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Abstract—A bicategory of concurrent games, where nonde-
terministic strategies are formalized as certain maps of event
structures, was introduced recently. This paper studies an ex-
tension of concurrent games by winning conditions, specifying
players’ objectives. The introduction of winning conditions raises
the question of whether such games are determined, that is, if one
of the players has a winning strategy. This paper gives a positive
answer to this question when the games are well-founded and
satisfy a structural property, race-freedom, which prevents one
player from interfering with the moves available to the other.
Uncovering the conditions under which concurrent games with
winning conditions are determined opens up the possibility of
further applications of concurrent games in areas such as logic
and verification, where both winning conditions and determinacy
are most needed. A concurrent-game semantics for predicate
calculus is provided as an illustration.

I. INTRODUCTION

The games that have arisen in mathematical logic [2] have
typically been games between two players (we call them
Player and Opponent), trying to achieve complementary goals.
The goals are given by winning conditions, specifying which
sets of plays lead to a win for one player or the other.
Games have a long history in logic and philosophy but in
the last few decades have become invaluable in computer
science as a tool to express and solve complex problems,
both in the formal semantics of computational processes and
in algorithmic questions. Solutions to a great many problems
can be naturally phrased in terms of the existence of a winning
strategy for one of the two players.

Not surprisingly, such reductions to games with winning
conditions generally rely on the existence of winning strategies
for one or other player—on the fact that the games are
determined. For traditional games this is usually the case since
the winning conditions obtained most often form Borel sets,
and as shown in Martin’s seminal result [8] Borel games are
determined; the problem being represented by the game then
has a solution (although the solution might not be computable).

Logic games are usually played on graphs, the nodes of
which determine whether it is the turn of Player or Opponent,
and of a very sequential nature. This feature makes traditional
two player games an unnatural model in some contexts,
for instance, when dealing with distributed and concurrent
systems. As a result, in the last decade, a number of games
models where the two players can interact concurrently have
been proposed. In this paper we study the model developed in
[11], a notion of concurrent game based on event structures.
Event structures are the concurrency analogue of trees; just as
transition systems, an “interleaving” model, unfold to trees so
do Petri nets, a “concurrent” model, unfold to event structures.

In this model, games are represented by event structures
with polarities, and a strategy on a game A is a (certain)
polarity-preserving map of event structures σ ∶ S → A. In
[11] concurrent games and strategies were shown to form
a bicategory, the aim to establish a new, alternative basis
for the semantics of programming languages. Albeit general,
the games model introduced in [11] was not equipped with
the means to express players’ objectives, a feature needed to
model several algorithmic problems in areas such as logic and
verification. In order to overcome this limitation this paper
extends the framework of concurrent games, based on event
structures, with winning conditions. As concurrent games on
event structures encompass traditional approaches of games
and generalize them by allowing the players to interact in a
highly distributed fashion, we expect this games model to be
a fruitful framework, for instance, well adapted to the formal
study of concurrent and distributed systems.

Following in the steps of Martin, our first goal is to provide
classes of concurrent games that are determined. As we will
see, the high level of concurrency present in our framework
makes the problem very subtle, even for finite games. The
paper contains three main technical contributions: firstly, we
extend the results of [11] by giving a very general bicate-
gory of concurrent games with winning conditions and non-
deterministic winning strategies. Secondly, for well-founded
games (i.e. when all configurations are finite), we characterise
determined games as those which satisfy a property called
race-freedom, which prevents one player from interfering
with the moves available to the other. Thirdly, in order to
illustrate the use of concurrent games with winning conditions,
we show how to give a concurrent-game interpretation of
first-order predicate logic consistent with Tarski’s semantics.
Our interpretation exploits the additional mathematical space
surrounding concurrent games and provides techniques to
effectively build and deconstruct nondeterministic winning
strategies in a compositional manner.

Related work: Concurrent games and determinacy prob-
lems have been studied elsewhere, though separately in most
cases. Melliès et al. [1], [9], [10] have done extensive work
on concurrent games on asynchronous transition systems;
however, determinacy issues were not addressed. Concurrent
games on graphs [3], [4] have also been studied in order
to solve verification problems for open systems; such games
are undetermined in the general case and as a consequence
stochastic strategies are used. Of the several treatments of
winning conditions in game semantics ours is close to Hy-
land’s [6], which it can be seen as generalizing directly.
Finally, concurrent games on partial orders were developed in



[5]; in this case a determinacy result is given when restricted
to regular winning conditions and very simple game boards.

The paper is structured as follows: Sections II-IV give an
introduction to event structures and the bicategory of concur-
rent games and nondeterministic strategies. Section V contains
the extension of the concurrent games model with winning
conditions as well as a study of some of its properties. Then,
in Sections VI and VII, the proof of determinacy is presented.
Finally, in Section VIII, the concurrent-game semantics for
predicate calculus is described.

Full proofs may be found in [13], though the determinacy
proof in [13] has been improved by the proof sketched here.

II. EVENT STRUCTURES

An event structure comprises (E,Con,≤), consisting of a
set E, of events which are partially ordered by ≤, the causal
dependency relation, and a nonempty consistency relation Con
consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The configurations, C∞(E), of an event structure E consist
of those subsets x ⊆ E which are

Consistent: ∀X ⊆ x. X is finite⇒X ∈ Con , and
Down-closed: ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

Often we shall be concerned with just the finite configurations
of an event structure. We write C(E) for the finite configura-
tions of an event structure E.

Two events which are both consistent and incomparable
w.r.t. causal dependency in an event structure are regarded
as concurrent. In games the relation of immediate dependency
e _ e′, meaning e and e′ are distinct with e ≤ e′ and no
event in between, will play an important role. For X ⊆ E we
write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of
X; note if X ∈ Con, then [X] ∈ Con is a configuration.

Notation 1. Let E be an event structure. We use x−⊂y to mean
y covers x in C∞(E), i.e. x ⊂ y in C∞(E) with nothing in
between, and x

e−Ð⊂ y to mean x∪{e} = y for x, y ∈C∞(E) and
event e ∉ x. We use x

e−Ð⊂ , expressing that event e is enabled
at configuration x, when x

e−Ð⊂ y for some y.

A. Maps of event structures

Let E and E′ be event structures. A (partial) map of event
structures f ∶ E ⇀ E′ is a partial function on events f ∶ E ⇀
E′ such that for all x ∈ C(E) its direct image fx ∈ C(E′) and

e1, e2 ∈ x & f(e1) = f(e2) (with both defined) Ô⇒ e1 = e2.

The map expresses how the occurrence of an event e in
E induces the coincident occurrence of the event f(e) in
E′ whenever it is defined. Partial maps of event structures
compose as partial functions, with identity maps given by
identity functions. We will say the map is total if the function

f is total. Notice that for a total map f the condition on maps
now says it is locally injective, in the sense that w.r.t. any
configuration x of the domain the restriction of f to a function
from x is injective; the restriction of f to a function from x
to fx is thus bijective. A total map of event structures which
preserves causal dependency is called rigid.

B. Process operations

1) Products: The category of event structures with partial
maps has products A × B with projections Π1 to A and Π2

to B. The effect is to introduce arbitrary synchronisations
between events of A and events of B in the manner of process
algebra.

2) Restriction: The restriction of an event structure E to
a subset of events R, written E ↾ R, is the event structure
with events E′ = {e ∈ E ∣ [e] ⊆ R} and causal dependency
and consistency induced by E.

3) Synchronized compositions and pullbacks: Synchronized
compositions play a central role in process algebra, with such
seminal work as Milner’s CCS and Hoare’s CSP. Synchronized
compositions of event structures A and B are obtained as
restrictions A ×B ↾R. We obtain pullbacks as a special case.
Let f ∶ A → C and g ∶ B → C be maps of event structures.
Defining

P =def A×B↾{p ∈ A ×B ∣ fΠ1(p) = gΠ2(p) with both defined}

we obtain a pullback square

P
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C

in the category of event structures. When f and g are total the
same construction gives the pullback in the category of event
structures with total maps.

4) Projection: Let (E,≤,Con) be an event structure. Let
V ⊆ E be a subset of ‘visible’ events. Define the projection
of E on V , to be E↓V =def (V,≤V ,ConV ), where v ≤V
v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con &X ⊆ V .

5) Prefixes and sums: The prefix of an event structure A,
written ●.A, comprises the event structure in which all the
events of A are made to causally depend on an event ●. The
category of event structures has sums given as coproducts;
a coproduct ∑i∈I Ei is obtained as the disjoint juxtaposition
of an indexed collection of event structures, making events
in distinct components inconsistent. In Section VIII we shall
use prefixed sums ∑i∈I ●.Ai in games for modelling first-order
logical quantifiers.

III. EVENT STRUCTURES WITH POLARITY

Both a game and a strategy in a game are to be represented
as an event structure with polarity, which comprises (E,pol)
where E is an event structure with a polarity function pol ∶



E → {+,−} ascribing a polarity + (Player) or − (Opponent) to
its events. The events correspond to (occurrences of) moves.
Maps of event structures with polarity are maps of event
structures which preserve polarities.

A. Basic operations

1) Dual: The dual, E⊥, of an event structure with polarity
E comprises the same underlying event structure E but with
a reversal of polarities.

2) Simple parallel composition: This operation juxtaposes
two event structures with polarity. Let (A,≤A,ConA,polA)
and (B,≤B ,ConB ,polB) be event structures with polarity.
The events of A∥B are ({1}×A)∪({2}×B), their polarities
unchanged, with the causal dependency relation given by
(1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤ (2, b′) iff b ≤B b′; a
subset of events C is consistent in A∥B iff {a ∣ (1, a) ∈ C} ∈
ConA and {b ∣ (2, b) ∈ C} ∈ ConB . The empty event structure
with polarity, written ∅, is the unit w.r.t. ∥.

IV. CONCURRENT STRATEGIES

A. Pre-strategies

Let A be an event structure with polarity, thought of as
a game; its events stand for the possible occurrences of
moves of Player and Opponent and its causal dependency and
consistency relations the constraints imposed by the game. A
pre-strategy represents a nondeterministic play of the game—
all its moves are moves allowed by the game and obey the
constraints of the game; the concept will later be refined to
that of strategy (and winning strategy in Section V). A pre-
strategy in A is defined to be a total map σ ∶ S → A from an
event structure with polarity S. Two pre-strategies σ ∶ S → A
and τ ∶ T → A in A will be essentially the same when they
are isomorphic, i.e. there is an isomorphism θ ∶ S ≅ T such
that σ = τθ; then we write σ ≅ τ .

Let A and B be event structures with polarity. Following
Joyal [7], a pre-strategy from A to B is a pre-strategy in A⊥∥B,
so a total map σ ∶ S → A⊥∥B. It thus determines a span

S
σ1

~~~~~~~~~~
σ2

  @@@@@@@@

A⊥ B ,

of event structures with polarity where σ1, σ2 are partial
maps. In fact, a pre-strategy from A to B corresponds to
such spans where for all s ∈ S either, but not both, σ1(s)
or σ2(s) is defined. Two pre-strategies from A to B will
be isomorphic when they are isomorphic as pre-strategies in
A⊥∥B, or equivalently are isomorphic as spans. We write
σ ∶ A + //B to express that σ is a pre-strategy from A to
B. Note that a pre-strategy σ in a game A coincides with a
pre-strategy from the empty game σ ∶ ∅ + //A.

B. Composing pre-strategies

We can present the composition of pre-strategies via pull-
backs.1 Given two pre-strategies σ ∶ S → A⊥∥B and τ ∶
T → B⊥∥C, ignoring polarities we can consider the maps
on the underlying event structures, viz. σ ∶ S → A∥B and
τ ∶ T → B∥C. Viewed this way we can form the pullback in
the category of event structures as shown below

P

Π1
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��
A∥C ,

where the map A∥B∥C → A∥C is undefined on B and acts
as identity on A and C. Note there are three kinds of events
p ∈ P : synchronizations between events of S and T , where
σ2Π1(p) = τ1Π2(p) ∈ B; asynchronous occurrences of events
in S, where σ1Π1(p) ∈ A; asynchronous occurrences of events
in T , where τ2Π2(p) ∈ C. The partial map from P to A∥C
given by the diagram above (either way round the pullback
square) factors as the composition of the partial map P → P ↓
V , where V is the set of events of P at which the map P →
A∥C is defined, and a total map P ↓ V → A∥C. The resulting
total map gives us the composition τ⊙σ ∶ P ↓ V → A⊥∥C
once we reinstate polarities.

C. Concurrent copy-cat

Identities w.r.t. composition are given by copy-cat strategies.
Let A be an event structure with polarity. The copy-cat strategy
from A to A is an instance of a pre-strategy, so a total map
γA ∶ CCA → A⊥∥A. It describes a concurrent strategy based
on the idea that Player moves, of +ve polarity, always copy
previous corresponding moves of Opponent, of −ve polarity.

For c ∈ A⊥∥A we use c to mean the corresponding copy of c,
of opposite polarity, in the alternative component. Define CCA
to comprise the event structure with polarity A⊥∥A together
with the extra causal dependencies generated by c ≤CCA

c for
all events c with polA⊥∥A(c) = +. The copy-cat pre-strategy
γA ∶ A + //A is defined to be the map γA ∶ CCA → A⊥∥A
where γA is the identity on the common set of events.

D. Strategies

The main result of [11], presented summarily here, is that
two conditions on pre-strategies, receptivity and innocence,
are necessary and sufficient for copy-cat to behave as identity
w.r.t. the composition of pre-strategies. Receptivity ensures

1The construction here gives the same result as that via synchronized
composition in [11]— we are grateful to Nathan Bowler for this observation.
Notice the analogy with the composition of relations S ⊆ A×B, T ⊆ B ×C
which can be defined as T ○ S = (S × C ∩ A × T ) ↓ A × C, the image of
S ×C ∩ A × T under the projection of A ×B ×C to A ×C.



an openness to all possible moves of Opponent. Innocence
restricts the behaviour of Player; Player may only introduce
new relations of immediate causality of the form ⊖ _ ⊕
beyond those imposed by the game.

Receptivity. A pre-strategy σ is receptive iff
σx

a−Ð⊂ & polA(a) = − ⇒ ∃!s ∈ S. x s−Ð⊂ & σ(s) = a .

Innocence. A pre-strategy σ is innocent when it is both
+-innocent: if s _ s′ & pol(s) = + then σ(s) _ σ(s′), and
−-innocent: if s _ s′ & pol(s′) = − then σ(s) _ σ(s′).

Theorem 2 (from [11]). Let σ ∶ A + //B be pre-strategy.
Copy-cat behaves as identity w.r.t. composition, i.e. σ○γA ≅ σ
and γB ○σ ≅ σ, iff σ is receptive and innocent. Copy-cat pre-
strategies γA ∶ A + //A are receptive and innocent.

E. The bicategory of concurrent games and strategies

Theorem 2 motivated the definition of a strategy as a
pre-strategy which is receptive and innocent. In fact, we
obtain a bicategory, Games, in which the objects are event
structures with polarity—the games, the arrows from A to B
are strategies σ ∶ A + //B and the 2-cells are maps of spans.
The vertical composition of 2-cells is the usual composition
of maps of spans. Horizontal composition is given by the
composition of strategies ⊙ (which extends to a functor on
2-cells via the universality of pullback).

A strategy σ ∶ A + //B corresponds to a dual strategy σ⊥ ∶
B⊥ + //A⊥. This duality arises from the correspondence be-
tween pre-strategies σ ∶ S → A⊥∥B and σ⊥ ∶ S → (B⊥)⊥∥A⊥.
The dual of copy-cat, γ⊥A, is isomorphic to the copy-cat of the
dual, γA⊥ , for A an event structure with polarity. The dual of
a composition of pre-strategies (τ⊙σ)⊥ is isomorphic to the
composition σ⊥⊙τ⊥.

F. The subcategory of deterministic strategies

Say an event structure with polarityS is deterministic iff

∀X ⊆fin S. Neg[X] ∈ ConS Ô⇒ X ∈ ConS ,

where Neg[X] =def {s′ ∈ S ∣ pol(s′) = − & ∃s ∈X. s′ ≤ s}.
In other words, S is deterministic iff any finite set of moves
is consistent when it causally depends only on a consistent set
of opponent moves. Say a strategy σ ∶ S → A is deterministic
if S is deterministic.

Lemma 3. An event structure with polarityS is deterministic
iff for all s, s′ ∈ S,x ∈ C(S),

x
s−Ð⊂ & x

s′−Ð⊂ & pol(s) = + Ô⇒ x ∪ {s, s′} ∈ C(S) .

A copy-cat strategy γA can fail to be deterministic. How-
ever, γA is deterministic iff immediate conflict in A respects
polarity, or equivalently that there is no immediate conflict
between +ve and −ve events, a condition we call ‘race-free.’

Lemma 4. Let A be an event structure with polarity. The copy-
cat strategy γA is deterministic iff for all x ∈ C(A), a, a′ ∈ A,

x
a−Ð⊂ & x

a′−Ð⊂ & pol(a) ≠ pol(a′)
Ô⇒ x ∪ {a, a′} ∈ C(A) .

(Race − free)

Lemma 5. The composition of deterministic strategies is
deterministic.

Lemma 6. A deterministic strategy σ ∶ S → A is injective
on configurations (equivalently, σ is mono in the category of
event structures with polarity).

We obtain a sub-bicategory DGames of Games by
restricting objects to race-free games and strategies to be-
ing deterministic. Via Lemma 6, deterministic strategies in
a game correspond to certain subfamilies of configurations
of the game. A characterisation of those subfamilies which
correspond to deterministic strategies [11] shows them to co-
incide with the receptive ingenuous strategies of Mimram and
Melliès [10]. Via the presentation of deterministic strategies as
families DGames is equivalent to an order-enriched category.

Melliès programme of “asynchronous games” arose from
his earlier work with Abramsky where deterministic concur-
rent strategies were represented essentially by partial closure
operators on the domain of configurations of an event struc-
ture [1]. For us, a deterministic strategy σ ∶ S → A determines
a closure operator ϕ on C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S ∣ pol(s) = + & Neg[{s}] ⊆ x} .

Because C∞(S) forms a subfamily C∞(A), a deterministic
strategy does indeed give rise to a partial closure operator
on C∞(A). (Strictly speaking, instead of working with partial
closure operators, Abramsky and Melliès worked with closure
operators on domains C∞(A)⊺, extended with a top element
⊺, with every configuration of A unreachable according to the
strategy being sent to ⊺.)

V. WINNING STRATEGIES

A game with winning conditions comprises G = (A,W )
where A is an event structure with polarity and W ⊆ C∞(A)
consists of the winning configurations for Player. We define
the losing conditions to be L =def C∞(A)∖W . Clearly a game
with winning conditions is fully defined once we specify either
its winning or losing conditions.

A strategy in G is a strategy in A. A strategy in G is
regarded as winning if it always prescribes Player moves to
end up in a winning configuration, no matter what the activity
or inactivity of Opponent. Formally, a strategy σ ∶ S → A
in G is winning (for Player) if σx ∈ W for all +-maximal
configurations x ∈ C∞(S)—a configuration x is +-maximal if
whenever x

s−Ð⊂ then the event s has −ve polarity.
Clearly, we can equivalently say a strategy σ ∶ S → A in

G is winning if it always prescribes Player moves to avoid
ending up in a losing configuration; a strategy σ ∶ S → A
in G is winning if σx ∉ L for all +-maximal configurations
x ∈ C∞(S). Any achievable position z ∈ C∞(S) of the game



can be extended to a +-maximal, so winning, configuration (via
Zorn’s Lemma). So a strategy prescribes Player moves to reach
a winning configuration whatever state of play is achieved
following the strategy.

Note that for a game A, if winning conditions W = C∞(A),
i.e. every configuration is winning, then any strategy in A
is a winning strategy. Also note that in the special case of
a deterministic strategy σ ∶ S → A in G, it is winning iff
σϕ(x) ∈W for all x ∈ C∞(S), where ϕ is the closure operator
ϕ ∶ C∞(S) → C∞(S) determined by σ—see Section IV-F.

We can also understand a strategy as winning for Player
if when played against any counter-strategy of Opponent, the
final result is a win for Player. Suppose σ ∶ S → A is a strategy
in a game with winning conditions (A,W ). A counter-strategy
is strategy of Opponent, so a strategy τ ∶ T → A⊥ in the
dual game. We can view σ as a strategy σ ∶ ∅ + //A and τ
as a strategy τ ∶ A + //∅. Their composition τ⊙σ ∶ ∅ + //∅
is not in itself so informative. Rather it is the status of the
configurations in C∞(A) their full interaction induces which
decides which of Player or Opponent wins. Ignoring polarities,
we have total maps of event structures σ ∶ S → A and τ ∶ T →
A. Form their pullback,
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to obtain the event structure P resulting from the interaction
of σ and τ . Because σ or τ may be nondeterministic there
can be more than one maximal configuration z in C∞(P ). A
maximal configuration z in C∞(P ) images to a configuration
σΠ1z = τΠ2z in C∞(A). Define the set of results of the
interaction of σ and τ to be

⟨σ, τ⟩ =def {σΠ1z ∣ z is maximal in C∞(P )} .

We shall show the strategy σ is winning for Player iff all the
results of the interaction ⟨σ, τ⟩ lie within W , for any counter-
strategy τ ∶ T → A⊥ of Opponent.

It will be convenient to have facts about +-maximality in
the broader context of the composition of arbitrary strategies.

Lemma 7. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be receptive
pre-strategies. Let P be the pullback of σ∥idC and idA∥τ—see
Section IV-B. Then,

z ∈ C∞(P ) is +-maximal iff

Π1z ∈ C∞(S) is +-maximal & Π2z ∈ C∞(T ) is +-maximal.

Proof sketch. A convention is being adopted. Refer to
Section IV-B. A synchronization event in P is regarded as not
having a polarity; otherwise, an event of P adopts the polarity
of its image in A⊥ or C. A configuration z ∈ C∞(P ) is +-
maximal if whenever z

p
−Ð⊂ then p has −ve polarity. If z is not

+-maximal, z
p

−Ð⊂ where either p is +ve or a synchronisation.

In either case, Π1z
Π1(p)−Ð⊂ or Π2z

Π2(p)−Ð⊂ , ensuring Π1z or Π2z
is not +-maximal. Conversely, if e.g. Π1z is not +-maximal,
Π1z

s−Ð⊂ with s +ve. Either σ1(s) ∈ A⊥ when there is a +ve
p ∈ P with Π1(p) = s, associated with the asynchronous
occurrence of s, or σ2(s) ∈ B when by receptivity of τ there
is a synchronization p ∈ P with Π1(p) = s and z

p
−Ð⊂ . ◻

Lemma 8. Let σ ∶ S → A be a strategy in a game (A,W ).
The strategy σ is winning for Player iff ⟨σ, τ⟩ ⊆ W for all
(deterministic) strategies τ ∶ T → A⊥.

Proof. “Only if”: Suppose σ is winning, i.e. σx ∈W for all
+-maximal x ∈ C∞(S). Let τ ∶ T → A⊥ be a strategy. As a
special case of Lemma 7,

x ∈ C∞(P ) is +-maximal
iff

Π1x ∈ C∞(S) is +-maximal & Π2x ∈ C∞(T ) is +-maximal.

Letting x be maximal in C∞(P ) it is certainly +-maximal,
whence Π1x is +-maximal in C∞(S). It follows that σΠ1x ∈
W as σ is winning. Hence ⟨σ, τ⟩ ⊆W .
“If”: Assume ⟨σ, τ⟩ ⊆ W for all strategies τ ∶ T → A⊥.
Suppose x is +-maximal in C∞(S). Define T to be the event
structure given as the restriction

T =def A
⊥ ↾ σx ∪ {a ∈ A⊥ ∣ polA⊥ = −} .

The pre-strategy τ ∶ T → A⊥ defined to be the inclusion map
T ↪ A⊥ can be checked to be receptive and innocent, so a
strategy. (In fact, τ is a deterministic strategy as all its +ve
events lie within the configuration σx.) One way to describe
a pullback of τ along σ is as the “inverse image” P =def

S ↾ {s ∈ S ∣ σ(s) ∈ T}:
POo

��������� ?� σ↾P

��@@@@@@@
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From the definition of T and P we see x ∈ C∞(P ); and
moreover that x is maximal in C∞(P ) as x is +-maximal
in C∞(S). Hence σx ∈ ⟨σ, τ⟩ ensuring σx ∈ W , as required.
The proof is unaffected if we restrict to deterministic counter-
strategies τ ∶ T → A⊥. ◻

Corollary 9. There are the following four equivalent ways to
say that a strategy σ ∶ S → A is winning in (A,W )—we write
L for the losing configurations C∞(A) ∖W :

1) σx ∈W for all +-maximal configurations x ∈C∞(S), i.e.
the strategy prescribes Player moves to reach a winning
configuration, no matter what the activity or inactivity
of Opponent;

2) σx ∉ L for all +-maximal configurations x ∈ C∞(S), i.e.
the strategy prescribes Player moves to avoid ending up
in a losing configuration, no matter what the activity or
inactivity of Opponent;



3) ⟨σ, τ⟩ ⊆ W for all strategies τ ∶ T → A⊥, i.e. all plays
against counter-strategies of the Opponent result in a
win for Player;

4) ⟨σ, τ⟩ ⊆ W for all deterministic strategies τ ∶ T → A⊥,
i.e. all plays against deterministic counter-strategies of
the Opponent result in a win for Player.

Not all games with winning conditions have winning
strategies. Consider the game A consisting of one Player
move ⊕ and one Opponent move ⊖ inconsistent with each
other, with {{⊕}} as its winning conditions. This game has
no winning strategy; any strategy σ ∶ S → A, being receptive,
will have an event s ∈ S with σ(s) = ⊖, and so the losing
{s} as a +-maximal configuration.

A. Operations

1) Dual: There is an obvious dual of a game with winning
conditions G = (A,WG):

G⊥ =def (A⊥, C∞(A) ∖WG) ,

reversing the role of Player and Opponent, and consequently
that of winning and losing conditions.

2) Parallel composition: The parallel composition of two
games with winning conditions G = (A,WG), H = (B,WH)
is

G`H =def (A∥B, WG∥C∞(B) ∪ C∞(A)∥WH)

where X∥Y = {{1} × x ∪ {2} × y ∣ x ∈X & y ∈ Y } when X
and Y are subsets of configurations. In other words, for x ∈
C∞(A∥B),

x ∈WG`H iff x1 ∈WG or x2 ∈WH ,

where x1 = {a ∣ (1, a) ∈ x} and x2 = {b ∣ (2, b) ∈ x}. To win
in G`H is to win in either game. Its losing conditions are
LA∥LB—to lose is to lose in both games G and H . The unit
of ` is (∅,∅).

3) Tensor: Defining G⊗H =def (G⊥ `H⊥)⊥ we obtain a
game where to win is to win in both games G and H—so to
lose is to lose in either game. More explicitly,

(A,WA) ⊗ (B,WB) =def (A∥B, WA∥WB) .

The unit of ⊗ is (∅,{∅}).
4) Function space: With G ⊸ H =def G

⊥ `H a win in
G⊸H is a win in H conditional on a win in G.

Proposition 10. Let G = (A,WG) and H = (B,WH) be
games with winning conditions. Write WG⊸H for the winning
conditions of G ⊸ H , so G ⊸ H = (A⊥∥B,WG⊸H). For
x ∈ C∞(A⊥∥B),

x ∈WG⊸H iff x1 ∈WG Ô⇒ x2 ∈WH .

B. The bicategory of winning strategies

We can again follow Joyal and define strategies between
games now with winning conditions: a (winning) strategy
from G, a game with winning conditions, to another H is
a (winning) strategy in G ⊸ H = G⊥ ` H . We compose
strategies as before. We first show that the composition of
winning strategies is winning.

Lemma 11. Let σ be a winning strategy in G⊸H and τ be
a winning strategy in H ⊸ K. Their composition τ⊙σ is a
winning strategy in G⊸K.

Proof. Suppose x ∈ C∞(T⊙S) is +-maximal. The event
structure T⊙S is obtained as the projection of the pullback P
to the set of ‘visible’ events V . Hence the down-closure [x] in
P forms a configuration [x] ∈ C∞(P ). By Zorn’s Lemma we
can extend [x] to a maximal configuration z ⊇ [x] in C∞(P )
with the property that all events of z∖[x] are synchronizations.
Then, z will be +-maximal in C∞(P ) with

σ1Π1z = σ1Π1[x] & τ2Π2z = τ2Π2[x] . (1)

By Lemma 7,

Π1z is +-maximal in S & Π2z is +-maximal in T .

As σ and τ are winning,

σΠ1z ∈WG⊸H & τΠ2z ∈WH⊸K .

Now σΠ1z ∈WG⊸H expresses that

σ1Π1z ∈WG Ô⇒ σ2Π1z ∈WH (2)

and τΠ2z ∈WH⊸K that

τ1Π2z ∈WH Ô⇒ τ2Π2z ∈WK , (3)

by Proposition 10. But σ2Π1z = τ1Π2z, so (2) and (3) yield

σ1Π1z ∈WG Ô⇒ τ2Π2z ∈WK .

By (1),

σ1Π1[x] ∈WG Ô⇒ τ2Π2[x] ∈WK ,

i.e. from the definition of τ⊙σ,

(τ⊙σ)1 x ∈WG Ô⇒ (τ⊙σ)2 x ∈WK

in the span of the composition τ⊙σ. Hence x ∈ WG⊸K , as
required to show τ⊙σ is winning. ◻

For a general game with winning conditions (A,W ) the
copy-cat strategy need not be winning, as shown in the
following example.
Example 12. Let A consist of two events, one +ve event ⊕
and one −ve event ⊖, inconsistent with each other. Take as
winning conditions the set {{⊕}}. The event structure CCA:

A⊥ ⊖ _ ⊕ A

⊕ ^ ⊖

To see CCA is not winning consider the configuration x
consisting of the two −ve events in CCA. Then x is +-
maximal as any +ve event is inconsistent with x. However,



x1 ∈ W while x2 ∉ W , failing the winning condition of
(A,W ) ⊸ (A,W ).

Each event structure with polarityA possesses a ‘Scott order’
on its configurations C∞(A):

x′ ⊑ x iff x′ ⊇− x ∩ x′ ⊆+ x .

Above we use the special inclusions

x ⊆− y iff x ⊆ y & polA(y ∖ x) ⊆ {−} , and
x ⊆+ y iff x ⊆ y & polA(y ∖ x) ⊆ {+}

for x, y ∈ C∞(A). The ‘Scott-order’ is indeed a partial order,
in which there are two ways to increase in the order: adjoin
more ‘output’ in the form of +ve events, or use less ‘input’ in
the form of −ve events.

A necessary and sufficient condition for copy-cat to be
winning w.r.t. a game (A,W ):

if x′ ⊑ x & x′ is +-maximal & x is −-maximal,
then x ∈W Ô⇒ x′ ∈W, for all x,x′ ∈ C∞(A) .

(Cwins)

Lemma 13. Let (A,W ) be a game with winning conditions.
The copy-cat strategy γA ∶ CCA → A⊥∥A is winning iff (A,W )
satisfies (Cwins).

Race-freedom, seen earlier in Lemma 4, is a robust condi-
tion sufficient to ensure that copy-cat is a winning strategy for
all choices of winning conditions.

Proposition 14. Let A be an event structure with polarity.
Copy-cat is a winning strategy for all games (A,W ) with
winning conditions W iff A is race-free.

We can now refine the bicategory of strategies Games to
the bicategory WGames with objects games with winning
conditions G,H,⋯ satisfying (Cwins) and arrows winning
strategies G + //H; 2-cells, their vertical and horizontal com-
position is as before. Its restriction to deterministic strategies
yields a bicategory WDGames equivalent to a simpler order-
enriched category.

VI. ON DETERMINED GAMES

In this section, we define and make some observations
on determinacy on concurrent games. In particular we show
that games that are not race-free (see Lemma 4) are not
necessarily determined, and that race-free games need not have
a deterministic winning strategy.

A game with winning conditions G is said to be determined
when either Player or Opponent has a winning strategy,
i.e. either there is a winning strategy in G or in G⊥. Not all
games are determined. Neither the game G consisting of one
Player move ⊕ and one Opponent move ⊖ inconsistent with
each other, with {{⊕}} as winning conditions, nor the game
G⊥ have a winning strategy. Note that G is not race-free (see
Lemma 4), so it is reasonable to assume race-freedom in a
characterisation of determinacy. We are now going to prove
a first direction of this equivalence: that whenever an event
structure with polarity A is not race-free, there is a set W

of winning configurations such that (A,W ) is undetermined.
This uses the following notion of reachability:

Notation 15. Let σ ∶ S → A be a strategy. We say y ∈ C∞(A)
is σ-reachable iff y = σx for some x ∈ C∞(S). Let y′ ⊆ y in
C∞(A). Say y′ is −-maximal in y iff y

−−Ð⊂ y′′ implies y′′ /⊆ y.
Similarly, say y′ is +-maximal in y iff y

+−Ð⊂ y′′ implies y′′ /⊆ y.

Lemma 16. Let (A,W ) be a game with winning conditions.
Let y ∈ C(A). Suppose

∀y′ ∈ C(A).
y′ ⊆ y & y′ is −-maximal in y & not +-maximal in y

Ô⇒
{y′′ ∈ C(A) ∣ y′ ⊆+ y′′ & (y′′ ∖ y′) ∩ y = ∅} ∩W = ∅ .

Then y is σ-reachable in all winning strategies σ.

Lemma 17. If A, an event structure with polarity, is not race-
free, then there are winning conditions W for which the game
(A,W ) is not determined.

Proof sketch. If A is not race-free there is y ∈ C(A) such

that y
a−Ð⊂ y1 and y

a′−Ð⊂ y2 and pol(a) = − & pol(a′) = + and
y ∪ {a, a′} /∈ C(A). Let W be defined by the following rules:
(i) for y′′ with y1 ⊆+ y′′, assign y′′ ∉W ;

(ii) for y′′ with y2 ⊆− y′′, assign y′′ ∈W ;
(iii) for y′′ with y′ ⊆+ y′′ and (y′′ ∖ y′) ∩ y = ∅, for some

sub-configuration y′ of y with y′ −-maximal and not +-
maximal in y, assign y′′ ∉W ;

(iv) for y′′ with y′ ⊆− y′′ and (y′′ ∖ y′) ∩ y = ∅, for some
sub-configuration y′ of y with y′ +-maximal and not −-
maximal in y, assign y′′ ∈W ;

(v) assign arbitrarily in all other cases.
The assignment is well-defined and complete. Moreover, y
is reachable for any winning strategy, either for Player or
Opponent. W.r.t. any winning strategy for Player y1 must be
reachable, by receptivity, but by construction this entails there
is +-maximal configuration of the strategy whose image in A
is losing. Similarly, Opponent has no winning strategy. ◻

It is tempting to believe that a nondeterministic winning
strategy always has a winning deterministic sub-strategy. How-
ever, this is not so, as the following example shows.

Example 18. A winning strategy need not have a winning
deterministic sub-strategy. Consider the game (A,W ) where
A consists of two −ve events 1,2 and one +ve event 3 all
consistent with each other and

W = {∅,{1,3},{2,3},{1,2,3}}.

Let S be the event structure

⊕ /o/o/o ⊕

⊖

_LLR

⊖

_LLR

and σ ∶ S → A the only possible total map of event structures
with polarity. Then σ is a winning strategy for A. However,



A has no deterministic winning strategy: as we have seen in
Section IV-F, any deterministic strategy on A yields a (partial)
closure operator ϕ on C∞(A). Moreover, this closure operator
is necessarily stable, i.e. ϕ(x1∩x2) = ϕ(x1)∩ϕ(x2) for x1, x2

within its domain of definition. If ϕ comes from a winning
strategy, we must have ϕ({1}) = {1,3} and ϕ({2}) = {2,3},
and therefore ϕ(∅) = {3}. But {3} is a +-maximal losing
configuration, so the deterministic strategy ϕ cannot come
from any winning strategy.

Therefore, σ is a winning strategy for which there is no
deterministic sub-strategy. ◻

The above example shows that determinacy does not hold
if we restrict to deterministic strategies. Note that some of
the previous approaches to concurrent games [1], [10] were
restricted to deterministic strategies, hence by the example
above could not enjoy determinacy. In our setting, the ability
to handle nondeterminism permits a determinacy result.

The following example shows that for non-well-founded
games, race-freedom is not sufficient to ensure determinacy.
It also shows that the existence of a winning receptive pre-
strategy does not imply that there is a winning strategy.
Example 19. Consider the infinite game A comprising the
event structure with polarity

⊖ ⊕
� ,,2⊕ � ,,2⊕ � ,,2⋯ � ,,2⊕ � ,,2⋯

where Player wins iff
(i) Player plays all ⊕ moves and Opponent does nothing, or
(ii) Player plays finitely many ⊕ moves and Opponent plays.
In this case there is a winning pre-strategy for Player. Infor-
mally, this is to continue playing moves until Opponent moves,
then stop. Formally, it is described by the event structure with
polarityS
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⊖
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⋯

with pre-strategy the unique total map to A. The pre-strategy
is receptive and winning in the sense that its +-maximal
configurations image to winning configurations in A. It follows
that there is no winning strategy for Opponent. (If σ is a
winning receptive pre-strategy then ⟨σ, τ⟩ will be a subset of
winning configurations, exactly as in the proof of Lemma 8,
so must result in a loss for τ , which cannot be winning.) Nor
is there a winning strategy for Player. Suppose σ ∶ S → A
were. For σ to win against the empty strategy there must be
x ∈ S such that σx comprises all +ve events of A. But now,
using receptivity and −-innocence, there must be s ∈ S such
that σ(s) = ⊖ with x∪{s} ∈ C∞(S) losing and +-maximal—a
contradiction. ◻

VII. DETERMINACY FOR WELL-FOUNDED GAMES

Definition 20. A game A is well-founded if every configura-
tion in C∞(A) is finite.

It is shown that any well-founded, race-free concurrent
game is determined.

Definition 21. Let A be an event structure with polarity. Let
W ⊆ C∞(A). Let y ∈ C∞(A). Define A/y to be the event
structure with polarity comprising events

{a ∈ A ∖ y ∣ y ∪ [a]A ∈ C∞(A)} ,

also called A/y, with consistency relation

X ∈ ConA/y iff X ⊆fin A/y & y ∪ [X]A ∈ C∞(A) ,

and causal dependency the restriction of that on A. Define
W /y ⊆ C∞(A/y) by

z ∈W /y iff z ∈ C∞(A/y) & y ∪ z ∈W .

Finally, define (A,W )/y =def (A/y,W /y).

Proposition 22. Let A be an event structure with polarity and
y ∈ C∞(A). Then,

z ∈ C∞(A/y) iff z ⊆ A/y & y ∪ z ∈ C∞(A) .

Definition 23. The value v(x) of x ∈ C∞(A) is defined as +
is Player has a winning strategy on A/x, − if Opponent has
a winning strategy on A/x, 0 otherwise.

Lemma 24. Suppose A is race-free. If x ∈ C∞(A) such that
x

a−Ð⊂ with pol(a) = + and v(x ∪ {a}) = +, then v(x) = +.

Proof sketch. Given a winning strategy σ ∶ S → A/(x ∪
{a}), we build a new strategy extaσ ∶ S′ → A/x by adding
a new minimal Player event s in S, mapped to a by extaσ.
Here, the fact that A is race-free is used in a crucial way
to prove that extaσ is receptive. It is winning because all
+-maximal configurations of S′ contain s, therefore they are
in bijection with +-maximal configurations of S and map to
winning configurations of A/x. ◻

The case of negative extensions requires to introduce the
following lemma, proved by taking an adequate quotient.

Lemma 25. If σ ∶ S → A is innocent and weakly receptive,
i.e. for all x ∈ C(S) such that σx

a−Ð⊂ with pol(a) = − there
is at least one s ∈ S such that x

s−Ð⊂ and σ(s) = a, then there
is a strategy σ′ ∶ S′ → A and a rigid map of event structures
with polarity h ∶ S → S′ surjective on configurations such that
σ = σ′ ○ h.

Lemma 26. If x ∈ C(A) is such that x ∈WA and that for all
e ∈ A such that pol(e) = − and x

e−Ð⊂ we have v(x∪{e}) = +,
then v(x) = +.

Proof sketch. Take the family (ei)i∈I of negative extensions of
x, i.e. events in A such that pol(ei) = − and x

ei−Ð⊂ . For each i ∈
I , v(x∪{ei}) = + so there exists a winning strategy σi ∶ Si →
A/(x∪{ei}). The proof relies on the construction of a strategy
casei∈Iσi ∶ S′ → A/x, which picks i ∈ I nondeterministically
and plays according to σi.

For each i ∈ I , we first define the event structure with
polarity ⊖i ⋉Si as the maximum prefixing of a new event ⊖i
with an event structure with polarity Si allowed by innocence,
i.e. ⊖i ≤ s iff pol(s) = + or pol(s) = − and ei ≤A σi(s). Then
we define S = Σi∈I ⊖i ⋉Si, with all events in the i-th copy



conflicting with all events in the j-th copy if i ≠ j. We define
σ ∶ S → A/x by:

σ(⊖i) = ei

σ((i, s)) = σi(s)

One can show that it is a winning innocent pre-strategy. It is
not necessarily receptive since many negative minimal events
in Σi∈I ⊖i ⋉Si may be mapped by σ to the same negative
minimal event in A/x. However it is weakly receptive, hence
by Lemma 26 we get a strategy σ′ ∶ S′ → A and a map
h ∶ S → S′ surjective on configurations. Then, casei∈Iσi = σ′
is winning. Indeed if y′ ∈ C(S′) is +-maximal there must be
y ∈ C(S) such that h(y) = y′. Moreover, y is +-maximal as
well since h preserves polarity, thus σ′(y′) = σ(y) ∈ WA/x
and casei∈Iσi is a winning strategy, so v(x) = +. ◻

Theorem 27. Let A be a well-founded game. Then A is race-
free iff (A,W ) is determined for all winning conditions W .

Proof. We have already proved in Lemma 17 that if (A,W ) is
determined for all winning conditions W , then A is race-free.
Suppose that A is race-free, and let W ⊆ C(A) be arbitrary
winning conditions on A. Let x ∈ C(A) be maximal such that
v(x) = 0. If there exists a ∈ A such that pol(a) = + and
x

a−Ð⊂ and v(x ∪ {a}) = +, then v(x) = + by Lemma 24,
a contradiction. By the same argument on A⊥/x if there is
a ∈ A such that pol(a) = − and x

a−Ð⊂ and v(x ∪ {a}) = −,
then v(x) = − by Lemma 24. If x ∈WA, then let (ei)i∈I be the
family of negative extensions of x. By the reasoning above,
for all i ∈ I we have v(x ∪ {ei}) = +, therefore v(x) = + by
Lemma 26, a contradiction. Similarly, if x /∈WA, then x ∈WA⊥

and an application of Lemma 26 on A⊥ shows that v(x) = −,
a contradiction. Therefore, there is no such maximal x. Since
A is well-founded, this implies that all configurations of A
have non-zero value, so A is determined. ◻

VIII. EXAMPLE

We now apply the tools developed in the previous sections
of this paper to give an interpretation of first-order predicate
logic. Although similar in spirit to the usual games interpreta-
tion of first-order logic, our construction differs technically
by exploiting the extra space allowed by concurrency. In
particular only quantifiers add new events, logical connectives
are modelled in a completely concurrent way by variants of
the parallel composition operation.

The syntax for predicate calculus: formulae are given by

φ,ψ,⋯ ∶∶= R(x1,⋯, xk) ∣ φ ∧ ψ ∣ φ ∨ ψ ∣ ¬φ ∣ ∃x. φ ∣ ∀x. φ

where R ranges over basic relation symbols of a fixed arity
and x,x1, x2,⋯, xk over variables.

A model M for the predicate calculus comprises a non-
empty universe of values VM and an interpretation for each of
the relation symbols as a relation of appropriate arity on VM .
Following Tarski we can then define by structural induction
the truth of a formula of predicate logic w.r.t. an assignment of
values in VM to the variables of the formula. We write ρ ⊧M φ

iff formula φ is true in M w.r.t. environment ρ; we take an
environment to be a function from variables to values.

W.r.t. a model M and an environment ρ, we can denote
a formula φ by JφKMρ, a concurrent game with winning
conditions, so that ρ ⊧M φ iff the game JφKMρ has a winning
strategy.

The denotation as a game is defined by structural induction:

JR(x1,⋯, xk)KMρ =
⎧⎪⎪⎨⎪⎪⎩

(∅,{∅}) if ρ ⊧M R(x1,⋯, xk) ,
(∅,∅) otherwise.

Jφ ∧ ψKMρ = JφKMρ⊗ JψKMρ

Jφ ∨ ψKMρ = JφKMρ` JψKMρ

J¬φKMρ = (JφKMρ)⊥

J∃x. φKMρ = ⊕
v∈VM

JφKMρ[v/x]

J∀x. φKMρ = ⊖
v∈VM

JφKMρ[v/x] .

We use ρ[v/x] to mean the environment ρ updated to assign
value v to variable x. The game (∅,{∅}), the unit w.r.t. ⊗,
is the game used to denote true and the game (∅,{∅}), the
unit w.r.t. `, to denote false. Denotations of conjunctions
and disjunctions are denoted by the operations of ⊗ and
` on games, while negations denote dual games. Universal
and existential quantifiers denote prefixed sums of games,
operations which we now describe.

The game ⊕v∈V (Av,Wv) has underlying event structure
with polarity the sum (=coproduct) ∑v∈V ⊕.Av where the
winning conditions of a component are those configurations
x ∈ C∞(⊕.A) of the form {⊕} ∪ y for some y ∈ W . In
∑v∈V ⊕.Av a configuration is winning iff it is the image of
a winning configuration in a component under the injection
to the sum. Note in particular that the empty configuration of
⊕v∈V Gv is not winning—Player must make a move in order
to win. The game ⊖v∈V Gv is defined dually, as (⊕v∈V G⊥v)⊥.
In this game the empty configuration is winning but Opponent
gets to make the first move. Writing Gv = (Av,Wv), the
underlying event structure of ⊖v∈V Gv is the sum ∑v∈V ⊖.Av
with a configuration winning iff it is empty or the image
under the injection of a winning configuration in a prefixed
component.

It is easy to check by structural induction that:

Proposition 28. For any formula φ the game JφKMρ is well-
founded and race-free, so a determined game by the result of
the last section.

The following facts are useful for building strategies.

Proposition 29.
(i) If σ ∶ S → A is a strategy in A and τ ∶ T → B is a

strategy in B, then σ∥τ ∶ S∥T → A∥B is a strategy in
A∥B.

(ii) If σ ∶ S → T is a strategy in T and τ ∶ T → B is a
strategy in B, then their composition as maps of event
structures with polarity τσ ∶ S → B is a strategy in B.



There are ‘projection’ strategies from a tensor product of
games to its components:

Proposition 30. Let G = (A,WG) and H = (B,WH) be
race-free games with winning conditions. The map of event
structures with polarity

idA⊥∥γB ∶ A⊥∥CCB → A⊥∥B⊥∥B

is a winning strategy pH ∶ G ⊗ H + //H . The map of event
structures with polarity

idB⊥∥γA ∶ B⊥∥CCA → B⊥∥A⊥∥A ≅ A⊥∥B⊥∥A

is a winning strategy pG ∶ G⊗H + //G.

The following lemma is used to build and deconstruct
strategies in prefixed sums of games. The lemma concerns the
more basic prefixed sums of event structures. These are built
as coproducts ∑i∈I ●.Bi of event structures ●.Bi in which an
event ● is prefixed to Bi, making all the events in Bi causally
depend on ●.

Lemma 31. Suppose f ∶ A → ∑i∈I ●.Bi is a total map of
event structures, with codomain a prefixed sum. Then, A is
isomorphic to a prefixed sum, A ≅ ∑j∈J ●.Aj , and there is
a function r ∶ J → I and total maps of event structures fj ∶
Aj → Br(j) for which the following diagram commutes.

∑j∈J ●.Aj ≅

[●.fj]j∈J
��

A

f{{vvvvvvvvvv

∑i∈I ●.Bi
With the help of Propositions 29 and 30 and Lemma 31

we can build and deconstruct strategies to establish the
next lemma, and the main theorem of this section. Theorem
33 follows by a straightforward structural induction using
Lemma 32.

Lemma 32. Let G,H,Gv , where v ∈ V , be race-free games
with winning conditions. Then,
(i) G⊗H has a winning strategy iff G has a winning strategy

and H has a winning strategy.
(ii) ⊕v∈V Gv has a winning strategy iff Gv has a winning

strategy for some v ∈ V .
(iii) ⊖v∈V Gv has a winning strategy iff Gv has a winning

strategy for all v ∈ V .
If in addition G and H are determined,
(iv) G`H has a winning strategy iff G has a winning strategy

or H has a winning strategy.

Theorem 33. For all formulae φ and environments ρ, ρ ⊧M φ
iff the game JφKMρ has a winning strategy.

IX. CONCLUSION AND FURTHER WORK

For games one of the most fundamental mathematical
questions is that of determinacy. This paper shows that to give
a positive answer—even for well-founded (race-free) games—
one has to consider nondeterministic (winning) strategies. In

particular nondeterministic strategies are needed to faithfully
represent parallel disjunctive behaviour, one of the reasons
why our concurrent interpretation of predicate calculus is
possible. Nondeterministic winning strategies are indeed com-
putationally more powerful than deterministic ones.

In contrast, it may come as a surprise that if a strategy
is not winning, then it can always be beaten by a deter-
ministic counter-strategy. This fact is relevant from the point
of view of verification since a deterministic strategy on a
game corresponds to a subfamily of configurations of the
game: whenever a game A is finite, the process of effectively
checking whether a strategy σ ∶ S → A is winning can be
performed by inspecting the results of playing σ against all
possible deterministic counter-strategies τ ∶ T → A⊥, and these
are bounded within subfamilies of configurations of A⊥. Hence
a basic decidability theorem for finite games, which is needed
to solve verification problems, follows from the results here.

There are several ways of extending the work on concurrent
games with winning conditions: stochastic behaviour, perhaps
with the use of probabilistic event structures [12], in order
to be able to define profiles of mixed strategies and Nash
equilibria; imperfect information as the key concept for rea-
soning, more faithfully, about real-life distributed systems; and
determinacy results for games with infinite behaviour so that
more complex winning conditions can be handled, e.g. Büchi
or parity conditions. These extensions are within the focus of
our current research on games.
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