
Internship report
(complete version)

Marc de Visme
École Normale Supérieure

France

Supervised by Glynn Winskel
University of Cambridge

United Kingdom

2015

Abstract
Event structures are a way to represent processes in which histories take the form of

patterns of event occurrences. Often they can be seen as unfolded Petri Nets. 1 They are
useful to model distributed games and strategies. One of the main restrictions of event
structures is that the common way of representing disjunctive causes is not compatible with
hiding, essential in the composition of strategies. 2 The main goal of my internship was to
find a way to represent disjunctive causes while supporting both hiding and pull-backs, and
to understand the relationship with the traditional approach. We express the relationship
through an adjunction. 3 In fact the adjunction is one of a family of adjunctions. The new
structures can be used to model strategies without the previous limitations.

Silvain Rideau and Glynn Winskel introduced in [RW11] a very general definition of
games and strategies based on event structures, in which histories are partial orders of cau-
sal dependency between events. Their definition of strategy did not however accommodate
disjunctive causes adequately. A way to overcome this limitation is described in this report.
This involved the discovery of new structures as existing structures such as general event
structures, while supporting disjunctive causes, failed to support an operation of hiding es-
sential to the definition of composition of strategies.

A shorter version of this report, with almost no proof and less properties, can be found
here : http ://www.cl.cam.ac.uk/ gw104/. The numeration of properties and definitions has
been preserved between the two versions.

The first section will define event structures, beginning with the simpler category : Prime
Event Structures. Then, we will define General Event Structures with an equivalence rela-
tion. They give us to a global category which includes all the other categories presented in
this report. After, we will talk about different useful subcategories, finishing with realisa-
tions. Realisations will be the tools for building the most important adjunction of this report
(the adjunction between prime event structures with equivalence and families with equiva-
lence). The second section will link all the categories we have introduced using adjunctions.
The Figure 23 sum-up all the different adjunctions. The third section will describe some

1. See [NPW81] for more informations at this subject.
2. In games semantics, pullbacks and hiding are used to define composition of strategies, and to give an abstract

definition of strategies. Pullbacks correspond to a synchronisation of two objects (relatively to a third one).
3. This adjunction is a reflection, so no informations are lost from old representations to the new ones.

1

useful properties of our categories, such as the existence of pullbacks. The fourth section
will present the basics of games semantics, and apply event structures to provide a general
definition of strategy. The last section is a compilation of examples and counterexamples
discovered during this work and which have guided the choice of definitions which are needed
to make all of this work.

1 Event Structures

1.1 Prime Event Structures
A prime event structure 4 is a way to represent a process, a game, a distributive algorithm,

by a sets of events with causal dependencies and incompatibilities. Prime event structure are
somewhat limited because they only support conjunctive dependencies, and non disjunctive
ones. That is why we will introduce the notion of general event structure, and the notion of
event structure with disjunctive causes.
Definition 1.1 (Prime Event Structure). A PES (E,≤E , ConE) is a set of events E with
a partial order ≤E ⊆ E × E, and a consistency relation ConE ⊆ P(E), such that :
• (No inconsistent singleton) ∀e ∈ E, {e} ∈ ConE
• (Independence) ∀X ∈ ConE , ∀Y ⊆ X, Y ∈ ConE
• (Continuous) ∀X ⊆ E, X ∈ ConE ⇐⇒ ∀Y ⊆finite X, Y ∈ ConE
• (Down closed) ∀X ∈ ConE , ∀e ∈ X, ∀ẽ ≤E e, X ∪ {ẽ} ∈ ConE
• (Finite down-closure) ∀e ∈ E, {e′ | e′ ≤E e} is finite.

For e ∈ E, we define
• (Down-closure) [e] = {e′ | e′ ≤E e}
• (Strict Down-closure) [e) = {e′ | e′ ≤E e & e′ 6= e}
We represent event structures as oriented graphs (with extra information 5). For example,

the prime event structure ({A,B,C,D,E},≤, Con) where A,B ≤ C ≤ E and Con =
{ X ∈ P({A,B,C,D,E}) | D ∈ X =⇒ C /∈ X & E /∈ X } is represented as below :

E

C

OO

D

A

OO

@@

B

``

WW

Figure 1 – Example of a Prime Event Structure.

In order to have shorter representations, some causal links and some inconsistency can
be made implicit :

4. Generally named "event structure".
5. When the consistency exactly correspond to a binary inconsistency, we use a squiggly line to represent it.

2

E

C

OO

D

A

OO

B

``

Figure 2 – Simplification of the Figure 1.

We now define configurations, they correspond to all possible states of the system.
Definition 1.2 (Configurations). For a prime event structure (E,≤E , ConE), we define
C(E) ⊆ P(E) by X ∈ C(E) if :
• (Consistent) X ∈ ConE
• (Down closed) ∀e ∈ X, [e] ⊆ X

E

C

OO

D

A

OO

B

``

Figure 3 – Example of a configuration.

We have some immediate properties.
Property 1.3. For a prime event structure (E,≤E , ConE), we have :
• ∀X ∈ ConE , ∃Y ⊇ X, Y ∈ C(E)
• ∀e ∈ E, [e] ∈ C(E) & [e) ∈ C(E)
• A prime event structure is characterised by its configurations.
We will now define maps of prime event structures, to have a category. The following

definition say that it exists a total map from E to E′ if you can go from E to E′ by weakening
causalities, strengthening consistency, merge inconsistent events, and introducing new events
(such that previous events never depends of new events).
Definition 1.4 (Map on prime event structures). A map between the prime event struc-
ture (E,≤E , ConE) and the prime event structure (E′,≤E′ , ConE′) is a partial function
f : D(f) ⊆ E → E′ such that :
• (Locally Injective) ∀X ∈ ConE , ∀a, b ∈ X ∩ D(f), a 6= b =⇒ f(a) 6= f(b)
• (Preserve Configurations) ∀X ∈ C(G), f(X) ∈ C(G′)

It is equivalent to :
• (Locally Injective) ∀X ∈ ConE , ∀a, b ∈ X ∩ D(f), a 6= b =⇒ f(a) 6= f(b)
• (Preserve Consistency) ∀X ∈ ConE , f(X) ∈ ConE′
• (Down closed Image) ∀e′ ∈ f(D(f)), ∀ẽ′ ≤E′ e′, ẽ′ ∈ f(D(f))
• (Reflects Order) ∀e, ẽ ∈ D(f), f(ẽ) ≤E′ f(e) =⇒ ẽ ≤E e

3

E E F

C C

OO

D

``

f // C

OO

D

OO

A

OO

B B

Figure 4 – Example of a map of PES.

In the Figure 4, the two events labelled C are merged in one event (allowed because they
are inconsistent), and the event A is deleted, and a new event F is created (allowed because
the image is down-closed).
Property 1.5 (Category of prime event structures). Prime event structures with their maps
define a category.

Proof. All properties are trivially preserved by composition, and the identity is well define.

A major restriction of prime event structures is that an event can only be enable in one
way, but prime event structures have a lot of good properties, for example hiding of events
does not lose informations, it mean :
Definition 1.6 (Hiding of events). Let (E,≤E , ConE) be a prime event structure, and
E′ ⊆ E. The restriction of (E,≤E , ConE) to E′ is (E′,≤E′ , ConE′) with :
• ≤E′=≤E restricted to E′
• ConE′ = ConE ∩ P(E′)

It implies :
C(E′) = {X ∩ E′ | X ∈ C(E)}

In other words, if we have a property on configurations of E that use only events of E′ to
be written (See Figure 5), this property is also true on configurations of E′.

A

OO

D A D
OO ==

� hiding //

B

OO

C B

OO FF

C
OO OO

Figure 5 – The property "All configurations that contain the event A contain also the event B"
is preserved by hiding.

4

1.2 General Event Structures with an equivalence relation
In a prime event structure, only conjunctive enabling are allowed. We would want to have

event structures where an event can be enable in different ways (General Event Structures,
see Definition 1.17), or event structures where different events correspond to the same thing
(Prime Event Structure with an equivalence relation, see Definition 1.19). These two methods
allow us to have disjunctive enabling.
We will now consider a category which includes all the event structures that we will need, so
allow both having equivalent events, and having multiple way of enabling an event. General
Event Structures with an equivalence relation (GES≡) are quite complicated, but having a
global category into which we can embed all our models will be useful.
Definition 1.7 (General Event Structure with an equivalence relation).
A GES≡ (G,`G, ConG,≡G) is a set of events G, with a relation `G ⊆ P(G) × G, an
equivalence relation 6 (transitive, reflexive and symmetric) ≡G, and a consistency relation
ConG ⊆ P(G) such that :
• (No inconsistent singleton) ∀e ∈ G, {e} ∈ ConG
• (Independence of consistency) ∀X ∈ ConG, ∀Y ⊆ X, Y ∈ ConG
• (Continuous consistency) ∀X ⊆ G, X ∈ ConG ⇐⇒ ∀Y ⊆finite X, Y ∈ ConG
• (Down closed consistency) ∀X ∈ ConG, ∀e ∈ X, ∃Y `G e, X ∪ Y ∈ ConG
• (Generalisation of enabling) ∀e ∈ G, ∀X `G e, ∀Y ⊇ X, Y `G e
• (Finite enabling) ∀e ∈ G, ∀X ` e, ∃Y ⊆ X, Y ` e & Y is finite.

We allow to have strange ways to enable events such as loops or not transitive (i.e down
closed) enabling.
• For e ∈ G, we define {e}≡G = {e′ | e′ ≡G e}
• For X ⊆ G, we define X≡G = {{e}≡G | e ∈ X}

We say that two GES≡ are isomorph if there exists a bijection between the two which pre-
serves and reflects the enabling, the equivalence relation and the consistency.

A1 A2

B

DD

AND

C

ZZ DD

OR

D

ZZ

Figure 6 – Example of a simple GES≡.

GES≡ are a little too general, because we would prefer not having strange enabling.
That why we will define replete GES≡.

A
&&
B

ee

Figure 7 – Example of a non replete GES≡.

Definition 1.8 (Minimal enabling). Let E be a set of events, and `E ⊆ P(E) × E. We
define `µE ⊆ P(E)× E as below :

X `µE e ⇐⇒
{
X `E e

∀X ⊆ Y, Y `E =⇒ Y = X

6. The ≡ symbol of the notation GES≡ correspond to the equivalence relation between maps of GES≡, and
not between events of an object of GES≡.

5

Definition 1.9 (Replete GES≡). We say that a GES≡ (G,`G, ConG,≡G) is replete if :
• (Minimal enabling without loops) ∀e ∈ G, ∀X `µG e, e /∈ X
• (Transitive Minimal Enabling) ∀e ∈ G, ∀X `µ e, ∀x ∈ X, X ` x
• (Consistent minimal enabling) ∀e ∈ G, ∀X `µG e, X ∈ ConG

The definition of a GES≡ implies the property :
• (Finite minimal enabling) ∀e ∈ G, ∀X `µG e, X is finite

Definition 1.10 (Configurations).
For an GES≡ (G,`G, ConG,≡G), we define C(G) ⊆ P(G) by X ∈ C(G) if :
• (Consistent) X ∈ ConG
• (Secure chain)
∀e ∈ X, ∃n ∈ N, ∃{ei}1≤i≤n, en = e & ∀1 ≤ i ≤ n, {e1, e1, ...ei−1} `G ei

If (G,`G, ConG,≡G) is a replete GES≡, it is equivalent to :
• (Consistent) X ∈ ConG
• (Down closed) ∀e ∈ X, X `G e

If (G,`G, ConG,≡G) is a replete GES≡, we have the immediate property :

∀X ∈ ConG, ∃Y ⊇ X, Y ∈ C(G)

A1 A2

B

DD

AND

C

ZZ DD

OR

D

ZZ

Figure 8 – Example of a configuration GES≡.

To define a category, we also need maps.
Definition 1.11 (Map on GES≡). A map between the GES≡ (G,`G, ConG,≡G) and the
GES≡ (G′,`G′ , ConG′ ,≡G′) is a partial function f : D(f) ⊆ G→ G′ such that :
• (All or Nothing) ∀a ≡G b ∈ G, [a ∈ D(f) ⇐⇒ b ∈ D(f)]
• (Preserve Equivalence) ∀a ≡G b ∈ D(f), f(a) ≡G′ f(b)
• (Locally ≡-Injective) ∀X ∈ ConG, ∀a, b ∈ X ∩ D(f), a 6≡G b =⇒ f(a) 6≡G′ f(b)
• (Preserve Configurations) ∀X ∈ C(G), f(X) ∈ C(G′)

Between replete GES≡, the last property is equivalent to :
• (Preserve Consistency) ∀X ∈ ConG, f(X) ∈ ConG′
• (Preserve Enabling) ∀a ∈ D(f), ∀X `G a, f(X) `G′ f(a)

In all cases, [Preserve Consistency] and [Preserve Enabling] implies [Preserve Configura-
tions], but they are not required for being a map.
We say that the function f is a quasi-map of GES≡ if it respect all property of a map,
except the [All or Nothing] property.

As on prime event structures, this definition means that a total map of GES≡ allows
to weaken causality, strengthen consistency, merge inconsistent equivalence classes, and in-
troducing new events (such that previous events never depends of new events). Moreover,
partial maps have to respect the equivalence relation ([All or Nothing] property).
Property 1.12 (GES≡ category). GES≡ with maps of GES≡ define a category. The
identity map is the total function a 7→ a, and the composition g ◦ f is the composition of
functions.

6

A D E D E F

f //

A A

DD

AND

B

ZZ

C

ZZ

A

DD

OR

B

ZZ DD

OR

C

ZZ

Figure 9 – Example of a map of GES≡.

Proof. Let f : F → P(G) and g : G→ P(H) be two maps of GES≡. The property [Preserve
Equivalence] and [Preserve Configurations] are trivially preserved by composition.

We take a, b ∈ F with a ≡F b.
If a /∈ D(f) or b /∈ D(f), the [All or Nothing] property of f say that f(a) = f(b) =
undefined, so g ◦ f(a) = g ◦ f(b) = undefined.
If a ∈ D(f) or b ∈ D(f), the [All or Nothing] property of f say that a, b ∈ D(f), and the
[Preserve Equivalence] property of g say that f(a) ≡G f(b). By the [All or Nothing] property
of g, either g ◦ f(a) = g ◦ f(b) = undefined, either g ◦ f(a) 6= undefined 6= g ◦ f(b).
So in all cases we have the [All or Nothing] property for g ◦ f .

We take a, b ∈ D(g ◦ f). We suppose that g(f(a)) ≡H g(f(b)).
If {a, b} ∈ ConF , then, by [Preserve Consistency] of f , we have {f(a), f(b)} = f({a, b}) ∈
ConG. But g(f(a)) ≡H g(f(b)) so, by [Locally ≡-Injective] of g, we have f(a) ≡G f(b), so
by [Locally ≡-Injective] of f , we have a ≡F b.
That mean that a 6≡F b =⇒ {a, b} /∈ ConF . So we have the [Locally ≡-Injective] property
for g ◦ f .

So g ◦ f is a map of GES≡.
Definition 1.13 (Equivalence on map).
We will say that two maps of GES≡ f and g are equivalent if they do the same thing up to
equivalence. That means, if f, g : (G,`G, ConG,≡G) → (H,`H , ConH ,≡H), then f ≡ g if
and only if :
• D(f) = D(g)
• ∀a ∈ D(f), f(a) ≡H g(a)
This equivalence relation says that only equivalence classes of events are really important,

and that events are just different parts of the same "disjunctive event".
Property 1.14 (GES≡ enriched category). GES≡ with maps of GES≡ is an enriched
category for the equivalence between maps. That means that the composition respect the
equivalence relation.
In other words, GES≡ with for maps equivalence classes of maps of GES≡ is a category.

Proof. We take f, f̃ : F → P(G) and g, g̃ : G→ P(H) four maps of GES≡, with f ≡ f̃ , and
g ≡ g̃. We want to show g ◦ f ≡ g̃ ◦ f and g ◦ f ≡ g ◦ f̃ .

We take a ∈ D(g ◦ f), a′ = f(a) and a′′ = g ◦ f(a).
We have g ≡ g̃ so a′ ∈ D(g̃), and g̃(a′) ≡H a′′. By symmetry, we have the first equivalence.

We take a ∈ D(g ◦ f), a′ = f(a) and a′′ = g ◦ f(a).
We have f ≡ f̃ so a ∈ D(f̃) and f̃(a) ≡G a′. We have a′ ∈ D(g), and g respects the [All
or Nothing] property, so f̃(a) ∈ D(g̃), and g preserves equivalence, so g(f̃(a)) ≡H a′′. By
symmetry, we have the second equivalence.

7

C C

f //

A

DD

AND

B

ZZ

A

OO

B

OO

C C

g //

A

DD

AND

B

ZZ

A

OO

B

OO

Figure 10 – Two equivalent maps.

1.3 Families with an equivalence relation
Definition 1.15 (Family with an equivalence relation). A Fam≡ (F ,≡F) on a set of events
E is a set of configurations F ⊆ P(E) with an equivalence relation ≡F⊆ E × E on events
(transitive, reflexive and symmetric) such that :
• (Stable by finitely compatible union)
∀{Xi}i∈I ∈ FI , if ∀J ⊆finite I, ∃XJ ∈ F , ∀j ∈ J, Xj ⊆ XJ then we have

⋃
i∈I Xi ∈ F .

• (Secure chain)
∀X ∈ F , ∀e ∈ X ∃n ∈ N, ∃{ei}1≤i≤n, en = e & ∀0 ≤ i ≤ n, {e1, e1, ...ei} ∈ F

Proposition 1.16 (Adjunction between GES≡ and Fam≡).
For all GES≡ (G,`G, ConG,≡G), (C(G),≡G) is a Fam≡.
For all Fam≡ (F ,≡F) on a set G, exist a unique replete GES≡ (G,`G, ConG,≡F) such
that C(G) = F .
We can deduce a category Fam≡ such that C(−) is a right adjoint 7 between GES≡ and
Fam.

Proof. The proof is essentially the same as the proof of the Proposition 2.2. The fact that
the adjunction is enriched is immediate.

1.4 General Event Structures, and Families
As said before, the main restriction of prime event structures is that we cannot enable

an event by different ways. A general event structure simply allow multiple enable.
Definition 1.17 (General Event Structure).
A GES (E,`E , ConE) is a GES≡ (E,`E , ConE ,≡E) with ≡E being the equality. It implies
that the equivalence between maps is also the equality.

We define in a same way families, and we have the same adjunction between GES and
Fam
Definition 1.18 (Family). A Fam F is a Fam≡ (F ,≡F) with ≡F being the equality. It
implies that the equivalence between maps is also the equality.

A major problem of GES is that it does not work well with hiding of events. Some
properties are lost under hiding :

7. See Definition 2.1 for more details. Here we have an enriched adjunction.

8

E

A B

??

AND

C

OO

OR

D

``

({B,C}`µE and {D}`µE)

_

hiding of B

��

E

A C

OO

OR

D

``

Figure 11 – The property "All configurations that contain A and E contain D" is lost under
hiding.

1.5 Prime Event Structures with an equivalence relation, and
Event structures with Disjunctive Causes

An other way of allowing having multiple way of enabling an event is by allowing us to
duplicate an event into many equivalent events. Each of them corresponding to a way of
enabling the initial event.
Definition 1.19 (Prime Event Structure with an equivalence relation).
A PES≡ (P,≤P , ConP ,≡P) is a replete GES≡ (P,`P , ConP ,≡P) where :
• (Partial order) ≤P ⊆ P × P is a partial order 8

• (Unique minimal enabling) X `P e ⇐⇒ [e) ⊆ X
If ≡P is the equality, this definition exactly correspond to PES (for objects and maps).

As for prime event structures, PES≡ work correctly with hiding. But some categorical
constructions, such as pull-back, are not defined. 9 That is why we will add a property.
Definition 1.20 (Event structure with Disjunctive Causes).
An EDC (P,≤P , ConP ,≡P) is a PES≡ such that :
• (EDC property) ∀p, p′, q ∈ P, p ≡ p′ & p ≤P q & p′ ≤P q =⇒ p = p′

EDC support hiding, and the Proposition 3.2 shows that it support pull-back, so it will be
the category used for games and strategies (see Definition 4.3).
We can define some variants 10 of EDC :
• (EDCweak) PES≡ with the property ∀p, p′ ∈ P, p ≡ p′ & p ≤P p′ =⇒ p = p′

• (EDCnot) PES≡ with the property ∀p, p′ ∈ P, p ≡ p′ & {p, p′} ∈ ConP =⇒ p = p′

1.6 Extremal realisation
GES and EDC are two different way of representing events that can be enable in different

ways, we would want to pass from one way to the other. That is why we will build an

8. So transitive, reflexive, and anti-symmetric. We recall that [e] = {e′ | e′ ≤P e} and [e) = [e]\{e}.
9. But, because we have pull-back on Fam≡, the ≡-adjunction given by the Theorem 2.13 say that we have

by-pull-back (so pull-back up to equivalence).
10. We will not talk a lot about them.

9

adjunction. 11 To do this, we need to define what a realisation of a GES≡ is.

1.6.1 Partially Ordered Multisets
First, we need to talk about partially ordered multisets. Realisation will be partially

ordered multisets linked in a good way to a GES≡.
Definition 1.21 (Partially Ordered Multisets). A POM (R,≤R, nR) on a set G, is a
PES≡ (R,≤R, ConR) where 12

• (Trivial Consistency) ConR = P(R)
• (Name function) The name function nR : R→ G is a total function
• (Same-name equivalence) ∀a, b ∈ R, a ≡R b ⇐⇒ nR(a) = nR(b)

We say that two POM are isomorph if there exists a bijection between the two which pre-
serves and reflects both the order 13 and the equivalence relation, and which respect the name
function. 14

A

B

??

C

OO

C

__

A

??__

DD

Figure 12 – Example of a POM on {A,B,C} (The dash arrow is an implicit arrow).

Definition 1.22. For (R,≤R, nR) a POM , we define :
• (Down-closure) [p] = {q | q ≤R p}
• (Strict Down-closure) [p) = {q | q ≤R p & q 6= p}
• (Top) Top(Y) = p such that [p] = Y (not always defined)
• (Top POM) When Top(R) is defined, we say that (R,≤R, nR) is a top POM
A partial order is characterised by the down closure of all its elements, so we have the

following property.
Property 1.23 (Characterisation by the down-closure).
For a set R, and {Xr}r∈R ⊆ P(R)R such that :
• (Reflexive) ∀r ∈ R, r ∈ Xr
• (Transitive) ∀r ∈ R, ∀p ∈ Xr, Xp ⊆ Xr
• (Antisymmetric) ∀r ∈ Y, ∀p ∈ Xr, r ∈ Xp =⇒ r = p

Exist a unique partial order ≤R such that ∀r ∈ R, [r] = Xr.
It implies that for a POM (R,≤R, nR), for e ∈ R, and X ⊆ [e], there exists a unique POM
(R,≤′R, nR) such that :
• ∀p 6= e, [p]′ = [p]
• [e]′ = {e} ∪

⋃
x∈X {e}

[x]

To be able to talk later about extremal realisations, we need to put an order between
POM . In fact, we will have a pre-order and a partial order, the first affect mainly the internal
partial order, and the second preserves the internal partial order but change the elements.

11. In fact, we will not be able to build an adjunction, it will only be an ≡-adjunction.
12. An important point is that realisation does not necessarily have the EDC property.
13. We will frequently say "order" instead of "partial order".
14. It mean that the image of an element by the bijection has the same name as the element

10

Definition 1.24 (A pre-order on POM). For two POM (R,≤R, nR) and (R′,≤R′ , nR′) on
the same set G, we write (R,≤R, nR) �fun (R′,≤R′ , nR′), if there exists a total, surjective
map of PES≡ between the PES≡ associated to (R,≤R, nR) and the PES≡ associated to
(R′,≤R′ , nR′) which respect the name function. More precisely, it mean there exists f :
R′ → R such that :
• (Total) ∀p′ ∈ R′, f(p′) is defined
• (Surjective) ∀p ∈ R, ∃p′ ∈ R′, p = f(p′)
• (Respect the same function) ∀p′ ∈ R′, nR′(p′) = nR(f(p′))
• (Reflects order) ∀q′ ∈ R, ∀p′ ≤R′ q′, f(p′) ≤R f(q′)

It define a pre-order 15 on POM . We remark that two isomorphic POM are on the same
cycle 16 for �fun.

A A A

B C

OO

�fun B C

OO

C

__

�fun B

??

C

OO

C

__

A A

??__

C

OO

C

OO

Figure 13 – Example of a sequel of �fun

Definition 1.25 (Sub-structure).
For two POM (R,≤R, nR) and (R′,≤R′ , nR′) on the same set G, we say that (R,≤R, nR)
is a sub-structure of (R′,≤R′ , nR′), and we write (R,≤R, nR) �sub (R′,≤R′ , nR′), if there
exists a partial and surjective function 17 m : D(m) ⊆ R′ → R which is a mono-morphism,
which mean that :
• (Injective) m is injective.
• (Respect the same function) ∀p′ ∈ D(m), nR′(p′) = nR(m(p′))
• (Down-closed partiality) ∀q′ ∈ D(m), ∀p′ ≤R′ q′, p′ ∈ D(m)
• (Preserve and reflect order)
∀p′, q′ ∈ D(m), p′ ≤R′ q′ ⇐⇒ p′ ∈ D(m) & m(p′) ≤R m(q′)

This definition means that, up to isomorphism, R is include in R′, is down-closed by ≤R′ ,
and has the same pre-order and the same equivalence relation.
�sub define a partial order up isomorphism. 18

The order �sub allow to define restrict a POM to one element and its down closure.
Property 1.26 (Top sub-structure). For (R,≤R, nR) a POM , for all p ∈ R, exist a unique
(up to isomorphism) sub-structure of (R,≤R, nR) which has for top m(p), where m is the
mono-morphism of the sub-structure.

15. We recall that a pre-order is a transitive and reflexive binary relation.
16. Cycles of a pre-order are usually called "equivalence classes", but we will not use this term to avoid confusion

with equivalence classes of GES≡.
17. m does not define a map of P ES≡ because it has not the [All or Nothing] property. However, m−1 is a map

of P ES≡, and a total mono-morphism.
18. A order up to isomorphism is an order between the isomorphism classes. Equivalently, it is a pre-order ≤

which is antisymmetric up to isomorphism : x ≤ y & y ≤ x =⇒ x is isomorphic to y.

11

A1 A2 A3 A4
OO ;; 55 33

OO << 66
OO << OO

�fun

A1,2 A3 A4
OO

55 33<< 66
OO << OO

�fun

A1,2 A3 A4 A5
OO << 55 33

OO << 66
OO << OO

Figure 14 – Example of a case where �fun is not an order : we have a loop of �fun (On the
figure, p ≡ q ⇐⇒ n(p) = n(q))

A

�sub B C �sub B

??

C

OO

C

__

A A

__

A

??__

C

OO

C

OO

C

OO

Figure 15 – Example of a sequel of �sub

Proof. We define (R′,≤R′ , nR′) as below :
• R′ ⊆ R
• R′ = [p]
• ≤R′=≤R restricted to R′
• nR′ = nR restricted to R′

The mono-morphism m : r ∈ R′ ⊆ R 7→ r ∈ R′ shows that (R′,≤R′ , nR′) is a sub-structure
of (R,≤R, nR), and p = m(p) is the top of (R′,≤R′ , nR′).

12

We take (R′′,≤R′′ , nR′′) a sub-structure, by the mono-morphism m̃, of (R,≤R, nR), with
a top m̃(p). We recall that the definition domain of m̃ has to be down-closed for ≤ (m̃ has
a down-closed partiality), and has to have a top, so it is equal to [p].

We have 19 that m̃ ◦m−1 : R′ → R′′ is a mono-morphism.

m−1 is a total mono-morphism, m−1(R′) = [p], and m̃ is a surjective mono -morphism
defined on [p], so m̃ ◦ m−1 is a total and surjective mono-morphism, so it is a bijection
which preserves and reflects both order and equivalence. So (R′′,≤R′′ , nR′′) is isomorphic
to (R′,≤R′ , nR′).

We will now merge these two pre-orders.
Definition 1.27 (The pre-order �). We define � as the transitive (and reflexive) closure
of the union of �fun and �sub.
Proposition 1.28 (Decomposition of �).

(R,≤R, nR) � (T,≤T , nT)

⇐⇒ ∃(S,≤S , nS), (R,≤R, nR) �sub (S,≤S , nS) �fun (T,≤T , nT)
⇐⇒ ∃(S̃,≤S̃ , nS̃), (R,≤R, nR) �fun (S̃,≤S̃ , nS̃) �sub (T,≤T , nT)

So it give the diagram :
R �sub S

�fun �fun

S̃ �sub T

Proof. We will first prove the first equivalence. Because � is the transitive closure of �fun
and �sub, we only need to show that :

(R,≤R, nR) �fun (S,≤S , nS) �sub (T,≤T , nT)

=⇒ ∃(S′,≤S′ , nS′), (R,≤R, nR) �sub (S′,≤S′ , nS′) �fun (T,≤T , nT)
Then, by induction, we can move all the �sub to the beginning.

Let f be the function from S to R (defined by �fun) and m be the mono-morphism from
T to S (defined by �sub). Up to isomorphism, m define a kind of inclusion. We rename 20

the element of S in a such way that m define an inclusion, it mean :
• S ⊆ T
• ≤S=≤T restricted to S
• nS = nT restricted to S
• S is down-closed for ≤T

We define (S′,≤S′ , nS′) as below :
• S′ = R] (T\S)

• ∀a, b ∈ S′, a ≤S′ b ⇐⇒


a ≤R b & a ∈ R & b ∈ R
a ≤T b & a ∈ (T\S) & b ∈ (T\S)
f(a) ≤T b & a ∈ R & b ∈ (T\S)

• ∀a ∈ S′, nS′(a) =
{
nR(a) if a ∈ R
nT (a) if a ∈ (T\S)

19. Proof similar to the proof of EES be a category.
20. This renaming is not needed, but makes the proof easier to read.

13

Because S is down-closed for ≤T , there is no a ≤S′ b when a ∈ (T\S) and b ∈ R.
Defined in that way, it is obvious that (R,≤R, nR) �sub (S′,≤S′ , nS′).
We also have (S′,≤S′ , nS′) �fun (T,≤T , nT) by taking the function f on R and the identity
function on (T\S). It define a total and surjective map of PES≡.

Now, we will prove the second equivalence, we only need to prove :

(R,≤R, nR) �sub (S,≤S , nS) �fun (T,≤T , nT)

=⇒ ∃(S̃,≤S̃ , nS̃), (R,≤R, nR) �fun (S̃,≤S̃ , nS̃) �sub (T,≤T , nT)
Let f be the function from T to S (defined by �fun) and m be the mono-morphism from S
to R (defined by �sub).
We define (S̃,≤S̃ , nS̃) as below :
• S̃ = {t ∈ T | m(f(t)) is defined}
• ≤S̃=≤T restricted to S̃
• nS̃ = nT restricted to S̃

Clearly, we have (S̃,≤S̃ , nS̃) �sub (T,≤T , nT). We now define the function f̃ = m ◦ f from
S̃ ⊆ T to R. We have immediately all the property of a total and surjective map of PES≡,
except the total property. Because S̃ = {t ∈ T | m(f(t)) is defined}, and f respect total
property, then tildef is total. So we have (R,≤R, nR) �fun (S̃,≤S̃ , nS̃).

We define also perfect POM . They are just POM with no useless duplication of elements.
Definition 1.29 (Perfect POM). We say that a POM (R,≤R, nR) is perfect if :

• (No redundancy) ∀p, q ∈ R,
[{

nR(p) = nR(q)
[p) ⊆ [q)

=⇒ p = q

]
We can deduce from the [No redundancy] property :

• (No need itself) ∀p, q ∈ R,
[{

nR(q) = nR(p)
p ≤ q

=⇒ p = q

]
The main good property of prefect POM is that there is only a finite number of prefect

POM (on a finite set).
Property 1.30 (Bounded number of perfect POM). For all E a finite set, exits a finite
number of perfect POM on E, up to isomorphism.

Proof. We will prove that for all k ∈ N, exists a finite number of perfect POM with k
equivalence classes (up to isomorphism, on a fixed set E of cardinality k), by induction on
k.
Let uk be the maximal cardinal of perfect POM with k equivalence classes. u0 = 0, which
is finite.
Let (R,≤R, nR) be a perfect POM and k + 1 equivalence classes. And let E be one of
the equivalence classes. Let (R′,≤R′ , nR′) be the restriction of (R,≤R, nR) to R′ = {r ∈
R | E ∩ [r] = ∅}. By the no-need-itself property, and because ≤R is antisymmetric :

∀e ∈ E , ∀p ≤ e with p 6= e, [p] ∩ E = ∅

That mean that ∀e ∈ E , [e) ⊆ R′. By the [No Redundancy] property, we deduce that
card(E) ≤ 2card(R′) ≤ 2uk . That mean that uk+1 ≤ (k+1)×2uk . That mean that ∀k ∈ N, uk
is finite. With a finite number element, we can only build a finite number of partial order,
so exits a finite number of perfect POM with k equivalence classes, up to isomorphism.

1.6.2 Realisation
Now that we have define POM , we can link them to a GES≡.

14

Definition 1.31 (Realisation). Let (G,`G, ConG,≡G) be a GES≡. We say that a POM
(R,≤R, nR) on G is a realisation of (G,`G, ConG,≡G) if the name function nR define a
total map of GES≡ between the GES≡ associated to (R,≤R, nR) and (G,`G, ConG,=) ,
which mean 21 that :
• (Realisation) ∀p ∈ R, n([p]) ∈ C(G)
nR is the name function of the realisation (R,≤R, nR).
We define in a similar way 22 realisations of a Fam≡.

D E Foo D E F

C

OO

B

OO

n // C

OO

B

__ OO

A

>>

OR

B

__

Figure 16 – Example of a realisation

This definition works correctly with the pre-order and the partial order defined on POM ,
but not in the same direction. Realisations are preserved by increasing along �fun and
decreasing along �sub, so we have no properties for �.
Property 1.32 (Realisation up to �fun).
If (R′,≤R′ , nR′) �fun (R,≤R, nR) and (R,≤R, nR) is a realisation of (G,`G, ConG,≡G),
then (R′,≤R′ , nR′) is a realisation of (G,`G, ConG,≡G). If we call f the functional map
defined by �fun, the following diagram commute :

R′
nR′

))f
(fun)

��
G

R
nR

55

Proof. �fun implies a map f from R′ to R such that nR′ = nR ◦ f , and GES≡ is a
category so the composition of two maps is a map, so (R′,≤R′ , nR′) is a realisation of
(R,`R, ConR,≡R).
Property 1.33 (Realisation up to sub-structure). If (R′,≤R′ , nR′) �sub (R,≤R, nR) and
(R,≤R, nR) is a realisation of (G,`G, ConG,≡G), then (R′,≤R′ , nR′) is a realisation of
(G,`G, ConG,≡G). If we call m the mono-morphism defined �sub, the following diagram
commute 23 :

R
nR

))m
(sub)

��
⊆ G

R′
nR′

55

Proof. �sub implies a partial mono-morphism m from D(m) ⊆ R to R′ such that nR =
nR′ ◦ m (when m is defined). m−1 define a map, and nR′ = nR ◦ m−1, and GES≡ is a

21. An important point is that we forget the equivalence relation ≡G.
22. By saying that all down closure go to elements of the family.
23. It is not a real commutation. The ⊆ mean that the composition has a lesser definition domain than it should

have to make the diagram commute.

15

category so the composition of two maps is a map, so (R′,≤R′ , nR′) is a realisation of
(R,`R, ConR,≡R).

Because GES≡ is a category, a natural things to do is defining the image of a realisation
by a map of GES≡. This image has good properties for the sub-structure order.
Definition 1.34 (Image of realisations).
For f : (G,`G, ConG,≡G) → (H,`H , ConH ,≡H) a map of GES≡, and for (R,≤R, nR) a
realisation of (G,`G, ConG,≡G), we define f@(R,≤R, nR) = (S,≤S , nS) a realisation of
(H,`H , ConH ,≡H) as :
• S = R
• ∀r, r′ ∈ S, [r ≤S r′ ⇐⇒ r ≤R r′]
• ∀r ∈ S, nS(r) = f(nR(r))

So only the name function change.

Proof. (S,≤S , nS) is a realisation because f preserves configurations.
Proposition 1.35 (Sub-structure of an image).
Let f : (G,`G, ConG,≡G)→ (H,`H , ConH ,≡H) be a map of GES≡, and (R,≤R, nR) be a
realisation of (G,`G, ConG,≡G), and (S,≤S , nS) be a realisation of (H,`H , ConH ,≡H).
If (S,≤S , nS) �sub f@(R,≤R, nR) then there exists (T,≤T , nT) �sub (R,≤R, nR)) such that
(S,≤S , nS) = f@(T,≤T , nT).

Proof. We just have to take :
• T = S
• ≤T=≤R restricted to T
• nT = nR restricted to T

The notion of perfect POM correspond to a notion of POM which have no strange
things. We would want to only manipulate only perfect POM , that why we would want to
always be able to extract a perfect realisation from a realisation.
Proposition 1.36 (Perfect Realisations). If (R,≤R, nR) is a realisation of the GES≡
(G,`G, ConG,≡G), then there exists (R′,≤R′ , nR′) �fun (R,≤R, nR) which is a perfect
realisation of (G,`G, ConG,≡G).

Proof. We will first create ≤′′ such that (R,≤′′, nR) respects the [Weak No Redundancy]
property :

∀p, q ∈ R,
[{

nR(p) = nR(q)
[p) ⊆ [q)

=⇒ [p) = [q)
]

Then, we will merge elements with the same down-closure to have (R′,≤R′ , nR′) �fun
(R,≤′′, nR) a perfect realisation.
We can simply define ≤′′ :

• ∀p ∈ R, ∃p̃ ∈ R,


nR(p̃) = nR(p)
[p̃) ⊆ [p){
nR(q) = nR(p̃)
[q) ⊆ [p̃)

=⇒ [q) = [p̃)

• e ≤′′ p ⇐⇒ e ≤R p̃
p̃ is well defined because R has finite down-closure (so [p] is finite). We trivially preserves
the realisation property. The merge cause no problems too.

Now, we will define the notion of extremal 24 realisation. They are minimal realisations
for the order �fun. The minimum for the partial order �sub and for the pre-order � are the
void realisation, so it is not interesting.

24. We use the term extremal and no minimal because the pre-order �fun correspond to the existence of a
function from the greater element to the lesser, which is the contrary of what is usually done.

16

Definition 1.37 (Extremal Realisations). We sat that (R,≤R, nR) is an extremal realisa-
tion of the GES≡ (G,`G, ConG,≡G) if for all other realisations (R′,≤R′ , nR′) �fun (R,≤R
, nR), we have (R′,≤R′ , nR′) �fun (R,≤R, nR).
We sat that (R,≤R, nR) is an unambiguous extremal realisation of the GES≡ (G,`G, ConG,≡G
) if for all other realisation (R′,≤R′ , nR′) �fun (R,≤R, nR), we have (R′,≤R′ , nR′) is iso-
morphic to (R,≤R, nR).
Equivalently, unambiguous extremal realisation are extremal realisation such that all reali-
sation of its cycle (for �fun) are isomorph.
Extremal realisation can be infinite.
The Proposition 1.38 shows that all extremal realisations are unambiguous.
The Proposition 1.36 shows that extremal realisations are perfects.

D

C

OO

A

DD

OR

B

ZZ

Figure 17 – A GES≡.

D

C C

OO

A A

??

A

>>

D

C C

OO

B B

__

B

``

Figure 18 – All top extremal realisations of the GES≡ of the Figure 17

Proposition 1.38 (Extremal realisations are unambiguous).

17

An extremal realisation (R,≤R, nR) of a GES≡ (G,`G, ConG,≡G) is an unambiguous ex-
tremal pre-realisations.

Proof. We take (R,≤R, nR) an extremal realisation.
By the Proposition 1.36, we take (P,≤P , nP) �fun (R,≤R, nR) a perfect realisation of
(G,`G, ConG,≡G), then (R,≤R, nR) �fun (P,≤P , nP) and (P,≤P , nP) necessarily extre-
mal.
Let f : R→ P and g : P → R the two function induced by �fun.
We define h = f ◦ g : P → P .

We know that (P,≤P , nP) has finite down-closures, so we can show by induction that
∀p ∈ P, h(p) = p.
We take p ∈ P such that ∀q ≤P p with q 6= p, he have h(q) = q. We know that h reflects order,
so [p) = h([p)) ⊇ [h(p)). Moreover, h respects the name function, so nP (p) = nP (h(p)).
Because (P,≤P , nP) is perfect, the [No redundancy] property says that we have h(p) = p.
So h = idP , that means that both f = g−1 so f preserves and reflects order, respects the
name function, and is total and bijective. So (R,≤R, nR) is isomorphic to (P,≤P , nP).

So if we take (S,≤S , nS) �fun (P,≤P , nP), we have (S,≤S , nS) extremal and (P,≤P
, nP) �fun (S,≤S , nS), so (S,≤S , nS) is isomorphic to (P,≤P , nP), so to (R,≤R, nR) too.

We want to be able to extract top extremal realisations from any realisations, the follo-
wing property says that it is always possible.
Proposition 1.39 (Existence of top extremal realisation). For all realisations (R,≤R, nR),
for all event e ∈ nR(R) of this realisation, there exists an extremal realisation (T,≤T , nT) �
(R,≤R, nR) which has a top t with nT (t) = e.

Proof. We first deduce a top realisation with top p ∈ n−1
R (e) by taking the top sub-structure

(R̃,≤R̃, nR̃) defined by :
• R̃ = [p]
• ≤R̃ = ≤R restricted to R̃
• nR̃ = nR restricted to R̃

Then, by the Proposition 1.36, we can take (S,≤S , nS) �fun (R̃,≤R̃, nR̃) a perfect realisa-
tion.
We are now in finite cases (see below), so we can do the following algorithm :
• Either (S,≤S , nS) is extremal.
=⇒ End of the algorithm.
• Either exists a realisation (P,≤P , nP) �fun (S,≤S , nS) which is not in the same cycle

(of the pre-order �fun), and with p ∈ n(P).
=⇒ By the Proposition 1.36, we can take (P,≤P , nP) perfect.
=⇒ Go to the beginning with (P,≤P , nP) instead of (S,≤S , nS).
We know that there is a finite number of perfect realisation on nR(R) (Property 1.30), so
the algorithm will end. So we produce a top extremal realisation (T,≤T , nT) � (R,≤R, nR)
with nT (Top(T)) = e.

Extremal realisation have other good properties :
Property 1.40 (Sub-realisation of an extremal realisation). Let (R,≤R, nR) n−→ (G,`G
, ConG,≡G) be an extremal realisation. Let (R′,≤R′ , nR′) �sub (R,≤R, nR) be a realisation.
Then (R′,≤R′ , nR′) is extremal.

Proof. We take (S′,≤S′ , nS′) �fun (R′,≤R′ , nR′) �sub (R,≤R, nR). By the Proposition 1.28,
exist (S,≤S , nS) such that (S′,≤S′ , nS′) �sub (S,≤S , nS) �fun (R,≤R, nR). So (S,≤S , nS)
is isomorphic to (R,≤R, nR).
If we look at the proof of the Proposition 1.28, we see that the function defined by (S′,≤S′

18

, nS′) �fun (R′,≤R′ , nR′) is the function defined by (S,≤S , nS) �fun (R,≤R, nR) restricted
to R′. That mean that (S′,≤S′ , nS′) is isomorphic to (R′,≤R′ , nR′), so (R′,≤R′ , nR′) is
extremal.
Property 1.41 (� on extremal realisation is �sub). Let (R,≤R, nR) extremal realisation
of the GES≡ (G,`G, ConG,≡G). Let (R′,≤R′ , nR′) � (R,≤R, nR) be a realisation.
Then (R′,≤R′ , nR′) is an extremal realisation and (R′,≤R′ , nR′) �sub (R,≤R, nR).
Moreover, if (R′,≤R′ , nR′) �fun (R,≤R, nR), then they are isomorph.

Proof. By the Property 1.40, we know that (R′,≤R′ , nR′) is an extremal realisation.

By the Proposition 1.28, we know that there exists (T,≤T , nT) such that (R′,≤R′
, nR′) �fun (T,≤T , nT) �sub (R′,≤R′ , nR′). The Property 1.33 say that (T,≤T , nT) is a
realisation. It is an extremal realisation. So (R′,≤R′ , nR′) is isomorphic to (T,≤T , nT), and
(R′,≤R′ , nR′) �sub (R,≤R, nR).
The fact that (R′,≤R′ , nR′) is isomorphic to (T,≤T , nT) prove that if (R′,≤R′ , nR′) �fun
(R,≤R, nR), then they are isomorph.
Proposition 1.42 (Elements of an extremal realisation correspond to top extremal realisa-
tions). Let (R,≤R, nR) be an extremal realisation of (G,`G, ConG,≡G). Then (X,≤X , nX)
is isomorphic to (R,≤R, nR), where :
• X = {(S,≤S , nS) top extremal realisation | (S,≤S , nS) � (R,≤R, nR)} quotiented by

the being-isomorphic equivalence relation.
• ≤X=� restricted to X.
• nX(A) = nA(Top(A))

It implies :

{Top(S) | (S,≤S , nS) � (R,≤R, nR) & (S,≤S , nS) top extremal realisation } = R

Proof. The fact that (X,≤X , nX) is isomorphic to (R,≤R, nR) comes from our working with
extremals, so � = �sub (by the Property 1.41), and from the Property 1.26 which says that
there exists a top extremal realisation, for each top.
Proposition 1.43 (Characterisation of extremal realisations). A POM (R,≤R, nR) on G
is an extremal realisation of the GES≡ (G,`G, ConG,≡G) if and only if :
• (Realisation) ∀r ∈ R, nR([r)) `G nR(r)

• (Minimal) ∀r ∈ R, ∀X ⊆ [r),
{
X down closed for ≤R
nR(X) `G nR(r)

=⇒ X = [r)

• (No multiplicity) ∀p, q ∈ R,
{
nR(p) = nR(q)
[p) = [q)

=⇒ p = q

Proof. We suppose that (R,≤R, nR) is a extremal realisation.

By definition, a top extremal realisation has finite down-closures.

We take ∀r ∈ R and X ⊆ [r) such that X down-closed and nR(X) `G nR(r). We can
define ≤′R as below :

a ≤′R b ⇐⇒
{
a ≤R b & b 6= r

a ∈ X & b = r

(R,≤′R, nR) is a realisation of (G,`G, ConG,≡G) and (R,≤′R, nR) �fun (R,≤R, nR) (by the
identity function). But (R,≤R, nR) is extremal, so (R,≤′R, nR) is isomorphic to (R,≤R, nR).
That mean X = [p). So we have the [Minimal] property.

We know that extremal realisation are perfect (see Property 1.36), so we have the [No
multiplicity] property.

19

Now we suppose that (R,≤R, nR) respect all the different properties, and we will show
that is an extremal realisation.

We have immediately that (R,≤R, nR) is a realisation.

We take a realisation (S,≤S , nS) �fun (R,≤R, nR). Let f be the function from R to S
defined by �fun. We take r ∈ R.
Because f is total, we can define without problems X = f−1([f(r))). Because f reflects
order, we have X ⊆ [r) and X down-closed.
Because (S,≤S , nS) is a realisation, we have nS([f(r))) `G nS(f(r)).
Because f respect the name function, we have nR([r)) = nS([f(r))) and nR(r) = nS(f(r)).
So nR(X) `G nR(r) and X ⊆ [r) with X down-closed. So, by the [Minimal] property,
X = [r). So the image of the down-closure is equal to the down-closure of the image (that
mean that f preserves order).

We will now prove by induction on the structure of (R,≤R, nR) that f is injective. We
take p, q ∈ R such that f(p) = f(q) and ∀r, r′ ∈ [p) ∪ [q), f(r) = f(r′) ⇐⇒ r = r′.
Because f respect the name function, we have nR(p) = nR(q).
Because the image of the down closure is the down-closure of the image, and because f is
injective on [p) ∪ [q), we have [p) = [q).
So, by the [No multiplicity] property, we have p = q. By structural induction on ≤R (which
is well-founded because has finite bases), f is injective.

f is by definition surjective, so f is a bijection which preserves and reflects order, and
respect the name function. So (S,≤S , nS) is isomorphic to (R,≤R, nR). So (R,≤R, nR) is
extremal.

The next proposition is not used for the proof of the different adjunctions of the next
section, but shows that the partial order �sub on extremal realisation is an order regarded
as category. 25

Proposition 1.44 (Uniqueness of function between extremal realisations). Let (R,≤R, nR)
and (S,≤S , nS) be two extremal realisations of the GES≡ (G,`G, ConG,≡G) such that
(R,≤R, nR) � (S,≤S , nS).
We remark that composition of total and surjective maps of GES≡ with surjective mono-
morphisms give a surjective quasi-map 26 of GES≡.
There exists a unique surjective quasi-map f of GES≡ from 27 (S,≤S , nS) to (R,≤R, nR)
which respect the name function. 28 Moreover, f is a mono-morphism.

Proof. Because of the Property 1.41, � is �sub, and we have a surjective mono-morphism
m (which is also a surjective quasi-map of GES≡) from S to R which respect the name-
function (see Property 1.33). That prove the existence.
We take surjective quasi-map f of GES≡ between (R,≤R, nR) and (S,≤S , nS).
We remark that m−1 is a total quasi-map, so 29 m−1 ◦ f is a quasi-map from S to S.
We suppose that m−1 ◦f 6= idS . Because (S,≤S , nS) has finite bases, we can find s ∈ S such
that ∀p ≤S s, m−1(f(p)) = p and m−1(f(s)) 6= s. That mean that [m−1(f(s))) ⊇ [s). S is
extremal so necessarily [m−1(f(s))) = [s). Because f andm respect the name-functions, we
have nS(m−1(f(s))) = nS(s). By the [No Redundancy] condition, we have a contradiction.
So m−1 ◦ f = idS . We have m−1 total so f = m.

25. In the category theory, orders are categories such that for all objects A and B, there is at most one morphism
from A to B or from B to A (and never both in the same time if A 6= B).
26. It mean that it has not necessarily the [All or Nothing] property.
27. More precisely, the map is between the two GES≡ associated.
28. It mean that ∀s ∈ S, nS(s) = nR(f(s)).
29. The proof is the same that the proof of GES≡ being an enriched category (see Property 1.14).

20

2 The ≡-adjunction between GES and EDC

GES correspond to the common way of adding disjunctive enabling to event structures,
it support pull-backs, but does not support hiding, whereas EDC support both pull-backs
and hiding. That is why we would want a way to pass from one to the other.
In this section, we will build an ≡-adjunction (see Definition 2.9) between these two cate-
gories by composing multiple little ≡-adjunctions.

2.1 The adjunction between GES and Fam
Definition 2.1 (Adjunction). For A and B two categories, L : A → B and R : B → A
two functors, we said that L and R define an adjunction between A and B, and we wrote
L a R, if for all A ∈ A, and for all B ∈ B, there is a one-to-one correspondence between
maps L(A)→ B and maps A→ R(B).
If A and B are two categories enriched by an equivalence relation, then we say that there is
an enriched adjunction if L and R preserve the equivalence relation.

An enriched adjunction correspond to an adjunction which is also a ≡-adjunction (see
Definition 2.9). An adjunction is always a enriched adjunction with the equality as the
equivalence relation.
Proposition 2.2 (Adjunction between GES and Fam). The functor C : GES → Fam :
(E,`E , ConE) 7→ C(E) define a right adjoint between GES and Fam.

Proof. The left adjoint is :

Fam→ GES : F 7→ (E,`E , ConE)

Where E is the minimal set such that F is a family on E, X `E e ⇐⇒ ∃Y ⊆ X ∪{e}, Y ∈
F , and X ∈ ConE ⇐⇒ ∃Y ⊇ X, Y ∈ F .
The image by C of a map f : E → E′ is f : E → E′, same thing with the rigth adjoint, so
we have the one-to-one correspondence between maps.

2.2 The enriched adjunction between Fam and Fam≡
We recall that Fam correspond to replete GES, and Fam≡ correspond to replete GES≡.

What we want is a functor which collapse equivalence classes by adding disjunctive enabling.
We will here describe the abstract way of defining col, but there is an inductive way of
defining it, see the Definition 5.2 for more details.

OO OO

� col //

FFXX

OO OO FF

OR

XX

Figure 19 – Simple example of the effect of the col functor on a replete GES≡

Definition 2.3 (The col functor). The functor col : Fam≡ → Fam is defined as below :

(F ,≡F) col7−−→ G′

21

where F ⊆ P(E), G ⊆ P(E≡F) and :

G =
{
Y |

{
∀y ∈ Y, ∃X ∈ F , y ∈ X≡F ⊆ Y
∀Z ⊆finite Y, ∃X ∈ F , Z ⊆ X≡F

}
and :

(f : E → E′) col7−−→ (g : E≡F → E′≡F)
where :
• (1) g(e) = e′ ⇐⇒ ∃p ∈ G such that {p}≡G = e, {f(p)}≡G = e′

• (2) g(e) = e′ ⇐⇒ ∀p ∈ G such that {p}≡G = e, {f(p)}≡G = e′

This functor respect naturality conditions, and is an enriched functor (for the equivalence
relation).

Proof. The image of an object is well defined (i.e respect the property [Secured chain] and
[Stable by finitely compatible union]).

We first need to proof that it is well defined, which means than (1) and (2) are compa-
tibles, and defined a map of Fam.
• (1) and (2) are compatibles because f preserves equivalence and respect the [All or

Nothing] property.
• g is locally equiv-injective because f is locally equiv-injective.
• g preserves configurations because f preserves configurations.

The fact that col of the identity is the identity, and the fact that col of a composition of two
maps is the composition of the col of the maps, are immediate.

Because of the way that it is defined, naturality conditions are obvious.

Lemma 2.4 (Equivalence of maps and col).
If f, g : (G,`G, ConG,≡G)→ (H,`H , ConH ,≡H) are two maps of GEDC, then :

f ≡ g ⇐⇒ col(f) = col(g)

Proof. Saying that col(f) = col(g) implies that they have the same definition domain D.
But col(f) = col(g) also implies that the image of an element by f and by g are equivalent,
so col(f) = col(g) =⇒ f ≡ g.

If f ≡ g, f and g do the same thing on equivalence classes, so col(f) = col(g).

It proves the fact that col is an enriched functor.
Definition 2.5 (Functor from replete GES≡ to replete GES). We can also see col as a
functor from GES≡ to GES. It give :

(G,`G, ConG,≡G) col7−−→ (E,`E , ConE)

where
• E = G≡G
• ∀x ∈ E, ∀X ⊆ E, [X `E x ⇐⇒ ∃y ∈ G, ∃Y ⊆ G, Y `G y & {y}≡G = x & Y≡G = X]
• X ∈ ConE ⇐⇒ ∃Y ∈ ConG, Y≡G = X

and
(f : G→ G′) col7−−→ (g : E → E′)

where
• (1) g(e) = e′ ⇐⇒ ∃p ∈ G such that {p}≡G = e, {f(p)}≡G = e′

• (2) g(e) = e′ ⇐⇒ ∀p ∈ G such that {p}≡G = e, {f(p)}≡G = e′

Proof. It works exactly for the same reasons.

22

Definition 2.6 (Inclusion 30 functor of Fam in Fam≡).

I : Fam→ Fam≡

F 7→ (F ,=)
(f : E → E′) 7→ (f : E → E′)

I is a functor.

Proof. I correspond to an inclusion. All the property of a functor are trivially respected.
Property 2.7 (col ◦ I(E) = E). col ◦ I(E) = E is isomorphic to E

Proof. The equivalence in I(E) is the identity. So the col merge nothing.
Because of [Stable by finitely compatible union], col does nothing.
Theorem 2.8 (The adjunction between Fam and Fam≡). I and col define an enriched
adjunction between Fam and Fam≡, more precisely col a I.
It mean that for F a Fam on F , and (G,≡G) a Fam≡ on G, we have 31 :

∀f : col(G)→ F , ∃!h : G → I(F), f = col(h)

(More rigorously f = rF ◦ col(h), where rF : col ◦ I(F)→ F is the isomorphism)

Proof. We will first prove the existence of h. We define h : G → I(F) by : for a ∈ G,
{a}≡G ∈ G≡, f({a}≡G) ∈ F and because I is an inclusion functor, we can take h(a) =
f({a}≡G) ∈ I(F). We have to check all maps property.
• (All or nothing) f respect the [All or nothing] property, so g too.
• (Preserve equivalence) Equivalent element are mapped to the same event, so g preserves

equivalence.
• (Preserves Configurations) col(F) is F where equivalent events are merged, and com-

pleted in a way such that we have a Fam, and col(G) is G merge and then completed
in a same way than col(F). The completion is done in the same way, and f preserves
configurations, so g preserves configurations.

• (Locally equiv-Injective) f is locally equiv-injective, and the equivalence of I(F) is the
equality, g preserves configurations, so g is locally equiv-injective.

With this definition, we have immediately f = col(h).

The lemma 2.4 prove the uniqueness up to equivalence. But here, we use map from a
from a GEDC to a GEDC which come from a GES, so equivalence classes have cardinality
one, so we have the uniqueness.

2.3 The ≡-adjunction between Fam≡ and PES≡

We recall that Fam≡ correspond to replete GES≡. What we want is a functor which
replace events that can be enable in different way by equivalent events that can be enable
in a unique way. We will here describe the abstract way of defining ter, but there is (under
some restrictions) an inductive way of defining it, see the Definition 5.1 for more details.
Definition 2.9 (Pseudo-functor and ≡-adjunction). We take A and B two categories enri-
ched by an equivalence relation on maps. We define A/≡ the category which have the objects
of A, and for maps the equivalence classes of maps of A. We define B/≡ in a same way.
A pseudo-functor f : A→ B is a functor from A/≡ to B/≡.
An ≡-adjunction is an adjunction between A/≡ and B/≡.

30. We use the same name I for all inclusions functor. Because they have no effects on objects or maps, it is
not a problem.
31. We recall that the equivalence on maps of Fam is the equality. Moreover, equivalence classes on maps from a
Fam≡ to a Fam≡ which come from a Fam, have cardinality one. So this property is also true up to equivalence.

23

OO

� ter //

OO OO

FF

OR

XX OO OO

AND

OO

� ter //

AND

OO OO

FF

OR

XX

^^

OO OO

ZZ

Figure 20 – Simple examples of the effect of the ter functor on a replete GES≡

We will frequently assimilate a function and its equivalence classes, or implicitly take an
arbitrary element of an equivalence classes of functions.
Definition 2.10 (The ter 32 pseudo-functor). The pseudo-functor ter : Fam≡ → PES≡ is
defined as below :

(F ,≡F) ter7−−→ (P,≤P , ConP ,≡P)
where (F ,≡F) is a Fam≡ on E and :
• P = {(R,≤R, nR) top extremal realisation of F } 33

• (R,≤R, nR) ≤P (S,≤S , nS) ⇐⇒ (R,≤R, nR) � (S,≤S , nS)
• (R,≤R, nR) ≡P (S,≤S , nS) ⇐⇒ nR(Top(R)) = nS(Top(S))
• X ∈ ConP ⇐⇒ ∃Y ∈ F ,

⋃
(R,≤R,nR)∈X

nR(R) ⊆ Y

and
{f : D(f) ⊆ E → E′}≡

ter7−−→ {g : D(g) ⊆ P → P ′}≡
where
• (Same partiality) (R,≤R, nR) ∈ D(g) ⇐⇒ nR(Top(R)) ∈ D(f)
• (Image) g((R,≤R, nR)) = (R′,≤R′ , nR′) � f@(R,≤R, nR)
• (Respect the name function) nR′(Top(R′)) = f(nR(Top(R)))
• (Coherent choices) g is a map of PES≡

This pseudo-functor respect naturality conditions.

Proof. We will first prove that for any map f of Fam≡, we have a map g of PES≡ which
is an image by ter. Then we will prove that all possible g are equivalent, and after we will
prove that if we take f̃ ≡ f , we obtain g̃ ≡ g.

We build g an image of f by induction on ≤P :
For (R,≤R, nR) ∈ P , we suppose that g is already defined on [(R,≤R, nR)). We know that

32. ter means "top extremal realisations".
33. Quotiented by the being-isomorphic equivalence relation.

24

f@(R,≤R, nR) is a realisation of F ′.
Moreover 34, ∀(S,≤S , nS) <P (R,≤R, nR), g((S,≤S , nS)) � f@(S,≤S , nS) and f@(S,≤S
, nS) �sub f@(R,≤R, nR), so g((S,≤S , nS)) � f@(R,≤R, nR).
Using the Proposition 1.28, we wrote hS the map and mS the monomorphism given by �
such that mS ◦ hS : f@(R,≤R, nR)→ g((S,≤S , nS)).
We define (T,≤T , nT) a realisation of (F ′,≡F′) as below :
• T = R
• nT = f ◦ nR
• ∀t ∈ T, t ≤T Top(R)
• ∀(S,≤S , nS) <P (R,≤R, nR), ∀p, q ∈ D(mS◦hS) p ≤T q ⇐⇒ mS◦hS(p) ≤S mS◦hS(q)

This definition is coherent because g has a down-closed image (on [(R,≤R, nR))), and
reflects order (on [(R,≤R, nR))), so different (S,≤S , nS) will give the same order on their
intersection.
We have immediately (T,≤T , nT) �fun f@(R,≤R, nR), and (T,≤T , nT) is a finite realisa-
tion, so we can use the Proposition 1.39, and we have (P,≤P , nP) � (T,≤T , nT) which is a
top extremal realisation of (F ′,≡F′), with nP (Top(P)) = nT (Top(T)).
We complete g with g((R,≤R, nR)) = (P,≤P , nP). In that way, all properties are preserved :
• g respects [Same partiality], [Image] and [Respects the name function] by construction.
• g is locally equiv-injective because f is locally equiv-injective.
• g preserves equivalence because f preserves equivalence and because nR(Top(R′)) =
f(nR(Top(R))) = nR′(f(Top(R)).

• g respect the [All or Nothing] property because it has the same partiality as f .
• g has a down-closed image and reflects order by construction.
• g preserves consistency, see below for the proof.
We take X ∈ ConP , that mean there exists Y ∈ C(P) such that X ⊆ Y .

Y is down closed, so Y ′ = g(Y) is down closed too. By definition, we have :

Y ′ ∈ ConP ′ ⇐⇒ ∃F ′ ∈ F ,
⋃

(R′,≤R′ ,nR′)∈Y ′
nR′(R′) ⊆ F

Because Y ′ is down closed, and by the Proposition 1.42, we have :⋃
(R′,≤R′ ,nR′)∈Y ′

nR′(R′) = {nR′(Top(R′)) | (R′,≤R′ , nR′) ∈ Y ′}

Because nR(Top(R′)) = f(nR(Top(R))) = nR′(f(Top(R)), we have :

{nR′(Top(R′)) | (R′,≤R′ , nR′) ∈ Y ′} = {nR(Top(R)) | (R,≤R, nR) ∈ Y }

Because Y is down closed, and by the Proposition 1.42, we have :

{nR(Top(R)) | (R,≤R, nR) ∈ Y } =
⋃

(R,≤R,nR)∈Y

nR(R)

We know that Y ∈ ConP , so ∃F ∈ F ,
⋃

(R,≤R,nR)∈Y
nR(R) ⊆ F , so we have Y ′ ∈ ConP ′ ,

which mean g(X) ∈ ConP ′ .

So g preserves consistency. So the image of f by ter exists

The property [Same Partiality] and [Respect the name function] implies that all possible
g are equivalents.

34. We define <P as ≤P ∩ 6=.

25

If we take f̃ ≡ f , it will have the same partiality as f , so g̃ and g have the same partiality.
Moreover, f̃ and f will do the same things up to equivalence, so, by [Respects the name
function], g̃ and g too.

So the image of f by ter is well defined

id@(R,≤R, nR) is isomorphic to (R,≤R, nR) so the image by ter of the identity map is
the identity map.

We now need to proof that, ter preserves composition up to equivalence. That mean that,
if we take tree Fam≡ (F1,≡1), (F2,≡2) and (F3,≡3), and two maps of Fam≡ f : E1 → E2
and g : E2 → E3, then ter(g ◦ f) ≡ ter(g) ◦ ter(f).
The [Same partiality] property say that we will have no problems with the definition domains.

We take p ∈ ter(F1), p′ = ter(g)(p) and p′′ = ter(g) ◦ ter(f)(p). We wrote a = Top(p) ∈
E1, a′ = Top(p′) ∈ E2 and a′′ = Top(p′′) ∈ E3. By definition of ter (or more precisely, by the
definition of an image of a realisation), we have a′ = f(a) and a′′ = g(a′). So a′′ = g ◦ f(a),
so by [Respect the name function], if we wrote, q = ter(g ◦ f)(p) then Top(q) = a′′, and
q ≡ter(H) p

′′.

So ter(g ◦ f) ≡ ter(g) ◦ ter(f).

So ter is a pseudo-functor.

Because of the way that it is defined, naturality conditions are obvious.
Definition 2.11 (Inclusion functor of PES≡ in Fam≡).

I : PES≡ → Fam≡

(P,≤P , ConP ,≡P) 7→ (C(P),≡P)
(f : P → Q) 7→ (f : P → Q)

I is a functor, and a pseudo-functor.

Proof. I correspond to an inclusion of PES≡ in Fam≡. All the property of a functor are
trivially respected.
Property 2.12 (ter ◦ I(P) = P). ter ◦ I(P) is isomorphic to P

Proof. All events of I(P) have a unique minimal enabling. So from a pre-realisation, we can
extract a unique extremal realisation by �fun, and so each event correspond to a unique
top extremal realisation.
The order, the equivalence relation, and the consistency are necessarily the same.
Theorem 2.13 (The ≡-adjunction between Fam≡ and PES≡). I and ter define an ≡-
adjunction between Fam≡ and PES≡, more precisely I a ter up to equivalence.
It mean that for (P,≤P , ConP ,≡P) a PES≡, and (F ,≡F) a Fam≡, and up to equivalence,
we have :

∀f : P → ter(F), ∃!h : I(P)→ F , f ≡ ter(h)
(More rigorously f ≡ h̃ ◦ rP , where rP : P → ter ◦ I(P) is an isomorphism, and h̃ and
element of ter({h}≡))

Proof. We define `P the enabling associated to ≤P and `ter(F) the enabling associated to
≤ter(F).

26

For p ∈ P , we write f(p) = (Rp,≤Rp , nRp).

We define h(p) = nRp(Top(Rp)) and we check that it define a map of GES≡ :
• (All or Nothing) p ∈ D(p) ⇐⇒ p ∈ D(f) so OK.
• (Preserve Equivalence) f preserves equivalence so h too, so OK.
• (Locally equiv-Injective) f is locally equiv-injective, so h too, so OK.
• (Preserve Consistency) the definition of ter does that if X ⊆ ter(F) is consistent, then
∃F ∈ F , {nR(Top(R)) | (R,≤R, nR) ∈ X} ⊆ F , so OK.

• (Preserve Enabling) see below
We take p ∈ P and X `P p
By definition of h, nRp(Top(Rp)) = h(p).
Because f preserves enabling, f(X) `ter(F) (Rp,≤Rp , nRp)
Because ter(F) is an PES≡, it have a unique minimal enabling, so we have {(R′,≤R′ , nR′) ∈
ter(F) | (R′,≤R′ , nR′) � (Rp,≤Rp , nRp)} ⊆ f(X)
Because of the Proposition 1.42 Rp is isomorphic to {(R′,≤R′ , nR′) ∈ ter(F) | (R′,≤R′
, nR′) � (Rp,≤Rp , nRp)}, so by taking the name, nRp(Rp) ⊆ h(X).
Because (Rp,≤Rp , nRp) is a realisation, then nRp(Rp) `ter(F) nRp(Top(Rp)), and so h(X) `ter(F)
h(p)

So h is a map.

We also need to proof that f ≡ ter(h)

For p ∈ P , we write f(p) = (Rp,≤Rp , nRp) and t = nRp(Top(Rp)).
We also write ter(h)(p) = (R′p,≤R′p , nR′p) and t′ = nR′p(Top(R′p)).
By definition of h, we have t ≡F t′.

So f ≡ ter(h)

Now we have to proof the uniqueness up to equivalence

Let g : I(P)→ F such that ter(g) ≡ f
For p ∈ P , we write f(p) = (Rp,≤Rp , nRp) and t = nRp(Top(Rp)).
We also write ter(g)(p) = (R′p,≤R′p , nR′p) and t′ = nR′p(Top(R′p)). By definition of ter,
g(p) = t′

Because ter(g) ≡ f , we have t ≡F t′ (and no problems with definition domains)

So we have ∀p ∈ P, g(p) ≡F h(p) so g ≡ h
So h is unique

Corollary 2.14 (The ≡-adjunction between GES≡ and PES≡). By composition with the
enriched adjunction between GES≡ and Fam≡, we obtain an ≡-adjunction between GES≡
and PES≡. The two functor of the ≡-adjunction are essentially the same as before.
Proposition 2.15 (Extremal Realisations are Configurations). Extremal realisations of a
Fam≡ (F ,≡F) on E, exactly correspond to configurations of ter(F).
That implies that if we define : TopF : ter(F)→ E : (R,≤R, nR) 7→ nR(Top(R)) , then :

X ∈ F ⇐⇒ ∃Y ∈ C(ter(F)), T opG(Y) = X

Proof. If we take an extremal realisation (R,≤R, nR), then , by the Proposition 1.42, we
have that R correspond to a set of elements of E, which is down-closed (by isomorphism, and
by definition of a realisation), and consistent (by definition of a realisation), do it correspond
to a configuration.
Reciprocally, from a configuration X ∈ C(ter(F)), we can build a realisation (X,≤X , nX)
with ≤X=≤ter(F) restricted to X and nX(p) = Top(p). We extract an extremal realisation
with the same elements. Using what has been proved just before, this extremal realisation
correspond to X.

27

Theorem 2.16 (The ter pseudo-functor preserves and reflects properties (on equivalence
classes of configurations)).
Let (F ,≡F) be a Fam≡ on E, and (P,≤P , ConP ,≡P) = ter(F ,≡F)
Using the definition of the ter pseudo-functor, we can identify ≡F and ≡P . In other words,
we can define ≡ ⊆ (E] P)× (E] P) such that :

a ≡ b ⇐⇒


a ≡F b with a, b ∈ E
a ≡P b with a, b ∈ P
a = nb(Top(b)) with a ∈ E, b ∈ P
na(Top(a)) = b with a ∈ P, b ∈ E

We define C≡(P) = {X≡ | X ∈ C(G)}, and C≡(F) = {X≡ | X ∈ F} in a similar way. Then
we have :

C≡(F) = C≡(P)
That implies that any property (such as a logical formulas 35) on equivalence classes of confi-
gurations is preserved and reflected by the ter functor.

Proof. By definition of ter, and using the Proposition 2.15, nt : P → E : (R,≤R, nR) →
nR(Top(R)) preserves and reflects equivalence, preserves configurations, and reach all confi-
gurations. 36

Because nt preserves and reflects equivalence, we have no problem defining ≡.
We have C≡(F) ⊆ P(E≡) = P(P≡) ⊇ C≡(ter(G)).
Because nt preserves configurations, and reach all configurations, we can define nt≡ :
C≡(P)→ C≡(F) a surjective function.
We can decompose what does nt≡ on X ∈ C≡(P) in that way :
• Taking Y ∈ C(P) such that Y≡ = X.
• Applying nt to Y .
• Going to the equivalence classes.

By the Proposition 2.15, Y correspond to an extremal configuration (R,≤R, nR) of G, and
nt(Y) correspond to nR(R).

2.4 The enriched adjunction between PES≡ and EDC

Proposition 2.17 (The enriched adjunction between PES≡ and EDC). The inclusion
functor I : EDC → PES≡ and the restriction functor restr : PES≡ → EDC define an
enriched adjunction between PES≡ and EDC, more precisely I a restr.

restr : (P,≤P , ConP ,≡P) 7→ (P ′,≤P ′ , ConP ′ ,≡P ′)

Where P ′ = {p ∈ P | ∀q ≤P p, ∀q′ ≤P p, q ≡P q′ ⇐⇒ q = q′}, and ≤P ′ , ConP ′ , and ≡P ′
are the restriction of ≤P , ConP and ≡P to P ′.

restr : (f : P → Q) 7→ (g : P ′ → Q′)

Where g is the restriction of f to P ′

Proof. g = restr(f) is well defined because is an event p is mapped to an event q, and g
need two different equivalent events, then p need two different equivalent events ([Preserve
Configurations] property).
The one-to-one correspondence of maps is immediate.

In a similar way, there is a sequence of enriched adjunction between PES≡, EDCweak,
EDC, EDCnot, and an adjunction 37 (not enriched) between EDCnot and PES.

35. For example, the property "for all configurations, if there is an event of the equivalence classes a, then there
is an event of the equivalence classes b, and no events of the equivalence classes c" is preserved and reflected by
ter. It also work for properties concerning only a subset of "all configurations".
36. It mean that any configuration of F correspond to at least one configuration of P .
37. The right adjoint is "forgetting the equivalence relation", and the left adjoint is the inclusion functor.

28

2.5 The composite adjunction
The Figure 23 38 sum-up all the precedent adjunctions. Some of them still work if we

take relations 39 instead of functions.
Because the adjunction between EDC (or EDCnot) and PES is not enriched, and the
≡-adjunction between Fam≡ and PES≡ is not an adjunction, we cannot deduce an ≡-
adjunction (nor an adjunction) between PES and GES.

Most of the immediate adjunctions (or ≡-adjunction) are trivially reflection 40 or co-
reflection 41, but the fact that the adjunction between Fam and EDC (or PES≡) is a
reflection is more complicated.
Proposition 2.18 (The ≡-adjunction between Fam and EDC is a reflection). The co-unit
of the ≡-adjunction between Fam and EDC is an isomorphism : εF : col◦ι◦ter◦I(F)→ F
(where ι correspond to the composition of different inclusion functor and restriction func-
tors)
It mean that if we take a replete GES, then we take the EDC corresponding to all top
extremal realisations that respect the EDC property, and then collapse equivalent events, we
obtain a GES isomorphic to the initial GES.
Similarly, the the co-unit of the ≡-adjunction between Fam and PES≡ is also an isomor-
phism.

Proof. Events of F correspond to events of I(F), which correspond to equivalence classes
of ter ◦ I(F).
We remark that if an event of ter ◦ I(F) break the EDC property, then there exits 42 an
equivalent event that does not break the EDC property.
That mean that equivalence classes of ter ◦ I(F) correspond to equivalence classes of
ι ◦ ter ◦ I(F), which correspond to events of col ◦ ι ◦ ter ◦ I(F). That mean that events
of F correspond to events of εF (F).
We have to prove that they have the same configurations.

A configuration X ∈ F correspond to at least one extremal realisation (X,≤X , idX) of
F . By the Property 2.15, it correspond to a configuration Y of ter ◦I(F). Because the name
function idX is injective, Y is a configuration that respect the EDC property, so Y is also
a configuration of ι ◦ ter ◦ I(F). The functor col preserves configurations, so Y correspond
to a configuration on εF (F), so configurations of F are include in configurations of εF (F).

We nee to show that any configuration X ′ ∈ εF (F) correspond to a configuration of F .
Let (E,`E , ConE) be the replete GES corresponding to F and (E′,`E′ , ConE′) the replete
GES corresponding to εF (F). We now need to show that any consistent set X ′ ∈ ConG′
correspond to a consistent set X ∈ ConG, and that any enabling X ′ `G′ e′ correspond to
an enabling X `G e.

If X ′ ∈ ConG′ , it exists Y ∈ Conι◦ter◦I(F) such that Y≡ι◦ter◦I(F) ⊇ X ′. Moreover, Y
correspond to a consistent set in ter ◦ I(F), so it correspond to a consistent set Z in F . We

38. This figure use colors in order to be more readable.
39. See 3.3 for more details.
40. If you take an object, apply the right adjoint, then apply the left adjoint, and obtain something isomorphic

to the initial object, then the adjunction is a reflection.
41. If you take an object, apply the left adjoint, then apply the right adjoint, and obtain something isomorphic

to the initial object, then the adjunction is a co-reflection.
42. A way of building it is taking the top extremal realisation corresponding to the initial event. Then, when an

event appear multiple times, replace the down closure of all of them by the down closure of one of them. It give
a top realisation, and by the Property 1.39, we have a top extremal realisation which work, and this realisation
correspond to an equivalent event that does not break the EDC property.

29

have X ′ which correspond to X ⊆ Z ∈ ConG, so X ∈ ConG.

Instead of showing that any enabling X ′ `G′ e′ correspond to an enabling X `G e, we
will show that any non-enabling X 6`G e correspond to a non-enabling X ′ 6`G′ e′. Saying
X 6`G e is saying that ∀Z `G e, Z\X 6= ∅. That mean that for all (R,≤R, nR) ∈ ter ◦ I(F)
such that top(R) = e, R\(X ∪ {e}) 6= ∅. So we have :

∀(R,≤R, nR) ∈ ι ◦ ter ◦ I(F) such that top(R) = e, R\(X ∪ {e}) 6= ∅

After applying the col functor, we have X ′ 6`G′ e′.
The precedent property say, approximatively, that anything that can be expressed with

a replete GES can be expressed with a PES≡ (and also with an EDC). We can find a
characterisation of PES≡ coming from (replete) GES.

AND

OO

� //

AND

OO OO

� //

AND

OO

FF

OR

XX

ZZ

OO OO

YY

FF

OR

XX

ZZ

Figure 21 – Example of the co-unit being an isomorphism

OO

� //

AND

OO

� //

AND

OO OO

OO OO FF

OR

XX

ZZ

OO OO

YY

Figure 22 – Example of the unit not being an isomorphism (the missing property is [Shortcut])

Proposition 2.19 (Characterisation of PES≡ that come from GES).
A PES≡ (P,≤P , ConP ,≡P) come from a GES if and only if :
• (Consistency up to equivalence)

∀X,Y ∈ P(P),


X down closed for ≤P
Y ∈ ConP
X≡P = Y≡P

⇐⇒ X ∈ C(P)

30

• (No multiplicity) ∀p, q ∈ P,
{
p ≡P q
[p) = [q)

=⇒ p = q

• (No inclusion 43) ∀p, q ∈ P, ∀X ∈ P(P),


p ≡P q
X down closed for ≤P
X ⊆ [p)
[q)≡P ⊆ X≡P

=⇒ X = [p)

• (Shortcut 44){
X,Y,X ∪ Y ∈ C(P)
{ei | i ∈ I} = Y≡P \X≡P

=⇒ ∃{ti}i∈I ∈ P I , X∪{ti | i ∈ I} ∈ C(P), ∀i ∈ I, ti ∈ ei

Proof. We remark that [Shortcut] is equivalent to :
X,T ∈ C(P)
X ⊆ T
{ei | i ∈ I} = T≡P \X≡P

=⇒ ∃{ti}i∈I ∈ P I , X ∪ {ti | i ∈ I} ∈ C(P), ∀i ∈ I, ti ∈ ei

If we suppose [Consistency up to equivalence], then, by induction, [Shortcut] is equivalent
to : 

X,T ∈ C(P)
X ⊆ T
{e} = T≡P \X≡P

=⇒ ∃t ∈ e, X ∪ {t} ∈ C(P)

We will first prove that those four properties are needed.
By the way the consistency of the image by ter is defined, we have immediately that a
PES≡ (P,≤P , ConP ,≡P) which come from a GES (E,`E , ConE) respect the [Consistency
up to equivalence] property.
Using the Proposition 1.42, if p ≡P q and [p) = [q), then p and q correspond to the same
top extremal realisation, so are equals, so we have [No multiplicity].
Using the Proposition 1.43, we have the if the [No inclusion] property is broken, then the
corresponding realisation is not extremal. So we have [No inclusion].
We take X,T ∈ C(P), with X ⊆ T and T≡P \X≡P = {e} with e ∈ E. By the Proposi-
tion 2.15, T and X correspond to two extremal realisations (T,≤T , nT) and (X,≤X , nX) of
E, so T≡ ∈ C(E), and so T≡\{e} `E e. We can create (X ∪{e},≤X∪{e}, nX∪{e}) the realisa-
tion obtained from X by adding e as a top element. By the Proposition 1.39, we can extract
a top extremal realisation t from (X ∪ {e},≤X∪{e}, nX∪{e}), and by the Proposition 1.42,
we have that X ∪ {t} ∈ C(P). So we have [Shortcut].
No, we will prove that those four properties characterise PES≡ which come from a GES.
More precisely, we will prove that if we apply col and then ter, we obtain something
isomorphic. We take (P,≤P , ConP ,≡P) a PES≡ respecting the four properties, and we
note (E,`E , ConE) the GES obtained after col. We will try to build an isomorphism
between P and ter(E), it is equivalent to build an isomorphism F between C(P) and
{(R,≤R, nR) extremal realisation of E}.
We define the function F : C(P)→ POM(E) where POM(E) corresponds to all the POM
on E (up to isomorphism), by F : X 7→ (X,≤X , nX) with nX : p → {p}≡ and ≤X=≤P
restricted to X. We have immediately that for all X ∈ C(P), F (X) is a realisation of E.
Using the characterisation of extremal realisations (Proposition 1.43), and by [No multipli-
city] and [No inclusion], we have that for all X ∈ C(P), F (X) is an extremal realisation of
E.
Using [No multiplicity], and doing a trivial induction on C(P), we have that F is injective.

43. We recall that [p]≡P = {{p̃}≡P | p̃ ≤P p}.
44. This property say in the idea that there always exists a path which use at most one element by equivalence

classes.

31

In order to prove that F is the expected isomorphism, we need to prove that for all extremal
realisation (R,≤R, nR) of E, there exists X ∈ C(P) such that F (X) = (R,≤R, nR). We will
prove it by induction on the order between extremal realisations.
We take (R,≤R, nR) and extremal realisation such that every extremal realisation lesser (for
�sub) is reached by F .
If (R,≤R, nR) is not a top extremal realisation, we can wrote it as an union of lesser top ex-
tremal realisations (by the Proposition 1.42). Each of those realisations have an antecedent
by F . Using [Consistency up to equivalence], and the definition of col, the union of those ante-
cedent is a configuration X ∈ C(P). By the way F is defined, we have F (X) = (R,≤R, nR).
If (R,≤R, nR) is a top extremal realisation, with Top(R) = r, we define (R\{r},≤R\{r}
, nR\{r}) the realisation corresponding to (R,≤R, nR) without its top, and we have Y ∈ C(P)
such that F (Y) = (R\{r},≤R\{r}, nR\{r}). Because (R,≤R, nR) is a realisation, we have
nR(R) configurations of E. By the definition of col, we have Z ∈ P(P) down-closed such
that Z≡P = nR(R), and W ∈ ConP such that W≡P = nR(R). By [Consistency up to equi-
valence], Z ∈ C(P).
We have {nR(r)} = Z≡P \Y≡P , so by [Shortcut] (with T = Z ∪ Y ∈ C(P) by [Consistency
up to equivalence]), we have t ∈ nR(r) such that Y ∪ {t} ∈ C(P).
F (Y ∪ {t}) coincide with (R,≤R, nR) except, possibly, for the top element of (R,≤R, nR)
which may not be a top element for F (Y ∪ {t}. But (R,≤R, nR) is extremal, and by the
[Minimal] property of the characterisation of extremal realisations (Proposition 1.43), the
top element cannot be enabled with less elements, so F (Y ∪ {t}) = (R,≤R, nR).
So F is an isomorphism.
Corollary 2.20 (Characterisation of PES≡ that come from GES).
An EDC (P,≤P , ConP ,≡P) come from a GES if and only if :
• (Consistency up to equivalence)

∀X,Y ∈ P(P),


X down closed for ≤P
Y ∈ ConP
X≡P = Y≡P

⇐⇒ X ∈ C(P)

• (No multiplicity) ∀p, q ∈ P,
{
p ≡P q
[p) = [q)

=⇒ p = q

• (No inclusion) ∀p, q ∈ P, ∀X ∈ P(P),


p ≡P q
X down closed for ≤P
X ⊆ [p)
[q)≡P ⊆ X≡P

=⇒ X = [p)

• (Weak Shortcut)
X,Y,X ∪ Y ∈ C(P)
X,Y unambiguous
{ei | i ∈ I} = Y≡P \X≡P

=⇒ ∃{ti}i∈I ∈ P I , X∪{ti | i ∈ I} ∈ C(P), ∀i ∈ I, ti ∈ ei

Where unambiguous configurations are configurations X such that

p, q ∈ X & p ≡P q =⇒ p = q

.

Proof. By remarking that if p break the [EDC property], and q ≥P p, then q break the [EDC
property], and using the Proposition 2.19, we have that those four properties are needed for
begin an EDC which come from a GES.
We take an EDC (P,≤P , ConP ,≡P) which respect those properties, and we define (E,`E
, ConE) the image by col.

32

As in the proof of the Proposition 2.19, we define the function F : C(P) → POM(E), and
we have in the same way that F is injective and for all X ∈ C(P), F (X) is an extremal
realisation.
We remark 45 that the proof of the surjectivity of F still work : by using the EDC property,
we can take our configuration unambiguous.

45. The proof will be written properly in [WV15].

33

G
E

S

≡
P

E
S
≡

E
D

C
≡

w
ea

k

E
D

C
≡

E
D

C
≡

no
t

P
E

S
≡

P
E

S
E

D
C

w
ea

k
E

D
C

E
D

C
no

t

≡
G

E
S ≡

G
E

S
≡

pu
ll

ba
ck

hi
di

ng

In
cl

us
io

n
fu

nc
to

r
F

am

≡
F

am
≡≡

F
am

Figure 23 – The composite adjunction.

34

3 More properties on Event Structures

3.1 Pull-back
A pull-back is a categorical construction used to synchronise two objects (relatively to a

third one). In the case of event structures, a pull-back of two event structures 46 correspond
to a superposition of the constrains (causal dependencies, inconsistency, ...).
We will see in the Definition 4.1 how to use event structures in order to represent games
and strategies. Pull-backs and hiding are needed in order to define the notion of composition
of strategies.
Definition 3.1 (Pull-back). Let A, B, C, and P be four objects of a same category C. Let
fA : A → C, fB : B → C, gA : P → A and gB : P → B be four morphisms. 47 We say that
(P, gA, gB) is the pull-back of (A, fA) and (B, fB) relatively to C if :
• fA ◦ gA = fb ◦ gB

• ∀(P ′, g′A, g′B) such that fA ◦ g′A = fb ◦ g′B , ∃!ϕ : P ′ → P,

{
gA ◦ ϕ = g′A

gB ◦ ϕ = g′B

∀P ′

g′A

��

g′B

��

∃! ϕ

��
P

gA !!gB}}
A

fA !!

B

fB}}
C

When the pull-back (P, gA, gB) exists, it is unique (up to isomorphism).
If C is an enriched category for ≡, we define bi-pull-packs as pull-backs in C/≡. Bi-pull-backs
are unique up to equivalence 48

Property 3.2 (Existence of pull-backs). We consider a category C ∈ {GES, Fam, GES≡,
Fam≡, PES≡, EDCweak, EDC, EDCnot, PES}.
C has bi-pull-backs.
If C 6= PES≡ and C 6= EDCweak, then C has pull-backs.
We recall that pull-backs (and bi-pull-backs) are preserved by right adjoint.

Proof. We can define without problems the pull-back on GES≡ and GES, and deduce a
pull-back on Fam and Fam≡. Then, by the adjunction (and using the fact that the left
adjoint is the inclusion) we have a by-pull-back on PES≡, EDCweak, and EDC. For EDC,
we can proof that the by-pull-back corresponds to a pull-back, and deduce a pull-back on
EDCnot and recover the well-known pull-back on PES.
See [WV15] for more precisions. (Paper in progress)

EDC supports both hiding and pull-backs, but they have to be done carefully because
these two operations do not commute with each other. The Figure 25 and the Figure 26 show
that, on EDC, depending if we hide neutral events 49 before doing the pull-back, or after

46. The third event structure correspond to the part that is common between the two others.
47. When the category has a notion of total morphism and partial morphism, only total morphisms are taken.
48. An equivalence relation between morphisms induce an equivalence relation between objects : A ≡ B ⇐⇒
∃f : A→ B, ∃g : B → A, g ◦ f ≡ idA.
49. The notion of polarities on events is useful for game and strategies, but have no consequences here. The

example use event structure with polarities (and maps that respects all condition for being strategies) in order to
show that adding polarities does not solve the problem.

35

E

C // D

B

OO

// A

OO

|| ""

E E

C // D C // D

B A B

OO

// A

OO

"" ||

E

C // D

B A

Figure 24 – Example of a pull-back on prime event structures.

doing it, we can have different results. We do not have this problem on EDCnot and on
PES.

36

+ + + +

−

OO

−

OO

−

OO

−

OO

+

OO

+

OO

� hiding // +

OO

+

OO

0

OO

EE

0

OO

YY

−

OO

−

OO

−

OO

−

OO

�� ��

+ + +

−

OO

− −

+

OO

+

OO

+

OO

0 0

OO

EE

0

OO

YY

− − −

OO

−

OO

�� ��

+

−

+

OO

0

− −

Figure 25 – If we apply the pull-back before the hiding.

37

+ + + +

−

OO``

−

OO >>

+

OO

+

OO

−

OO

II

−

OO

UU

�� ��

+ + +

−

OO

− −

+

OO

+

OO

+

OO

− − −

OO

EE

−

OO

YY

�� ��

+

−

+

OO

− −

Figure 26 – If we apply the pull-back after the hiding.

38

3.2 Relations instead of functions
A lot of things also work with relations instead of functions.

Definition 3.3 (Relational maps on GES≡).
For a function f : A→ P(B), and for X ⊆ A, we define f(X) =

⋃
x∈X

f(x) ∈ P(B).

A relational map between the GES≡ (G,`G, ConG,≡G) and the GES≡ (G′,`G′ , ConG′ ,≡G′
) is a function 50 f : G→ P(G′) such that :
• (All or Nothing) ∀a ≡G b ∈ G, [f(a) = ∅ ⇐⇒ f(b) = ∅]
• (Preserve Equivalence) ∀a ≡G b ∈ G, ∀a′ ∈ f(a), ∀b′ ∈ f(B), a′ ≡G′ b′
• (Locally equiv-Injective) ∀X ∈ ConG, ∀a 6≡G b ∈ X, ∀a′ ∈ f(a), ∀b′ ∈ f(b), a′ 6≡G′ b′
• (Preserve Configurations) ∀X ∈ C(G), f(X) ∈ C(G′)

The last properties imply :
• (Preserve Consistency) ∀X ∈ ConG, f(X) ∈ ConG′
• (Preserve Enabling) 51 ∀a ∈ G, ∀a′ ∈ f(a), ∀X `G a, f(X ∪ {a}) `G′ a′

Definition 3.4 (Equivalence on relational maps). We will say that two relational maps of
GES≡ f and g are equivalent if they do the same thing up to equivalence. That means, if
f, g : (G,`G, ConG,≡G)→ (H,`H , ConH ,≡H), then f ≡ g if and only if :
• ∀a ∈ G, ∀b ∈ f(a), ∃b̃ ∈ g(a), b ≡H b̃
• ∀a ∈ G, ∀b̃ ∈ g(a), ∃b ∈ f(a), b̃ ≡H b

Property 3.5.

• (1) All the enriched categories are still enriched categories if we use relational maps
instead of functional maps.

• (2) All the enriched adjunctions between GES, Fam, GES≡, and Fam≡ work in the
same way.

• (3) All the enriched adjunction between PES≡, EDCweak, EDC and EDCnot comple-
tely disappear 52

• (4) The ≡-adjunction between Fam≡ and PES≡ remain.

Proof. The proof of (1) and (2) is similar to the functional case.
For (4), we can easily create counter example of this shape :

50. We can also see f as a binary relation between G and G′.
51. The ∪{a} is here to represent the fact that an events can need equivalent events to be enabled.
52. It mean that there is no adjunctions, and no ≡-adjunctions based on the initial enriched adjunction.

39

B C B C

//

A

OO

A

DD

A

ZZ

_

��

_

��

B C C

//

A

OO

A A

Figure 27 – Problem with relational maps between EDCweak and EDC : we can lose the [All
or Nothing] property.

The proof of (3) is quite complicated, because the notion of realisation too strong and
have to be re-written. So we will only describe the different steps of the proof.
We call pre-realisation a weak version of a realisation where we allow to have cycles (so we
have a pre-order) and infinite down-closures (in order to allow infinite cycles).
The image of a realisation by a relational map is a pre-realisation. Contrary to the functional
case, we do more that just changing the name function : if an event e is mapped to N events,
then we duplicate the elements that have the name e in N different copy (corresponding to
the N images), and we put this copy in a same cycle (in infinite cases, it can create infinite
cycles, but we always have a finite number of cycles).
Then we have to prove that there exists at least one realisation lesser than this pre-
realisation, by �fun. We can prove it by a trans-finite induction (the fact that there is
a finite number of cycle, and that replete GES≡ have finite enabling, are the main argu-
ment).
Then, the properties corresponding to the functional cases can be extended in order to finish
the proof.

40

4 Games and Strategies
We will use PES in order to models games, and EDC to models strategies 53. It is an

extension of [RW11], which was using only PES. We will define strategies as pre-strategies
which are stable by composition by the copy-cat strategy, and deduce from this abstract
definition all intuitive properties of a strategy. 54

4.1 Games and pre-strategies
We use PES to models games. Events correspond to player (polarity ⊕) or opponent

(polarity) moves. The partial order and the consistency correspond to rules of the game.
Definition 4.1 (Game).
A game is PES (A,≤A, ConA) with a polarity function p : A→ {⊕,	}.
Definition 4.2.
For a game A, the dual game A⊥ corresponds to the game with reversed polarities.
For two games A and B, the parallel game A || B corresponds to the disjoint union of the
two games.

A strategy corresponds to a set of restriction that the player put on his own moves.
He can, for example, choose to never do a particular move. Intuitively, we know that the
player is not allowed to restrict opponent moves 55, but determining what is exactly allowed
is not simple. Pre-strategy allow any kind of restrictions, and we will define strategies as
pre-strategies that have good properties.
Definition 4.3 (Pre-strategy).
We say that (S, σ) is a pre-strategy on the game A if S is an EDC and σ : S → A is a
map 56 of EDC which respect polarities.

+ + +
σ //

−

OO

−

OO

− −

Figure 28 – Example of a pre-strategy σ : S → A

4.2 Composition of pre-strategies
We will define the notion of "pre-strategy from one game to another". They can be seen

as compiler which translate any pre-strategy of the first game in a pre-strategy of the second
game.
Definition 4.4 (Pre-strategy from one game to another). We say that (S, σ) is a pre-strategy
from the game A to the game B if (S, σ) is a pre-strategy on the game A⊥ || B.

In order to use those pre-strategies as compiler, we need to be able to "apply" them to
pre-strategy of the first game. More generally, we will define composition of pre-strategies. 57

We will do the composition by synchronising (with a pullback and with hiding) the two pre-
strategies.

53. We should be able to use EDC for both games and strategies, but some details seems more complicated.
54. For example, the player cannot forbid opponent moves, but can choose to restrict his own moves.
55. If an opponent move is allowed by the rules, nothing can prevent the opponent to do it.
56. The P ES A is view as an EDC with the equality for ≡A.
57. An application of a function can be seen as a particular case of a composition.

41

Definition 4.5 (Composition of pre-strategies). We take σ : S → A⊥ || B and τ : T →
B⊥ || C.
• We extend σ with the identity to σ′ : S || C → A⊥ || B || C.
• We extend τ with the identity to τ ′ : A⊥ || T → A⊥ || B⊥ || C.
• If we forget polarities of the events of B, both σ′ and τ ′ are pre-strategies on A⊥ || B0 || C.
• We define (P, pS , pT) as the pullback of (S || C, σ′) and (A⊥ || T, τ ′) relative to A⊥ || B0 || C.
• We define τ ? σ : P → A⊥ || B0 || C as τ ? σ = σ′ ◦ pS = τ ′ ◦ pT .
• We define (H, τ ◦σ) as the pre-strategy on the game A⊥ || C corresponding to (P, τ ? σ)

after hiding the events of B.
H

τ◦σ

ss

P

ww ''

_
hiding

OO

τ?σ

��

S || C
σ′

&&

A⊥ || T
τ ′

ww
A⊥ || B0 || C

Proposition 4.6 (The composition is well defined). The composition of pre-strategies,
defined as a pullback followed by a hiding, is always defined and is associative.

Proof. See [WV15] for more precisions. (Paper in progress)

4.3 Copy-cat and strategies
We defined composition of pre-strategies, but we did not talk about the existence of a

pre-strategy corresponding to the identity. The nearest thing to the identity is the copy-
cat pre-strategy. Copy-cat on A is defined on A⊥ || A and corresponds to the idea "If my
opponent do a move, then I do the symmetric move". Graphically, it correspond to adding
arrow from 	 moves to the corresponding ⊕ moves.
Definition 4.7 (Copy-cat). For a game A, the copy-cat pre-strategy (CCA, γA) from A to
A is defined as below :
• (Moves) CCA = A× {0, 1}

• (Polarities) pCCA :
{

(e, 1) 7→ pA(e)
(e, 0) 7→ −1× pA(e)

• (Partial order)

(e, s) ≤CCA (e′, s′) ⇐⇒



s = s′ & e ≤A e′

OR

s 6= s′ & e = e′ & pCCA(e) = 	
OR

∃a, b ∈ CCA, (e, s) <CCA a ≤CCA b <CCA (e′, s′)
• (Consistency) (X × {0}) ∪ (Y × {1}) ∈ ConCCA ⇐⇒ X ∈ ConA & Y ∈ ConA
In most cases where a pre-strategy corresponds to what we would want intuitively to be

a strategy, copy behave as the identity on it.
Definition 4.8 (Strategy). We say that (S, σ) is a strategy from the game A to the game
B if (S, σ) is a pre-strategy from A to B and if σ ◦ γA = σ = γB ◦ σ (up to isomorphism).
We say that (S, σ) is a strategy on A if (S, σ) is a strategy from ∅ to A.

Proposition 4.9 (Characterization of a strategy). A pre-strategy (S, σ) on A is a strategy
if and only if :

42

+ −oo

−

OO

// +

OO

−

DD

// +

ZZ

+ −oo

A⊥ A

Figure 29 – Example of a copy-cat on a game A.

+ + +

−

OO

−

OO

σ:S→A // −

+

OO

+

OO

+

OO

−

OO

−

OO

− −

Figure 30 – Example of a strategy σ : S → A

• (≡-injectivity 58) σ(s1) = σ(s2) =⇒ s1 ≡S s2
• (-receptivity 59)

X ∈ C(S)
σ(X) ∪ {a} ∈ C(A)
pA(a) = 	

=⇒ ∃s ∈ S ≡S ,
{
X ∪ {s} ∈ C(S)
σ(s) = a

• (No 	-redundancy)
s1 ≡S s2

pS(s1) = 	(= pS(s2))
[s1) ⊆ [s2)

=⇒ s1 = s2

• (⊕-consistency)
X ∈ ConS ⇐⇒ [X⊕] = {s ∈ S | ∃x ∈ X, s ≤S x & pS(x) = ⊕} ∈ ConS

• (Innocence)

58. We recall that the equivalence relation on A is the equality.
59. Using the ≡-injectivity, we have the fact that all the possible s are equivalents.

43

s1 ≤S s2 =⇒ ∃t1, t2 ∈ S, s1 ≤S t1 ≤S t2 ≤S s2,


σ(t1) ≤A σ(t2)
OR

pS(t1) = 	 & pS(t2) = ⊕

Proof. See [WV15] for more precisions. (Paper in progress)
This characterisation means that :
• (≡-injectivity) Even if maps of EDC allow us to merge inconsistent (and non-equivalent)

events, we cannot do it in a strategy.
• (-receptivity) We cannot restrict the set of possible moves for the opponents.
• (No 	-redundancy) We cannot duplicate opponent moves without any reason.
• (⊕-consistency) Inconsistency comes from players moves, it means that we cannot put

consistency restriction on opponent moves.
• (Innocence) We can only add dependencies from opponent moves to players moves, it

means that we cannot put causal restrictions on opponents moves, nor between players
moves.

Those conditions correspond to the intuitive definition of a strategy, except for the restric-
tion "we cannon put causal restrictions between players moves".

This restriction comes from the fact that the copy-cat strategy does not exactly corres-
pond to want we would want. The intuitive copy-cat is "if the opponent do a move, we do
immediately after the symmetric move", whereas our copy-cat is "if the opponent do a move,
we are allowed to do the symmetric move". There is two main difference : the symmetric
move is allowed but not forced, and there is no "reaction window" for the player so the
opponent can chain multiple moves without allowing the player to react 60.
If we extend event structures with the notion of "forced moves" and "immediate reaction",
the extra restriction would probably disappear.

If we consider a team of player instead of a unique player, this impossibility of putting
causal dependencies between players corresponds to a restriction of communications between
players (which have a meaning in the case of distributives games).

60. We can without problems imagine a opponent who plays one move and then plays another move which
make impossible to play symmetrically.

44

5 Examples and counter-examples
Following examples could help to understand why some properties are needed.

5.1 About the choice of the different categories
5.1.1 The All-or-Nothing property on maps

This following example shows that the image by col of a map which does not respect the
[All or Nothing] property can give a map which does not preserves enabling.

c1 c2 c1

f //

a

OO

b

OO

a

OO

b

_

col

��

_

col

��

C C

OR
col(f) //

A

EE

B

YY

A

FF

B

Here, {B} ` A in the initial event structure, but ter(f)({B}) 6` ter(f)(A).

5.1.2 The equivalence relation between maps
To have an adjunction, we need to have a unique map image by ter of the following

map :
c c

AND
f // OR

a

DD

b

ZZ

a

FF

b

XX

But we have two possible choices :

c c

AND
ter(f) //

a

DD

b

ZZ

a

OO

b

OO

Or :
c c

AND
ter(f) //

a

DD

b

ZZ

a

OO

b

OO

45

So we need to say that the two possibles maps are essentially the same, this means we need
an equivalence relation between maps.

5.1.3 No consistency condition on the definition of equivalence between
maps

We define f ≡ g if and only if :
• D(f) = D(g)
• ∀a ∈ G, f(a) ≡H g(a)
But we would want to add a consistency condition, which mean f ≡ g if and only if :
• D(f) = D(g)
• ∀a ∈ G, f(a) ≡H g(a)
• {f(a), g(a)} ∈ ConH
Unfortunately, this relation is not transitive :

B

e //

A C

Here, the map f : e 7→ {A} is equivalent to the map g : e 7→ {B}, which is equivalent
to the map h : e 7→ {C}. But with the definition with consistency, we have f 6≡ h because
{A,C} /∈ ConH .

5.1.4 Using replete GES and GES≡

We use Fam and Fam≡, which correspond to replete GES and replete GES≡, because
the fact that enabling are not necessarily down-closed can cause some problems.
If we do not take the replete condition on GES, then the co-unit εE (between GES and
EDC) is not an isomorphism :

C C

B

??

εE // B

==

AND

A

gg

A

hh

XX

46

If we do not take the replete condition on GES≡, the col functor does not work as we want :

D

C

AND

OO

D

2 col

99

A B

OO

\\

C1

OO

C2hh

AND �
col ◦ replete

%%

D

A

OO

B

OO

C

AND

OO

A

@@

B

OO

\\

Here, we take a non-replete GES≡, that mean that D does not need A to be enabled,
but need C1 which need A, so their is no configurations with D and without A. We lose
this information by col. If we first complete the GES≡ by transitivity (action which should
change nothing to the result 61), then we preserve this information by col.

61. Configurations correspond to all possible states of the system, and if two system have the same possible
states (and the same relation between them), they should have the same behaviour. Completing by transitivity
the enabling does not change configurations, so it should not change the behaviour.

47

5.1.5 We cannot use only surjectives maps
The image by ter of a surjective map can be not surjective :

c c

f // OR

a

DD

b a

EE

b

YY

_
ter

��

_
ter

��

C C

AND
ter(f) //

A

DD

B

ZZ

A

OO

B

OO

5.2 About the definition of ter
5.2.1 Irreducible configurations

d D1 D2

AND

c

>>

� ter // C1

AND

OO

C1

OO

OR

a

EE

b

YY

[[

A

OO

B

OO

WW

Here, the event D1 represent d being enabled by a, b, and c, and the event D2 represent
d being enabled by b and c. So D1 seems useless.

If you look at irreducible configurations 62, we build directly, in this case, ter(G) without
the "useless" event. But using irreducible configurations instead of top extremal realisation
causes problems in general :

First, you sometimes need to create multiple copy of the same irreducible (disambiguation

62. A configuration is irreducible if it not the union of strictly smaller configurations.

48

step), for example in this case :

d D1 D2

c

AND

OO

� ter // C1

AND

OO

C1

AND

OO

OR

a

FF

CC

b

XX

[[

A

OO

GG

B

OO

WW

This disambiguation step can be very complicated (or can fail, depending the way you
defined it) in some more complicated cases :

T

α

??

β

AND

OO

γ

``

M

__

AND

OO >>

A

>>AND

OO

B

OR

OO

EE

C

`` AND

OO

Second, the "useless" event is not useless, it is needed for ter being a pseudo-functor. In
fact, without this event, we have image of some maps which does not respect the [All or

49

Nothing] property :

d d

c

AND

OO

f // c

AND

OO

OR OR

a

EE

AA

b

ZZ

]]

a

EE

b

ZZ

]]

_
ter

��

_
ter

��

D1 D2 D1 D2

C1

AND

OO

C1

AND

OO

ter(f) // C1

AND

OO

C1

OO

A

OO

CC

B

OO

[[

A

OO

B

OO

ZZ

So using irreducible configurations does not work.

5.2.2 An inductive construction of ter
In the idea, the ter pseudo-functor duplicate events, making on copy for each way of

enable it. We can do it inductively, duplicating events for each of its minimal enabling :

AND

OO

� //

AND

44

OR

XX

� //

AND

@@ OO

FF

OR

XX

^^

OO OO

HH

OO OO

WW

In fact, one can prove that, at each step of this algorithm, the realisations of the event
structure are the same, except for the name function. You can also prove that extremal
realisation of the initial event structure remain extremal at each step.

Unfortunately, in some cases, you can create new extremal realisations. 63 For example :

63. By changing the name function, some elements of a realisation which use to have the same name can now
have different names. If there is no loops, and if we do the inductive operation from the root to the top, no
supplementary extremal realisations shall be created.

50

A
OR // B

99
C

yy
D

OR
oo

3

algoyy

�

ter %%

A // B1 // C1 A // B1 // C1

B2

C2oo Doo B2 C2oo Doo

C3

In this example, the algorithm can build two different event structures, depending of the
order of the iteration of the inductive step, an each of the event structure has one more
event comparing to ter. This event correspond to a realisation which was not extremal, but
became extremal.

An important point is that the new extremal realisations always break the EDC pro-
perty 64, so we can make without problems an inductive definition of the functor from Fam≡
to EDC.
Definition 5.1 (The dup operation). We take a replete 65 GES≡ (G,`G, ConG,≡G). We
take e ∈ G.

(G,`G, ConG,≡G) dupe7−−−→ (G′,`G′ , ConG′ ,≡G′)
Where :
• X = {X ∈ P(G) | X `µG e}
• G′ = (G\{e})] X

• n : G′ → G :
{
a ∈ G 7→ a

a ∈ X 7→ e

• a ≡G′ b ⇐⇒ n(a) ≡G n(b)
• X ∈ ConG′ ⇐⇒ n(X) ∈ ConG

• X `G′ a ⇐⇒


a ∈ G & n(X) `G a

OR

a ∈ X & n(X) ⊇ a
So we duplicate the event e for each of his minimal enabling (and each copy have now a
unique way of being enabled).

You can define a symmetric operation, which allow to compute the col functor in an
inductive way. 66

Definition 5.2 (The merge operation). We take a replete 67 GES≡ (G,`G, ConG,≡G).
We take E ∈ G≡G .

(G,`G, ConG,≡G) mergeE7−−−−−→ (G′,`G′ , ConG′ ,≡G′)

64. p, p′ ≤ q & p ≡ p′ =⇒ p = p′.
65. The dup operation should be defined on Fam≡, but it is easier to describe it on replete GES≡.
66. No problems with this direction.
67. The merge operation should be defined on Fam≡, but it is easier to describe it on replete GES≡.

51

Where :
• G′ = (G\E)] {E}

• n : G→ G′ :
{
a /∈ E 7→ a

a ∈ E 7→ E
• a′ ≡G′ b′ ⇐⇒ ∃a ∈ n−1(a′), ∃b ∈ n−1(b′), a ≡G b
• X ′ ∈ ConG′ ⇐⇒ ∃X such that n(X) = X ′, X ∈ ConG

• X ′ `G′ a′ ⇐⇒ ∃X such that n(X) = X ′,


a′ ∈ G & X `G a′

OR

a′ = E & ∃e ∈ E , X `G e
So we merge all the events of E.

5.2.3 Multi-sets for Realisations
The fact that we need to allow to have multiple time the same event in a realisation is

not obvious. In fact, if you forget Fam≡ , and just take the ≡-adjunction between GES
and EDC, you never need multi-sets. But is you want ter to be well-defined on Fam≡, you
have to find a image of this function f : P → Q :

F F

AND AND

D

CC

E

[[

D

DD

E

ZZ

f //

C1

OO

C2

OO

C

CC\\

OR

A

OO

B

OO

A

DD

B

ZZ

And more precisely, the top extremal realisation (R,≤R, nR) of P with nR(Top(R)) = F has
to be mapped to a top extremal realisation of Q, and this realisation has to use multi-sets.

5.3 About the unit η between PES≡ and GES

5.3.1 The col functor can loose information
The col functor merge events, and we can lose some informations about the initial event

structure.
B1 B2 B

� col //

A

ZZ

A

Here, we lose the order. More precisely, in the replete GES≡, we can do A then B1, or B2
and then we cannot do A. In the replete GES, we can do A then B, but we also can do B

52

then A, which was not possible in the replete GES≡.

B1 B2 B

� col //

A

OO

C A C

Here, the configuration {B,C} in the replete GES correspond to no configurations in the
replete GES≡, so col has created configurations which does not correspond to any previous
configuration.

5.3.2 About the [Shortcut] property
We recall the [Shortcut] property :{
X,Y,X ∪ Y ∈ C(P)
{ei | i ∈ I} = Y≡P \X≡P

=⇒ ∃{ti}i∈I ∈ P I , X ∪ {ti | i ∈ I} ∈ C(P), ∀i ∈ I, ti ∈ ei

The following example shows an PES≡ P with ter ◦ col(P) 6= P (up to isomorphism),
because P does not respect the [Shortcut] property, and an PES≡ Q which is a completion
of P with the [Shortcut] property. We have ter ◦ col(Q) = Q (up to isomorphism).

D2 D1 D2

C1 C1

OO

C1

AND

OO

C1

OO

A

OO

B

OO

A

OO

B

OO

XX

This example give the meaning of the [Shortcut] property, which look like a forward
symmetry property :
If an event (D2) need an other event (C2), then there is a copy of the first event (D1) for
each event equivalent to the second event (C1).

This is a simplification of the real [Shortcut] property. You can find multiple exceptions
to this simple rule :

D1 D2

C1 C1

OO

A

OO

]]

B

OO

This event structure is stable by ter ◦ col, but the event C1 is never needed for enable an
event equivalent to D2. The reason is that something lesser than [C1], here {A}, can enable
an event equivalent to D2. We have another example of this case :

53

A // B1 // C1

B2 C2oo Doo

This event structure is stable by ter ◦ col. Here, there is no event equivalent to C1 which
need B2, because B2 need an event equivalent to C1 to be enabled.

D2

C1 C1

OO

A

OO

B

OO

This event structure is stable by ter ◦ col, but the event C1 is never needed for enable
an event equivalent to D2. The reason is that {C1, D2} is inconsistent.

References
[NPW81] Mogens NIELSEN, Gordon PLOTKIN and Glynn WINSKEL. Petri net, event

structures and domains, part 1. Theorical Computer Science 13 (1981) 85-108,
North-Holland Publishing Company.

[RW11] Silvain RIDEAU and Glynn WINSKELL. Concurrent Strategies. LICS 2011,
ISBN : 978-0-7695-4412-0, pp : 409-418

[W15] Glynn WINSKELL. On Probabilistic Distributed Strategies. Invited paper. IC-
TAC 2015.

[WV15] Glynn WINSKELL and Marc de Visme. Strategies with parallel causes. Draft,
2015

54

