Abstract
This paper presents results from a study on the impact of negative attitudes towards robots on pedestrians’ needs for technological communication capabilities of autonomous vehicles and preferred communication modalities. Further, the amount of prior information on autonomous vehicles given to test persons is varied. The study is realized in terms of an imagination scenario. Results show a significant dependency of the demand for communication of autonomous vehicles with pedestrians on the extent of negative attitudes towards robots as well as a general demand for such communication capabilities. Interestingly, these findings are independent of the amount of prior information. Differences of preferred communication modalities with respect to negative attitudes or prior information are not found. The results of this study emphasize the importance of vehicle-pedestrian communication, particularly, using multi-modal interfaces in future autonomous driving technology.
Zusammenfassung
Dieser Beitrag präsentiert die Ergebnisse einer Studie über die Auswirkungen negativer Einstellungen gegenüber Robotern auf die Bedürfnisse von Fußgängern nach technologischen Kommunikationsmöglichkeiten autonomer Fahrzeuge und bevorzugte Kommunikationsmodalitäten. Darüber hinaus wird die Menge an Vorinformationen zu autonomen Fahrzeugen, die den Testpersonen gegeben werden, variiert. Die Studie wird anhand eines imaginären Szenarios durchgeführt. Die Ergebnisse zeigen eine signifikante Abhängigkeit des Bedarfs an Kommunikation autonomer Fahrzeuge mit Fußgängern vom Ausmaß negativer Einstellungen gegenüber Robotern sowie eines Bedarfs an solchen Kommunikationsfähigkeiten allgemein. Interessanterweise sind diese Erkenntnisse unabhängig von der Menge an Vorinformationen. Unterschiede der bevorzugten Kommunikationsmodalitäten in Bezug auf negative Einstellungen oder Vorinformationen wurden nicht festgestellt. Die Ergebnisse dieser Studie unterstreichen die Bedeutung der Fahrzeug-Fußgänger-Kommunikation, insbesondere unter Verwendung multimodaler Schnittstellen in zukünftigen autonomen Fahrtechnologien.
About the authors

Prof. Dr.-Ing. habil. Kolja Kühnlenz is endowed research professor, professor of robotics and head of Robotics Research Lab, Department of Electrical Engineering and Computer Science, Coburg University of Applied Sciences and Arts, Coburg, Germany. Research interests: social robots, vision-guided robotics, networked robotics.

Prof. Dr.-Ing. Barbara Kühnlenz is professor of economic psychology and human-machine interaction, Department of Economics, Ansbach University of Applied Sciences, Ansbach, Germany. Research interests: social psychological approaches to human-robot interaction.
-
Research ethics: The local Institutional Review Board deemed the study exempt from review.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
[1] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations,” Transp. Res. Part A: Policy Pract., vol. 77, pp. 167–181, 2015. https://doi.org/10.1016/j.tra.2015.04.003.Search in Google Scholar
[2] A. Papadoulis, M. Quddus, and M. Imprialou, “Evaluating the safety impact of connected and autonomous vehicles on motorways,” Accid. Anal. Prev., vol. 124, pp. 12–22, 2019. https://doi.org/10.1016/j.aap.2018.12.019.Search in Google Scholar PubMed
[3] S. Pettigrew, L. M. Dana, and R. Norman, “Clusters of potential autonomous vehicles users according to propensity to use individual versus shared vehicles,” Transp. Policy, vol. 76, pp. 13–20, 2019. https://doi.org/10.1016/j.tranpol.2019.01.010.Search in Google Scholar
[4] Deloitte, Deloitte Global Automotive Consumer Study: Autonomous, Connected Vehicles and Multi-Modal Mobility, Germany, 2019. Available at: https://www2.deloitte.com/content/dam/Deloitte/de/Documents/consumer-industrial-products/2019_Deloitte_Global-Automotive-ConsumerStudy_Germany.pdf.Search in Google Scholar
[5] T. Nomura, T. Kanda, T. Suzuki, and K. Kato, “Prediction of human behavior in human--robot interaction using psychological scales for anxiety and negative attitudes toward robots,” IEEE Trans. Robot., vol. 24, no. 2, pp. 442–451, 2008. https://doi.org/10.1109/tro.2007.914004.Search in Google Scholar
[6] K. Winkle, S. Lemaignan, P. Caleb-Solly, U. Leonards, A. Turton, and P. Bremner, “Effective persuasion strategies for socially assistive robots,” in 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Daegu, Korea, South, 2019, pp. 277–285.10.1109/HRI.2019.8673313Search in Google Scholar
[7] V. M. Lundgren, et al.., “Will there be new communication needs when introducing automated vehicles to the urban context?” in Advances in Human Aspects of Transportation, vol. 6, Springer, 2017, pp. 485–497.10.1007/978-3-319-41682-3_41Search in Google Scholar
[8] M. Peel, et al.., “Effects of transparency presentation modality and confidence on trust and situation awareness in human-robot teaming,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Sage, 2022.10.1177/1071181322661250Search in Google Scholar
[9] K. Mahadevan, S. Somanath, and E. Sharlin, “Communicating awareness and intent in autonomous vehicle-pedestrian interaction,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 2018.10.1145/3173574.3174003Search in Google Scholar
[10] T. T. Tran, C. Parker, and M. Tomitsch, “Scoping out the scalability issues of autonomous vehicle-pedestrian interaction,” in Proceedings of the 15th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2023.10.1145/3580585.3607167Search in Google Scholar
[11] A. Block, S. Lee, A. Pandya, and P. Schmitt, “I see you! Design factors for supporting pedestrian-AV interaction at crosswalks,” in Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, 2023.10.1145/3568294.3580107Search in Google Scholar
[12] S. F. Ackermans, D. Dey, P. A. Ruijten, R. H. Cuijpers, and B. Pfleging, “The effects of explicit intention communication, conspicuous sensors, and pedestrian attitude in interactions with automated vehicles,” in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI, 2020.10.1145/3313831.3376197Search in Google Scholar
[13] M. Colley, E. Bajrovic, and E. Rukzio, “Effects of pedestrian behavior, time pressure, and repeated exposure on crossing decisions in front of automated vehicles equipped with external communication,” in Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 2022.10.1145/3491102.3517571Search in Google Scholar
[14] J. Carmona, C. Guindel, F. Garcia, and A. de la Escalera, “eHMI: review and guidelines for deployment on autonomous vehicles,” Sensors, vol. 21, no. 9, p. 2912, 2021. https://doi.org/10.3390/s21092912.Search in Google Scholar PubMed PubMed Central
[15] B. Garrett, T. Taverner, D. Gromala, G. Tao, E. Cordingley, and C. Sun, “Virtual reality clinical research: promises and challenges,” JMIR Ser. Gam., vol. 6, no. 4, p. e10839, 2018. https://doi.org/10.2196/10839.Search in Google Scholar PubMed PubMed Central
[16] Y. E. Song, C. Lehsing, T. Fuest, and K. Bengler, “External HMIs and their effect on the interaction between pedestrians and automated vehicles,” in Intelligent Human Systems Integration. IHSI 2018. Advances in Intelligent Systems and Computing, vol. 722, W. Karwowski, and T. Ahram, Eds., Springer, 2018, pp. 13–18.10.1007/978-3-319-73888-8_3Search in Google Scholar
[17] C. Ackermann, M. Beggiato, S. Schubert, and J. F. Krems, “An experimental study to investigate design and assessment criteria: what is important for communication between pedestrians and automated vehicles?” Appl. Ergon., vol. 75, pp. 272–282, 2019. https://doi.org/10.1016/j.apergo.2018.11.002.Search in Google Scholar PubMed
[18] A. Schieben, M. Wilbrink, C. Kettwich, R. Madigan, T. Louw, and N. Merat, “Designing the interaction of automated vehicles with other traffic participants: design considerations based on human needs and expectations,” Cogn. Technol. Work, vol. 21, pp. 69–85, 2019. https://doi.org/10.1007/s10111-018-0521-z.Search in Google Scholar
[19] S. Schneider, P. Maruhn, N.-T. Dang, P. Pala, V. Cavallo, and K. Bengler, “Pedestrian crossing decisions in virtual environments: behavioral validity in CAVEs and head-mounted displays,” Hum. Factors, vol. 64, no. 7, pp. 1210–1226, 2022. https://doi.org/10.1177/0018720820987446.Search in Google Scholar PubMed
[20] T. Lombrozo, “Simplicity and probability in causal explanation,” Cogn. Psychol., vol. 55, no. 3, pp. 232–257, 2007. https://doi.org/10.1016/j.cogpsych.2006.09.006.Search in Google Scholar PubMed
[21] T. Miller, “Explanation in artificial intelligence: insights from the social sciences,” Artif. Intell., vol. 267, pp. 1–38, 2019. https://doi.org/10.1016/j.artint.2018.07.007.Search in Google Scholar
[22] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey on explainable artificial intelligence (XAI),” IEEE Access, vol. 6, pp. 52138–52160, 2018. https://doi.org/10.1109/access.2018.2870052.Search in Google Scholar
[23] A. D. Dragan, K. C. T. Lee, and S. S. Srinivasa, “Legibility and predictability of robot motion,” in 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Tokyo, Japan, 2013.10.1109/HRI.2013.6483603Search in Google Scholar
[24] C. Lichtenthäler and A. Kirsch, “Goal-predictability vs. trajectory-predictability: which legibility factor counts,” in Proc. of the 2014 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’14), 2014.10.1145/2559636.2559802Search in Google Scholar
[25] A. Weiss, et al.., “The Interactive Urban Robot: user-centered development and final field trial of a direction requesting robot,” J. Behav. Rob., vol. 6, no. 1, 2015, https://doi.org/10.1515/pjbr-2015-0005.Search in Google Scholar
[26] V. Petrovych, S. Thellman, and T. Ziemke, “Human interpretation of goal-directed autonomous car behavior,” in COGSCI2018 Changing/Minds, 40th Annual Cognitive Science Society Meeting, Madison, Wisconsin, USA, Cognitive Science Society, 2018, pp. 2235–2240. July 25–28.Search in Google Scholar
[27] A. Habibovic, J. Andersson, M. Nilsson, V. M. Lundgren, and J. Nilsson, “Evaluating interactions with non-existing automated vehicles: three Wizard of Oz approaches,” in 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, IEEE, 2016, pp. 32–37.10.1109/IVS.2016.7535360Search in Google Scholar
[28] A. R. Palmeiro, S. Kint, L. Vissers, H. Farah, J. de Winter, and M. Hagenzieker, “Interaction between pedestrians and automated vehicles: a wizard of Oz experiment,” Transp. Res. Part F Traffic Psychol. Behav., vol. 58, pp. 1005–1020, 2018. https://doi.org/10.1016/j.trf.2018.07.020.Search in Google Scholar
[29] D. Eisele and T. Petzoldt, “Effects of a frontal brake light on pedestrians’ willingness to cross the street,” in Transportation Research Interdisciplinary Perspectives, vol. 23, Amsterdam, Elsevier, 2024, p. 23.10.1016/j.trip.2023.100990Search in Google Scholar
[30] C. Lehsing, L. Jünger, and K. Bengler, “Don’t drive me my way: subjective perception of autonomous braking trajectories for pedestrian crossings,” in Proceedings of the 10th International Symposium on Information and Communication Technology (SoICT ’19), 2019.10.1145/3368926.3369692Search in Google Scholar
[31] M. Hübner, M. Mühlbauer, M. Rettenmaier, A. Feierle, and K. Bengler, “Comparison of communication modalities: safe and efficient interaction between an automated vehicle and a pedestrian,” in 2023 IEEE International Conference on Systems, Man, and Cybernetics: Improving the Quality of Life, SMC 2023, IEEE, 2023, pp. 993–999.10.1109/SMC53992.2023.10394542Search in Google Scholar
[32] B. Varga, D. Yang, and S. Hohmann, “Intention-aware decision-making for mixed intersection scenarios,” in 2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI), IEEE, 2023, pp. 369–374.10.1109/SACI58269.2023.10158550Search in Google Scholar
[33] H. Tan, J. Liu, C. Chen, X. Zhao, J. Yang, and C. Tang, “Knowledge as a key determinant of public support for autonomous vehicles,” Sci. Rep., vol. 14, 2024, https://doi.org/10.1038/s41598-024-52103-6.Search in Google Scholar PubMed PubMed Central
[34] T. Nomura, T. Suzuki, T. Kanda, and K. Kato, “Measurement of negative attitudes toward robots,” Int. Stud., vol. 7, no. 3, pp. 437–454, 2006. https://doi.org/10.1075/is.7.3.14nom.Search in Google Scholar
[35] B. Rammstedt and O. P. John, “Measuring personality in one minute or less: a 10-item short version of the Big Five Inventory in English and German,” J. Res. Pers., vol. 41, pp. 203–212, 2007. https://doi.org/10.1016/j.jrp.2006.02.001.Search in Google Scholar
[36] K. Kühnlenz and B. Kühnlenz, “Study on the impact of situational explanations and prior information given to users on trust and perceived intelligence in autonomous driving in a video-based 2 × 2 design,” in 2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)Au, vol. 22, IEEE, 2023, pp. 1509–1513.10.1109/RO-MAN57019.2023.10309319Search in Google Scholar
[37] E. Eller and D. Frey, “Psychological perspectives on perceived safety: social factors of feeling safe,” in Perceived Safety. Risk Engineering, M. Raue, B. Streicher, and E. Lermer, Eds., Springer, 2019.10.1007/978-3-030-11456-5_4Search in Google Scholar
[38] D. Frey and E. Jonas, “Die Theorie der kognizierten Kontrolle,” in Theorien der Sozialpsychologie Band 3: Motivations-, Selbst- und Informationsverarbeitungstheorien, D. Frey, and M. Irle, Eds., Bern, Verlag Hans Huber, 2002.Search in Google Scholar
[39] A. M. Buşan, “Learning styles of medical students–implications in education,” Curr. Health Sci. J., vol. 40, no. 2, pp. 104–110, 2014. https://doi.org/10.12865/CHSJ.40.02.04.Search in Google Scholar PubMed PubMed Central
[40] C. Bartneck, T. Nomura, T. Kanda, T. Suzuki, and K. Kennsuke, “A cross-cultural study on attitudes towards robots,” in Proceedings of the Int. Conf. on Human-Computer Interaction (HCI), 2005.Search in Google Scholar
[41] W. Stangl, Theory of Mind. Online Lexikon für Psychologie & Pädagogik, 2024. Available at: https://lexikon.stangl.eu/511/theory-of-mind.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston