being open. Commutativity of the triangles, yields (as the image of the dotted
‘diagonal’) a finite configuration x′ of A with x ⊆ x′ and hx′ = y′.

“⇐”: Assume h is rigid and satisfies the extension property. Suppose for elementary
event structures p and q that

p

��

//A

h
��

q //B

commutes in Ep. Factoring through the images x of p and y of q we obtain two
commuting squares

p

��

// // x

hx

��

� � //A

h

��

hx� _

��
q // // y

EE

� � // B .

By the extension property, there is x′ ∈ Co(A) such that hx′ = y. Because h is rigid,
there is a (dotted) ‘diagonal’ map, sending y to x′, which breaks the rightmost square
into two commuting triangles. Composing the diagonal with the map q → y splits
the outer commuting square in the way required for h to be open. 2

3 Event structures with symmetry

We shall present a general definition of symmetry, concentrating on the category
E of event structures with total maps. This category has (binary) products and
pullbacks (though no terminal object) and supports a notion of open map. For the
definition of symmetry we are about to give this is all we require.

A symmetry on an event structure should specify which events are similar in
such a way that similar events have similar pasts and futures. This is captured,
somewhat abstractly, by the following definition.

Definition 3.1 An event structure with symmetry (E, l, r) comprises an event
structure E together with open maps l : S → E and r : S → E from a common
event structure S such that the map 〈l, r〉 : S → E × E is an equivalence relation
(i.e., the map 〈l, r〉 is monic—equivalently, l, r are jointly monic—and satisfies the
standard diagramatic properties of reflexivity, symmetry and transitivity [10]. See
Appendix A).

A bisimulation is given by a span of open maps [11], in the case of the above
definition by the pair of open maps l and r. So the definition expresses a sym-
metry on an event structure as a bisimulation equivalence. The definition has the
advantage of being abstract in that it readily makes sense for any category with
binary products and pullbacks for which there is a sensible choice of paths in order
to define open maps. It is sensible for the categories of event structures with rigid
and partial maps, for stable families, transition systems, trace languages and Petri
nets [21], because these categories also have products, pullbacks and open maps;
both categories of event structures with rigid and partial maps would have the same
class of open maps and so lead to precisely the same event structures with symmetry
as objects. We shall mainly concentrate on the category with total maps to connect
directly with the particular examples we shall treat here. 4

For the specific model of event structures there is an alternative way to present a
symmetry. We can express a symmetry l, r : S → E on an event structure E equiva-
lently as a relation of similarity between its finite configurations. More precisely, two
finite configurations x, y of E are related by a bijection θz =def {(l(s), r(s)) | s ∈ z}
if they arise as images x = l z and y = r z of a common finite configuration z of
S; because l and r are locally injective θz is a bijection between x and y. Because
l and r are rigid the bijection is an order isomorphism between x and y with the
order of causal dependency inherited from E. In this way a symmetry on E will de-
termine an isomorphism family expressing when and how two finite configurations
are similar, or symmetric, in the sense that one can replace the other. As expected,
such similarity forms an equivalence relation, and if two configurations are similar
then so are their pasts (restrictions to subconfigurations) and futures (extensions
to larger configurations).

Definition 3.2 An isomorphism family of an event structure E consists of a family
S of bijections

θ : x ∼= y

between pairs of finite configurations of E such that:
(i) the identities idx : x ∼= x are in S for all x ∈ Co(E); if θ : x ∼= y is in S, then so
is the inverse θ−1 : y ∼= x; and if θ : x ∼= y and ϕ : y ∼= z are in S, then so is their

4 As we shall see, there is a strong case for regarding rigid maps as the fundamental maps of event structures,
in that other maps on event structures can then ultimately be obtained as Kleisli maps w.r.t. suitable pseudo
monads once we have introduced symmetry.

composition ϕ ◦ θ : x ∼= z.
(ii) for θ : x ∼= y in S whenever x′ ⊆ x with x′ ∈ C(E), then there is a (necessarily
unique) y′ ∈ C(E) with y′ ⊆ y such that the restriction of θ to θ′ : x′ ∼= y′ is in S.
(iii) for θ : x ∼= y in S whenever x ⊆ x′ for x′ ∈ Co(E), then there is an extension of
θ to θ′ : x′ ∼= y′ in S for some (not necessarily unique) y′ ∈ Co(E) with y ⊆ y′.
[Note that (i) implies that the converse forms of (ii) and (iii) also hold. Note too
that (ii) implies that the bijections in the family S respect the partial order of causal
dependency on configurations inherited from E; the bijections in an isomorphism
family are isomorphisms between the configurations regarded as elementary event
structures.]

We shall use the following simple fact about rigid maps in showing the corre-
spondence between symmetries on event structures and isomorphism families.

Lemma 3.3 A rigid map of event structures h : A → B which is injective and
surjective as a function h : Co(A) → Co(B), sending a configuration to its image, is
an isomorphism of event structures.

Proof. Consider the function h : Co(A) → Co(B) induced between configurations.
For x, y ∈ Co(A),

x ⊆ y ⇔ h x ⊆ h y .

“⇒”: Obvious. “⇐”: If h x ⊆ h y, then by rigidity, there is a configuration y′ ⊆ y

such that h y′ = h x. But by injectivity x = y′, so x ⊆ y.
Being surjective, h is a bijection between finite configurations which preserves

and reflects inclusion. Being rigid, h preserves and reflects prime configurations.
Because the event structures can be recovered via the primes—Theorem B.1, this
entails that h is an isomorphism of event structures. 2

Isomorphism families are really symmetries on stable families (as we will spell
out later in Theorem 5.2). Accordingly the proof of the following key theorem rests
on the coreflection between the categories of event structures and stable families
described in Appendix C.

Theorem 3.4 Let E be an event structure.
(i) A symmetry l, r : S → E determines an isomorphism family S: defining θz =
{(l(s), r(s)) | s ∈ z} for z a finite configuration of S, yields a bijection θz : l z ∼= r z;
the family S consisting of all bijections θz : l z ∼= r z, for z a finite configuration of
S.
(ii) An isomorphism family S of E determines a symmetry l, r : S → E: the family
S forms a stable family; the event structure S is obtained as Pr(S) for which the
events are primes [(e1, e2)]θ for θ in S and (e1, e2) ∈ θ; the maps l and r send a
prime [(e1, e2)]θ to e1 and e2 respectively.

The operations of (i) and (ii) are mutually inverse (regarding relations as sub-
objects). Performing (ii) then (i) returns the original isomorphism family. Start-
ing from a symmetry l, r : S → E, performing (i) then (ii) produces a symmetry
l′, r′ : Pr(S) → E, via the isomorphism family S of (i). There is an isomorphism of

event structures h : S → Pr(S) given by h(s) = {(l(s′), r(s′)) | s′ ≤ s}, for s ∈ S.
The maps l′, r′ satisfy l′(h(s)) = l(s) and r′(h(s)) = r(s), for s ∈ S.

Proof. (i) Let l, r : S → E be a symmetry. That θz is indeed a bijection from l z

to r z for z ∈ Co(S), follows directly from l and r being maps of event structures.
That the collection of all such bijections satisfies property (i) of Definition 3.2 is
a routine consequence of 〈l, r〉 forming an equivalence relation. The remaining
properties, (ii) and (iii), follow from l and r being open.

(ii) Let S be an isomorphism family of E. That S forms a stable family is a conse-
quence of property (ii) of the isomorphism family, using the fact that Co(E) is itself
a stable family. Note that inclusion of events induces a rigid map of stable families
S ↪→ Co(E) × Co(E) to the product Co(E) × Co(E) in Fam, again by property (ii)
of the isomorphism family S.

The rigid inclusion map of stable families j : S ↪→ Co(E) × Co(E) yields
a rigid inclusion map of event structures Pr j : Pr(S) ↪→ Pr(Co(E) × Co(E)),
i.e. Pr j; Pr(S) ↪→ E × E—as in Appendix C.1, we take the product E × E in E
to be Pr(Co(E) × Co(E)). Composing with the projections we obtain the maps
l, r : Pr(S) → E: they map a prime [(e1, e2)]θ to e1 and e2 respectively. They are
open by properties (ii) and (iii) of the isomorphism family S.

We check that performing (ii) then (i) returns the original isomorphism fam-
ily. Starting with an isomorphism family S via (ii) we obtain the symmetry
l, r : Pr(S) → E where l([(e1, e2)]θ = e1 and r([(e1, e2)]θ = e2. Then via (i) we
obtain an isomorphism family S′ consisting of all bijections φ for which

φ = {(l(s), r(s)) | s ∈ z}

for some z ∈ Co(Pr(S)). But the configurations Co(Pr(S)) are precisely those subsets
z for which

z = {[(e1, e2)]θ | (e1, e2) ∈ θ}

for some θ ∈ S—see Appendix, Theorem C.4. It follows that S = S′.

On the other hand, performing (i) then (ii), starting from a symmetry l, r :
S → E, produces another symmetry l′, r′ : Pr(S) → E, from S, the isomorphism
family described in (i). However, 〈l, r〉 and 〈l′, r′〉 are the same relation in the
sense of representing the same subobject of E ×E; they do so via the isomorphism
h : S ∼= Pr(S) given by s 7→ {(l(s′), r(s′) | s′ ≤ s}. To see this argue as follows.

From the original symmetry l, r : S → E, we obtain the following commuting

diagram in Fam:
Co(S)

d
����l

~~~~
~~

~~
~~

~~
~~

~~
~~

~~

r

  
@@

@@
@@

@@
@@

@@
@@

@@
@@

S� _

��

Co(E) Co(E)× Co(E)π1oo π2 // Co(E)

where we have factored the mediating map d : Co(S) → Co(E) × Co(E), for which
d(s) = (l(s), r(s)), through its image, the isomorphism family S.

Applying the functor Pr we obtain the commuting diagram in E

S

ηS

��

l

~~

r

  

Pr Co(S)

Pr d
��

Pr l

����
��

��
��

��
��

��
��

�

Pr r

��
;;

;;
;;

;;
;;

;;
;;

;;
;

Pr(S)� _

��

E ηE
//Pr Co(E) E × E

Pr π1oo Pr π2 //Pr Co(E) EηE
oo

where we have also added the (dotted) naturality ‘squares’ associated with the
natural isomorphism η, the unit of the adjunction between event structures E and
stable families Fam. Bearing in mind the definition, from Appendix C.1, of the
product E × E, p1, p2 in E we can simplify this to the commuting diagram

S

h
��

l

����
��

��
��

��
��

��
�

r

��
33

33
33

33
33

33
33

3

Pr(S)� _

��

E E × E
p1oo

p2 //E

(†)

where we have defined h =def (Pr d)◦ηS . Clearly the mediating map to the product
must equal 〈l, r〉, i.e.

S
h //

〈l,r〉
""E

EE
EE

EE
EE Pr(S)� _

��

E × E

(‡)

commutes.
We must have h monic as 〈l, r〉 is monic. Moreover l and r are rigid so 〈l, r〉 is

rigid—Appendix C.1—ensuring that h is rigid too. It is not hard to see that Pr d

is surjective as a map Pr d : Co(Pr Co(S)) → Pr(S) on configurations—this follows
because d is surjective on configurations by its definition. Hence h is also surjective



on configurations. The rigid map h is now injective (being monic) and surjective
on configurations, so by Lemma 3.3 it is an isomorphism of event structures h :
S ∼= Pr(S). Unwrapping the definition of h as (Pr d) ◦ ηS we see that h(s) =
{(l(s′), r(s′)) | s′ ≤ s} for s ∈ S.

By definition the symmetry maps l′, r′ : Pr(S) → E are given by projections, so
filling in the diagram (†) we obtain the commuting diagram

S

h
��

l

����
��

��
��

��
��

��
��

r

��
44

44
44

44
44

44
44

44

Pr(S)

l′
||yy

yy
yy

yy
y

r′
##G

GGGGGGG� _

��

E E × Ep1
oo

p2
//E ,

from which l′(h(s)) = l(s) and r′(h(s)) = r(s) for all s ∈ S. The inclusion Pr(S) ↪→
E ×E must equal 〈l′, r′〉. So by (‡), as h is an isomorphism, the two relations 〈l, r〉
and 〈l′, r′〉 are equal (as subobjects of the product). 2

Through the addition of symmetry event structures can represent a much richer
class of ‘path categories’ [4] than mere partial orders. The finite configurations
of an event structure with symmetry can be extended by inclusion or rearranged
bijectively under an isomorphism allowed by the symmetry. In this way an event
structure with symmetry determines, in general, a category of finite configurations
with maps obtained by repeatedly composing the inclusions and allowed isomor-
phisms. By property (ii) in Definition 3.2 any such map factors uniquely as an
isomorphism of the symmetry followed by an inclusion. While by property (iii) any
such map factors (not necessarily uniquely) as an inclusion followed by an isomor-
phism of the symmetry.

Example 3.5 Any event structure E can be identified with the event structure
with the identity symmetry (E, idE , idE). Its isomorphism family consists of all
identities idx : x ∼= x on finite configurations x ∈ C(E).

Example 3.6 Identify the natural numbers ω with the event structure with events
ω, trivial causal dependency given by the identity relation and in which all finite
subsets of events are in the consistency relation. Define S to be the product of event
structures ω × ω in E ; the product comprises events all pairs (i, j) ∈ ω × ω with
trivlal causal dependency, and consistency relation consisting of all finite subsets of
ω × ω which are bijective (so we take two distinct pairs (i, j) and (i′, j′) to be in
conflict iff i = i′ or j = j′.) Define l and r to be the projections l : S → E and
r : S → E. Then $ =def (ω, l, r) forms an event structure with symmetry. The
corresponding isomorphism family in this case coincides with all finite bijections
between finite subsets of ω. Any finite subset of events of $ is similar to any other.
Of course, an analogous construction works for any countable, possibly finite, set.

Example 3.7 Let E = (E, l : S → E, r : S → E) be an event structure with
symmetry. Define an event structure with symmetry !E = (E!, l! : S! → E!, r! :



S! → E!) comprising ω similar copies of E as follows. The event structure E! has
the set of events ω × E with causal dependency

(i, e) ≤! (i′, e′) iff i = i′ & e ≤E e′

and consistency relation

C ∈ Con! iff C is finite & ∀i ∈ ω. {e | (i, e) ∈ C} ∈ ConE .

The symmetry S! has events ω × ω × S with causal dependency

(i, j, s) ≤S!
(i′, j′, s′) iff i = i′ & j = j′ & s ≤S s′ .

A finite subset C ⊆ S! is in the consistency relation ConS!
iff

{(i, j) | ∃s. (i, j, s) ∈ C} is bijective & ∀i, j ∈ ω. {s | (i, j, s) ∈ C} ∈ ConS .

Define l(i, j, s) = (i, lS(s)) and r(i, j, s) = (j, rS(s)) for i, j ∈ ω, s ∈ S.
The finite configurations of E! correspond to tuples (or indexed families) 〈xi〉i∈I

of nonempty-finite configurations xi ∈ C(E) indexed by i ∈ I, where I a finite
subset of ω. With this view of the configurations of E!, the isomorphism family
corresponding to S! specifies isomorphisms between tuples

(σ, 〈θi〉i∈I) : 〈xi〉i∈I
∼= 〈yj〉j∈J

consisting of a bijection between indices σ : I ∼= J together with θi : xi
∼=

yσ(i) from the isomorphism family of S, for all i ∈ I.
The event structure with symmetry $ reappears as the special case !1, where 1

is the event structure with a single event.

We conclude this section with a general method for constructing symmetries,
though one we will not use further in this paper. Just as there is a least symmetry
on an event structure, viz. the identity symmetry, so is there a greatest. Moreover
any bisimulation on an event structure generates a symmetry on it. We take a
bisimulation on an event structure A to be a pair of open maps l, r : R → A

from an event structure R for which 〈l, r〉 is monic. In general we might specify a
bisimulation on an event structure just by a pair of open maps from a common event
structure, and not insist that the pair is monic. But here, no real generality is lost
as such a pair of open maps on event structures will always factor through its image,
a bisimulation with monicity. The proof proceeds most easily by first establishing
an analogous property for isomorphism families. We define a bisimulation family
to be a family of bijections between finite configurations of A which satisfy (ii) and
(iii) in Definition 3.2.

Proposition 3.8 Let A be an event structure.
(i) For any bisimulation family R on A there is a least isomorphism family S for
which R ⊆ S.



(ii) For any bisimulation 〈l0, r0〉 : R → A there is a least symmetry 〈l, r〉 : S → A

(understood as a subobject) for which R is a subobject of S.
There is a greatest symmetry on A.

Proof. (i) The family R can be inductively closed under identities, symmetry and
transitivity, while maintaining the properties of a bisimulation family, to form an
isomorphism family S. The inductive construction of S ensures that it is the least
isomorphism family including R.
(ii) The correspondence between symmetries and isomorphism families of The-
orem 3.4 extends to a correspondence between bisimulations and bisimulation
families—by copying the proof there. A bisimulation R corresponds to a bisim-
ulation family R. The least isomorphism family S including R corresponds to a
least bisimulation R.

Bisimulation families are closed under unions. Hence there is a maximum such
family, necessarily the greatest isomorphism family of A, as closure under identities,
symmetry and transitivity maintains the properties of a bisimulation family. The
greatest isomorphism family determines the greatest symmetry on A. 2

4 Maps preserving symmetry

Maps between event structures with symmetry are defined as maps between event
structures which preserve symmetry. Let (A, lA, rA) and (B, lB, rB) be event struc-
tures with symmetry. A map f : (A, lA, rA) → (B, lB, rB) is a map of event struc-
tures f : A → B such that there is a (necessarily unique) map of event structures
h : SA → SB ensuring

〈lB, rB〉 ◦ h = (f × f) ◦ 〈lA, rA〉 .

Here we are adopting a convention to be used throughout the paper: when otherwise
unspecified we shall assume that A an event structure with symmetry has open
maps described as lA, rA : SA → A from an event structure SA; we shall also often
understand ConA and ≤A as its consistency and causal dependency relations.

Note the obviously equivalent characterization of a map f : (A, lA, rA) →
(B, lB, rB) preserving symmetry as a map of the underlying event structures
f : A → B for which there is a (necessarily unique) map h : SA → SB making

A

f

��

SA
lAoo

h
��
�
�
�

rA //A

f

��

B SB
lBoo rB //B

commute.
Maps between event structures with symmetry compose as maps of event struc-

tures and share the same identity maps.

Definition 4.1 We define SE to be category of event structures with symmetry.



We can characterize when maps of event structures preserve symmetry in terms
of isomorphism families. A map preserving symmetry should behave as a functor
both w.r.t. the inclusion between finite configurations and the isomorphisms of the
symmetry.

Proposition 4.2 A map of event structures f : A → B is a map f : (A, lA, rA) →
(B, lB, rB) of event structures with symmetry iff whenever θ : x ∼= y is in the
isomorphism family of A then fθ : f x ∼= f y is in the isomorphism family of B,
where fθ =def {(f(e1), f(e2)) | (e1, e2) ∈ θ}.

Proof. ‘Only if ’: Assume f : (A, lA, rA) → (B, lB, rB) is a map of event structures
with symmetry. By definition, 〈lB, rB〉 ◦ h = (f × f) ◦ 〈lA, rA〉 for some map h :
SA → SB. We thus have the equations flA = lBh and frA = rBh. Any bijection
θ : x ∼= y in the isomorphism family of A is obtained as θ = {(lA(s), rA(s) | s ∈ z}
for some z ∈ Co(SA). The configuration hz ∈ Co(SB) determines the bijection
{(lB(s), rB(s) | s ∈ hz} in the isomorphism family of B. But this bijection coincides
with fθ by the equations above.
‘If ’: Suppose f respects the isomorphism families SA of A and SB of B as described
in the proposition. Then diagrammatically in Fam, the category of stable families,

SA� _

��

h // SB� _

��

Co(A)× Co(A) f×f
// Co(B)× Co(B)

commutes for some unique map h of stable families (the downwards maps are in-
clusions). Applying Pr we obtain the commuting diagram

SA

〈lA,rA〉
##

∼= Pr (SA)

��

Pr h //Pr (SB)

��

SB
∼=

〈lB ,rB〉zz

A×A
f×f
//B ×B ,

where we have also added the isomorphisms with the original symmetries. Hence f

is a map of event structures with symmetry. 2

We explore properties of the category SE . It is more fully described as a cate-
gory enriched in the category of equivalence relations and so, because equivalence
relations are a degenerate form of category, as a 2-category in which the 2-cells are
instances of the equivalence ∼. This view informs the constructions in SE which are
often very simple examples of the (pseudo- and bi-) constructions of 2-categories.

Definition 4.3 Let f, g : (A, lA, rA) → (B, lB, rB) be maps of event structures with
symmetry (A, lA, rA) and (B, lB, rB). Define f ∼ g iff there is a (necessarily unique)
map of event structures h : A → SB such that

〈f, g〉 = 〈lB, rB〉 ◦ h .



Note the obviously equivalent way to express f ∼ g, through the existence of a
(necessarily unique) map h such that the following diagram commutes:

A
f

~~||
||

||
||

h
��
�
�
�

g

  
BB

BB
BB

BB

B SBl
oo

r
//B

Straightforward diagrammatic proofs show:

Proposition 4.4 The relation ∼ is an equivalence relation on maps SE(A,B) be-
tween event structures with symmetry A and B. The relation ∼ respects composition
in the sense that if f ∼ g then h ◦ f ◦ k ∼ h ◦ g ◦ k, for composable maps h and k.

The category SE is enriched in the category of equivalence relations (comprising
equivalence relations with functions which preserve the equivalence).

We can characterize the equivalence of maps between event structures with sym-
metry in terms of isomorphism families which makes apparent how ∼ is an instance
of natural isomorphism between functors.

Proposition 4.5 Let f, g : (A, lA, rA) → (B, lB, rB) be maps of event structures
with symmetry. Then, f ∼ g iff θx : f x ∼= g x is in the isomorphism family of
(B, lB, rB) for all x ∈ Co(A), where θx =def {(f(a), g(a)) | a ∈ x}.

Proof. ‘Only if ’: Assume f ∼ g, i.e. the equations f = lBh and g = rBh hold for
some map h : A → SB. Let x ∈ Co(A). Then h x ∈ Co(SB) and this configuration
determines the bijection {(lB(s), rB(s)) | s ∈ h x} in the isomorphism family of B.
But this bijection coincides with θx by the equations.
‘If ’: Assume θx : f x ∼= g x is in the isomorphism family SB of (B, lB, rB) for all
x ∈ Co(A). This may be expressed as the commuting triangle

SB� _

��

Co(A)× Co(A)

h

55lllllllllllllll

f×g
// Co(B)× Co(B)

in Fam. Applying Pr, moving to E , we obtain the commuting diagram

Pr(SB)

��

SB
∼=

〈lB ,rB〉zz

A×A

Pr h
99ssssssssss

f×g
//B ×B .

Hence f ∼ g. 2

Equivalence on maps yields an equivalence on objects:



Definition 4.6 Let A and B be event structures with symmetry. An equivalence
from A to B is a pair of maps f : A → B and g : B → A such that f ◦ g ∼ idB and
g ◦ f ∼ idA; then we say A and B are equivalent and write A ' B.

5 General categories with symmetry

The procedure we have used to extend event structures with symmetry carries
through for any category A with (binary) products, pullbacks and a distinguished
subcategory OA of ‘open’ maps which include all isomorphisms of A and are such
that the product of open maps is open and the pullback of an open map is open.
We can then define an object with symmetry to be (A, l, r : S → A) consisting of
an object A of A and two open maps l, r which together make 〈l, r〉 an equivalence
relation—just as for event structures with symmetry. Just as before we can define
what it means for a map to preserve symmetry, and the equivalence relation ∼
on homsets saying when two such maps are equivalent. In this way we produce
a category SA enriched in the category of equivalence relations. In particular, we
can form the categories of event structures with symmetry SEr, based on rigid
maps, and SEp, based on partial maps (as well as corresponding categories of stable
families—see Appendix C).

Now assume both A,OA and B,OB are categories with products and pullbacks,
with respective subcategories of open maps. Certain functors between A and B
straightforwardly induce functors between the enriched categories SA to SB of ob-
jects with symmetry.

Proposition 5.1 Suppose a functor F : A → B preserves pullbacks, open maps,
and has monic mediators for products in the sense that for all products A×A, π1, π2

and F (A)× F (A), p1, p2 the unique mediating map h in the commuting diagram

F (A×A)
F (π2)

&&NNNNNNNNNNN
F (π1)

xxppppppppppp
h
��
�
�
�

F (A) F (A)× F (A)p1
oo

p2
//F (A)

is monic. Then F will induce a functor SF : SA → SB which takes an object with
symmetry (A, l : S → A, r : S → A) to an object with symmetry (F (A), F (l), F (r))
and a map f : (A, lA, rA) → (B, lB, rB) to F (f). The functor SF preserves ∼ on
homsets.

Proof. Let (A, l : S → A, r : S → A) be an object in SA. Consider the diagram

F (S)

F 〈l,r〉
��

Fl

����
��

��
��

��
��

��
��

��

Fr

��
>>

>>
>>

>>
>>

>>
>>

>>
>>

F (A×A)

F (π2)
OOO

O

''OO
OOF (π1)

ppp
p

xxppp
p h

��
�
�
�

F (A) F (A)× F (A)p1
oo

p2
//F (A) .



The map 〈Fl, Fr〉 equals the composition h ◦ F 〈l, r〉 which is monic, because the
mediating map h is monic, by assumption, and F 〈l, r〉 is monic, as F preserves
pullbacks. It is a routine matter to check that (F (A), F l, Fr) is an object with
symmetry and show the construction induces a ∼-respecting functor from SA to
SB. 2

Proposition 5.1 will be quite useful. For now, observe that the right adjoint Pr :
Fam → E from stable families to event structures preserves open maps, pullbacks
and products, and so certainly meets the requirements of Proposition 5.1. It thus
provides a functor SPr : SFam → SE . The functor SPr has a left adjoint, the now
familiar construction of forming the isomorphism family of an event structure with
symmetry. (The left adjoint to SPr is not constructed via Proposition 5.1.)

Theorem 5.2 The functor SPr : SFam → SE has a left adjoint I : SE → SFam

which preserves ∼ on homsets. On objects, the functor I takes an event structure
with symmetry (A, l, r) to the stable family with symmetry (S, l′, r′) comprising S
the isomorphism family of (A, l, r) with symmetry maps l′, r′ : S → Co(A) where
l′(a, a′) = a and r′(a, a′) = a′. The functor I takes a map f : (A, lA, rA) →
(B, lB, rB) in SE to the map f : Co(A) → Co(B) sending a configuration x ∈ Co(A)
to the configuration f x.

The adjunction I a SPr has unit η, a natural isomorphism, and counit ε with
components ηA : A → Pr Co(A), where ηA(a) = [a] for a ∈ A, and εF : Co Pr(F) →
F , where εA([a]x) = a for x ∈ F and a ∈ x (they coincide with the unit and counit
of the adjunction Co a Pr). The bijection of the adjunction

SE(A,SPr(F)) ∼= SFam(I(A),F) ,

natural in A and F , preserves and reflects ∼.

Proof. Given an event structure with symmetry (A, l, r) it is routine to check that
its isomorphism family, with the two projections, is a stable family with symmetry.
That a symmetry-preserving map between event structures with symmetry becomes
a symmetry-preserving map between stable families with symmetry is a reformula-
tion of the ‘only if’ direction of Proposition 4.2. The functoriality of I is obvious.
That I preserves ∼ follows directly from the ‘only if’ direction of Proposition 4.5.

We should check that the components of the unit and counit preserve symmetry.
For the unit we require w.r.t. an event structure with symmetry (A, l, r) that

A

ηA

��

S
loo

h
��
�
�
�

r //A

ηA

��

Pr Co(A) Pr(S)
Pr l′
oo

Pr r′
//Pr Co(A)

commutes, for some (unique) map h. But this is so for the isomorphism h of
Theorem 3.4, for which h(s) = {(l(s′), r(s′)) | s′ ≤ s} when s ∈ S.

For the counit we require w.r.t. a stable family F with symmetry L,R : S → F



that
Co Pr(F)

εF

��

S′oo

k

��
�
�
�

// Co Pr(F)

εF

��

F SL
oo

R
//F

commutes, for a some (unique) map k. Here S′ is the isomorphism family of Pr(S),
so consists of all those subsets

{([L(s)]Lσ, [R(s)]Rσ) | s ∈ σ}

for σ ∈ S; its symmetry maps are given by the left and right projections. By
assumption 〈L,R〉 is monic in Fam, and so injective as a function. Because of this
we obtain a well-defined function k by specifying that it takes the pair of primes
([L(s)]Lσ, [R(s)]Rσ) to s. If θ ∈ S, then θ = {([L(s)]Lσ, [R(s)]Rσ) | s ∈ σ}, for some
σ ∈ S. Clearly k θ = σ and k is easily seen to be locally injective. Hence we obtain
k : S′ → S, a map in Fam, which is readily observed to make the diagram commute.

The adjunction Co a Pr from E to Fam gives a bijection, with the following
mutual inverses,

E(A,Pr(F))
εF◦Co( )

..
Fam(Co(A),F)

Pr( )◦ηA

mm ,

for A ∈ E and F ∈ Fam. As on maps I coincides with Co and SPr with Pr, we
obtain the bijection of the adjunction I a SPr,

SE(A,SPr(F))
εF◦I( )

..
SFam(I(A),F)

SPr( )◦ηA

nn ,

when A ∈ SE and F ∈ SFam. Because I, SPr and composition preserve ∼, the
bijection preserves and reflects ∼. 2

The categories SE and SFam are enriched in the category of equivalence relations;
accordingly the adjunction is enriched—the natural bijection of the adjunction is
an isomorphism of equivalence relations. Regarding SE and SFam as 2-categories,
the adjunction is an adjunction of 2-categories.

6 Constructions in SE
We first examine products in SE and the meaning of their symmetry in terms of
their isomorphism families.

Theorem 6.1 Let (A, lA, rA) and (B, lB, rB) be event structures with symmetry.
Their product in SE is given by (A × B, lA × lB, rA × rB), based on the product
A×B of their underlying event structures in E, and sharing the same projections,
π1 : A×B → A and π2 : A×B → B.

The isomorphism family of the product consists of all order isomorphisms θ :
x ∼= x′ between finite configurations x, x′ of A × B, with order inherited from the



product, for which θA = {(π1(p), π1(p′)) | ((p, p′) ∈ θ} is in the isomorphism family
of A and θB = {(π2(p), π2(p′)) | ((p, p′) ∈ θ} is in the isomorphism family of B.

Let f, f ′ : C → A and g, g′ : C → B in SE. If f ∼ f ′ and g ∼ g′, then
〈f, g〉 ∼ 〈f ′, g′〉.

Proof. Consider event structures, A with symmetry lA, rA : SA → A, and B with
symmetry lB, rB : SB → B. Their product in SE is built from the products A×B,
π1, π2 and SA × SB, Π1, Π2 in E . It is routine to check that the product in SE is
given by A×B with symmetry lA × lB, rA × rB : SA ×SB → A×B, with the same
projections π1 and π2 as the underlying event structure. Note that the product of
open maps is open. That 〈lA × lB, rA × rB〉 forms an equivalence relation follows
point for point from 〈lA, rA〉 and 〈lB, rB〉 forming equivalence relations.

Write SA×B, SA and SB for the isomorphism families of A×B, A and B in SE ,
respectively. We now show

θ ∈ SA×B ⇐⇒ θ ∈ Co(A×B)× Co(A×B) & θA ∈ SA & θB ∈ SB . (†)

“⇒”: Let θ ∈ SA×B. Through belonging to an isomorphism family, θ is automati-
cally in the product of stable families Co(A×B)× Co(A×B). By definition,

θ = {(lA × lB(s), rA × rB(s)) | s ∈ z}

for some z ∈ Co(SA × SB). Hence,

θA = {(π1(p), π1(p′)) | ((p, p′) ∈ θ}
= {(π1(lA × lB)(s), π2(rA × rB)(s)) | s ∈ z}
= {(lAΠ1(s), rAΠ2(s)) | s ∈ z}
= {(lA(s1), rA(s1)) | s1 ∈ Π1z} .

As Π1z ∈ Co(A) we obtain θA ∈ SA. Similarly, θB ∈ SB.
“⇐”: To show the converse we use a more convenient description of the product
of event structures with symmetry, obtained from the coreflection of Theorem 5.2
between event structures with symmetry and stable families with symmetry:

SE
I
⊥

,,
SFam

SPr

kk

Under the left adjoint I the event structures with symmetry (A, lA, rA) and
(B, lB, rB) are sent to stable families with symmetry, to respectively, the isomor-
phism family SA, with maps (a, a′) 7→ a and (a, a′) 7→ a′, and the isomorphism family
SB, with maps (b, b′) 7→ b and (b, b′) 7→ b′. Their product in SFam is constructed out
of the product of stable families SA × SB with projection maps (a, a′, b, b′) 7→ (a, b)
and (a, a′, b, b′) 7→ (a′, b′) to Co(A) × Co(B). Right adjoints preserve products, so
under SPr we obtain what will be a more convenient description of the product of



(A, lA, rA) and (B, lB, rB) as

Pr(SA × SB)
L

wwooooooooooo
R

''OOOOOOOOOOO

A×B A×B

where L and R act on primes as follows: for ζ ∈ SA × SB and (a, a′, b, b′) ∈ ζ,

L([(a, a′, b, b′)]ζ) = [(a, b)]ζ1 and R([(a, a′, b, b′])ζ) = [(a′, b′)]ζ2

where ζ1 = {(a, b) | (a, a′, b, b′) ∈ ζ} and ζ2 = {(a′, b′) | (a, a′, b, b′) ∈ ζ}.
With the above description of the product of (A, lA, rA) and (B, lB, rB), we

obtain that the isomorphism family of the product SA×B consists of all sets

θ = {(L(s), R(s)) | s ∈ z}

for some z ∈ Co(Pr(SA × SB)). But configurations in Co(Pr(SA × SB)) are precisely
those subsets z for which

z = {[(a, a′, b, b′)]ζ | (a, a′, b, b′) ∈ ζ}

for some ζ ∈ SA × SB. It follows that SA×B consists of all

θ = {([(a, b)]ζ1 , [(a
′, b′)]ζ2) | (a, a′, b, b′) ∈ ζ}

for some ζ ∈ SA × SB.
Now suppose θ ∈ Co(A × B) × Co(A × B) such that θA ∈ SA and θB ∈ SB.

Defining

ζ = {(a, a′, b, b′) | ∃(p, p′) ∈ θ. π1(p) = a & π1(p′) = a′ & π2(p) = b & π2(p′) = b′}

we obtain ζ ∈ SA × SB for which

θ = {([(a, b)]ζ1 , [(a
′, b′)]ζ2) | (a, a′, b, b′) ∈ ζ} ,

as required for θ ∈ SA×B.

We have established (†). It follows that

θ ∈ SA×B ⇐⇒ θ is an order isomorphism & θA ∈ SA & θB ∈ SB .

[By ‘θ is an order isomorphism’ is meant that θ is an order isomorphism θ : x ∼= x′

between finite configurations x = {p | ∃p′. (p, p′) ∈ θ} and x′ = {p′ | ∃p. (p, p′) ∈ θ}
of A×B.] “⇒”: If θ ∈ SA×B, then by property (ii) of isomorphism families, θ is
an order isomorphism. “⇐”: If θ is an order isomorphism θ : x ∼= x′ between finite
configurations x and x′ of A×B, then certainly θ ∈ Co(A × B) × Co(A × B) from



the description of the product of stable families in Appendix.

Suppose f ∼ f ′ and g ∼ g′, where f, f ′ : C → A and g, g′ : C → B in SE . Let
y ∈ Co(C). The bijection

θy : 〈f, g〉 y ∼= 〈f ′, g′〉 y
is in Co(A × B) × Co(A × B). Because f ∼ f ′ the bijection (θy)A : f y ∼= f ′ y is in
SA, and similarly (θy)B : g y ∼= g′ y is in SB. Hence, by the above, θy ∈ SA×B. Thus
〈f, g〉 ∼ 〈f ′, g′〉. 2

The category SE does not have a terminal object. However, the event struc-
ture with symmetry $ defined in Example 3.6 satisfies an appropriately weakened
property (it is a simple instance of a biterminal object):

Proposition 6.2 For any event structure with symmetry A there is a map f : A →
$ in SE and moreover for any two maps f, g : A → $ we have f ∼ g.

Proof. Let A be an event structure with symmetry. Because A is countable, there
is clearly a map from A to $. Assume two maps f, g : A → $. Let x ∈ Co(A).
Then f x and g x are sets of the same size as x. Hence θx : f x ∼= g x, where
θx = {(f(e), g(e)) | e ∈ x}, is in the isomorphism family of $. 2

The category SE does not have pullbacks and equalizers in general. However:

Proposition 6.3
(i) Let f, g : A → B be two maps between event structures with symmetry. They
have a pseudo equalizer, i.e. an event structure with symmetry E and map e : E → A

such that f ◦e ∼ g◦e which satisfies the further property that for any event structure
with symmetry E′ and map e′ : E′ → A such that f ◦ e′ ∼ g ◦ e′, there is a unique
map h : E′ → E such that e′ = e ◦ h.
(ii) Let f : A → C and g : B → C be two maps between event structures with
symmetry. They have a pseudo pullback, i.e. an event structure with symmetry D

and maps p : D → A and q : D → B such that f ◦p ∼ g◦q which satisfies the further
property that for any event structure with symmetry D′ and maps p′ : D′ → A and
q′ : D′ → B such that f ◦ p′ ∼ g ◦ q′, there is a unique map h : D′ → D such that
p′ = p ◦ h and q′ = q ◦ h.

Proof. (i) Let SB be the isomorphism family of B. Define a family of finite con-
figurations

D = {x ∈ Co(A) | φx : fx ∼= gx in SB}
—we use φx for the bijection between fx and gx induced by the local injectivity
of f and g w.r.t. a finite configuration x. Define the event structure E to comprise
events {a ∈ A | ∃x ∈ D. a ∈ x} with causal dependency the restriction of that in A

and consistency, X ∈ ConD iff ∃x ∈ D. X ⊆ x. Observe that

∀x′ ∈ Co(A). x′ ⊆ x ∈ D ⇒ x′ ∈ D

because any bijection φx : fx ∼= gx in SB restricts to a bijection φx′ : fx′ ∼= gx′ also
in SB. It follows that D coincides with the family of finite configurations Co(E).



We tentatively define an isomorphism family SE on E as follows. For x, y ∈
Co(E), take θ : x ∼= y to be in SE iff θ : x ∼= y is in SA. We need to verify that
SE is indeed an isomorphism family, for which we require properties (i), (ii), (iii)
of Definition 3.2 . Properties (i) and (ii) follow directly from the corresponding
properties of SA, where the observation above is used for (ii).

To show (iii), assume θ : x ∼= y is in SE and x ⊆ x′ ∈ Co(E). Then

φx : fx ∼= gx and φx′ : fx′ ∼= gx′ are in SB .

As θ : x ∼= y is also in SA, there is an extension θ′ : x′ ∼= y′ in SA, for some y′ ∈ Co(A).
We require that y′ ∈ Co(E), for which it suffices to show y′ ∈ D. However, as f and
g preserve symmetry,

fθ′ : fx′ ∼= fy′ and gθ′ : gx′ ∼= gy′ are in SB .

Hence φy′ = (gθ′) ◦ φx′ ◦ (fθ′)−1 : fy′ ∼= gy′ is in SB. So y′ ∈ D, as required.

(ii) This now follows as we can construct pseudo pullbacks from pseudo equalizers
and products: two maps f : A → C and g : B → C between event structures with
symmetry have a pseudo pullback given as the pseudo equalizer of the two maps
fπ1, gπ2 : A×B → C, got by composing with projections of the product. 2

There are obvious weakenings of the conditions of (i) and (ii) in which the
uniqueness is replaced by uniqueness up to ∼ and equality by ∼—these are simple
special cases of bilimits called biequalizers and bipullbacks when we regard SE as
a 2-category. As in the Proposition 6.3, we follow tradition and call the stricter
construction described in (ii) a pseudo pullback. In Theorem 6.1, that pairing of
maps preserves ∼ means that the products described are 2-products in SE regarded
as a 2-category. An accessible introduction to limits in 2-categories is [18].

7 Functors and pseudo monads

By Proposition 5.1, certain functors on the category of event structures E , straight-
forwardly induce functors on SE , the enriched category of event structures with sym-
metry. A functor on several, even infinitely many, arguments F : E×· · ·×E×· · · → E
which preserves pullbacks, open maps and has monic mediatiors for products will
induce a functor on event structures with symmetry respecting ∼ on homsets. (A
map in a product of categories, such as E × · · · × E × · · ·, is taken to be open iff it
is open in each component.) We consider some examples.

7.1 Operations

7.1.1 Simple parallel composition
For example, consider the functor ‖: E × E → E which given two event structures
puts them in parallel. Let (A, ConA,≤A) and (B,ConB,≤B) be event structures.
The events of A ‖ B are ({0} × A) ∪ ({1} × B); with (0, a) ≤ (0, a′) iff a ≤A



a′ and (1, b) ≤ (1, b′) iff b ≤B b′; and with a subset of events C consistent in
A ‖ B iff {a | (0, a) ∈ C} ∈ ConA and {b | (1, b) ∈ C} ∈ ConB. The operation
extends to a functor—put the two maps in parallel. It is not hard to check that
the functor ‖ preserves pullbacks and open maps, and that the mediating maps
(A × A) ‖ (B × B) → (A ‖ B) × (A ‖ B) are monic. Consequently it induces
a functor ‖: SE × SE → SE which preserves ∼ on homsets. On the same lines the
functor giving the parallel composition ‖i∈I Ai of countably-indexed event structures
Ai, i ∈ I, extends to a functor on event structures with symmetry.

7.1.2 Sum
Similarly, the coproduct or sum of two event structures extends to the sum of
event structures with symmetry. Let (A,ConA,≤A) and (B,ConB,≤B) be event
structures. The events of the sum A+B are ({0}×A)∪({1}×B); with (0, a) ≤ (0, a′)
iff a ≤A a′ and (1, b) ≤ (1, b′) iff b ≤B b′; but now a subset of events C is consistent in
A + B iff there is C0 ∈ ConA such that C = {(0, a) | a ∈ C0} or there is C1 ∈ ConB

such that C = {(1, a) | a ∈ C1}. We can also form a sum Σi∈IAi of event structures
Ai indexed by a countable set I. Again this extends to a functor on event structures
with symmetry.

7.2 An enriched adjunction

Adding symmetry, following the general procedure of Section 5, starting from the
category of event structures with rigid maps Er, we form SEr; we end up with exactly
the same objects, event structures with symmetry, but with rigid maps, preserving
symmetry, between them. The adjunction of Proposition 2.3, relating rigid and
total maps, lifts to an adjunction, enriched in equivalence relations,

SEr � � //> SE
Saug
oo

between event structures with symmetry.
This is essentially because the inclusion functor and its right adjoint aug lift

to their counterparts with symmetry. The inclusion functor Er ↪→ E meets the
conditions of Proposition 5.1 yielding an inclusion functor SEr ↪→ SE . The open
maps are the same in the two categories; products w.r.t. rigid maps are got by
restricting those w.r.t. total maps, ensuring monic mediators for products; and
pullbacks w.r.t. rigid maps are necessarily also pullbacks w.r.t. total maps. The
right adjoint aug : E → Er automatically preserves pullbacks and products, making
the mediating maps for products isomorphisms so certainly monic, and again open
maps coincide in the two categories. So it too lifts, via Proposition 5.1, to Saug :
SE → SEr.

Naturality of the unit η and counit of the original adjunction between Er and



E , ensures that their components preserve symmetry. We thus obtain a bijection

SEr(A, aug(B))
εB◦( )

-- SE(A,B)
Saug( )◦ηA

nn ,

for event structures with symmetry A and B. Because Saug and composition
preserve ∼, the bijection preserves and reflects ∼. Viewing the categories with
symmetry as enriched in the category of equivalence relations, the adjunction is
enriched. Viewing the categories as 2-categories, the adjunction is a 2-adjunction.

Correspondingly, the monad aug on Er lifts to an enriched monad, and 2-monad,
Saug on SEr. Its Kleisli category is isomorphic to SE . (We shall soon see that SEp,
the category of event structures with symmetry based on partial maps, can be
obtained as a Kleisli construction from a pseudo monad on SE , so also from a
pseudo monad on SEr.)

It is instructive to work out the biterminal object > in SEr (recalling Example 3.6
and Proposition 2.3). It is obtained from the biterminal object $ of SE as its
image under the right adjoint Saug . The finite configurations of > correspond to
partial orders on finite subsets of natural numbers ω; inclusion on configurations
corresponds to the rigid order between partial orders, described in the proof of
Proposition 2.3. Viewing >’s configurations in this way, its isomorphism family
consists of partial-order isomorphisms between partial orders on finite subsets of ω.

7.3 Pseudo monads

That categories with symmetry are enriched over equivalence relations ensures that
they support the definitions of 2-functor, 2-natural transformation, 2-adjunction
and 2-monad which respect ∼; in this simple case 2-natural transformations
coincide with natural transformations. Categories with symmetry also support the
definitions of pseudo functor and pseudo natural transformation, which parallel
those of functor and natural transformation, but with equality replaced by ∼. In
the same spirit a pseudo monad satisfies variants of the usual monad laws but
expressed in terms of ∼ rather than equality (we can ignore the extra coherence
conditions [5] as they trivialize in the simple situation here). As examples we
consider two particular pseudo monads which we can apply to the semantics of
higher-order nondeterministic processes. (There is an attendant weakening of the
notions of adjunction and equivalence between categories to that of biadjunction
and biequivalence.)

The following examples are based on constructions we have seen earlier.

7.3.1 The copying pseudo monad
The copying operation ! of Example 3.7 extends to a functor on SE . Let f : A →
B be a map of event structures with symmetry. Define !f :!A →!B by taking
!f(i, a) = (i, f(a)) for all events a of A. The functor ! preserves ∼ on homsets. (It
is not induced by a functor on E .)



The component of the unit η!
E : E →!E acts so η!

E(e) = (0, e) for all events
e ∈ E—it takes an event structure with symmetry E into its zeroth copy in !E.

The multiplication map relies on a subsidiary pairing function on natural num-
bers [ , ] : ω × ω → ω which we assume is injective. The component of the multi-
plication µ!

E :!!E →!E acts so µ!
E(i, j, e) = ([i, j], e).

It can be checked that the unit and the multiplication are natural transforma-
tions and that the usual monad laws, while they do not hold up to equality, do hold
up to ∼. The somewhat arbitrary choice of the zeroth copy in the definition of the
unit and pairing function on natural numbers in the definition of the multiplica-
tion don’t really matter in the sense that other choices would lead to components
∼-equivalent to those chosen. (Different choices lead to natural transformations
related by modifications with ∼ at all components.)

7.3.2 The partiality pseudo monad
Let E be an event structure with symmetry. Define E∗ =def E ‖ $, i.e. it consists
of E and $ put in parallel.

The component of the unit η∗E : E → E∗ acts so η∗E(e) = (0, e) for all events
e ∈ E—so taking E to its copy in E ‖ $.

The component of the multiplication µ∗E : (E∗)∗ → E∗ acts so µ∗E(0, (0, e)) =
(0, e) and µ∗E(0, (1, j)) = [0, j] and µ∗E(1, k) = [1, k], where we use the pairing
function on natural numbers above to map the two disjoint copies of ω injectively
into ω.

Both η∗ and µ∗ are natural transformations and the usual monad laws hold up
to ∼ making a pseudo monad. Again, the definition of multiplication is robust; if
we used some alternative way to inject ω + ω into ω the resulting multiplication
would be ∼-related at each component to the one we have defined.

The category of event structures with partial maps has played a central role in
the event structure semantics of synchronizing processes [23]. It readily generalizes
to accommodate symmetry. By following the general procedure of Section 5, we
obtain SEp; it has event structures with symmetry as objects but now with partial
maps between them. Through exploiting symmetry, SEp now reappears as a Kleisli
construction based on the pseudo monad ( )∗. Here we must face a technicality.
Because ( )∗ is a pseudo monad when we follow the obvious analogue of the Kleisli
construction for a monad on a category we find that the associativity and identity
laws for composition only hold up to symmetry, ∼. Technically the Kleisli construc-
tion yields a very simple instance of a bicategory, where the coherence conditions
trivialize. The Kleisli construction is a simple special case of that of the Kleisli
bicategory of a pseudo monad described in [5].

Proposition 7.1 The Kleisli bicategory of the pseudo monad (−)∗ and the category
SEp of event structures with symmetry and partial maps (regarded as a 2 category)
are biequivalent; the biequivalence is the identity on objects and takes maps f : A →
B∗ in the Kleisli bicategory to partial maps f̄ : A ⇀ B, undefined precisely when
the image is in $.



Proof. To be a biequivalence we need that f 7→ f̄ from maps in the Kleisli bicate-
gory Kl((−)∗)(A,B) = ES(A,B∗) to ESp(A,B) is (essentially) onto, preserves and
reflects ∼—as is easily checked. 2

7.4 Equivalences

We have enough operations to derive some useful equivalences. Below we use 1 to
denote the single-event event structure with symmetry and ⊗ for the product of
event structures with symmetry with partial maps.

Proposition 7.2 For event structures with symmetry:

(i) !A ‖!B '!(A + B) and ‖k∈K !Ak '!Σk∈KAk where K is a countable set.

(ii) $ '!1 and A×$ ' A.

(iii) A∗ ' A ‖ $, (!A)∗ '!(A + 1) and (A⊗B)∗ ' A∗ ×B∗.

Proof. (i) Define f :!A ‖!B →!(A + B) and g :!(A + B) →!A ‖!B as follows:

f(0, (i, a)) = (2i, (0, a)); f(1, (j, b)) = (2j + 1, (1, b)); and
g(i, (0, a)) = (0, (i, a)); g(j, (1, b)) = (1, (j, b)) .

To show id!A‖!B ∼ gf , consider x ∈ Co(!A ‖!B) for which

gf x = {(0, (2i, a)) | (0, (i, a)) ∈ x} ∪ {(1, (2j + 1, b)) | (1, (j, b)) ∈ x} .

The bijection induced by gf , viz. (0, (i, a)) 7→ (0, (2i, a)); (1, (j, b)) 7→ (1, (2j+1, b))
from x to gf x, is in the isomorphism family of !A ‖!B. Hence id!A‖!B ∼ gf .
Similarly, for y ∈ Co(!(A + B)),

fg y = {(2i, (0, a)) | (i, (0, a)) ∈ y} ∪ {(2j + 1, (1, b)) | (j, (1, b)) ∈ y} .

This time the bijection (i, (0, a)) 7→ (2i, (0, a)); (j, (1, b)) 7→ (2j + 1, (1, b)) from y

to fg y is in the isomorphism family of !(A + B). Hence id!(A+B) ∼ fg.
The proof for the infinitary version, ‖k∈K !Ak '!Σk∈KAk, where K is a countable

set, is similar. Assume an injective pairing function [ , ] : K × ω → ω. Define
f :‖k∈K !Ak →!Σk∈KAk and g :!Σk∈KAk →‖k∈K !Ak by f(k, (i, a)) = ([k, i], (k, a))
and g(i, (k, a)) = (k, (i, a)). For x ∈ Co(!Σk∈KAk) and y ∈ Co(!Σk∈KAk),

gf x = {(k, ([k, i], a)) | (k, (i, a)) ∈ x} and
fg y = {([k, i], (k, a)) | (i, (k, a)) ∈ y} .

The bijections induced by gf from x to fg x and fg from y to fg y are in the
isomorphism families of ‖k∈K !Ak and Σk∈KAk, respectively.
(ii) A×$ ' A because both sides are biproducts of A and $, so equivalent.

(iii) From Proposition 7.1, there is a biadjunction SE � � //> SEp .
( )∗oo

The right biad-
joint ( )∗ preserves products up to equivalence, so (A⊗B)∗ ' A∗ ×B∗.



The remaining equivalences are obvious. 2

The equivalence !A ‖!B '!(A + B), and its infinite version in (i), express the
sense in which copying obviates choice. More importantly, they and the other the
equivalences enable definitions by case analysis on events, also in the presence of
asynchrony.

8 Applications

We briefly sketch some applications, the subject of present and future work, and
less finished than that of the previous sections.

8.1 Spans

Because SE has pseudo pullbacks—Proposition 6.3, we can imitate the standard
construction of the bicategory of spans to produce a bicategory SpanSE . Its objects
are event structures with symmetry. Its maps SpanSE(A,B), from A to B, are spans

E

��~~
~~

~~
~

  
@@

@@
@@

@

A B

composed using the pseudo pullbacks of of Proposition 6.3 (ii). Its 2-cells, maps in
SpanSE(A,B), are the maps between the vertices of two spans making the obvious
triangles commute. SpanSE has a tensor and function space given by the product of
SE .

An individual span can be thought of as a process computing from input of type
A to output of type B. But given the nature of maps in SE such a process is rather
restricted; from a computational view the process is unnaturally symmetric and
‘ultra-linear’ because any output event is synchronized with an event of input.

We wish to modify the maps of a span to allow for different regimes of input
and output. A systematic way to do this is through the use of pseudo monads on
SE and build more general spans

E

||zz
zz

zz
zz

""E
EE

EE
EE

E

S(A) T (B)

for pseudo monads S and T . For example a span in which S = ( )∗ and T =!( )
would permit output while ignoring input and allow the output of arbitrarily many
similar events of type B. But for such general spans to compose, we require that S

and T satisfy several conditions, which we only indicate here:

• in order to lift to pseudo comonads and monads on spans, S and T should be
‘cartesian’ pseudo monads, now w.r.t. pseudo/bipullbacks (adapting [3]);



• in order to obtain a comonad-monad distributive law for the liftings of S and
T to spans it suffices to have a ‘cartesian’ distributive law for S and T , with
commutativity up to ∼, with extra pseudo/bipullback conditions on two of the
four diagrams (adapting [13]).

The two pseudo monads S = ( )∗ and T =!( ) do satisfy these requirements with
a distributive law with components λE : (!E)∗ →!(E∗) such that λE(0, (j, e)) =
(j, (0, e)) and λE(1, k) = (0, (1, k)).

The paper has concentrated on the categories of event structures E and SE
with total maps. In particular, general spans have been described for maps in SE .
Analogous definitions and results hold for rigid maps, and for spans in SEr. Recall
from Section 7.2 that total maps on event structures with symmetry can be obtained
as Kleisli maps w.r.t. a monad Saug on SEr. It appears that we can ground all the
maps and spans of event structures of interest in SEr. The category SEr is emerging
as the fundamental category of event structures.

8.2 Event types

The particular bicategory of spans

E

~~}}
}}

}}
}}

  
AA

AA
AA

AA

A∗ !B

is already quite an interesting framework for the semantics of higher-order processes.
It supports types including:

- Prefix types •!T : in which a single event • prefixes !T for an event structure with
symmetry T .

- Sum types Σα∈ATα: the sum of a collection Tα, for α ∈ A, of event structures
with symmetry—the sum functor is described in Section 7.1.2. Sum types may
also be written a1T1 + · · ·+ anTn when the indexing set is finite. The empty sum
type is the empty event structure ∅.

- Tensor types T1 ⊗ T2: the product in SEp.

- Function types T1 ( T2: a form of function space, defined as the product
(T1)∗×!T2 in SE . 5

- Recursively defined types: treated for example as in [23,25].

The types describe the events and basic causalities of a process, and in this sense
are examples of event types, or causal types, of a process. (One can imagine other
kinds of spans and variations in the nature of event types.)

5 Although this function space seems hard to avoid for this choice of span and tensor, we don’t quite have
⊗B a left biadjoint to B ( .



As an example, the type of a process only able to do actions within a1, · · · , ak

could be written
a1 • !∅+ · · ·+ ak • !∅ ,

which we condense to a1 + · · ·+ ak, as it comprises the event structure with events
a1, · · · , ak made in pairwise-conflict, with the identity relation of causal dependency.
The judgement that a closed process, represented by an event structure with symme-
try E, has this type would be associated with a degenerate span from the biterminal
∅∗ to !(a1 + · · ·+ ak), so essentially with a map

l : E →!(a1 + · · ·+ ak)

in SE , ‘labelling’ events by their actions. By Proposition 7.2 (i), there is an equiva-
lence

!a1 ‖ · · · ‖!ak ' !(a1 + · · ·+ ak) ,

and a process of this type can only do actions a1, · · · , ak, though with no bound on
how many times any action can be done.

The type of CCS, with channels A, can be written as

Act = τ • !∅ + Σā∈Ā • !∅ + Σa∈A • !∅ .

We can describe the parallel composition of CCS by a partial function from the
events Act ⊗ Act to the events !Act , expressing how events combine to form syn-
chronization events (the second line), or can occur asynchronously (the first):

(α, ∗) 7→ µ!
Act(0, η!

Act(α)) , (∗, α) 7→ µ!
Act(1, η!

Act(α)) ,

(a, ā), (ā, a) 7→ η!
Act(τ), and undefined otherwise.

This partial function is also a partial map of event structures from Act ⊗ Act to
!Act—it would have violated local injectivity and not been a map of event struc-
tures, had we chosen simply η!

Act(α) as the resulting events in the first two clauses.
The partial function is readily interpreted as a span from Act ⊗ Act to !Act—its
vertex is essentially the domain of definition of the partial function. Post-composing
its left ‘leg’ with η∗Act⊗Act we obtain a span from (Act⊗Act)∗ to !Act which denotes
the parallel composition of CCS. Given two CCS processes represented by degener-
ate spans, we can combine them to a process with event type Act ⊗ Act , denoting
a degenerate span ending in !(Act ⊗ Act). Its composition with the span for par-
allel composition can be shown to give the traditional event-structure semantics of
parallel composition in CCS [23,25,26,21].

In fact there is a general way to define spans from partial functions on events
which respect symmetry. There is a functor from event structures with symme-
try SE to equivalence relations; it takes an event structure with symmetry A to the
equivalence relation |A| induced by the symmetry on the set of events. The functor
is enriched in equivalence relations and has a right biadjoint $ which takes an equiva-
lence relation (L,R ⊆ L×L) to the event structure with symmetry !(L, l, r : R → L),
where we understand L as an event structure with events in pairwise conflict with



trivial causal dependency, R similarly, and with symmetry maps given as the ob-
vious projections from R to L. (The biadjunction between event structures with
symmetry and equivalence relations relies on the event structures being consistent-
countable—see the footnote accompanying the definition of event structures, Sec-
tion 2.) For event structures with symmetry A and B, a partial function respecting
equivalence relations from |A| to |B| can be regarded as a span

DN n

~~}}
}}

}}
}}

  A
AA

AA
AA

A

|A| |B|

in the category of equivalence relations—the equivalence relation D being where the
partial function is defined. The unit of the biadjunction with equivalence relations
has components A → $|A| and B → $|B|, so by applying $ to the span above and
taking successive pseudo pullbacks we obtain a span from A to B:

.

yytttttttttt

%%KKKKKKKKKK

.

||xx
xx

xx
xx

x

##H
HH

HH
HH

HH .

{{vv
vv

vv
vv

v

##F
FF

FF
FF

FF

A

!!B
BB

BB
BB

B $D

||zz
zz

zz
zz

""D
DD

DD
DD

D B

}}{{
{{

{{
{{

$|A| $|B|

A partial function between on events may not be so simple to define directly
by case analysis on events. This is because the events that arise in products of
event structures can be quite complicated; the events of a product A⊗ B of event
structures A and B are perhaps best seen as prime configurations of a product of
stable families—see Appendix B. Their complexity contrasts with the simplicity of
the events arising in constructions on stable families; the events of the corresponding
product of stable families are simple pairs (a, ∗), (∗, b) and (a, b), where a and b are
events of the components. For this reason it can be easiest to define a partial
map on event structures (so a partial function on their events) via a partial map
between their representations as stable families. This is so below, in a putative ‘true
concurrency’ definition of a version of higher-order CCS and its parallel composition.

A form of higher-order CCS could reasonably be associated with the recursive
type

T = τ • !T + Σā∈Ā • !(T ⊗ T ) + Σa∈A • !(T ( T ) ,

specifying that an event of a higher-order CCS process is either a ‘process’ event
following a τ -event, a ‘concretion’ event following an output synchronization ā ∈ Ā,
or an ‘abstraction’ event following an input synchronization a ∈ A. Why is the
first component in the type T of the form τ • !T and not just τ • !∅ ? Without the
present choice I cannot see how to ensure that in the parallel composition an inter-



action between a concretion and abstraction event always follows a corresponding
synchronization at their channels.

Parallel composition in higher-order CCS would be associated with a typing
judgment x : T, y : T ` (x | y) : T . The typing judgment should denote a span from
(T⊗T )∗ to !T . As above, we can define a tentative parallel composition via a partial
function from |T ⊗ T | to |!T |. The partial function should describe when and how
events of T combine. Because events of the product T ⊗ T are quite complicated
we must face the difficulties outlined above. However, first we need a makeshift
syntax for events in T . Events of higher-order CCS are either internal events τ ,
subsequent process events τ.(i, t), output synchronizations ā, subsequent concretion
events ā.(i, c), input synchronizations a, or subsequent abstraction events a.(j, f)—
the natural numbers i, j index the copies in !-types. In the notation for events of the
product T ⊗T we exploit the way it is built from a product of stable families; in the
product of stable families out of which T ⊗ T is constructed events have the simple
form of pairs (t, ∗), (∗, t) or (t, t′), where t and t′ are events of T . We can define a
partial map from this stable family to the stable family of !T by case analysis on
events:

t | ∗ = µ!
T (0, η!

T (t)) , ∗ | t = µ!
T (1, η!

T (t)) ,

a | ā = ā | a = η!
T (τ) ,

a.(i, f) | ā.(j, c) = ā.(i, c) | a.(j, f) = η!
T (τ.µ!

T ([i, j], (f | c)))
provided (f | c) is defined,

τ.(i, t) | τ.(j, t′) = µ!
T ([i, j], (t | t′)) provided (t | t′) is defined,

τ.(i, t) | α = µ!
T (i, (t |α)) , α | τ.(j, t) = µ!

T (j, (α | t))
provided α is not of the form τ.(k, t′′), and undefined otherwise.

We have combined indices i, j using an injective pairing [i, j] of natural numbers.
The definition above relies on our simultaneously defining not just how process
events combine, but also how ‘abstraction’ events f in type T ( T and ‘concretion’
events c in type T⊗T combine to form a process event (f | c) in type !T . We postpone
the full definition. Although provisional, I hope the example helps illustrate the aims
and present difficulties.

Clearly the syntax of operations to accompany the types is unfinished and really
needed. But I believe the examples indicate the potential of a more thorough study
of event types and give a flavour of the style of definition they might support, a
method of definition which breaks away from traditional ‘interleaving’ approaches
to concurrency.

8.3 Nondeterministic dataflow and affine-HOPLA

‘Stable’ spans of event structures have been used to give semantics to nondeter-
ministic dataflow [19] and the higher-order process language affine-HOPLA [16].
They are generalisations of Berry’s stable functions [2]: deterministic stable spans



correspond to stable functions—see [19]. A stable span

E
dem

��~~
~~

~~
~

out

  
@@

@@
@@

@

A B

consists of a ‘demand’ map dem : E → A and a rigid map out : E → B. That dem
is a demand map means that it is a function from Co(A) to Co(B) which preserves
unions of configurations when they exist. An equivalent way to view the demand
map dem is as a function from the events of E to finite configurations of A such that
if e ≤ e′ then dem(e) ⊆ dem(e′), and if X ∈ Con then demX ↑, i.e., the demands
are compatible. The intuition is that dem(e) is the minimum input required for the
event e to occur; when it does out(e) is observed in the output. (The stable span is
deterministic when demX ↑ implies X ∈ Con, for X a finite subset of events in E.)

On the face of it demand maps are radically different from rigid maps of event
structures. They can however be recovered as Kleisli maps associated with a pseudo
monad H on event structures with symmetry and rigid maps, as will be described
shortly.

Roughly the pseudo monad H adjusts the nature of events so that they record
the demand history on the input. This enables stable spans to be realized as spans

E
in

||yy
yy

yy
yy

out

��
??

??
??

??

H(A) B

of rigid maps in SEr. Such spans are a special case of the general spans of Section 8.1,
with the identity monad on the right-hand-side. Because of ‘Seely conditions’H(E ‖
F ) ' H(E)×H(F ) and H(∅) ' > relating parallel composition ‖ and its unit, the
empty event structure ∅, to product × and the biterminal object > in SEr, we
obtain a description of the function space, w.r.t. parallel composition A ‖ B, as
A ( B = H(A)×B. A very different route to the definition of function space using
stable families is described in the PhD thesis [16].

We describe the pseudo monad H via a biadjunction which induces it.

The biadjunction between rigid and demand maps
Let D consist of objects, event structures with symmetry, and ‘demand’ maps from
A to B those functions d : Co(A) → Co(B) which preserve unions when they exist

and symmetry in the sense that if x
θ∼= x′ is in the isomorphism family of A, then

dx
φ∼= dx′ is the isomorphism family of B, for some φ. Its maps compose as functions.

The category D is enriched in equivalence relations: two maps d, d′ : A → B in D

are equivalent iff dx
φ∼= d′x is in the isomorphism family of B, for some φ, for any

x ∈ Co(B).



There is an obvious ‘inclusion’ functor SE ↪→ D: it is the identity on objects
and takes a map f : A → B in SE to the map, also called f , from Co(A) to Co(B)
in D given by direct image under f . Somewhat surprisingly, the inclusion functor
has a right biadjoint. The Kleisli bicategory of the adjunction is biequivalent to D,
regarded as a 2-category.

The definition of the right biadjoint makes essential use of symmetry. Let B

be an event structure with symmetry. We describe a new event structure with
symmetry H(B) in which configurations correspond to histories of demands. We
first define histories and how they form a prime algebraic domain.

A history is a demand map h : I → B from an elementary event structure I

with events lying in ω. We order two histories h : I → B and h′ : I ′ → B by h v h′

iff there is a rigid inclusion map I ↪→ I ′ such that

I
h //B

I ′
?�

OO

h′

??~~~~~~~

commutes. Histories under v form a prime algebraic domain in which the complete
primes are those histories p : J → B for which J has a top element; given a history
h : I → B the complete primes below it are exactly the restrictions h� i of h to [i],
for i ∈ I.

We regard two histories h : I → B and h : I ′ → B as similar, via φ, ξ, when
φ : I ∼= I ′ is an isomorphism of elementary event structures and ξ is a bijection
ξ :

⋃
i∈I h(i) ∼=

⋃
i′∈I′ h

′(i′) in the isomorphism family of B such that for all i ∈ I

its restrictions ξ �: h(i) ∼= h′(φ(i)) are also in the isomorphism family.
As in Theorem B.1 of the appendix, we build the event structure of H(B) out

of the complete-prime histories. We can describe the symmetry of H(B) as an
isomorphism family. If x and x′ are finite configurations of H(B), they consist of
the complete primes below histories h =

⊔
x : I → B and h′ =

⊔
x′ : I ′ → B,

respectively. We put θ : x ∼= x′ in the isomorphism family of H(B) precisely when
the histories h and h′ are similar via some φ, ξ and

θ = {(h� i, h′ �φ(i)) | i ∈ I} .

For an event structure with symmetry B define the demand map εB : H(B) → B

on x ∈ Co(H(B)) to be εB(x) =
⋃

i∈I h(i), where h =
⊔

x : I → B. It can be shown
that the function

εB ◦ : SEr(A,H(B))→D(A,B)

is onto, and preserves and reflects ∼. We obtain a biadjunction

SEr � � //> D
Hoo

,

one whereD is biequivalent to the Kleisli bicategory of the associated pseudo monad.



In fact the biadjunction can be factored through a biadjunction between SEr

and the category of event structures with persistence and rigid maps [28]. There is
an operation of quotienting an event structure by its symmetry, and this extends
to a functor from SEr to event structures with persistence, a functor which has
a right biadjoint. There is a further adjunction between event structures with
persistence and event structures with demand maps [20]. Composed together the
two biadjunctions yield the biadjunction from SEr to D.

8.4 Unfoldings

Another application of symmetry is to the unfolding of Petri nets with multiple
tokens, and the unfolding of higher-dimensional automata (hda’s) [7]. Unfoldings
of 1-safe Petri nets to occurrence nets and event structures were introduced in [15],
and have since been applied in a variety of areas from model checking to self-
timed circuits and the fault diagnosis of communication networks. The unfoldings
were given a universal characterisation a little later in [24] (or see [21]) and this
had the useful consequence of providing a direct proof that unfolding preserved
products and so many parallel compositions. There is an obstacle to an analogous
universal characterisation of the unfolding of nets in which places/conditions hold
with multiplicities: the symmetry between the multiple occurrences in the original
net is lost in unfoldings to standard occurrence nets or event structures, and this
spoils universality through non-uniqueness. However through the introduction of
symmetry uniqueness up to symmetry obtains, and a universal characterisation can
be regained [9].

We can illustrate the role symmetry plays in the unfolding of nets and
hda’s through a recent result relating event structures with symmetry to certain
presheaves. 6 Let P be the category of finite elementary event structures (so essen-
tially finite partial orders) with rigid maps. Form the presheaf category P̂ which
by definition is the functor category [Pop,Set]. From [27] we obtain that event
structures with rigid maps (called ‘strong’ in [27]) embed fully and faithfully in P̂
and are equivalent to those presheaves which are separated w.r.t. the Grothendieck
topology with basis collections of jointly surjective maps in P, and satisfy a further
mono condition. Presheaves over P̂ are thus a kind of generalised event structure.

There is clearly an inclusion functor I : P ↪→ SEr of finite elementary event
structures into event structures with symmetry and rigid maps. Thus there is a
functor F : SEr → P̂ taking an event structure with symmetry E to the presheaf
SEr(I( ), E)/∼. Event structures with symmetry yield more than just separated
presheaves, and quite which presheaves they give rise to is not yet understood.
But by restricting to event structures with symmetry (E, l, r : S → E) for which
the symmetry is strong, in the sense that the mono 〈l, r〉 : S → E × E reflects
consistency, we will always obtain nonempty separated presheaves. Let SSEr be the
category of event structures with strong symmetry and rigid maps. Let Sep(P) be
the full subcategory of non-empty separated presheaves. So restricted, we obtain

6 The result is inspired by joint work with the Sydney Concurrency Group: Richard Buckland, Jon Cohen,
Rob van Glabbeek and Mike Johnstone.



a functor F : SSEr → P̂ taking an event structure with strong symmetry E to the
nonempty separated presheaf SSEr(J( ), E)/∼. The functor F can be shown to have
a right biadjoint, a functor G, producing an event structure with strong symmetry
from a nonempty separated presheaf. The right biadjoint G is full and faithful (once
account is taken of the the equivalence ∼ on maps). (The existence of G relies on
the event structures being consistent-countable—see the footnote, Section 2.) It
shows how separated presheaves embed via a reflection fully and faithfully in event
structures with symmetry:

SSEr

F
⊥

--
Sep(P) .

G

ll (†)

The proof of the biadjunction has only been carried out for rigid maps, the reason
why we have insisted that the maps of event structures in this section be rigid. (One
could hope for a similar biadjunction without restricting F to strong symmetries.)

Higher-dimensional automata [7] are most concisely described as cubical sets,
i.e. as presheaves over C, a category of cube shapes of all dimensions with maps
including e.g. ‘face’ maps, specifying how one cube may be viewed as a (higher-
dimensional) face of another. We can identify the category of hda’s with the presheaf
category Ĉ. There are some variations in the choice of maps in C, according to
whether the cubes are oriented and whether degeneracy maps are allowed. For
simplicity we assume here that the cubes are not oriented and have no degeneracy
maps, so the maps are purely face maps. Roughly, then the maps of P and C only
differ in that maps in P fix the initial empty configuration whereas face maps in C
are not so constrained. By modifying the maps of P to allow the initial configuration
to shift under maps, we obtain a category A into which both P and C include:

P � � J //A C? _Koo

Now we can construct a functor from H : P → Ĉ; it takes p in P to the presheaf
A(K( ), J(p)). Taking its left Kan extension over the Yoneda embedding of P in P̂
we obtain a functor

H! : P̂ → Ĉ .

For general reasons [4], the functor H! has a right adjoint H∗ taking an hda Y in Ĉ
to the presheaf Ĉ(H( ), Y ) in P̂:

P̂
H!

⊥ ++
Ĉ .

H∗
jj (‡)

We cannot quite compose the biadjunctions (†) and the adjunction (‡) because
(†) is only for separated presheaves. However restricting to hda’s which are sepa-
rated, now w.r.t. a basis of jointly surjective maps in C, 7 will ensure that they are

7 For a separated hda, cubes which share the same 1-dimensional edges must be equal (so ‘no ravioli’).



sent to separated presheaves over P and so to event structures with symmetry. Gen-
eral Petri nets give rise to separated hda’s (for example, with the ‘self-concurrent
individual token interpretation’ of [7]). So we obtain a rather abstract construction
of an unfolding of general nets to event structures with symmetry. Again, much
more needs to be done, both mathematically in seeking a generalisation of the biad-
junction (†) to all event structures with symmetry, and in understanding unfoldings
concretely so that they can be made amenable algorithmically.

Acknowledgement

I’m pleased to have this opportunity to acknowledge my appreciation and thanks
to Gordon Plotkin for inspiration, guidance and friendship over the years.

I’m grateful to Marcelo Fiore, Martin Hyland, Lucy Saunders-Evans, Pawel
Sobocinski, Sam Staton, Dominic Verity and the Sydney Concurrency Group for
discussions and encouragement; Martin’s advice has been especially valuable. I
acknowledge the partial support of EPSRC grant GR/T22049/01. The paper was
started on a visit to Aarhus University, and completed during an enjoyable visit to
Macquarie University and NICTA, Sydney, Australia.

References

[1] Abramsky, S., Jagadeesan, R., and Malacaria, P., Full Abstraction for PCF. Information and
Computation vol. 163, 409–470, 2000.

[2] Berry, G., Modèles completement adéquats et stables des λ-calculs typés. Thèse de Doctorat d’Etat,
Université de Paris VII, 1979.

[3] Burroni, A., T-catégories. Cahiers de topologie et géométrie différentielle, XII 3, 1971.

[4] Cattani, G.L., and Winskel, G., Profunctors, open maps and bisimulation. MSCS, 2005.

[5] Cheng, E., Hyland, J.M.E., and Power, A.J., Pseudo-distributive laws. ENTCS 83, 2004.

[6] Crazzolara, F., and Winskel, G., Composing Strand Spaces. FSTTCS’02, 2002.

[7] Glabbeek, R.J.van, On the expressiveness of higher dimensional automata. EXPRESS 2004, ENTCS
128(2), 2005.

[8] Doghmi, S.F., Guttman, J.D., and Thayer, F.J., Searching for shapes in cryptographic protocols.
TACAS’07, 2007.

[9] Hayman, J., and Winskel, G., The unfolding of general Petri nets. Forthcoming.

[10] Johnstone, P., Sketches of an elephant, a topos theory compendium, vol.1. OUP, 2002.

[11] Joyal, A., Nielsen, M., and Winskel, G., Bisimulation from open maps. LICS ’93 special issue of
Information and Computation, 127(2):164–185, 1996. Available as BRICS report, RS-94-7.

[12] Kahn, G., and Plotkin, G.D., Concrete domains. TCS, 121(1& 2):187–277, 1993.

[13] Koslowski, J., A monadic approach to polycategories. Theory and Applications of Categories,
14(7):125–156, 2005.

[14] Mac Lane, S. Categories for the Working Mathematician. Springer, 1971.

[15] Nielsen, M., Plotkin, G.D., and Winskel, G., Petri nets, event structures and domains. TCS, 13(1):85–
108, 1981.



[16] Nygaard, M., Domain theory for concurrency. PhD Thesis, University of Aarhus, 2003.

[17] Nygaard, M., and Winskel, G., Domain theory for concurrency. TCS 316: 153–190, 2004.

[18] Power, A.J., 2-Categories. BRICS Lecture Notes, Aarhus University, March, 1998.

[19] Saunders-Evans, L., and Winskel, G., Event structure spans for non-deterministic dataflow. Proc.
Express’06, ENTCS, 2006.

[20] Saunders-Evans, L., Events with persistence. Forthcoming PhD, University of Cambridge Computer
Laboratory.

[21] Winskel, G., and Nielsen, M., Models for Concurrency. Handbook of Logic and the Foundations of
Computer Science, vol. 4, pages 1-148, OUP, 1995.

[22] Winskel, G., Events in Computation. PhD thesis, Univ. of Edinburgh, available from
http://www.cl.cam.ac.uk/users/gw104, 1980.

[23] Winskel, G., Event structure semantics of CCS and related languages. ICALP 82, Springer–Verlag
LNCS 140, 1982. Extended version available from http://www.cl.cam.ac.uk/users/gw104.

[24] Winskel, G., A new definition of morphism on Petri Nets. STACS’84: 140-150, 1984.

[25] Winskel, G., Event structures. Invited lectures for the Advanced Course on Petri nets, September 1986.
Springer LNCS, vol.255, 1987.

[26] Winskel, G., An introduction to event structures. REX summerschool in temporal logic, Springer LNCS,
vol.354, 1988.

[27] Winskel, G., Event structures as presheaves—two representation theorems. CONCUR 1999. Springer
LNCS, vol.1664, 1999.

[28] Winskel, G., Relations in concurrency. Invited talk, LICS’05, 2005.

A Equivalence relations [10]

Assume a category with pullbacks. Let E be an object of the category. A relation
on E is a pair of maps l, r : S → E for which l, r are jointly monic, i.e. for all
maps x, y : D → S, if lx = ly and rx = ry, then x = y. Equivalently, if the category
has binary products, a relation on E is a pair of maps l, r : S → E for which the
mediating map 〈l, r〉 : S → E × E is monic. The relation is an equivalence relation
in the category iff it is:
Reflexive: there is a (necessarily unique) map ρ such that

E
idE

~~~~
~~

~~
~

idE

@@

@@
@@

@
ρ

��

E Sl
oo

r
//E

commutes;
Symmetric: there is a (necessarily unique) map σ such that

S
r

����
��

��
�

l

��
@@

@@
@@

@

σ

��

E Sl
oo

r
//E

commutes;

Transitive: there is a (necessarily unique) map τ such that

P
f

����
��

��
�

g

��
@@

@@
@@

@

τ

��

S
l

����
��

��
�

r
@@

@

��
@@

@

S

lo
oooooo

wwooooooo r
OOOOOOO

''OOOOOOO

S

l
���

�

�����
�

r

��
@@

@@
@@

@

E E E

commutes, where P , f , g is a pullback of r, l.

B Prime algebraic domains

Recall the definition of prime algebraic domain from [15,22,23]. We say a subset X

of a partial order (D,v) is compatible, written X ↑, iff it has an upper bound in D.
A partial order (D,v) is consistent complete iff whenever a subset X ⊆ D is finitely
compatible (i.e. any finite subset has an upper bound) it has a least upper bound⊔

X. Note that any consistent complete partial order must have a least element ⊥,
the least upper bound of the empty subset. An element p of a consistent complete
partial order is a complete prime iff for all compatible subsets X if p ⊆

⊔
X then

p v x for some x ∈ X. A prime algebraic domain is a bounded complete partial
order such that for all d ∈ D

d =
⊔
{p v d | p is a complete prime} .

Say a prime algebraic domain is finitary iff every complete prime dominates only
finitely many elements.

Theorem B.1 [15]
(i) For any event structure (E,Con,≤), the partial order (C(E),⊆) is a finitary
prime algebraic domain.
(ii) For any finitary prime algebraic domain (D,v) define (P,Con,≤) where: P is
the set of complete primes of D; X ∈ Con iff X is a finite subset of P bounded in
D; and p ≤ p′ iff p, p′ ∈ P and p v p′ in D. Then, (P,Con,≤) is an event structure
such that

θ : (D,v) ∼= (C(P),⊆)
is an isomorphism of partial orders where θ(d) = {p v d | p is a complete prime};
its inverse takes a configuration x ∈ C(P) to

⊔
x.

C Stable families

So event structures can be obtained from finitary prime algebraic domains. One
convenient way to construct finitary prime algebraic domains is from stable fami-
lies [23]. The use of stable families facilitates constructions such as products and

pullbacks of event structures.

Definition C.1 A stable family (of finite configurations) comprises F , a family of
finite subsets, called configurations, satisfying:
Completeness: Z ⊆ F & Z ↑ ⇒

⋃
Z ∈ F ;

Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e 6= e′,

(∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ /∈ y)) ;

Stability: ∀Z ⊆ F . Z 6= ∅ & Z ↑ ⇒
⋂

Z ∈ F .

For Z ⊆ F , we write Z ↑ to mean compatibility in F w.r.t. the inclusion order. We
call members of the set

⋃
F , the events of F .

A stable family of finite configurations provides a representation of the finite
elements of a finitary prime algebraic domain. 8 Configurations of stable families
each have their own local order of causal dependency, so their own prime sub-
configurations generated by their events. We can build an event structure by taking
the events of the event structure to comprise the set of all prime configurations of
the stable family. (The prime configurations corresponding to complete primes of
the domain.)

Proposition C.2 Let x be a configuration of a stable family F . For e, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y ⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x =
⋂
{y ∈ F | y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x | e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Proposition C.3 Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is an

8 There are some minor differences with stable families as originally introduced in Definition 1.1of [23].
Here it is convenient to restrict to finite configurations, obviating the ‘finitary’ axiom of [23], weaken to
‘completeness’ rather than ‘coherence.’ and assume the family is ‘full,’ that every event appears in some
configuration. The expanded article [23] remains a good reference for the proofs of the results here in the
appendix.

event structure where:

P = {[e]x | e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P &
⋃

Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

This proposition furnishes a way to construct an event structure with events
the prime configurations of a stable family. In fact we can equip the class of stable
families with maps. The definitions are just copies of those for event structures. For
example, a (total) map of stable families f : F → G is a function f :

⋃
F →

⋃
G

such that for all configurations x ∈ F its direct image fx ∈ G for which

if e1, e2 ∈ x and f(e1) = f(e2), then e1 = e2.

The open maps for stable families, specified w.r.t. (the families of configurations
of) finite elementary event structures as paths, are characterised just as in Propo-
sition 2.5 as rigid maps satisfying a further lifting property. We shall concentrate
on the category of stable families with total maps, Fam.

We shall make use of an important adjunction between event structures and
stable families. The configurations of an event structure form a stable family.
The corresponding functor “inclusion” functor Co : E → Fam takes an event
structure E to the stable family Co(E), and a map f : E → E′ in E to the map
f : Co(E) → Co(E′) between the stable familes of their finite configurations. The
functor Pr : Fam → E acts on objects as described in the proposition above,
producing an event structure out of the prime configurations of a stable family.
It takes a map f : F → G in Fam to the map Pr f : Pr(F) → Pr(G) given by
Pr f([a]x) = [f(a)]fx whenever a ∈ x and x ∈ F .

Theorem C.4 Let Co : E → Fam and Pr : Fam → E be the functors defined above.
Then Co a Pr. The unit η of the adjunction has components ηA : A → Pr Co(A)
given by ηA(a) = [a] where a is an event of A—recall [a] = {a′ ∈ A | a′ ≤ a}. The
counit is the natural transformation with components εF : Co Pr(F) → F given by
εF([b]x) = b for x ∈ F and b ∈ x.

The unit is a natural isomorphism. The component of the counit εF at stable
family F satisfies:

∀x ∈ F , y ∈ Co Pr(F). εFy = x iff y = {[b]x | b ∈ x} .

An almost identical story holds with respect to other maps, rigid and partial;
the “inclusion” functor from the corresponding category of event structures to the
corresponding category of stable families has a right adjoint, defined as Pr above,
but with the obvious slight adjustments to the way it acts on maps.

Lemma C.5 Components εF of the counit of the adjunction Co a Pr are open. The
functor Pr preserves open maps.

Proof. There are direct proofs from the definitions and Theorem C.4. Alterna-
tively, there are general diagrammatic proofs. See Lemma 6 of [11] for the openness
of the counit, and Lemma 2.5 of [4] to show Pr preserves opens. 2

C.1 Products and pullbacks

The adjunction between event structures and stable families is a coreflection in the
sense that the unit η is a natural isomorphism. The fact that the adjunction is
a coreflection, has the useful consequence of allowing the calculation of limits in
event structures from the more easily constructed limits in stable families. For
example, products of event structures (the specific event structures of this article)
are hard to define directly. It is however straightforward to define products of stable
families [23], and from them to obtain the products of event structures by using Pr.

Let F1 and F2 be stable families with events E1 and E2, respectively. Their
product in Fam, the stable family F1 × F2, will have events comprising pairs in
E1 × E2, the product of sets with projections π1 and π2:

x ∈F1 ×F2 iff
x is a finite subset of E1 × E2 ,

π1x ∈ F1 & π2x ∈ F2 ,

∀e, e′ ∈ x. π1(e) = π1(e′) or π2(e) = π2(e′) ⇒ e = e′ , and
∀e, e′ ∈ x. e 6= e′ ⇒ ∃y ⊆ x. π1y ∈ FA & π2y ∈ FB & (e ∈ y ⇐⇒ e′ /∈ y) .

Notice that the third condition says that x is a bijection between π1x and π2x. The
projections of the product of stable families, F1 × F2, are given by the projections
π1 and π2, from the set of pairs of events, (e1, e2), which appear in a configuration
of the product to the left, e1, and right component, e2, respectively.

Right adjoints preserve limits, and so products in particular. Consequently
we obtain a product of event structures E1 and E2 by first regarding them as
stable families Co(E1) and Co(E2), and then producing the event structure from
the product Co(E1) × Co(E2), π1, π2 of the stable families. Indeed we will define
the product of event structures, E1 × E2 = Pr(Co(E1) × Co(E2)). Its projections
are obtained as η−1

E1
◦ (Pr π1) and η−1

E2
◦ (Pr π2), which take [(e1, e2)]x to e1 and e2,

respectively.
Products in the category Famr, stable families with rigid maps, can be obtained

from products in Fam by restricting to those configurations on which the projections
are rigid. More fully, suppose F1 and F2 are stable families. Their ‘rigid’ product
is obtained as the stable family consisting of those configurations x ∈ F1 ×F2, the
product in Fam, on which the projections are rigid, i.e. for which

∀z ∈ F1. z ⊆ π1x ⇒ ∃x′ ∈ F1 ×F2. x′ ⊆ x & π1x
′ = z and

∀z ∈ F2. z ⊆ π2x ⇒ ∃x′ ∈ F1 ×F2. x′ ⊆ x & π2x
′ = z .

For maps f1 : G → F1 and f2 : G → F2 in Fam, there is unique mediating map to
the product, the pair 〈f, g〉 : G → F1 × F2. If both f and g are rigid, then so is

〈f, g〉. The analogous property holds for event structures.
Once we have products of event structures in E , pullbacks in E are obtained

by restricting products to the appropriate equalizing set. Pullbacks in E can also
be constructed via pullbacks in Fam, in a similar manner to the way we have
constructed products in E . We obtain pullbacks in Fam as restrictions of products.
Suppose f1 : F1 → G and f2 : F2 → G are maps in Fam. Let E1, E2 and C be the
sets of events of F1, F2 and G, respectively. The set P =def {(e1, e2) | f(e1) = f(e2)}
with projections π1, π2 to the left and right, forms the pullback, in the category
of sets, of the functions f1 : E1 → C, f2 : E2 → C. We obtain the pullback in
Fam of f1, f2 as the stable family P, consisting of those subsets of P which are also
configurations of the product F1 ×F2—its associated maps are the projections π1,
π2 from the events of P.

Pullbacks in Famr are constructed analogously. The coreflection between Er

and Famr enables us to construct products and pullbacks in Er.

	Introduction
	Event structures
	Event structures with symmetry
	Maps preserving symmetry
	General categories with symmetry
	Constructions in S-E
	Functors and pseudo monads
	Operations
	An enriched adjunction
	Pseudo monads
	Equivalences

	Applications
	Spans
	Event types
	Nondeterministic dataflow and affine-HOPLA
	Unfoldings

	Acknowledgement
	References
	Equivalence relations elephant
	Prime algebraic domains
	Stable families
	Products and pullbacks

