
Concurrent Strategies
Silvain Rideau

Ecole Normale Supérieure de Paris, France
Glynn Winskel

Computer Laboratory, University of Cambridge, UK

Abstract—A bicategory of very general nondeterministic con-
current games and strategies is presented. The intention is to
formalize distributed games in which both Player (or a team of
players) and Opponent (or a team of opponents) can interact in
highly distributed fashion, without, for instance, enforcing that
their moves alternate.

I. INTRODUCTION

This paper characterizes nondeterministic concurrent strate-
gies in concurrent games within a very general model of
concurrent/distributed computation.

More precisely, games and strategies are represented as
event structures with polarities to distinguish the moves of
Player and Opponent (more accurately thought of as teams
of players and opponents)—cf. [1]. A total map σ ∶ S → A
of event structures with polarity can be understood as a
pre-strategy in a game A—the map ensures that Player and
Opponent respect the constraints of the game. Following
Joyal’s exposition of Conway games [2], a pre-strategy from
a game A to a game B is understood as a pre-strategy in
a composite game A⊥∥B, got by setting the dual game of
A, reversing the roles of Player and Opponent, in parallel
with B. Within this general scheme, concurrent strategies—
pre-strategies for which copy-cat strategies behave as identities
w.r.t. composition of pre-strategies—are characterized as those
pre-strategies which satisfy the two conditions of receptivity
and innocence.

It is sketched how (bi)categories of stable spans, certain
profunctors, Berry’s stable functions, and simple games arise
as sub(bi)categories of concurrent games. The important spe-
cial case of deterministic concurrent strategies coincides with
the receptive ingenuous strategies of Melliès and Mimram [3].
Deterministic strategies find direct expression as closure op-
erators, an elegant formulation of deterministic concurrent
strategies in early work of Abramsky and Melliès [4]. The
relation with other work is ongoing and unfinished. There are
clear expressions of innocence as “saturation” conditions in
early concurrent games of Laird [5], Ghica and Murawski [6].
We have been inspired by the paper of Faggian and Piccolo [7],
which in part communicates an idea of Hyland on extending
the copy-cat strategy to partial orders of moves, a precursor
to the distributed copy-cat here and in [7].1

Not surprisingly, the proofs here are reminiscent of cer-
tain proofs in distributed algorithms (we are most familiar
with similar dependency-chasing proofs in security protocols).

1We adopt the term innocence from [7]—it is not directly related to
innocence in Hyland-Ong games [8].

More intriguing is the prospect that proofs of distributed
algorithms could embed into the general conceptual framework
of concurrent games proposed here.

II. EVENT STRUCTURES AND STABLE FAMILIES

We quickly review event structures and the broader model
of stable families, their properties and constructions.

An event structure comprises (E,Con,≤), consisting of a
set E, of events which are partially ordered by ≤, the causal
dependency relation, and a nonempty consistency relation Con
consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The (finite) configurations, C(E), of an event structure E
consist of those finite subsets x ⊆ E which are

Consistent: x ∈ Con, and
Down-closed: ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

Two events which are both consistent and incomparable
w.r.t. causal dependency in an event structure are regarded
as concurrent. In games the relation of immediate dependency
e _ e′, meaning e and e′ are distinct with e ≤ e′ and no event
in between, will play a very important role.

Operations such as synchronized parallel composition are
awkward to define directly on the simple event structures
above. It is useful to broaden event structures to stable fam-
ilies, where operations are often carried out more easily, and
then turned into event structures by the operation Pr below.

A stable family comprises F , a nonempty family of finite
subsets, called configurations, satisfying:
Completeness: ∀Z ⊆ F . Z ↑ Ô⇒ ⋃Z ∈ F ;
Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e /= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) ;

Stability: ∀Z ⊆ F . Z /= ∅ & Z ↑ Ô⇒ ⋂Z ∈ F .
(Z ↑ means ∃x ∈ F∀z ∈ Z. z ⊆ x, and expresses the
compatibility of Z.) We call elements of ⋃F events of F .

Proposition 1. Let x be a configuration of a stable family F .
For e, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y Ô⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x = ⋂{y ∈ F ∣ y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such
that

[e]x = {e′ ∈ x ∣ e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-
closed subsets of ≤x.

Proposition 2. Let F be a stable family. Then, Pr(F) =def

(P,Con,≤) is an event structure where:

P = {[e]x ∣ e ∈ x & x ∈ F} ,
Z ∈ Con iff Z ⊆ P & ⋃Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .
A (partial) map of stable families f ∶ F → G is a partial

function f from the events of F to the events of G such that
for all configurations x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2) .

Maps of event structures are maps of their stable families of
configurations. Maps compose as functions. We say a map is
total when it is total as a function. Say a total map of event
structures is rigid when it preserves causal dependency.

Pr is the right adjoint of the “inclusion” functor, taking
an event structure E to the stable family C(E). The unit
of the adjunction E → Pr(C(E)) takes and event e to the
prime configuration [e] =def {e′ ∈ E ∣ e′ ≤ e}. The counit
max ∶ C(Pr(F)) → F takes prime configuration [e]x to e.

Proposition 3. Let E and E′ be event structures. Suppose

θx ∶ x ≅ θxx, indexed by x ∈ C(E),

is a family of bijections such that whenever θy ∶ y ≅ θyy is in
the family then its restriction θz ∶ z ≅ θzz is also in the family,
whenever z ∈ C(E) and z ⊆ y. Then, θ =def ⋃x∈C(E) θx is the
unique total map of event structures from E to E′ such that
θ x = θxx for all x ∈ C(E).

Proposition 4. Let f ∶ F → G be a map of stable families. Let
e, e′ ∈ x, a configuration of F . If f(e) and f(e′) are defined
and f(e) ≤fx f(e′) then e ≤x e′.
Definition 5. Let F be a stable family. We use x−⊂y to mean
y covers x in F , i.e. x ⊂ y in F with nothing in between,
and x

e−Ð⊂y to mean x ∪ {e} = y for x, y ∈ F and event e ∉ x.
We sometimes use x

e−Ð⊂, expressing that event e is enabled
at configuration x, when x

e−Ð⊂y for some y. W.r.t. x ∈ F ,
write [e)x =def {e′ ∈ E ∣ e′ ≤x e & e′ /= e}, so, for example,
[e)x

e−Ð⊂[e]x. The relation of immediate dependence of event
structures generalizes: with respect to x ∈ F , the relation e _x

e′ means e ≤x e′ with e /= e′ and no event in between.

III. PROCESS OPERATIONS

A. Products

Let A and B be stable families with events A and B,
respectively. Their product, the stable family A × B, has
events comprising pairs in A ×∗ B =def {(a,∗) ∣ a ∈ A} ∪

{(a, b) ∣ a ∈ A & b ∈ B}∪{(∗, b) ∣ b ∈ B}, the product of sets
with partial functions, with (partial) projections π1 and π2—
treating ∗ as ‘undefined’—with configurations

x ∈ A × B iff
x is a finite subset of A ×∗ B s.t. π1x ∈ A & π2x ∈ B,
∀e, e′ ∈ x. π1(e) = π1(e′) or π2(e) = π2(e′) ⇒ e = e′ ,&
∀e, e′ ∈ x. e /= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B &

(e ∈ y ⇐⇒ e′ ∉ y) .
Right adjoints preserve products. Consequently we obtain a

product of event structures A and B by first regarding them as
stable families C(A) and C(B), forming their product C(A)×
C(B), π1, π2, and then constructing the event structure

A ×B =def Pr(C(A) × C(B))
and its projections as Π1 =def π1max and Π2 =def π2max .

Lemma 6. Suppose e _x e
′ in a product of stable families

A×B, π1, π2.
(i) If e = (a,∗) then e′ = (a′, b) or e′ = (a′,∗) with a _π1x a

′

in A.
(ii) If e′ = (a′,∗) then e = (a, b) or e = (a,∗) with a _π1x a

′

in A.
(iii) If e = (a, b) and e′ = (a′, b′) then a _π1x a

′ in A or
b _π2x b

′ in B.

B. Restriction
The restriction of F to a subset of events R is the stable

family F ↾ R =def {x ∈ F ∣ x ⊆ R} . Defining E ↾ R, the
restriction of an event structure E to a subset of events R,
to have events E′ = {e ∈ E ∣ [e] ⊆ R} with causal dependency
and consistency induced by E, we obtainC(E↾R) =C(E)↾R .

Proposition 7. Let F be a stable family and R a subset of
its events. Then, Pr(F ↾R) = Pr(F)↾max−1R .

C. Synchronized compositions
Synchronized parallel compositions are obtained as restric-

tions of products to those events which are allowed to synchro-
nize or occur asynchronously. For example, the synchronized
composition of Milner’s CCS on stable families A and B (with
labelled events) is defined as A × B ↾ R where R comprises
events which are pairs (a,∗), (∗, b) and (a, b), where in
the latter case the events a of A and b of B carry comple-
mentary labels. Similarly, synchronized compositions of event
structures A and B are obtained as restrictions A × B ↾ R.
By Proposition 7, we can equivalently form a synchronized
composition of event structures by forming the synchronized
composition of their stable families of configurations, and then
obtaining the resulting event structure—this has the advantage
of eliminating superfluous events earlier.

D. Projection
Event structures support a simple form of hiding. Let (E,≤

,Con) be an event structure. Let V ⊆ E be a subset of ‘visible’
events. Define the projection of E on V , to be E↓V =def

(V,≤V ,ConV), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and
X ∈ ConV iff X ∈ Con & X ⊆ V .

IV. EVENT STRUCTURES WITH POLARITIES

We shall represent both a game and a strategy in a game as
an event structure with polarity, comprising an event structure
together with a polarity function pol ∶ E → {+,−} ascribing
a polarity + or − to its events E. The events correspond
to (occurrences of) moves. The two polarities +/− express
the dichotomy: Player/Opponent; Process/Environment; or
Ally/Enemy. Maps of event structures with polarity are maps
of event structures which preserve polarity.

A. Operations

1) Dual: The dual, E⊥, of an event structure with polarity
E comprises a copy of the event structure E but with a reversal
of polarities. It obviously extends to a functor. Write e ∈ E⊥
for the event complementary to e ∈ E and vice versa.

2) Simple parallel composition: This operation simply
juxtaposes two event structures with polarity. Let (A,≤A
,ConA,polA) and (B,≤B ,ConB ,polB) be event structures
with polarity. The events of A∥B are ({1} ×A) ∪ ({2} ×B),
their polarities unchanged, with: the only relations of causal
dependency given by (1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤
(2, b′) iff b ≤B b′; a subset of events C is consistent in A∥B
iff {a ∣ (1, a) ∈ C} ∈ ConA and {b ∣ (2, b) ∈ C} ∈ ConB . The
operation extends to a functor—put the two maps in parallel.

B. Categories for games

We remark that event structures with polarity appear to
provide a rich environment in which to explore structural
properties of games and strategies. There are adjunctions

PAr � � //

��

⊺ PFr � � //⊺
oo

��

PEr � � //⊺
oo PEt

oo

PA#
r

� � //⊺
?�

OO

⊢

PF#
r

oo ?�

OO

⊢

relating PEt, the category of event structures with polarity with
total maps, to subcategories PEr, with rigid maps, PFr of
forest-like (or filiform) event structures with rigid maps, and
PAr, its full subcategory where polarities alternate along a
branch; in PF#

r and PA#
r distinct branches are inconsistent.

We shall mainly be considering games in PEt. Lamarche
games and those of sequential algorithms belong to PAr [9].
Conway games inhabit PF#

r , in fact a coreflective subcategory
of PEt as the inclusion is now full; Conway’s ‘sum’ is
obtained by applying the right adjoint to the ∥-composition of
Conway games in PEt. Further refinements are possible. The
‘simple games’ of [10], [11] belong to PAr−#, the coreflective
subcategory of PA#

r comprising “polarized” games, starting
with moves of Opponent. The ‘tensor’ of simple games is
recovered by applying the right adjoint of PAr−# ↪ PEt
to their ∥-composition in PEt. Generally, the right adjoints,
got by composition, from PEt to the other categories fail to
conserve immediate causal dependency. Such facts led Melliès
et al. to the insight that uses of pointers in game semantics
can be an artifact of working with models of games which do
not take account of the independence of moves [1], [3].

V. PRE-STRATEGIES

Let A be an event structure with polarity, thought of as
a game (sometimes called an “arena” in game semantics);
its events stand for the possible occurrences of moves of
Player (+) and Opponent (−) and its causal dependency and
consistency relations the constraints imposed by the game.
A pre-strategy in A is a total map σ ∶ S → A from an
event structure with polarity S. The +-events of S stand for
the moves of Player, generally in answer to the moves of
Opponent, the −-events of S.

We shall later refine the definition of pre-strategy to that of
strategy. For example, in a strategy we expect that it should
not be possible for Player to affect the moves of Opponent
beyond the dictates of the game. This and other concerns are
not reflected adequately in the definition of pre-strategy as it
stands. What is captured by taking a pre-strategy to be a total
map σ ∶ S → A is that the behaviour of Player and Opponent
as narrated by S respects the constraints of game A; every
move of Player and Opponent is a move allowed by the game.
Note that pre-strategies (and strategies) are nondeterministic in
that Player moves may be inconsistent, and are not necessarily
determined by the preceding Player and Opponent moves. A
pre-strategy represents a nondeterministic play of the game.

Let A and B be event structures with polarity. Following
Joyal [2], a pre-strategy from A to B is a pre-strategy in A⊥∥B,
so a total map σ ∶ S → A⊥∥B. It thus determines a span

S
σ1

~~~~
~~

~~
~~ σ2

  @
@@

@@
@@

@

A⊥ B ,

of event structures with polarity where σ1, σ2 are partial maps.
In fact, a pre-strategy from A to B corresponds to such spans
where for all s ∈ S either, but not both, σ1(s) or σ2(s) is
defined. Two pre-strategies will be essentially the same when
they are isomorphic as spans. We write σ ≅ τ , for pre-strategies
σ and τ from A to B when their spans are isomorphic. We
write σ ∶ A + //B to express that σ is a pre-strategy from A
to B. The notation raises the question of how pre-strategies
compose and the nature of identities.

A. Concurrent copy-cat

Identities on games are given by copy-cat strategies—
strategies for Player based on copying the latest moves made
by Opponent.

Let A be an event structure with polarity. The copy-cat
strategy from A to A is an instance of a pre-strategy, so a
total map γA ∶ CCA → A⊥∥A. It describes a concurrent, or
distributed, strategy based on the idea that Player moves, of
+ve polarity, always copy previous corresponding moves of
Opponent, of −ve polarity.

For c ∈ A⊥∥A we use c to mean the corresponding copy of
c, of opposite polarity, in the alternative component, i.e.

(1, a) = (2, a) and (2, a) = (1, a) .



Proposition 8. Let A be an event structure with polarity.
There is an event structure with polarity CCA having the
same events, consistency and polarity as A⊥∥A but with causal
dependency ≤CCA given as the transitive closure of the relation

≤A⊥∥A ∪ {(c, c) ∣ c ∈ A⊥∥A & polA⊥∥A(c) = +} .

Moreover,
(i) c _ c′ in CCA iff

c _ c′ in A⊥∥A or polA⊥∥A(c′) = + & c = c′ ;

(ii) x ∈ C(CCA) iff

x ∈ C(A⊥∥A) & ∀c ∈ x. polA⊥∥A(c) = + Ô⇒ c ∈ x .

Proof. It can first be checked that defining

c ≤CCA c
′ iff (i) c ≤A⊥∥A c′ or

(ii) ∃c0 ∈ A⊥∥A. polA⊥∥A(c0) = + &

c ≤A⊥∥A c0 & c0 ≤A⊥∥A c′ ,
yields a partial order. Note that

c ≤A⊥∥A d iff c ≤A⊥∥A d ,

used in verifying transitivity and antisymmetry. The relation
≤CCA is clearly the transitive closure of ≤A⊥∥A together with all
extra causal dependencies (c, c) where polA⊥∥A(c) = +. The
remaining properties required for CCA to be an event structure
follow routinely.
(i) From the above characterization of ≤CCA .
(ii) From CCA and A⊥∥A sharing the same consistency relation
and the extra causal dependency adjoined to CCA.

Based on Proposition 8, define the copy-cat pre-strategy
from A to A to be the pre-strategy γA ∶ CCA → A⊥∥A
where CCA comprises the event structure with polarity A⊥∥A
together with extra causal dependencies c ≤CCA c for all events
c with polA⊥∥A(c) = +, and γA is the identity on the set of
events common to both CCA and A⊥∥A.

B. Composing pre-strategies

Consider two pre-strategies σ ∶ A + //B and τ ∶ B + //C as
spans:

S
σ1

~~}}
}}

}}
}} σ2

��?
??

??
??

A⊥ B

T
τ1

~~}}
}}

}}
}} τ2

  A
AA

AA
AA

A

B⊥ C .

We show how to define their composition τ⊙σ ∶ A + //C. If
we ignore polarities the partial maps of event structures σ2 and
τ1 have a common codomain, the underlying event structure
of B and B⊥. The composition τ⊙σ will be constructed as
a synchronized composition of S and T , in which output
events of S synchronize with input events of T , followed by
an operation of hiding ‘internal’ synchronization events. Only
those events s from S and t from T for which σ2(s) = τ1(t)
synchronize; note that then s and t must have opposite
polarities as this is so for their images σ2(s) in B and τ1(t)
in B⊥. The event resulting from the synchronization of s

and t has indeterminate polarity and will be hidden in the
composition τ⊙σ.

Formally, we use the construction of synchronized compo-
sition and projection of Section III-C. Via projection we hide
all those events with undefined polarity.

We first define the composition of the families of configu-
rations of S and T as a synchronized composition of stable
families. We form the product of stable families C(S)×C(T )
with projections π1 and π2, and then form a restriction:

C(T )⊙C(S) =def C(S) × C(T ) ↾R

where

R = {(s,∗) ∣ s ∈ S & σ1(s) is defined}∪
{(s, t) ∣ s ∈ S & t ∈ T & σ2(s) = τ1(t) with both defined}∪

{(∗, t) ∣ t ∈ T & τ2(t) is defined} .
The stable familyC(T )⊙C(S) is the synchronized composition
of the stable familiesC(S) andC(T ) in which synchronizations
are between events of S and T which project, under σ2 and τ1
respectively, to complementary events in B and B⊥. The stable
family C(T )⊙C(S) represents all the configurations of the
composition of pre-strategies, including internal events arising
from synchronizations. We obtain the synchronized composi-
tion as an event structure by forming Pr( C(T )⊙ C(S)), in
which events are the primes ofC(T )⊙C(S). This synchronized
composition still has internal events.

To obtain the composition of pre-strategies we hide the
internal events due to synchronizations. The event structure
of the composition of pre-strategies is defined to be

T⊙S =def Pr(C(T )⊙C(S)) ↓ V ,

the projection onto “visible” events,

V = {p ∈ Pr(C(T )⊙C(S)) ∣ ∃s ∈ S. max(p) = (s,∗)} ∪
{p ∈ Pr(C(T )⊙C(S)) ∣ ∃t ∈ T. max(p) = (∗, t)} .

Finally, the composition τ⊙σ is defined by the span

T⊙S
υ1

||yy
yy

yy
yy υ2

""D
DD

DD
DD

D

A⊥ C

where υ1 and υ2 are maps of event structures, which on events
p of T⊙S act so υ1(p) = σ1(s) when max(p) = (s,∗)
and υ2(p) = τ2(t) when max(p) = (∗, t), and are undefined
elsewhere.

Proposition 9. Above, υ1 and υ2 are partial maps of event
structures with polarity, which together define a pre-strategy
υ ∶ A + //C. For x ∈ C(T⊙S),

υ1x = σ1π1⋃x and υ2x = τ2π2⋃x .

Proof. Consider the two maps of event structures

u1 ∶Pr(C(T )⊙C(S)) Π1Ð→S σ1Ð→A⊥ ,

u2 ∶Pr(C(T )⊙C(S)) Π2Ð→T τ2Ð→C ,



where Π1,Π2 are (restrictions of) projections of the product
of event structures. E.g. for p ∈ Pr(C(T )⊙C(S)), Π1(p) = s
precisely when max(p) = (s,∗), so σ1(s) is defined, or when
max(p) = (s, t), so σ1(s) is undefined. The partial functions
υ1 and υ2 are restrictions of the two maps u1 and u2 to the
projection set V . But V consists exactly of those events in
Pr(C(T )⊙ C(S)) where u1 or u2 is defined. It follows that
υ1 and υ2 are maps of event structures.

Clearly one and only one of υ1, υ2 are defined on any
event in T⊙S so they form a pre-strategy. Their effect on
x ∈ C(T⊙S) follows directly from their definition.

Proposition 10. Let σ ∶ A + //B, τ ∶ B + //C and υ ∶
C + //D be pre-strategies. The two compositions υ⊙(τ⊙σ)
and (υ⊙τ)⊙σ are isomorphic.

Proof. The natural isomorphism S × (T ×U) ≅ (S × T ) ×U ,
associated with the product of event structures S,T,U , restricts
to the required isomorphism of spans as the synchronizations
involved in successive compositions are disjoint.
Remark. We have chosen to project away from internal events,
rather than treat them as events of neutral polarity, to obviate
the extra bicategorical complications internal events involve.

C. Duality

A pre-strategy σ ∶ A + //B corresponds to a dual pre-
strategy σ⊥ ∶ B⊥ + //A⊥. This duality arises from the corre-
spondence

S
σ1

~~}}
}}

}}
}} σ2

��?
??

??
??

A⊥ B

←→ S

σ2

||zz
zz

zz
zz σ1

  A
AA

AA
AA

A

(B⊥)⊥ A⊥ .

It is easy to check that the dual of copy-cat, γ⊥A, is isomorphic,
as a span, to the copy-cat of the dual, γA⊥ , for A an event
structure with polarity. It is also straightforward, though more
involved, to show that the dual of a composition of pre-
strategies (τ⊙σ)⊥ is isomorphic as a span to the composition
σ⊥⊙τ⊥. Duality, as usual, will save us work.

VI. STRATEGIES

This section is devoted to the main result of this paper: that
two conditions on pre-strategies, receptivity and innocence,
are necessary and sufficient in order for copy-cat to behave
as identity w.r.t. the composition of pre-strategies. It becomes
compelling to define a (nondeterministic) concurrent strategy,
in general, as a pre-strategy which is receptive and innocent.

A. Necessity of receptivity and innocence

The properties of receptivity and innocence of a pre-strategy,
described below, will play a central role.
Receptivity. Say a pre-strategy σ ∶ S → A is receptive when
σx

a−Ð⊂ & polA(a) = − ⇒ ∃!s ∈ S. x s−Ð⊂ & σ(s) = a , for all
x ∈ C(S), a ∈ A. Receptivity ensures that no Opponent move
which is possible is disallowed.
Innocence. Say a pre-strategy σ is innocent when it is both
+-innocent and −-innocent:

+-Innocence: If s _ s′ & pol(s) = + then σ(s) _ σ(s′).
−-Innocence: If s _ s′ & pol(s′) = − then σ(s) _ σ(s′).

The definition of a pre-strategy σ ∶ S → A ensures that the
moves of Player and Opponent respect the causal constraints of
the game A. Innocence restricts Player further. Locally, within
a configuration, Player may only introduce new relations of
immediate causality of the form ⊖ _ ⊕ . Thus innocence
gives Player the freedom to await Opponent moves before
making their move, but prevents Player having any influence
on the moves of Opponent beyond those stipulated in the game
A; more surprisingly, innocence also disallows any immediate
causality of the form ⊕ _ ⊕, purely between Player moves,
not already stipulated in the game A.

Two important consequences of −-innocence:

Lemma 11. Let σ ∶ S → A be a pre-strategy. Suppose, for
s, s′ ∈ S, that

[s) ↑ [s′) & polS(s) = polS(s′) = − & σ(s) = σ(s′) .

(i) If σ is −-innocent, then [s) = [s′).
(ii) If σ is receptive and −-innocent, then s = s′.
[x ↑ y expresses the compatibility of x, y ∈ C(S).]

Proof. (i) Assume the property above holds of s, s′ ∈ S.
Assume σ is −-innocent. Suppose s1 _ s. Then by −-
innocence, σ(s1) _ σ(s). As σ(s′) = σ(s) and σ is a map of
event structures there is s2 < s′ s.t. σ(s2) = σ(s1). But s1, s2

both belong to the configuration [s) ∪ [s′) so s1 = s2, as σ is
a map, and s1 < s′. Symmetrically, if s1 _ s′ then s1 < s. It

follows that [s) = [s′). (ii) Now both [s) s−Ð⊂ and [s) s′−Ð⊂ with
σ(s) = σ(s′) where both s, s′ have −ve polarity. If, further, σ
is receptive, s = s′.

Let x and x′ be configurations of an event structure with
polarity. Write x ⊆− x′ to mean x ⊆ x′ and pol(x′ ∖ x) ⊆
{−}, i.e. the configuration x′ extends the configuration x solely
by events of −ve polarity. In the presence of −-innocence,
receptivity strengthens to the following useful property:

Lemma 12. Let σ ∶ S → A be a −-innocent pre-strategy. The
pre-strategy σ is receptive iff whenever σx ⊆− y there is a
unique x′ ∈ C(S) so that x ⊆ x′ & σx′ = y . Diagrammatically,

x_

σ

��

⊆ x′_

σ

��
σx ⊆− y .

[It will necessarily be the case that x ⊆− x′.]
Proof. “if”: Clear. “Only if”: Assuming σx ⊆− y we can
form a covering chain

σx
a1−Ð⊂y1⋯

an−Ð⊂yn = y .

By repeated use of receptivity we obtain the existence of x′

where x ⊆ x′ and σx′ = y. To show the uniqueness of x′

suppose x ⊆ z, z′ and σz = σz′ = y. Suppose that z /= z′.
Then, without loss of generality, suppose there is a ≤S-minimal



s′ ∈ z′ with s′ ∉ z. Then [s′) ⊆ z. Now σ(s′) ∈ y so there
is s ∈ z for which σ(s) = σ(s′). We have [s), [s′) ⊆ z so
[s) ↑ [s′). By Lemma 11(ii) we deduce s = s′ so s′ ∈ z, a
contradiction. Hence, z = z′.

It is useful to define innocence and receptivity on partial
maps of event structures with polarity.

Definition 13. Let f ∶ S → A be a partial map of event
structures with polarity. Say f is receptive when

f(x) a−Ð⊂ & polA(a) = − Ô⇒ ∃!s ∈ S. x s−Ð⊂ & f(s) = a

for all x ∈ C(S), a ∈ A.
Say f is innocent when it is both +-innocent and −-innocent,

i.e.

s _ s′ & pol(s) = + & f(s) is defined Ô⇒
f(s′) is defined & f(s) _ f(s′) ,

s _ s′ & pol(s′) = − & f(s′) is defined Ô⇒
f(s) is defined & f(s) _ f(s′) .

Proposition 14. A pre-strategy σ ∶ A + //B is receptive,
respectively +/−-innocent, iff both the partial maps σ1 and
σ2 of its span are receptive, respectively +/−-innocent.

Proposition 15. For σ ∶ A + //B a pre-strategy, σ1 is
receptive, respectively +/−-innocent, iff (σ⊥)2 is receptive,
respectively +/−-innocent; σ is receptive and innocent iff σ⊥

is receptive and innocent.

The next lemma will play a major role in importing recep-
tivity and innocence to compositions of pre-strategies.

Lemma 16. For pre-strategies σ ∶ A + //B and τ ∶ B + //C,
if σ1 is receptive, respectively +/−-innocent, then (τ⊙σ)1 is
receptive, respectively +/−-innocent.

Proof. Abbreviate τ⊙σ to υ.
Receptivity: We show the receptivity of υ1 assuming that σ1

is receptive. Let x ∈ C(T⊙S) such that υ1x
a−Ð⊂ in C(A⊥) with

polA⊥(a) = −. By Proposition 9, σ1π1⋃x
a−Ð⊂ with π1⋃x ∈

C(S). As σ1 is receptive there is a unique s ∈ S such that

π1⋃x
s−Ð⊂ in S and σ1(s) = a. It follows that ⋃x

(s,∗)
−Ð⊂z, for

some z, in C(T )⊙C(S). Defining p =def [(s,∗)]z we obtain
x

p
−Ð⊂ and υ1(p) = a, with p the unique such event.

Innocence: Assume that σ1 is innocent. To show the +-
innocence of υ1 we first establish a property of the _-relation
in the event structure Pr( C(T )⊙ C(S)), the synchronized
composition of event structures S and T , before projection
to V :

If e _ e′ in Pr(C(T )⊙C(S)) with e ∈ V , pol(e) = +
and υ1(e) defined, then e′ ∈ V and υ1(e′) is defined.

Assume e _ e′ in Pr(C(T )⊙C(S)), e ∈ V , pol(e) = + and
υ1(e) is defined. From the definition of Pr(C(T )⊙C(S)), the
event e is a prime configuration ofC(T )⊙C(S) where max(e)
must have the form (s,∗), for some event s of S where σ1(s)
is defined. By Lemma 6, max(e′) has the form (s′,∗) or
(s′, t) with s _ s′ in S. Now, as s _ s′ and pol(s) = +,

from the +-innocence of σ1, we obtain σ1(s) _ σ1(s′) in
A⊥∥A. Whence σ1(s′) is defined ensuring max(e′) = (s′,∗).
It follows that e′ ∈ V and υ1(e′) is defined.

Now suppose e _ e′ in T⊙S. Then either
(i) e _ e′ in Pr(C(T )⊙C(S)), or
(ii) e _ e1 < e′ in Pr(C(T )⊙C(S)) for some ‘invisible’

event e1 ∉ V .
But the above argument shows that case (ii) cannot occur

when pol(e) = + and υ1(e) is defined. It follows that whenever
e _ e′ in T⊙S with pol(e) = + and υ1(e) defined, then υ1(e′)
is defined and υ1(e) _ υ1(e′), as required.

The argument showing −-innocence of υ1 assuming that of
σ1 is similar.

Corollary 17. For pre-strategies σ ∶ A + //B and τ ∶ B + //C,
if τ2 is receptive, respectively +/−-innocent, then (τ⊙σ)2 is
receptive, respectively +/−-innocent.

Proof. By duality using Lemma 16: if τ2 is receptive, re-
spectively +/−-innocent, then (τ⊥)1 is receptive, respectively
+/−-innocent, and hence (σ⊥⊙τ⊥)1 = ((τ⊙σ)⊥)1 = (τ⊙σ)2

is receptive, respectively +/−-innocent.

Lemma 18. For an event structure with polarity A, the pre-
strategy copy-cat γA ∶ A + //A is receptive and innocent.

Proof. Receptive: Suppose x ∈ C(CCA) such that γAx
c−Ð⊂

in C(A⊥∥A) where polA⊥∥A(c) = −. Now γAx = x and
x′ =def x ∪ {c} ∈ C(A⊥∥A). Proposition 8(ii) characterizes
those configurations of A⊥∥A which are also configurations
of CCA: the characterization applies to x and to its extension
x′ = x ∪ {c} because of the −ve polarity of c. Hence
x′ ∈ C(CCA) and x

c−Ð⊂x′ in C(CCA), and clearly c is unique
so γA(c) = c.
−-Innocent: Suppose c _ c′ in CCA and pol(c′) = −. By
Proposition 8(i), c _ c′ in A⊥∥A. The argument for +-
innocence is similar.

Theorem 19. Let σ ∶ A + //B be a pre-strategy from A to B.
If σ⊙γA ≅ σ and γB⊙σ ≅ σ, then σ is receptive and innocent.

Let σ ∶ A + //B and τ ∶ B + //C be pre-strategies which
are both receptive and innocent. Then their composition τ⊙σ ∶
A + //C is receptive and innocent.

Proof. We know the copy-cat pre-strategies γA and γB are
receptive and innocent—Lemma 18. Assume σ⊙γA ≅ σ and
γB⊙σ ≅ σ. By Lemma 16, (σ⊙γA)1 is receptive and innocent
so σ1 is receptive and innocent. From its dual, Corollary 17,
(γB⊙σ)2 so σ2 is receptive and innocent. Hence σ is receptive
and innocent.

Assume that σ ∶ A + //B and τ ∶ B + //C are receptive and
innocent. The fact that σ is receptive and innocent ensures
that (τ⊙σ)1 is receptive and innocent, that τ is receptive and
innocent that (τ⊙σ)2 is too. Combining, we obtain that τ⊙σ
is receptive and innocent.

In other words, if a pre-strategy is to compose well with
copy-cat, in the sense that copy-cat behaves as an identity
w.r.t. composition, the pre-strategy must be receptive and



innocent. Copy-cat behaving as identity is a hallmark of
game-based semantics, so any sensible definition of concurrent
strategy will have to ensure receptivity and innocence.

B. Sufficiency of receptivity and innocence

In fact, as we will now see, not only are the conditions of
receptivity and innocence on pre-strategies necessary to ensure
that copy-cat acts as identity. They are also sufficient.

Technically, this section establishes that for a pre-strategy
σ ∶ A + //B which is receptive and innocent both the composi-
tions σ⊙γA and γB⊙σ are isomorphic to σ. We shall concen-
trate on the isomorphism from σ⊙γA to σ. The isomorphism
from γB⊙σ to σ follows by duality.

Recall, from Section V-B, the construction of the pre-
strategy σ⊙γA as a total map S⊙CCA → A⊥∥B. The event
structure S⊙CCA is built from the synchronized composition
of stable families C(S)⊙C(CCA), a restriction of the product
of stable families to events

{(c,∗) ∣ c ∈ CCA & γA1(c) is defined}∪
{(c, s) ∣ c ∈ CCA & s ∈ S & γA2(c) = σ1(s)}∪
{(∗, s) ∣ s ∈ S & σ2(t) is defined} ∶

C(S)⊙C(CCA)

π1xxqqqqqqqqqq

π2
%%LLLLLLLLLL

C(CCA)

γA1zzuuuuuuuuu

γA2 &&MMMMMMMMMM C(S)

σ1yyssssssssss

σ2
""F

FFFFFFF

C(A⊥) C(A) C(A⊥) C(B)

Finally S⊙CCA is obtained from the prime configurations
of C(S)⊙C(CCA) whose maximum events are defined under
γA1π1 or σ2π2.

We will first present the putative isomorphism from σ⊙γA
to σ as a total map of event structures θ ∶ S⊙CCA → S. The
definition of θ depends crucially on the lemmas below. They
involve special configurations of C(S)⊙C(CCA), viz. those of
the form ⋃x , where x is a configuration of S⊙CCA.

Lemma 20. For x ∈ C(S⊙CCA),

(c, s) ∈ ⋃x Ô⇒ (c,∗) ∈ ⋃x .

Proof. The case when pol(c) = + follows directly because
then c _ c in CCA so (c,∗) _⋃x (c, s).
Suppose the lemma fails in the case when pol(c) = −, so there
is a ≤⋃x-maximal (c, s) ∈ ⋃x such that

pol(c) = − & (c,∗) ∉ ⋃x . (†)

The event (c, s) cannot be maximal in ⋃x as its maximal
events take the form (c′,∗) or (∗, s′). There must be e ∈ ⋃x
for which

(c, s) _⋃x e .

Consider the possible forms of e:
Case e = (c′, s′): Then, by Lemma 6, either c _ c′ in CCA
or s _ s′ in S. However if s _ s′ then, as pol(s) = + by

innocence, σ1(s) _ σ1(s′) in A⊥, so γA2(c) _ γA2(c′) in
A; but then c _ c′ in CCA. Either way, c _ c′ in CCA.

Suppose pol(c′) = +. Then,

(c, s) _⋃x (c,∗) _⋃x (c′,∗) _⋃x (c′, s′) .

But this contradicts (c, s) _⋃x (c′, s′).
Suppose pol(c′) = −. Because (c, s) is maximal such that

(†), (c′,∗) ∈ ⋃x. But (c,∗) _⋃x (c′,∗) whence (c,∗) ∈ ⋃x,
contradicting (†).
Case e = (∗, s′): Now (c, s) _⋃x (∗, s′). By Lemma 6, s _
s′ in S with pol(s) = +. By innocence, σ1(s) _ σ1(s′) and in
particular σ1(s′) is defined, which forbids (∗, s′) as an event
of C(S)⊙C(CCA).
Case e = (c′,∗): Now (c, s) _⋃x (c′,∗). By Lemma 6,
c _ c′ in CCA. Because (c, s) and (c′,∗) are events of
C(S)⊙C(CCA) we must have γ2(c) and γ1(c′) are defined—
they are in different components of CCA. By Proposition 8,
c′ = c, contradicting (†).

In all cases we obtain a contradiction—hence the lemma.

Lemma 21. For x ∈ C(S⊙CCA),

σ1π2⋃x ⊆− γA1π1⋃x .

Proof. As a direct corollary of Lemma 20, we obtain:

σ1π2⋃x ⊆ γA1π1⋃x .

The current lemma will follow provided all events of +ve
polarity in γA1π1⋃x are in σ1π2⋃x. However, (c, s) _⋃x
(c,∗), for some s ∈ S, when pol(c) = +.

Lemma 22. For x ∈ C(S⊙CCA),

σπ2⋃x ⊆− σ⊙γA x .

Proof.

σπ2⋃x = σ1π2⋃x ∪ σ2π2⋃x

⊆− γA1π1⋃x ∪ σ2π2⋃x , by Lemma 21
= σ⊙γA x , by Proposition 9.

Lemma 22 is the key to defining a map θ ∶ S⊙CCA → S via
the following map-lifting property of receptive maps:

Lemma 23. Let σ ∶ S → C be a total map of event
structures with polarity which is receptive and −-innocent.
Let p ∶ C(V ) → C(S) be a monotonic function, i.e. such that
p(x) ⊆ p(y) whenever x ⊆ y in C(V ). Let υ ∶ V → C be a
total map of event structures with polarity such that

∀x ∈ C(V ). σp(x) ⊆− υ x .

Then, there is a unique total map of event structures with
polarity θ ∶ V → S such that ∀x ∈ C(V ). p(x) ⊆− θ x and



υ = σθ ∶

V

θ

��

υ

⊆−

!!C
CC

CC
CC

C
p

⊆−

//___ S

σ

��
C .

[We use a broken arrow to signify that p is not a map of event
structures.]

Proof. Let x ∈ C(V ). Then σp(x) ⊆− υ x. Define Θ(x) to be
the unique configuration ofC(S), determined by the receptivity
of σ, such that

p(x)
_

σ

��

⊆− Θ(x)
_

σ

��
σp(x) ⊆− υ x .

Define θx to be the composite bijection

θx ∶ x ≅ υx ≅ Θ(x)

where the bijection x ≅ υx is that determined locally by the
total map of event structures υ, and the bijection υx ≅ Θ(x) is
the inverse of the bijection σ ↾Θ(x) ∶ Θ(x) ≅ υ x determined
locally by the total map σ.

Now, let y ∈ C(V ) with x ⊆ y. We claim that θx is the
restriction of θy . This will follow once we have shown that
Θ(x) ⊆ Θ(y). Then, treating the inclusions as inclusion maps,
both squares in the diagram below will commute:

θy ∶ y ≅ υ y ≅ Θ(y)

θx ∶ x

⊆

≅ υ x

⊆

≅ Θ(x)

⊆

This will make the composite rectangle commute, i.e. make
θx the restriction of θy .

To show Θ(x) ⊆ Θ(y) we suppose otherwise. Then there
is an event s ∈ Θ(x) of minimum depth w.r.t. ≤S such that
s ∉ Θ(y). Note that pol(s) = −, as otherwise s ∈ p(x) ⊆
p(y) ⊆ Θ(y). As σ(s) ∈ υ x ⊆ υ y there is s′ ∈ Θ(y) such that
σ(s′) = σ(s). From the minimality of s, both [s), [s′) ⊆ Θ(y)
ensuring the compatibility of [s) and [s′). By Lemma 11(ii),
s = s′ and s ∈ Θ(y)—a contradiction.

By Proposition 3, the family θx, x ∈ C(V ), determines
the unique total map θ ∶ V → S such that θ x = Θ(x). By
construction, p(x) ⊆− θ x, for all x ∈ C(V ), and υ = σθ. This
property in itself ensures that θ x = Θ(x) so determines θ
uniquely.

In Lemma 23, instantiate p ∶ C(S⊙CCA) → C(S) to
the function p(x) = π2⋃x for x ∈ C(S⊙CCA), the map
σ to the pre-strategy σ ∶ S → A⊥∥B and υ to the pre-
strategy σ⊙γA. By Lemma 22, σπ2⋃x ⊆− σ⊙γA x, so the
conditions of Lemma 23 are met and we obtain a total map
θ ∶ S⊙CCA → S such that π2⋃x ⊆− θ x, for all x ∈C(S⊙CCA),
and σθ = σ⊙γA:

S⊙CCA

θ

��

σ⊙γA

⊆−

%%KKKKKKKKKK
p

⊆−

//____ S

σ

��
A⊥∥B .

The next lemma is used in showing θ is an isomorphism.

Lemma 24. (i) Let z ∈ C(S)⊙C(CCA). If e ≤z e′ and π2(e)
and π2(e′) are defined, then π2(e) ≤S π2(e′). (ii) The map
π2 is surjective on configurations.

Proof. (i) It suffices to show when

e _z e1 _z ⋯ _z en−1 _z e
′

with π2(e) and π2(e′) defined and all π2(ei), 1 ≤ i ≤ n − 1,
undefined, that π2(e) ≤S π2(e′).
Case n = 1, so e _z e

′: Use Lemma 6. If either e or e′

has the form (∗, s) then the other event must have the form
(∗, s′) or (c′, s′) with s _ s′ in S. In the remaining case
e = (c, s) and e′ = (c′, s′) with either (1) c _ c′ in CCA,
and γA2(c) _ γA2(c′) in A, or (2) s _ s′ in S. If (1),
σ1(s) _ σ1(s′) in A⊥ where s, s′ ∈ π2z. By Proposition 4,
s ≤S s′. In either case (1) or (2), π2(e) ≤S π2(e′).
Case n > 1: Each ei has the form (ci,∗), for 1 ≤ i ≤ n − 1.
By Lemma 6, events e and e′ must have the form (c, s) and
(c′, s′) with c _ c1 and cn−1 _ c′ in CCA. As γA1(c) and
γA2(c1) are defined, c1 = c and similarly cn−1 = c′. Again by
Lemma 6, ci _ ci+1 in CCA for 1 ≤ i ≤ i − 2. Consequently
γA2(c) ≤A γA2(c′). Now, s, s′ ∈ π2z with σ1(s) ≤A⊥ σ1(s′).
By Proposition 4, s ≤S s′, as required.
(ii) Let y ∈ C(S). Then σ1y ∈ C(A⊥) and by the clear
surjectivity of γA2 on configurations there exists w ∈ C(CCA)
such that γA2w = σ1y. Now let

z ={(c,∗) ∣ c ∈ w & γA1(c) is defined}
∪{(c, s) ∣ c ∈ w & s ∈ y & γA2(c) = σ1(s)}
∪{(∗, s) ∣ s ∈ y & σ2(s) is defined} .

Then, from the definition of the product of stable families—
III-A, it can be checked that z ∈ C(S)⊙C(CCA). By construc-
tion, π2z = y. Hence π2 is surjective on configurations.

Theorem 25. θ ∶ σ⊙γA ≅ σ, an isomorphism of pre-strategies.

Proof. We show θ is an isomorphism of event structures
by showing θ is rigid and both surjective and injective on
configurations (Lemma 3.3 of [12]). The rest is routine.
Rigid: It suffices to show p _ p′ in S⊙CCA implies θ(p) ≤S
θ(p′). Suppose p _ p′ in S⊙CCA with max(p) = e and
max(p′) = e′. Take x ∈ C(S⊙CCA) containing p′ so p too.
Then

e _⋃x e1 _⋃x ⋯ _⋃x en−1 _⋃x e
′

where e, e′ ∈ V and ei ∉ V for 1 ≤ i ≤ n − 1. (V consists
of ‘visible’ events of the form (c,∗) with γA1(c) defined, or
(∗, s), with σ2(s) defined.)



Case n = 1, so e _⋃x e
′: By Lemma 6, either (i) e = (∗, s)

and e′ = (∗, s′) with s _ s′ in S, or (ii) e = (c,∗) and
e′ = (c′,∗) with c _ c′ in CCA.
If (i), we observe, via σθ = σ⊙γA, that s ∈ π2⋃x ⊆ θx and
θ(p) ∈ θx with σ(θ(p)) = σ(s), so θ(p) = s by the local
injectivity of σ. Similarly, θ(p′) = s′, so θ(p) ≤S θ(p′).
If (ii), we obtain θ(p), θ(p′) ∈ θx with σ1θ(p) = γA1(c),
σ1θ(p′) = γA1(c′) and γA1(c) _ γA1(c′) in A⊥. By Propo-
sition 4, θ(p) ≤S θ(p′).
Case n > 1: Note ei = (ci, si) for 1 ≤ i ≤ n−1, and that s1 ≤S
sn−1 by Lemma 24(i). Consider the case in which e = (c,∗)
and e′ = (c′,∗)—the other cases are similar. By Lemma 6,
c _ c1 and cn−1 _ c′ in CCA. But γA1(c) and γA2(c1)
are defined, so c1 = c, and similarly cn−1 = c′. We remark
that θ(p) = s1, by the local injectivity of σ, as both s1 ∈
π2⋃x ⊆ θx and θ(p) ∈ θx with σ(θ(p)) = σ(s1). Similarly
θ(p′) = sn−1 , whence θ(p) ≤S θ(p′).
Surjective: Let y ∈ C(S). By Lemma 24(ii), there is z ∈
C(S)⊙C(CCA) such that π2z = y. Let

z′ = z ∪ {(c,∗) ∣ pol(c) = + & ∃s ∈ S. (c, s) ∈ z} .

It is straightforward to check z′ ∈ C(S)⊙C(CCA). Now let

z′′ = z′ ∖ {(c,∗) ∣ pol(c) = − & ∀s ∈ S. (c, s) ∉ z′} .

Then z′′ ∈ C(S)⊙C(CCA) by the following argument. The set
z′′ is certainly consistent, so it suffices to show

pol(c) = − & (c,∗) ≤z′ e ∈ z′′ Ô⇒ ∃s ∈ S. (c, s) ∈ z′ ,

for all c ∈ CCA and e ∈ z′′. This we do by induction on the
number of events between (c,∗) and e. Suppose

pol(c) = − & (c,∗) _z′ e1 ≤z′ e ∈ z′ .

In the case where e1 = (c1, s1), we deduce c _ c1 in CCA
and as γA1(c) is defined while γA2(c1) is defined, we must
have c1 = c, as required. In the case where e1 = (c1,∗) and
pol(c1) = −, by induction, we obtain (c1, s1) ∈ z′ for some
s1 ∈ S. Also c _ c1, so c _ c1 in CCA. As z′ is a configuration
we must have (c, s) ≤z′ (c1, s1), for some s ∈ S, so (c, s) ∈ z′.
In the case where e1 = (c1,∗) and pol(c1) = +, we have
c _ c1 in CCA. Moreover, (c1, s) ∈ z′, for some s ∈ S, as z′ is
a configuration and c1 _ c1 in CCA. Again, from the fact that
z′ is a configuration, there must be (c, s) ∈ z′ for some s ∈ S.
We have exhausted all cases and conclude z′′ ∈ C(S)⊙C(CCA)
with θz′′ = π2z = y, as required to show θ is surjective on
configurations.
Injective: Abbreviate σ⊙γA to υ. Assume θx = θy, where
x, y ∈ C(S⊙CCA). Via the commutativity υ = σθ, we observe

υx = σθ x = σθ y = υy .

Recall by Proposition 9, that υ1x = γA1π1⋃x = π1⋃x. It
follows that

(c,∗) ∈ ⋃x ⇐⇒ c ∈ υ1x ⇐⇒ c ∈ υ1y ⇐⇒ (c,∗) ∈ ⋃ y .

Observe

(∗, s) ∈ ⋃x ⇐⇒ σ2(s) is defined & s ∈ θx ∶

“⇒” by the local injectivity of σ2, as p =def [(∗, s)]⋃x yields
θ(p) ∈ θx and s ∈ π2⋃x ⊆ θx with σ2(θ(p)) = σ2(s), so
θ(p) = s; “⇐” as σ2(s) defined and s ∈ θx entails s = θ(p)
for some p ∈ x, necessarily with max(p) = (∗, s). Hence

(∗, s) ∈ ⋃x ⇐⇒ σ2(s) is defined & s ∈ θx
⇐⇒ σ2(s) is defined & s ∈ θy
⇐⇒ (∗, s) ∈ ⋃ y .

Assuming (c, s) ∈ ⋃x we now show (c, s) ∈ ⋃ y. (The
converse holds by symmetry.) There is p ∈ x, such that (c, s) ∈
p. If max(p) = (∗, s′) (also in ⋃ y as it is visible) then as π2

is rigid, s ≤ s′ and we must have (c′, s) ∈ ⋃ y. Otherwise,
max(p) = (d,∗) and we can suppose (by taking p minimal)
that (c, s) ≤⋃x (d′, s′) _⋃x (d,∗). But then θ(p) = s′ ∈ θx =
θy. Also s ≤S s′, by the rigidity of π2, and, as we have seen
before, d′ = d with d′ −ve. Hence s′ is +ve and as θy is
a −ve extension of π2⋃ y we must have s′ ∈ π2⋃ y. Hence
there is (∗, s′) or (c′′, s′) in ⋃ y, and as s ≤S s′ there is some
(c′, s) ∈ ⋃ y. In both cases, γA2(c′) = σ1(s) = γA2(c), so
c′ = c, and thus (c, s) ∈ ⋃ y.

We conclude ⋃x = ⋃ y, so x = y, as required for injectivity.

C. The bicategory of concurrent games and strategies

Define a strategy to be a pre-strategy which is receptive
and innocent. We obtain a bicategory, Games, in which
the objects are event structures with polarity—the games, the
arrows from A to B are strategies σ ∶ A + //B and the 2-cells
are maps of spans. The vertical composition of 2-cells is the
usual composition of maps of spans. Horizontal composition
is given by the composition of strategies ⊙ (which extends
to a functor on 2-cells via the functoriality of synchronized
composition). The isomorphisms expressing associativity and
the identity of copy-cat are those of Proposition 10 and
Theorem 25 with its dual.

An alternative description of concurrent strategies exhibits
the correspondence between innocence and earlier “saturation
conditions,” reflecting specific independence, in [5], [6], [3]:

Proposition 26. A strategy S in a game A comprises a total
map of event structures with polarityσ ∶ S → A such that
(i) σx

a−Ð⊂ & polA(a) = − ⇒ ∃!s ∈ S. x s−Ð⊂ & σ(s) = a , for
all x ∈ C(S), a ∈ A.

(ii)(+) If x
e−Ð⊂x1

e′−Ð⊂ & polS(e) = + in C(S) and σx
σ(e′)
−Ð⊂ in

C(A), then x
e′−Ð⊂ in C(S).

(ii)(−) If x
e−Ð⊂x1

e′−Ð⊂ & polS(e′) = − in C(S) and σx
σ(e′)
−Ð⊂ in

C(A), then x
e′−Ð⊂ in C(S).

D. Deterministic strategies

Say an event structure with polarityS is deterministic iff

∀X ⊆fin S. Neg[X] ∈ ConS Ô⇒ X ∈ ConS ,

where Neg[X] =def {s′ ∈ S ∣ ∃s ∈X. polS(s′) = − & s′ ≤ s}.
Say a strategy σ ∶ S → A is deterministic if S is deterministic.



Proposition 27. An event structure with polarityS is deter-

ministic iff x
s−Ð⊂ & x

s′−Ð⊂ & polS(s) = + implies x∪{s, s′} ∈
C(S), for all x ∈ C(S).

A copy-cat strategy can fail to be deterministic in the two
ways allowed by Proposition 27.

Example 28. (i) Take A to consist of two +ve events and one
−ve event, with any two but not all three events consistent.
The construction of CCA is pictured:

⊖ _ ⊕
A
⊥ ⊖ _ ⊕ A

⊕ ^ ⊖

CCA is not deterministic: take x to be the set of all three −ve
events in CCA and s, s′ to be the two +ve events in the A
component.
(ii) Take A to consist of two events, one +ve and one −ve
event, inconsistent with each other. The construction CCA:

A
⊥ ⊖ _ ⊕ A

⊕ ^ ⊖

To see CCA is not deterministic, take x to be the singleton set
consisting e.g. of the −ve event on the left and s, s′ to be the
+ve and −ve events on the right.

Lemma 29. Let A be an event structure with polarity. The
copy-cat strategy γA is deterministic iff A satisfies

∀x ∈ C(A). x a−Ð⊂ & x
a′−Ð⊂ & polA(a) = + & polA(a′) = −
Ô⇒ x ∪ {a, a′} ∈ C(A) . (‡)

Lemma 30. The composition τ⊙σ of two deterministic strate-
gies σ and τ is deterministic.

We obtain a sub-bicategory DGames of Games; its
objects satisfy (‡) of Lemma 29 and its maps are deterministic
strategies. Moreover DGames can be made equivalent to a
order-enriched category via the following proposition, which
ensures deterministic strategies in A correspond to certain
subfamilies of the configurations of A.

Proposition 31. A deterministic strategy is injective on con-
figurations (and therefore mono as a map of event structures).

A deterministic strategy σ ∶ S → A determines, as the image
of the configurations C(S), a subfamily F =def σ C(S) of
configurations of C(A), which satisfies:
reachability: ∅ ∈ F and if x ∈ F there is a covering chain
∅ a1−Ð⊂x1

a2−Ð⊂⋯ ak−Ð⊂xk = x within F ;

determinacy: If x
a−Ð⊂ and x

a′−Ð⊂ in F with polA(a) = +, then
x ∪ {a, a′} ∈ F ;
receptivity: If x ∈ F and x

a−Ð⊂ in C(A) and polA(a) = −, then
x ∪ {a} ∈ F ;

+-innocence: If x
a−Ð⊂x1

a′−Ð⊂ & polA(a) = + in F and x
a′−Ð⊂

in C(A), then x
a′−Ð⊂ in F ;

cube: In F , x1

b
� pBB

BB
BB

BB
e � �y1

b
� o@@

@@
@@

@@

x

a

. �}}}}}}}}

b
� pAA

AA
AA

AA
y

e � �z

x2

a

. �|||||||| e � �y2

a

/ �~~~~~~~~

implies

x
e � � .

(Here receptivity implies −-innocence.)

Theorem 32. A subfamily F ⊆ C(A) satisfies the conditions
above iff there is a deterministic strategy σ ∶ S → A such that
F = σC(S), the image of C(S) under σ.

VII. RELATED WORK—EARLY RESULTS

1) Stable spans, profunctors and stable functions: The sub-
bicategory of Games where the events of games are purely
+ve is equivalent to the bicategory of stable spans [12]. In this
case, strategies correspond to stable spans:

S

σ1

~~}}
}}

}}
}} σ2

��@
@@

@@
@@

@

A⊥ B

←→ S+

σ−1

~~}}
}}

}}
}} σ+2

!!B
BB

BB
BB

B

A B ,

where S+ is the projection of S to its +ve events; σ+2 is the
restriction of σ2 to S+, necessarily a rigid map by innocence;
σ−2 is a demand map taking x ∈ C(S+) to σ−1 (x) = σ1[x] ; here
[x] is the down-closure of x in S. Composition of stable spans
coincides with composition of their associated profunctors. If
we further restrict strategies to be deterministic (and, strictly,
event structures to be countable) we obtain a bicategory
equivalent to Berry’s dI-domains and stable functions.

2) Ingenuous strategies: Via Theorem 32, deterministic
concurrent strategies coincide with the receptive ingenuous
strategies of Melliès and Mimram [3].

3) Closure operators: In [4], deterministic strategies are
presented as closure operators. A deterministic strategy σ ∶
S → A determines a closure operator ϕ on possibly infinite
configurations C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S ∣ pol(s) = + & Neg[{s}] ⊆ x} .

Clearly ϕ preserves intersections of configurations and is
continuous. The closure operator ϕ onC∞(S) induces a partial
closure operator ϕp on C∞(A). This in turn determines a
closure operator ϕ⊺p on C∞(A)⊺, where configurations are
extended with a top ⊺, cf. [4]: take y ∈ C∞(A)⊺ to the least,
fixed point of ϕp above y, if such exists, and ⊺ otherwise.

4) Simple games: “Simple games” [10], [11] arise when
we restrict Games to objects and deterministic strategies in
PAr−#, described in Section IV-B.

5) Extensions: Games, such as those of [8], [13], allowing
copying are being systematized through the use of monads
and comonads [11], work now feasible on event structures
with symmetry [12]. Nondeterministic strategies can poten-
tially support probability as probabilistic or stochastic event
structures [14] to become probabilistic or stochastic strategies.



6) Other models: Event structures occupy a central position
amongst models for concurrency. The techniques here trans-
fer to other models such as Mazurkiewicz trace languages,
asynchronous transition systems and Petri nets, some of which
would appear more suitable for algorithmic and logical con-
siderations in that they support looping behaviour.

ACKNOWLEDGMENT

The authors thank the anonymous referees. Thanks to
Pierre-Louis Curien, Marcelo Fiore, Jonathan Hayman, Martin
Hyland, Paul-André Melliès, Samuel Mimram and Gordon
Plotkin for helpful remarks. GW acknowledges with gratitude
the support of a Royal Society Leverhulme Trust Senior
Fellowship and Advanced Grant ECSYM of the ERC.

REFERENCES

[1] P.-A. Melliès, “Asynchronous games 2: The true concurrency of inno-
cence,” Theor. Comput. Sci. 358(2-3): 200-228, 2006.

[2] A. Joyal, “Remarques sur la théorie des jeux à deux personnes,” Gazette
des sciences mathématiques du Québec, 1(4), 1997.

[3] P.-A. Melliès and S. Mimram, “Asynchronous games : innocence without
alternation,” in CONCUR ’07, ser. LNCS, vol. 4703. Springer, 2007.

[4] S. Abramsky and P.-A. Melliès, “Concurrent games and full complete-
ness,” in LICS ’99. IEEE Computer Society, 1999.

[5] J. Laird, “A games semantics of idealized CSP,” Vol 45 of Electronic
Books in Theor. Comput. Sci., 2001.

[6] D. R. Ghica and A. S. Murawski, “Angelic semantics of fine-grained
concurrency,” in FOSSACS’04. LNCS 2987, Springer, 2004.

[7] C. Faggian and M. Piccolo, “Partial orders, event structures and linear
strategies,” in TLCA ’09, ser. LNCS, vol. 5608. Springer, 2009.

[8] J. M. E. Hyland and C.-H. L. Ong, “On full abstraction for PCF:
I, II, and III.” Inf. Comput. 163(2): 285-408, 2000.

[9] P.-L. Curien, “On the symmetry of sequentiality,” in MFPS, ser. LNCS,
no. 802. Springer, 1994, pp. 29–71.

[10] M. Hyland, “Game semantics,” in Semantics and Logics of Computation,
A. Pitts and P. Dybjer, Eds. Publications of the Newton Institute, 1997.

[11] R. Harmer, M. Hyland, and P.-A. Melliès, “Categorical combinatorics
for innocent strategies,” in LICS ’07. IEEE Computer Society, 2007.

[12] G. Winskel, “Event structures with symmetry,” Electr. Notes Theor.
Comput. Sci., vol. 172, pp. 611–652, 2007.

[13] S. Abramsky, R. Jagadeesan, and P. Malacaria, “Full abstraction for
PCF,” Inf. Comput. 163(2): 409-470, 2000.

[14] D. Varacca, H. Völzer, and G. Winskel, “Probabilistic event structures
and domains,” Theor. Comput. Sci. 358(2-3): 173-199, 2006.


