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Abstract

The paper considers an extension of concurrent games with a payoff, i.e. a numerical value resulting from
the interaction of two players. We extend a recent determinacy result on concurrent games [5] to a value
theorem, i.e. a value that both players can get arbitrarily close to, whatever the behaviour of their opponent.
This value is not reached in general, i.e. there is not always an optimal strategy for one of the players (there is
for finite games). However when they exist, we show that optimal strategies are closed under composition,
which opens up the possibility of computing optimal strategies for complex games compositionally from
optimal strategies for their component games.
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1 Introduction

Games are a well-established tool in mathematics, economics, logic, and of course
computer science: in the latter, two-player games in particular are very widely used
to model situations where an agent (e.g. a program) interacts with its environment
(e.g. the user, the operating system). For instance, researchers in game semantics
[9] have managed to build very precise (fully abstract [1,8]) models of higher-order
programming languages with various computational effects. Another particularly
rich line of work has been the application of game-theoretic tools for algorithmic and
verification purposes: one expresses a desirable property of a system as a game, and
reduces the satisfaction of this property to the existence of a “good” strategy for this
game. Here, the meaning of “good” can be either qualitative (positions are winning
or losing, with each player wanting to reach a winning position) or quantitative
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(positions have a given payoff, with both players trying to maximize their payoff).
For these purposes, one generally wants the games considered to be determined :
qualitatively, this means that one of the players necessarily has a winning strategy,
and quantitatively that the game has a well-defined value that well-chosen strategies
can reach or get arbitrarily close to. For this reason, the classes of games considered
for these purposes generally enjoy determinacy : the most well-known such result
is Martin’s famous theorem [12] stating that for sequential, tree-like games whose
winning positions form a Borel set, one of the players must have a winning strategy.
It is well-known that Martin’s theorem generalizes to the quantitative setting if the
game is zero-sum, i.e. in each position the payoffs of the two players sum to zero.
In the last decade, there has been a growing interest in extensions of these games
with concurrency. One very successful definition of (turn-based) concurrent games
has been proposed by Henzinger, de Alfaro et. al. [3,4,7]: their games are based on
Blackwell games [13], where at any point, the next state is decided by a function
of parallel choices of both players. In these games, the pure strategy determinacy
result of sequential games is weakened into a mixed strategy determinacy, where
strategies are allowed to make probabilistic choices.

However in semantics, models of concurrent processes generally allow a more
liberal, non turn-based form of concurrency. Starting with the work of Petri, many
have come to advocate a view of concurrency based on partial orders, specifying
the causal dependency between events—see [16] for an early summary of Petri’s
work and its relation with domain theory. Following this approach, several notions
of concurrent games have been proposed as a basis for denotational semantics: in
terms of closure operators [2] or asynchronous transition systems [15]. Recently,
Winskel and Rideau introduced a more general setting for concurrent games [17]. It
is based on the notion of event structure [18], a partial order of causal dependency
on events with a consistency relation expressing nondeterministic choice. In the
present paper, it is this framework that we will refer to as concurrent games. We
showed in [5] that in this setting qualitative determinacy is satisfied for well-founded
games meeting a structural condition called race-freedom expressing that moves of
one player do not directly interfere with moves of the other. Here, we consider an
extension of concurrent games with zero-sum payoff, and show a generalization of
the qualitative determinacy result of [5] to a quantitative one. As the reader will
see this is not a trivial exercise and requires a much finer analysis than for the
qualitative case.

Note that we obtain pure strategy determinacy – our strategies do not make
probabilistic choices, although they can act non-deterministically. There is an ap-
parent contradiction with the line of work based on Blackwell games mentioned
above, since they only have mixed strategy determinacy. This is due to a crucial
difference between the two settings: in our games, no progess assumption is made
and strategies can legitimately choose not to play, possibly resulting in a deadlock
if both strategies choose to do so. We argue that this is a desirable property, since
very often in computer science we have to deal with systems that might not termi-
nate. However from the game theory perspective, this implies that Blackwell games
are not instances of our zero-sum concurrent games. (They do fit into our general
framework however—see [20].)
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We also investigate quantitative features with respect to the compositional struc-
ture of concurrent games. In sequential games, strategies can be composed using
a form of parallel composition and a hiding operation to make internal play in-
visible. This fact (first remarked on by Conway and emphasised by Joyal [10] in
his analysis of Conway’s work [6]) is seldom used in economics and algorithmics.
However, it is at the very heart of game semantics, the compositional analysis of
programs and programming languages in terms of games and strategies. Our con-
current games are compositional; in fact, the main result of [17] was to define and
characterise strategies for which composition behaves well (i.e. is associative, and
has identities). Not only is compositionality a prerequisite for building denotational
models of programming languages (as they organize naturally as categories, see e.g.
[11]), but it is also a very successful general approach for proving properties of com-
plex programs. Adapting the earlier work on concurrent strategies, we show here
that optimal strategies are stable under composition, thus building a bicategory of
optimal strategies. This is a significant step towards a compositional analysis of
optimal strategies: instead of modeling complex behaviours as payoff functions and
then computing values and optimal strategies, construct complex optimal strategies
by composition from elementary ones. Extensions with payoff should also prove
useful for purely semantic purposes: pay-off is a powerful notion that allows us to
express familiar winning strategies—as strategies of positive value—as well as more
arcane game-theoretic notions, such as well-bracketing [14].

In Section 2, we recall the framework of concurrent games originally presented
in [17]. In Section 3, we show how to enrich these concurrent games with payoff and
introduce the notion of value of games and strategies. In Section 4, we prove the
main result of our paper, the value theorem. Finally in Section 5, we investigate the
compositional aspects of payoff games; in particular we show that optimal strategies
are stable under composition and form a bicategory.

2 Preliminaries

2.1 Event structures

An event structure comprises (E,≤,Con), consisting of a set E, of events which are
partially ordered by ≤, the causal dependency relation, and a nonempty consistency
relation Con consisting of finite subsets of E, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con

The configurations, C∞(E), of an event structure E consist of those subsets x ⊆ E
which are

Consistent: ∀X ⊆ x. X is finite⇒ X ∈ Con , and

Down-closed: ∀e, e′. e′ ≤ e ∈ x⇒ e′ ∈ x.
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Often we shall be concerned with just the finite configurations of an event structure.
We write C(E) for the finite configurations of an event structure E.

Two events which are both consistent and incomparable w.r.t. causal depen-
dency in an event structure are regarded as concurrent. In games the relation of
immediate dependency e _ e′, meaning e and e′ are distinct with e ≤ e′ and
no event in between, will play an important role. For X ⊆ E we write [X] for
{e ∈ E | ∃e′ ∈ X. e ≤ e′}, the down-closure of X; note if X ∈ Con, then [X] ∈ Con
is a configuration and in particular each event e is associated with a prime config-
uration [e].

Notation 1 Let E be an event structure. We use x−⊂y to mean y covers x in
C∞(E), i.e. x ⊂ y in C∞(E) with nothing strictly in between, and x

e
−−⊂ y to mean

x∪{e} = y for x, y ∈ C∞(E) and event e /∈ x. We use x
e
−−⊂ , expressing that event

e is enabled at configuration x, when x
e
−−⊂ y for some y.

Definition 2.1 Let E and E′ be event structures. A (partial) map of event
structures f : E → E′ is a partial function on events f : E ⇀ E′ such that
for all x ∈ C∞(E) its direct image fx ∈ C∞(E′) and ∀e1, e2 ∈ x, f(e1) =
f(e2) (with both defined) ⇒ e1 = e2 . (It is sufficient to verify the above condi-
tions just for finite configurations x ∈ C(E).)

Maps of event structures compose as partial functions, with identity maps given
by identity functions. We will say the map is total if the function f is total; then f
restricts to a bijection x ∼= fx for x ∈ C∞(E).

Definition 2.2 We define the following two process operations.

• Products. The category of event structures has products A×B with projections
Π1 to A and Π2 to B. The effect is to introduce arbitrary synchronisations
between events of A and events of B in the manner of process algebra.

• Restriction. The restriction of an event structure E to a subset of events R,
written E � R, is the event structure with events E′ = {e ∈ E | [e] ⊆ R} and
causal dependency and consistency induced by E.

Using these two operations, we can obtain a notion of synchronized compo-
sition. Synchronized compositions play a central role in process algebra, in such
seminal work as Milner’s CCS and Hoare’s CSP. Synchronized compositions of event
structures A and B are obtained as restrictions A×B �R. We obtain pullbacks as
a special case. Let f : A → C and g : B → C be maps of event structures. Defin-
ing P to be A×B � {p ∈ A×B | fΠ1(p) = gΠ2(p) with both defined}, we obtain a
pullback square

P
Π1

��~~~~~~~ ?� Π2

  @@@@@@@

A

f ��@@@@@@@ B

g
~~~~~~~~~

C
in the category of event structures. When f and g are total the same construction
gives the pullback in the category of event structures with total maps.
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Some technology—for instance that of stable families [19]—is needed to con-
struct and analyze products, synchronized compositions and pullbacks. For the
purposes of this paper the following characterization of the pullback of total maps
will be sufficient. By a finitary partial order is meant a partial order where every
element dominates only finitely many elements. (The characterization follows from
the construction of pullbacks in event structures from those in stable families [19].)

Proposition 2.3 . Let P,Π1,Π2 be the pullback of total maps f : A → C and
g : B → C in the category of event structures. Configurations C∞(P ) correspond to
the composite bijections

θ : x ∼= fx = gy ∼= y

between configurations x ∈ C∞(A) and y ∈ C∞(B) s.t. fx = fy for which the
transitive relation generated on θ by taking

(a, b) ≤ (a′, b′) if a ≤A a′ or b ≤B b′

is a finitary partial order—we call such θ secured bijections. The correspondence
takes z ∈ C∞(P ) to the secured bijection got as the composite θz : Π1z ∼= fΠ1z =
gΠ2z ∼= Π2z and respects inclusion. A fortiori, Π1z = π1θz and Π2z = π2θz, where
π1 and π2 are projections to the first and second components of the pairs in θz.

Definition 2.4 Let (E,≤,Con) be an event structure. Let V ⊆ E be a subset of
‘visible’ events. Define the projection of E on V , to be E↓V =def (V,≤V ,ConV ),
where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V .

2.2 Concurrent strategies

2.2.1 Event structures with polarity
Both a game and a strategy in a game are to be represented using event structures
with polarity, which comprise (E, pol) where E is an event structure with a polarity
function pol : E → {+,−} ascribing a polarity + (Player) or − (Opponent) to its
events. The events correspond to (occurrences of) moves. Maps of event structures
with polarity are maps of event structures which preserve polarities.

Definition 2.5 We define the following two simple operations on event structures
with polarity.

• Dual. The dual, E⊥, of an event structure with polarity E comprises the same
underlying event structure E but with a reversal of polarities.

• Simple parallel composition. Let A and B be event structures with polarity.
The operation A‖B simply juxtaposes disjoint copies of A and B, maintaining
their causal dependency and specifying a finite subset of events as consistent if it
restricts to consistent subsets of A and B. Polarities are unchanged.

The constructions previously introduced for event structures generalize directly
in the presence of polarities.

2.2.2 Pre-strategies
Let A be an event structure with polarity, thought of as a game; its events stand for
the possible occurrences of moves of Player and Opponent and its causal dependency
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and consistency relations stand for the constraints imposed by the game. A pre-
strategy represents a nondeterministic play of the game—all its moves are moves
allowed by the game and obey the constraints of the game; the concept will later
be refined to that of strategy. A pre-strategy in A is defined to be a total map
σ : S → A from an event structure with polarity S. Two pre-strategies σ : S → A

and τ : T → A in A will be essentially the same when they are isomorphic, i.e. there
is an isomorphism θ : S ∼= T such that σ = τθ; then we write σ ∼= τ .

Let A and B be event structures with polarity. Following Joyal [10], a pre-
strategy from A to B is a pre-strategy in A⊥‖B, so a total map σ : S → A⊥‖B.
We write σ : A + //B to express that σ is a pre-strategy from A to B. Note that a
pre-strategy σ in a game A, e.g. σ : S → A, coincides with a pre-strategy from the
empty game ∅ to the game A, i.e. σ : ∅ + //A.

2.2.3 Composing pre-strategies
We present the composition of pre-strategies via pullbacks. Given two pre-strategies
σ : S → A⊥‖B and τ : T → B⊥‖C, ignoring polarities we can consider the maps on
the underlying event structures, viz. σ : S → A‖B and τ : T → B‖C. Viewed this
way we can form the pullback in the category of event structures as shown below

A ‖ T
idA‖τ

&&LLLLLLLLLL

P �
?

Π2

==zzzzzzzzz

Π1 !!DDDDDDDDD A ‖ B ‖ C //A ‖ C

S ‖ C
σ‖idC

88rrrrrrrrrr

where the map A‖B‖C → A‖C is undefined on B and acts as identity on A and
C. The partial map from P to A‖C given by the diagram above (either way round
the pullback square) factors as the composition of the partial map P → P ↓ V ,
where V is the set of events of P at which the map P → A‖C is defined, and a
total map P ↓ V → A‖C; the partial map acts as identity on V and is undefined
otherwise, and the total map as f . The resulting total map gives us the composition
τ�σ : P ↓ V → A⊥‖C once we reinstate polarities.

Identities w.r.t. composition are given by copy-cat strategies. Let A be an event
structure with polarity. The copy-cat strategy from A to A is an instance of a
pre-strategy, so a total map γA : CCA → A⊥‖A. It describes a concurrent strategy
based on the idea that Player moves, of positive polarity, always copy previous
corresponding moves of Opponent, of negative polarity. For c ∈ A⊥‖A we use c to
mean the corresponding copy of c, of opposite polarity, in the alternative component.
Define CCA to comprise the event structure with polarity A⊥‖A together with the
extra causal dependencies generated by c ≤CCA

c for all events c with polA⊥‖A(c) =
+. A finite subset of CCA is consistent if its down-closure w.r.t. ≤CCA

is consistent in
A⊥‖A. The copy-cat pre-strategy γA : A + //A is defined to be the map γA : CCA →
A⊥‖A where γA acts as the identity function on the common set of events.
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2.2.4 Strategies
The main result of [17] is that two conditions on pre-strategies, receptivity and in-
nocence, are necessary and sufficient for copy-cat to behave as identity w.r.t. the
composition of pre-strategies. Receptivity ensures an openness to all possible moves
of Opponent. Innocence restricts the behaviour of Player: Player may only intro-
duce new relations of immediate causality of the form 	_ ⊕ beyond those imposed
by the game.

Definition 2.6 • Receptivity. A pre-strategy σ is receptive iff

σx
a
−−⊂ & polA(a) = − ⇒ ∃!s ∈ S. x

s
−−⊂ & σ(s) = a .

• Innocence. A pre-strategy σ is innocent when it is both
+-innocent: if s _ s′ & pol(s) = + then σ(s) _ σ(s′), and
−-innocent: if s _ s′ & pol(s′) = − then σ(s) _ σ(s′).
A strategy is a receptive and innocent pre-strategy.

Theorem 2.7 (from [17]) Let σ : A + //B be pre-strategy. Copy-cat behaves as
identity w.r.t. composition, i.e. σ ◦ γA ∼= σ and γB ◦ σ ∼= σ, iff σ is receptive and
innocent. Copy-cat pre-strategies γA : A + //A are receptive and innocent.

Theorem 2.7 motivated the definition of a strategy as a pre-strategy which is
receptive and innocent. In fact, we obtain a bicategory, Games, in which the
objects are event structures with polarity—the games, the arrows from A to B are
strategies σ : A + //B and the 2-cells are maps of spans. The vertical composition of
2-cells is the usual composition of maps of spans. Horizontal composition is given
by the composition of strategies � (which extends to a functor on 2-cells via the
universality of pullback).

2.2.5 Interaction
In this paper, we will be particularly interested in the results of the interaction
between a strategy σ : S → A and a counter-strategy τ : T → A⊥ in order to
determine the resulting payoff. Unlike the composition τ�σ where the interaction
of σ and τ are hidden, it is the status of the configurations in C∞(A) their full
interaction induces which decides the resulting payoff. Ignoring polarities, we have
total maps of event structures σ : S → A and τ : T → A. Form their pullback,

P
Π1

zzuuuuuuu
?�

Π2

$$IIIIIII

S

σ ##HHHHHH T

τzzvvvvvv

A ,

to obtain the event structure P resulting from the interaction of σ and τ . Because
σ or τ may be nondeterministic there could be several maximal configurations in
C∞(P ). Define the set of results of the interaction of σ and τ to be

〈σ, τ〉 =def {σΠ1z | z is maximal in C∞(P )} .

For any two strategies σ : S → A and τ : T → A⊥, maximal configurations
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C∞(P ) correspond to maximal secured bijections—see Proposition 2.3. The set of
such maximal secured bijections, the possible interactions of σ and τ , is denoted
by [σ, τ ]. In particular, for any x ∈ C∞(A) we have x ∈ 〈σ, τ〉 iff there exists a
witness θ ∈ [σ, τ ] such that x = σπ1θ. We explore a little further the nature of such

witnesses. Say that x is +-maximal if for all x
a
−−⊂ , then pol(a) = −. Because

σ and τ are receptive, maximality of z ∈ C∞(P ) amounts to +-maximality of Π1z

and Π2z. Accordingly, finding a witness θ ∈ [σ, τ ] amounts to finding θ a secured
bijection for which π1θ and π2θ are +-maximal.

3 Concurrent games with payoff

We begin the core of the paper, the treatment of payoff in concurrent games. R
denotes R ∪ {−∞,+∞}, the reals extended with a minimum and maximum.

Definition 3.1 A concurrent game with payoff is a triple (A, κ+
A, κ

−
A), where

A is a concurrent game and κ+
A, κ

−
A : C∞(A)→ R are payoff functions.

Throughout this paper, we will only consider zero-sum concurrent games, i.e.
for all z ∈ C∞(A), κ−A(z) = −κ+

A(z). It follows that our games with payoff will be
described by a concurrent game and its payoff function κA = κ+

A : C∞(A)→ R. We
extend the usual constructions on concurrent games to games with payoff.

Definition 3.2 • Dual. If A is a concurrent game with payoff, then the payoff
function on A⊥ is defined by κA⊥(x) = −κA(x), for x ∈ C∞(A⊥).

• Parallel composition. If A,B are concurrent games with payoff, then the payoff
function on A ‖ B is defined by κA‖B(x) = κA(x1) + κA(x2), where x1 ∈ C∞(A)
is the projection of x on A and x2 ∈ C∞(B) is the projection of x on B.

We now turn to the definitions leading to the value of a game. Since games
and strategies are nondeterministic, these definitions come in two variants: the
optimistic describing the outcome of a game if all the nondeterministic choices are
in favour of Player, and the pessimistic describing the dual case, when all of those
choices are in favour of Opponent. One of the main result of the paper will be
that for race-free well-founded games (to be defined below), the two corresponding
notions of value coincide.

Definition 3.3 We define the optimistic (↑) and pessimistic (↓) results of an
interaction, and values of a strategy and of a game, as follows. Here, σ is a strategy
on A and τ is a counter-strategy (a strategy on A⊥), and the notation σ : A signifies
a strategy σ : S → A.

r↑(σ, τ) = supx∈〈σ,τ〉 κA(x) r↓(σ, τ) = infx∈〈σ,τ〉 κA(x)

v↑(σ) = infτ :A⊥ r
↑(σ, τ) v↓(σ) = infτ :A⊥ r

↓(σ, τ)

v↑(A) = supσ:A v
↑(σ) v↓(A) = supσ:A v

↓(σ)

We say that a game A has a value if v↑(A) = v↓(A) = −v↓(A⊥) = −v↑(A⊥):
the optimistic and pessimistic values coincide, and commute with (−)⊥. The com-
mutation with (−)⊥ is a form of minimax property, since the order of quantification
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on strategies is reversed in v(A) and −v(A⊥), whereas the coincidence of the opti-
mistic and pessimistic value deals with nondeterminism. Note that not all games
have a value:

Example 3.4 Take the game A = 	 /o/o/o ⊕ with two events of opposite polarities
conflicting with each other, along with κ(∅) = 0, κ({⊕}) = 1 and κ({	}) = −2.
Then it is easy to prove that v↑(A) = 1, v↓(A) = −2, v↑(A⊥) = 2 and v↓(A⊥) = −1.

Example 3.5 The example above suggests a simple relationship between v↓(A)
and v↑(A⊥) but this is not always the case. For example, consider the infinite game
A comprising the event structure with polarity

	 ⊕1
� ,,2⊕2

� ,,2⊕3
� ,,2· · · � ,,2⊕n

� ,,2· · ·

where κ(∅) = 0, κ({⊕1, . . . ,⊕n}) = −n, κ({⊕1, . . . ,⊕n}∪ {	}) = n, κ({⊕1, . . .}) =
+∞ and κ({⊕1, . . .} ∪ {	}) = −∞. Then, one can establish the following values:

v↓(A) = 0 v↓(A⊥) = −∞

v↑(A) = +∞ v↑(A⊥) = −∞

These values are a bit subtle to establish, so we detail the proofs in the Appendix.

The first example features a race, where both players compete for the same
resource, whereas the second example is not well-founded : the game allows infinite
configurations. These brings us to the two following definitions, that will be crucial
to get the value theorem.

Definition 3.6 An event structure S is well-founded if all its configurations are

finite. A game A is race-free if for all x ∈ C(A) such that x
a
−−⊂ and x

a′

−−⊂ with
pol(a) = − and pol(a′) = +, we have x ∪ {a, a′} ∈ C(A).

Definition 3.7 Let A be a concurrent game with payoff, and x ∈ C∞(A). Let A/x
be the residual of A after x, comprising

• events, {a ∈ A \ x | x ∪ [a]A ∈ C∞(A)},
• consistency relation, X ∈ ConA/x ⇔ X ⊆f A/x & x ∪ [X]A ∈ C∞(A),
• causal dependency, the restriction of that on A.

Define κA/x : C∞(A/x) → R by taking κA/x(y) = κA(x ∪ y). Finally, define
(A, κA)/x = (A/x, κA/x). When x is a singleton {a}, we shall generally write
A/a instead of A/{a}. Finally, we will often write v↑(x) (resp. v↓(x)) for v↑(A/x)
(resp. v↓(A/x)) when A is understood from the context.

4 The value theorem

In this section, we prove the value theorem on concurrent games. The proof proceeds
in two steps. First, we exhibit key constructions on strategies and the study the
results of their interactions. This analysis will allow us to characterize the values of
all positions of the game. Exploiting well-foundedness of the game, we will deduce
the sought-for value theorem.
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4.1 Constructions on strategies

In “glueing” strategies together it is helpful to assume that all the initial negative
moves of the strategies are exactly the same, and indeed coincide with the initial
negative moves of the game:

Lemma 4.1 Let σ : S → A be a strategy. Then there exists a strategy σ′ : S′ → A

with σ ∼= σ′, for which

∀s′ ∈ S′. polS′ [s
′]S′ = {−} ⇒ σ′(s′) = s′ . (†)

Proof. As a consequence of receptivity and negative innocence [17], whenever ∅ ⊆−
y in C(A) there is a unique x ∈ C(S) so that ∅ ⊆− x & σx = y . Consequently,
the map σ induces an order isomorphism w.r.t. inclusion between configurations
x ∈ C(S) where ∅ ⊆− x and y ∈ C(A) where ∅ ⊆− y. The order isomorphism
restricts to an order isomorphism between prime configurations. It follows that σ
is bijective between events s ∈ S− and events a ∈ A−. This bijection extends to a
bijective renaming of events of S to those of S′. 2

Henceforth we will assume all strategies satisfy the property (†). In particular,
its adoption facilitates the definition of a ‘sum’ of strategies in a game.

Proposition 4.2 Let σi : Si → A, for i ∈ I, be strategies (assumed to satisfy
(†)). W.l.o.g. we may assume that whenever indices i, j ∈ I are distinct then so are
those events of Si and Sj which causally depend on a positive event (otherwise we
could tag such events by their respective indices). Define S to be the event structure
with events

⋃
i∈I Si, causal dependency s ≤S e′ iff s ≤Si e

′, for some i ∈ I, and
consistency X ∈ ConS iff X ∈ ConSi, for some i ∈ I. Defining []i∈I σi(s) = σi(s) if
s ∈ Si yields a strategy []i∈I σi : S → A.

Proof. Pre-strategy. Follows from the observation that for any x ∈ C(
⋃
i∈I Si)

there is i ∈ I such that x ∈ C(Si). Therefore preservation of configuration and local
injectivity directly follow from those properties for the σis.

Receptivity. Trivial, since (†) is preserved by union and implies receptivity.
Innocence. For any s1, s2 ∈

⋃
i∈I Si, if s1 _ s2 then there is i ∈ I such that

s1, s2 ∈ Si and s1 _ s2 in Si as well. Therefore if pol(s1) 6= − or pol(s2) 6= +
then by innocence of σi we have σi(s1) _ σi(s2) as well, therefore ([]i∈I σi)(s1) _
([]i∈I σi)(s2) and []i∈I σi is innocent. 2

The next construction takes a strategy σ on a game A/a, where a is a minimal
positive event of game A, and creates a strategy on A that starts by playing a, then
resumes as σ.

Proposition 4.3 Suppose A is a race-free game such that ∅
a
−−⊂ with pol(a) = +.

Then for any strategy σ : S → A/a, where w.l.o.g. a /∈ S, there is a strategy
playa(σ) : S′ → A: the event structure S′ comprises

• events, S ∪ {a},
• causal dependency, that on S extended by a ≤S′ s, for s ∈ S, whenever a ≤A σ(s),
• with consistency, X ∈ ConS′ iff X ∩ S ∈ ConS,

and playa(σ)(s) = σ(s), for s ∈ S, with playa(σ)(a) = a.

10
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Proof. It is easy to check that S′ is an event structure and that playa(σ) is a
total map of event structures which preserves polarity. Innocence is inherited from
σ. That it is receptive follows from the race-freedom of A: Let x ∈ C(S′) and

playa(σ)x
a′

−−⊂ where a′ ∈ A and pol(a′) = −. If a ∈ x then receptivity condition for
playa(σ) follows directly from that of σ. If a /∈ x then x ∈ C(S) and playa(σ)x = σx.

From the race-fredom of A we deduce that σx
a′

−−⊂ in A/a. Again the receptivity
condition for playa(σ) follows from that of σ. 2

Given a strategy on σ on a residual game A/a, where a is an initial negative
event of A, we can create a strategy on A that awaits a, then resumes as σ.

Proposition 4.4 Suppose A is a game such that ∅
a
−−⊂ with pol(a) = −. Then for

any strategy σ : S → A/a, where w.l.o.g. a /∈ S, there is a strategy waita(σ) : S′ →
A: the event structure S′ comprises

• events, S ∪A−, where A− =def {a′ ∈ A | polA[a′]A ⊆ {−}},
• causal dependency, that on S and A− extended by a ≤S′ s, for s ∈ S, whenever
a ≤A σ(s) or pol(s) = +,

• with consistency, X ∈ ConS′ iff X ∩ S ∈ ConS & waita(σ)X ∈ ConA,

where waita(σ)(s′) is defined to be σ(s′) if s′ ∈ S, otherwise s′.

Proof. By innocence, the causal dependencies on S and A− agree where they
overlap. As a /∈ S, by assumption, we obtain a partial order ≤S′ from the definition
above. It is routine to check that S′ is an event structure.

Observe that if σ(s) ∈ A− then s ∈ S−, for all s ∈ S: otherwise there would be
a maximal positive event on which s causally depended, contradicting −-innocence
of σ.

In checking that waita(σ), clearly a total function, is a map of event structures it
is straightforward to show that the image of a configuration x ∈C(S′) is down-closed
in A. By definition waita(σ) preserves consistency, so waita(σ)x is also consistent
and in C(A). Suppose now s1, s2 ∈ x with waita(σ)(s1) = waita(σ)(s2). If both
s1, s2 ∈ S then σ(s1) = σ(s2) so s1 = s2 as σ is map of event structures. Otherwise,
either s1 /∈ S or s2 /∈ S. If both s1 /∈ S and s2 /∈ S, then s1 = s2, directly from
the definition of waita(σ). Otherwise, w.lo.g. suppose s1 ∈ S and s2 /∈ S. Then
σ(s1) = s2 and s2 ∈ A−. By the observation above, s1 ∈ S−. But σ is assumed
to satisfy (†), so σ(s1) = s1 = s2. The function waita(σ) is indeed a map of event
structures.

The map waita(σ) clearly preserves polarity. The construction preserves the
innocence inherited from σ. We show receptivity. Suppose x ∈ C(S) and

waita(σ)x
a′

−−⊂ in A where a′ has negative polarity. Consider first the case when

a′ ∈ A−. Then it can be checked that x ∪ {a′} ∈ C(S′). This yields x
a′

−−⊂ with
waita(σ)(a′) = a′. To show uniquesness, assume waita(σ)(s′) = a′. If s′ /∈ S

we obtain waita(σ)(s′) = s′ = a′. If on the other hand, s′ ∈ S we obtain
waita(σ)(s′) = σ(s′) = a′ ∈ A−. By the observation, s′ ∈ S− and σ(s′) = s′ as
σ satisfies (†), and again s′ = a′.

In the case where a′ /∈ A− there must be a1 ≤A a′ with pol(a1) = +. Hence there

11
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is s1 ∈ x, with pol(s1) = +, such that σ(s1) = a1. From the causal dependency of

S′ we must have a ∈ x. It follows that x \ {a} ∈ C(S) and σ(x \ {a})
a′

−−⊂ in A/a,
whereupon receptivity of σ ensures the required receptivity condition for waita(σ).2

We will make use later of the following extension of the notion of residual from
games to strategies:

Definition 4.5 Let σ : S → A be a strategy and x ∈ C∞(S). Define the function
σ/x : S/x→ A/σx to be the restriction of σ. In the case where x is a singleton {s},
we shall generally write σ/s instead of σ/{s}.

Proposition 4.6 For σ : S → A a strategy and x ∈ C∞(S), the function σ/s :
S/s→ A/σ(s) is a strategy.

Proof. A straightforward check. 2

4.2 Interactions between the constructed strategies

Let A be a game with payoff κA and σ : S → A and τ : T → A⊥ be strategies.
The set of values resulting from their interaction is given by {κAx | x ∈ 〈σ, τ〉},
which we generally write as κ〈σ, τ〉 when the game is clear from the context. We
use 〈σ, τ〉+ =def {x ∈ 〈σ, τ〉 | + ∈ pol x} for the configurations in 〈σ, τ〉 containing
events of positive polarity. In this subsection, we analyse the possible interactions
between the strategies constructed above, and prove a sequence of key lemmas.

Lemma 4.7 Let A be a well-founded race-free game with payoff. Let σ : S → A

and τ : T → A⊥ be strategies. Then:

κ〈σ, τ〉 = {−v | v ∈ κ〈τ, σ〉}

Proof. Straightforward by definition of κA⊥ . 2

Lemma 4.8 If the game A is well-founded and race-free,

κ〈 []
i∈I

σi, τ〉 ⊆
⋃
i∈I

κ〈σi, τ〉 κ〈 []
i∈I

σi, τ〉+ =
⋃
i∈I

κ〈σi, τ〉+

Proof. First, we prove that κ〈[]i∈I σi, τ〉 ⊆
⋃
i∈I κ〈σi, τ〉. Take y ∈ 〈[]i∈I σi, τ〉.

Necessarily, there is a secured bijection θ ∈ [[]i∈I σi, τ ] such that σπ1θ = y. By
definition of []i∈I σi, there is i ∈ I such that π1θ ∈ Si. It follows that θ ∈ [σi, τ ],
therefore y ∈ 〈σi, τ〉 as well.

Likewise if y ∈ 〈σi, τ〉 with a positive event, take its witness θ ∈ [σi, τ ]. We have
θ ∈ [[]i∈I σi, τ ]: in particular maximality follows from that of θ in [σi, τ ]. Indeed,
since y has a +-event, this event is only consistent with events in Si, hence any
extension of θ must be compatible with Si. 2

Lemma 4.9 If A is race-free and well-founded, then,

κ〈playa(σ), τ〉 = κ〈σ, τ/a〉

Proof. First we prove that κ〈playa(σ), τ〉 ⊆ κ〈σ, τ/a〉. Take y ∈ 〈playa(σ), τ〉 and
its witness θ ∈ [playa(σ), τ ] such that y = playa(σ)π1θ.

12
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We first prove that a ∈ y. Indeed, suppose a 6∈ y. Then, we have π1θ ∈
C(S′) (with S′ = S ∪ {a} and playa(σ) : S′ → A, by definition of playa(σ)) with
a 6∈ π1θ. By definition of playa(σ) that immediatly implies that π1θ ∈ C(S), and
playa(σ)π1θ = σπ1θ. But since σ : S → A/a we have y = playa(σ)π1θ ∈ C(A/a), so

y ∪ {a} ∈ ConA and y
a
−−⊂ , since a is minimal in A. This implies that π2θ

a
−−⊂ by

receptivity, and we also have π1θ
a
−−⊂ by definition of S′. It is immediate that

θ′ = θ ∪ {(a, a)}

is a secured bijection extending θ between y ∪ {a} and π2θ ∪ {a}, contradicting the
maximality of θ.

Therefore, a ∈ y, so we have (a, a) ∈ θ. Set θ′ = θ \ {(a, a)}. First, we note that
π1θ
′ = y \ {a} ∈ C(S). Indeed it is down-closed (≤S′ being conservative over ≤S for

events distinct from a), and consistent (since y \ {a} = y ∩ S ∈ ConS by definition
of ConS′). Likewise we have π2θ

′ = π2θ \ {a} ∈ C(T/a) (with τ : T → A⊥), by
definition of T/a. Moreover θ′ is still a secured bijection. Finally it is maximal.
Indeed, suppose θ′∪{(s, t)} is a valid extension of θ′. Then θ∪{(s, t)} would also be
a valid extension of θ, by definition of S′ and T/a. But that contradicts maximality
of θ, so θ′ ∈ [σ, τ/a]. Since κA/a(σπ1θ

′) = κAy, we have proved the inequality.
We now turn to the other inequality. Take y ∈ κ〈σ, τ/a〉 along with its witness

θ ∈ [σ, τ/a]. Then setting θ′ = θ ∪ {(a, a)} it is direct by definition of S′ and T/a

that we have π1θ
′ ∈ C(S′) and π2θ

′ ∈ C(T ). It is a bijection, and is maximal since
any extension (s, t) would also be a valid extension for θ. Therefore θ′ ∈ [playa(σ), τ ]
with κA(playa(σ)π1θ

′) = κA/aσπ1z = κA/a(y). 2

Lemma 4.10 We have the following equalities between strategies:

playa(σ)/a = σ waita(σ)/a = σ

Proof. Trivial. 2

Lemma 4.11 If A is well-founded and race-free, then,

κ〈waita(σ), τ〉 ⊇
⋃

t:τ(t)=a

κ〈σ, τ/t〉 κ〈waita(σ), τ〉+ =
⋃

t:τ(t)=a

κ〈σ, τ/t〉+

Proof. We start with the left-to-right inclusion. Take y ∈ 〈waita(σ), τ〉 (supposed
to have positive events) along with its witness θ ∈ [waita(σ), τ ]. Since y has positive
events it must contain a, because positive events in S′ are set to depend on a.
Therefore there is some t ∈ T such that τ(t) = a and (a, t) ∈ θ. Defining θ′ =
θ \ (a, t), we still have a secured bijection and we have π1θ

′ = π1θ \ {a} ∈ C(S) by
definition of S′ (with waita(σ) : S′ → A), and likewise π2θ

′ = π2θ \ {t} ∈ C(T/t).
Moreover θ′ is maximal: any extension (s′, t′) would still hold on θ. Indeed suppose
that θ′ ∪ {(s′, t′)} is a valid extension of θ′. Then we have π1(θ′ ∪ {s′}) ∈ C(S), so
π1(θ′∪{s′, a}) ∈C(S′): it is down-closed because π1(θ′∪{s′}) is down-closed in S and
by definition of S′, and consistent because (π1(θ′∪{s′, a}))∩S = π1(θ′∪{s′}) ∈ ConS
and waita(σ)(π1(θ′∪{s′, a})) = σ(π1(θ′∪{s′}))∪{a} ∈ C(A) (since σ(π1(θ′∪{s′})) ∈
C(A/a)). Likewise, π2(θ′ ∪ {t′}) ∈ C(T/t) so obviously π2(θ′ ∪ {t′, t}) ∈ C(T ). We
have established that θ′ ∈ [σ, τ/t], with κA/a(π1θ

′) = κA(π1θ).

13
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Reciprocally take t ∈ T such that τ(t) = a, and y ∈ 〈σ, τ/t〉 with its witness
θ ∈ [σ, τ/t]. Then it is direct to prove that θ′ = θ ∪ {(a, t)} ∈ [waita(σ), τ ], and
κ((waita(σ))π1θ

′) = κ(y) by definition of κ on A/a. Moreover if y had a positive
event, so has (waita(σ))π1θ

′. 2

From this follow two important corollaries. Firstly, if a is an initial positive
event of A we have κ〈playa(σ),waita(τ)〉 = κ〈σ, τ〉; two strategies, one playing a
move and the other waiting for the move, synchronise. This immediately follows
from the Lemmas 4.9 and 4.10. Secondly, the following additional construction will
be crucial. For (ei)i∈I the family of negative minimal events of A and strategies
σi : Si → A/ei, we define casei∈Iσi =def []i∈I waiteiσi. Roughly, this strategy waits
for an input ei and then proceeds as σi; though the full story is subtle as two
distinct events ei and ej may be consistent with each other and the strategies σi
and σj overlap. Then, we have:

Corollary 4.12 Setting casei∈Iσi = []i∈I waitai(σi), and if τ : T → A⊥ is such that
T has a minimal +-event, then.

κ〈casei∈Iσi, τ〉 ⊆
⋃

i∈I,t:τ(t)=ai

κ〈σi, τ/t〉 κ〈casei∈Iσi, τ〉+ =
⋃

i∈I,t:τ(t)=ai

κ〈σi, τ/t〉+

If T has no +-minimal event, then κ〈casei∈Iσi, τ〉 = {κ(∅)}.

Proof. We apply the following reasoning, putting all the previous lemmas together:

κ〈casei∈Iσi, τ〉= κ〈 []
i∈I

waitai(σi), τ〉

⊆
⋃
i∈I

κ〈waitai(σi), τ〉

⊆
⋃
i∈I

(
⋃

t:τ(t)=ai

κ〈σi, τ/t〉)

All these inclusions become equalities when restricted to configurations with a pos-
itive event. 2

In the lemmas above and this corollary, in all the cases where we have inclusions
instead of equalities this is by necessity. For instance with the case construction
above, a configuration in 〈σi, τ〉, by definition a maximal configuration of the pull-
back of σi and τ , although it reappears as a configuration of the pullback of casei∈Iσi
and τ , may no longer be maximal so fail to contribute to 〈casei∈Iσi, τ〉.

4.3 Values of these constructions

Lemma 4.13 For any race-free well-founded game A, a a minimal +-event of A
and σ : S → A/a a strategy, we have:

v↑(playa(σ)) = v↑(σ) v↓(playa(σ)) = v↓(σ)

Proof. We first prove v↑(playa(σ)) ≤ v↑(σ). Let τ : T → A⊥/a, and k ∈
κ〈playaσ,waitaτ〉. By Lemma 4.9, we have k ∈ κ〈σ, (waitaτ)/a〉. By Lemma 4.10,
we have k ∈ κ〈σ, τ〉. Let us now prove v↑(σ) ≤ v↑(playa(σ)). Let τ : T → A⊥, and
k ∈ κ〈σ, τ/a〉. Then by Lemma 4.9 we also have k ∈ κ〈playaσ, τ〉.

We prove v↓(playaσ) ≤ v↓(σ). Let τ : T → A⊥/a and k ∈ κ〈σ, τ〉. By
Lemma 4.10, we have k ∈ κ〈σ, (waitaτ)/a〉. By Lemma 4.9, we also have
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k ∈ κ〈playaσ,waitaτ〉. We prove the converse inequality. Take τ : T → A⊥,
and k ∈ κ〈playaσ, τ〉. By Lemma 4.9 we also have k ∈ κ〈σ, τ/a〉. 2

Lemma 4.14 For any race-free well-founded game A, a strategy σ : S → A and s

a minimal event in S, we have:

v↓(σ) ≤ v↓(σ/s)

Proof. Let τ : T → A⊥/σs, and k ∈ κ〈σ/s, τ〉. If s has positive polarity, then by
Lemmas 4.11 and 4.7, we also have k ∈ κ〈σ,waitσsτ〉. Likewise if s has negative
polarity, then by Lemmas 4.9 and 4.7 we also have k ∈ κ〈σ, playσsτ〉. 2

Lemma 4.15 Suppose A is race-free and well-founded and σ : S → A is a strategy
with a minimal +-event. Let (fj)j∈J be the family of minimal +-events of A. Then,
v↓(σ) ≤ supj∈J v↓({fj}) and v↑(σ) ≤ supj∈J v↑({fj}).

Proof. Pessimistic case. Let s be the minimal +-event of S. Necessarily there
must be j0 ∈ J such that σ(s) = fj0 . By Lemma 4.14, we have v↓(σ) ≤ v↓(σ/s) as
needed.

Optimistic case. If we had the optimistic inequality v↑(σ) ≤ v↑(σ/s) the proof
would be just as straightforward, unfortunately it is not true in general since σ

could have another conflicting minimal +-event. Therefore in the optimistic case
we cannot directly pick a j ∈ J and we are required to think of the problem more
globally, involving classical reasoning.

Suppose that the inequality is false, i.e. supj∈J v↑({fj}) < v↑(σ). This implies
that there is α ∈ R such that supj∈J v↑({fj}) < α and v↑(σ) > α. The first
inequality implies ∀j ∈ J, ∀σ : A/fj , ∃τ ′ : A⊥/fj , ∀k ∈ κ〈σ′, τ ′〉, k < α, which is
easily shown to imply

∀(σm)m∈M , ∃(τa)a∈σM , ∀m ∈M, ∀k ∈ κ〈σm, τσm〉, k <α(1)

where M is the set of positive minimal events in S, and for all m ∈M , σm : A/σm
and τa : A/a. Applying this property to the family of strategies obtained by σm =
σ/m, we get a family of counter-strategies (τa)a∈σM . We extend this family to J by
setting τj to be the empty strategy (closed under receptivity) whenever ej 6∈ σM .
Thus, we get a family (τj)j∈J . Similarly, the second inequality implies that:

∀τ : A⊥, ∃k ∈ κ〈σ, τ〉, k > α.

Applied to τ = casej∈Jτj , we get k ∈ κ〈σ, casej∈Jτj〉 such that k > α. By Corollary
4.12 (and Lemma 4.7), there is m0 ∈M such that we also have k ∈ κ〈σ/m0, τσm0〉.
However, applying (1) to m0 also shows that k < α—a contradiction. Hence, the
required inequality is true. 2

Lemma 4.16 Let A be a race-free well-founded game and (ei)i∈I the family of its
negative minimal events. Then,

min(κ(∅), infi∈I supσ:A/ei
v↓(σ)) ≤ v↓(A)

min(κ(∅), infi∈I supσ:A/ei
v↑(σ)) ≤ v↑(A)

Proof. For as long as possible, we do not distinguish the optimistic and pes-
simistic cases. If the inequality is false, then there is a real α ∈ R such that
min(κ(∅), infi∈I supσ:A/ei

v(σ)) > α > v(A), which in turn implies:
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κ(∅)>α(2)

∀i ∈ I, ∃σi : A/ei, ∀τ : A⊥/ei, r(σi, τ)>α(3)

∀σ : A, ∃τ : A⊥, r(σ, τ)<α(4)

In particular, (3) gives a family (σi)i∈I . Instantiating (4) to casei∈Iσi, we get
τ : T → A⊥ such that r(casei∈Iσi, τ) < α. Reformulating the inequalities above
with this data, we have:

κ(∅)>α(5)
∀i ∈ I, ∀t, τ(t) = ei ⇒ r(σi, τ/t)>α(6)

r(casei∈I , τ)<α(7)

Pessimistic case. Since r↓(casei∈Iσi, τ) < α, there must be y ∈ 〈casei∈Iσi, τ〉 such
that κ(y) < α. If T has no minimal +-event, then necessarily we have y = ∅
(since all the +-events of casei∈Iσi : S′ → A depend on a negative event), therefore
κA(y) = κA(∅) > α—a contradiction. Therefore, T has a minimal +-event. Then by
Corollary 4.12, there is a minimal +-event t ∈ T and τ(t) = ei0 and k ∈ κ〈σi0 , τ/t〉
such that k = κ(y) < α. But this is absurd by (6), so we have found a contradiction.
Optimistic case. By (7) instantiated on the optimistic case we have that for all
k ∈ κ〈casei∈I , τ〉, k < α. Take y ∈ 〈casei∈I , τ〉 (〈casei∈I , τ〉 is non-empty by Zorn’s
lemma). As above, y cannot be empty as that would cause a contradiction, and T

must have a minimal +-event. By Corollary 4.12, there is a minimal +-event t ∈ T
and τ(t) = ei0 and k ∈ κ〈σi0 , τ/t〉 such that k = κ(y) < α, contradicting (6). 2

4.4 Value theorem

Let A be a fixed well-founded and race-free game.

Lemma 4.17 Let x ∈ C(A). Let (ei)i∈I be the family of extensions of x of negative
polarity, and (fj)j∈J be the family of extensions of x of positive polarity. Then,

v↑(x) = max(min(κ(x), inf
i∈I

v↑(x ∪ {ei})), sup
j∈J

v↑(x ∪ {fj}))

v↓(x) = max(min(κ(x), inf
i∈I

v↓(x ∪ {ei})), sup
j∈J

v↓(x ∪ {fj}))

Proof. The reasoning is the same in the optimistic and pessimistic cases, so we do
not distinguish them.
≤. Let σ : S → A/x be a strategy. If there is a minimal event s ∈ S with

pol(s) = +, then v(x) ≤ v(σ) ≤ supj∈J v(x ∪ {fj}) by Lemma 4.15. Otherwise,
there is no such minimal s ∈ S. Then v(σ) ≤ κ(x). Indeed, letting τ : T → A/x be
the empty strategy closed by receptivity, we have 〈σ, τ〉 = {∅} and r(σ, τ) = κ(x).
Similarly taking i0 ∈ I, by Lemma 4.14 we have v(σ) ≤ v(σ/ei0), and therefore
v(σ) ≤ infi∈I v(x ∪ {ei}).
≥. Let us prove that supj∈J v(x ∪ {fj}) ≤ v(x), taking j0 ∈ J and σ : A/(x ∪

{fj0}). Then by Lemma 4.13 we have v(playfj0
σ) = v(σ), so v(σ) ≤ v(x). Finally,

by Lemma 4.16 we have as needed min(κ(x), infi∈I v(x ∪ {ei})) ≤ v(x). 2
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Theorem 4.18 If A is well-founded and race-free then A has a value, i.e. we have:

v↑(A) = v↓(A) v(A) = −v(A⊥)

(Note that the second equality only makes sense because by the first, we can talk in
a non-ambiguous way of the value v(A) of a game A.)

Proof. Let x ∈ C(A) be maximal such that v(A/x) 6= −v(A⊥/x). Let (ei)i∈I be
the family of negative extensions of x and (fj)j∈J its family of positive extensions.
Then,

v(A/x) = max(min(κA(x), inf
i∈I

v(A/(x ∪ {ei}))), sup
j∈J

v(A/(x ∪ {fj})))

= max(min(−κA⊥(x), inf
i∈I
−v(A⊥/(x ∪ {ei}))), sup

j∈J
−v(A⊥/(x ∪ {fj})))

=−min(max(κA⊥(x), sup
i∈I

v(A⊥/(x ∪ {ei}))), inf
j∈J

v(A⊥/(x ∪ {fj})))

=−max(min(κA⊥(x), inf
j∈J

v(A⊥/(x ∪ {fj}))),

min(sup
i∈I

v(A⊥/(x ∪ {ei})), inf
j∈J

v(A⊥/(x ∪ {fj}))))

But for all i0 ∈ I, v(A⊥/(x∪{ei0})) ≤ v(A⊥/x). Indeed take σ : S → A⊥/(x∪{ei0}),
take τ : T → A/x, then by Lemma 4.9 we have κ〈σ, τ/ei0〉 = κ〈playei0

σ, τ〉. Likewise
for all j0 ∈ J we have v(A⊥/x) ≤ v(A⊥/(x∪{fj0})). Indeed take σ : S → A⊥/x and
τ : T → A/(x∪{fj0}), then by Lemma 4.9 (and Lemma 4.7) we have κ〈σ, playfj0

τ〉 =
κ〈σ/fj0 , τ〉. Therefore supi∈I v(A⊥/(x ∪ {ei})) ≤ infj∈J v(A⊥/(x ∪ {fj})), and:

v(A/x) =−max(min(κA⊥(x), inf
j∈J

v(A⊥/(x ∪ {fj}))), sup
i∈I

v(A⊥/(x ∪ {ei})))

=−v(A⊥/x)

—a contradiction. Therefore there is no such maximal x and the property is true
for the empty configuration, thus v(A) = −v(A⊥) since A is well-founded. 2

We say that a strategy σ : S → A is optimal when its pessimistic value is equal
to the value of the game. Note that it also implies that the optimistic value is equal
to the value of the game, since for all σ : S → A we must have v↓(σ) ≤ v↑(σ) ≤ v(A).
It also follows that for optimal strategies, the pessimistic and optimistic values
coincide. When σ is optimal, we will therefore sometimes just write v(σ) for its
value.

Example 4.19 Any well-founded race-free game has a value. However this value is
not necessarily reached: there are games without optimal strategies. Consider the
gameA with events {⊕i | i ∈ N}, pairwise inconsistent, with κ(∅) = 0 and κ({⊕i}) =
i. Its value is +∞ since each positive natural number can be reached, but no strategy
σ satisfies v↓(σ) = +∞ (though the strategy that plays a nondeterministic choice
of natural number satisfies v↑(σ) = +∞).

5 Compositionality of optimal strategies

Finally we study how payoff relates to the composition of strategies. We hope
that thinking compositionally about values and optimal strategies can be helpful
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in computing values and optimal strategies for complex games from smaller ones.
There are two main kinds of composition of strategies. The first is the categorical
composition τ � σ of σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C. The second is parallel
composition σ ‖ τ : S ‖ T → A ‖ B.

We start this section with the following characterisation of the pessimistic value
of strategies.

Proposition 5.1 Let A be a game and σ : S → A a strategy. Then,

v↓(σ) = inf{κ(σx) | x ∈ C(S) +-maximal} .

Proof. ≤. It suffices to show:

∀x ∈ C∞(S) +-maximal, ∃τ : T → A⊥, ∃y ∈ 〈σ, τ〉, κ(y) ≤ κ(σx)

Thus, let x ∈ C∞(S) be +-maximal. Set T = (σx)⊥ with τ : T → A⊥ acting as the
identity on events. τ is obviously innocent but not necessarily receptive, consider
its closure τ ′ : T ′ → A⊥ under receptivity. Define

θ = {(s, σs) | s ∈ x} .

Because σ is a map of event structures it follows that θ is a secured bijection.
It is maximal since x is +-maximal σx is +-maximal in T by construction of T .
Additionally we have π1θ = x ∈ C∞(S) and π2θ = σx ∈ C∞(T ′), and both are
+-maximal by the hypothesis on x and construction of T ′. Therefore θ ∈ [σ, τ ′]. It
follows that σπ1θ = σx ∈ 〈σ, τ ′〉.
≥. It suffices to show that for all τ : T → A⊥/x and y ∈ 〈σ, τ〉 there exists a

+-maximal x ∈ C∞(S) such that κ(σx) ≤ κ(y). Such a y ∈ 〈σ, τ〉 necessarily has a
witness θ ∈ [σ, τ ]. Necessarily x = π1z is +-maximal and κ(σx) = κ(y). 2

From this, we get:

Proposition 5.2 For strategies σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C, we have
v↓(τ � σ) ≥ v↓(τ) + v↓(σ). Likewise for σ : S → A and τ : T → B, we have
v↓(σ ‖ τ) = v↓(σ) + v↓(τ).

For categorical composition, v↓(τ �σ) ≤ v↓(τ) + v↓(σ) does not hold in general,
and neither do the two inequalities in the optimistic case. However, the situation is
different for optimal strategies. To establish this, we first note:

Proposition 5.3 For race-free, well-founded A and B, v(A ‖ B) = v(A) + v(B).

Proof. By the value theorem, it does not matter whether we work on the optimistic
or pessimistic cases. For simplicity, let us pick the pessimistic one. Firstly, we prove
that v(A ‖ B) ≥ v(A) + v(B). Indeed, let σ : S → A and τ : T → B be strategies.
Then, as needed we have v↓(σ ‖ τ) ≥ v↓(σ) + v↓(τ) by Proposition 5.2.

Moreover, this inequality also holds for A⊥ and B⊥, therefore v(A⊥ ‖ B⊥) ≥
v(A⊥) + v(B⊥), from which it follows that v(A ‖ B) ≤ v(A) + v(B) by the value
theorem and the definition of the dual of games with payoff. 2

Theorem 5.4 If σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C are optimal strategies, so
is τ � σ. Moreover copycat is optimal, therefore there is a bicategory of concurrent
games with payoff and optimal strategies.
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Proof. Suppose σ and τ optimal. We reason as follows:

v↓(τ � σ) ≥ v↓(σ) + v↓(τ) = v(A⊥ ‖ B) + v(B⊥ ‖ C) = v(A⊥ ‖ C)

This implies that v↓(τ � σ) = v(A⊥ ‖ C), since a strict inequality would contradict
the definition of v(A⊥ ‖ C).

Any +-maximal x ∈ C(A⊥ ‖ A) has the form y ∪ y, where y ∈ C(A). Moreover,
κA⊥‖A(x) = κA(y) − κA(y) = 0, therefore we have v↓(γA) = 0. However we also
have v(A⊥ ‖ A) = v(A)− v(A) = 0, therefore copycat is optimal. 2

We finish this section by remarking that from the theorem above it follows that
when σ and τ are optimal, we have v(τ � σ) = v(σ) + v(τ), since both sides are
forced by optimality to coincide with the value of the game.

6 Conclusion

We have proved a value theorem for race-free well-founded concurrent games. Note
that this theorem is not an equilibrium theorem since the value is not always reached.
However it is always reached in finite games. In fact our constructions on strategies
give an algorithm to compute the value and optimal strategies for finite games. In
future we plan to investigate the existence and computation of equilibria in the
non-zero-sum case. This will require the extension of our framework to deal with
probabilistic strategies, and should allow us to formulate a better connection with
the concurrent games of [3,7].

We proved that optimal strategies are stable under composition, forming a bi-
category. This compositional structure is worth investigating further. In other
work, we have developed an extension of concurrent games with symmetry, where
events can be duplicated and hence form the basis for a cartesian closed category of
concurrent strategies. We plan to investigate extensions of the present development
in the presence of symmetry, thus providing the basis for a concurrent program-
ming language based on the simply-typed λ-calculus and concurrent operations on
strategies, for which typable terms describe optimal strategies.
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The values for the game of Example 3.5:

v↓(A) = 0 v↓(A⊥) = −∞

v↑(A) = +∞ v↑(A⊥) = −∞ .

Proof. v↓(A). Let σ : S → A be an arbitrary strategy. By Proposition 5.1,
its pessimistic value is inf{κ(σx) | x ∈ C(S) +-maximal}, therefore it suffices
to examine the +-maximal configurations of S of worst payoff. If S admits an
infinite configuration x, then σx contains all the +-events. By receptivity there is
x ⊆ x′ ∈ C∞(S) such that σx′ = A of payoff −∞. Now, suppose S has no infinite
configuration. If S has a +-maximal configuration x containing i +-events but no
−-event, its payoff is κA(σx) = −i. If S has such a configuration for arbitrarily
large i then the value of σ is −∞, otherwise it is −i for i the largest such that S
has a +-maximal configuration containing i +-events and no −-event. Taking the
supremum over all strategies σ, we obtain a pessimistic value of 0, reached by the
empty strategy (closed under receptivity).

v↓(A⊥). Let σ : S → A⊥ be an arbitrary strategy. If all its +-maximal configu-
rations contain no +-event, then the configuration x containing all the −-events is
+-maximal and has value κA⊥(σx) = −∞. If there is a +-maximal configuration
x ∈ C∞(S) containing a +-event s, then there is i such that s depends on the first
i −-events. This means that any +-maximal configuration containing at least i
−-events must contain a +-event as well. So for any j ≥ i, there is a +-maximal
configuration y ∈ C∞(S) containing the first j −-events and a +-event, and hence
has payoff κA⊥(σy) = −j. This is for arbitrary j, so σ has pessimistic value −∞.
Any σ has a pessimistic value of −∞, so A⊥ has a pessimistic value of −∞.

v↑(A). This case is a bit more subtle. Intuitively, one might think that Player
cannot ensure a payoff higher than 0, since he cannot control when -or if - Opponent
will play the −-event. However, using nondeterminism Player can do better and
apply intuitively a family of deterministic sub-strategies. The definition of the
optimistic value will ensure that the most favorable such sub-strategy is always
selected in an interaction.

Define S as having the following events and causality:

S = {	,
⊕2,1

⊕3,1 _ ⊕3,2

⊕4,1 _ ⊕4,2 _ ⊕4,3

. . . ,

⊕ω,1 _ . . . _ ⊕ω,n _ . . .}
with consistent subsets the finite subsets of {	} ∪ {⊕α,i | i < α}, for α ∈ N ∪ {ω}.
Take σ : S → A the obvious morphism mapping 	 to 	 and ⊕α,i to ⊕i, σ is a
strategy. Now, take an arbitrary τ : T → A⊥. Two cases are possible. If T does
not contain any +-event, then by receptivity of τ there is an interaction

θ = {(⊕ω,1,	1), . . . , (⊕ω,n,	n), . . .} ∈ [σ, τ ]

which is such that σπ1θ = {⊕1, . . . ,⊕n, . . .} of payoff +∞, so r↑(σ, τ) = +∞. If T
does contain a +-event t, say it depends on (the unique events in T corresponding
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to) 	1, . . . ,	i. For each j ≥ i, there is a +-maximal configuration

x = {	,⊕j+1,1,⊕j+1,2, . . . ,⊕j+1,j}

containing exactly j +-events and the −-event, and this yields an interaction

θ = {(	, t), (⊕j+1,1,	1), . . . , (⊕j+1,j ,	i)} ∈ [σ, τ ]

such that π1θ = x. This configuration x has payoff κA(σx) = j and this holds for
any j, so r↑(σ, τ) = +∞. Taking the infimum over all strategies τ : T → A⊥ we get
that v↑(σ) = +∞, so v↑(A) = +∞.

v↑(A⊥). Take an arbitrary strategy σ : S → A⊥. If it never plays any +-event,
then its optimistic value is −∞: this value is reached against the strategy τ : T → A

that plays all the +-events. If there is a configuration x ∈ C∞(S) with a +-event,
say this +-event depends on the first i −-events. For j ≥ i, σ has an optimistic
value of −j against the strategy τj that plays the first j +-events. So, the optimistic
value of σ is −∞ as well, yielding a value for the game of v↑(A⊥) = −∞. 2
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