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Noise robustness in the perceptron
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Abstract. Within the framework of online supervised learning, algo-
rithms which lead to optimal generalization ability in the boolean per-
ceptron are obtained. Restrictions on the available information during
learning lead to different optimal algorithms. Knowledge of the noise level
is required for optimal performance to be achieved, and misestimation of
that quantity may lead to partial or complete loss of the generalization
ability. Results are shown in terms of robustness phase diagrams.

1. Introduction

Online supervised learning in feedforward boolean neural networks [6, 4, 5, 1, 7]
has been lately studied by physicists. The statistical mechanics approach to
these problems has shown to be very fruitful, since analytical solutions can be
found in some cases, and optimal algorithms can eventually be found on the
grounds of a simple variational argument.

This paper will concentrate on the problem of online supervised learning
in the perceptron (even though some of the results are found to be exactly
the same for some multilayer machines — see [2] for details). The scenario is
that of a student boolean perceptron learning from a teacher with the same
architecture. The examples are randomly generated, and outputs are corrupted
by output (multiplicative) noise.

A short introduction to online learning is given in section 2. In section 3.
the variational optimization scheme is sketched. For each learning condition (to
be defined below) there is a corresponding optimal algorithm. Four different
learning conditions are studied here, and the performances of the corresponding
algorithms are given in section 4.

The robustness of those algorithms with respect to a misestimation of the
noise level is studied in section 5. A given algorithm can lead to different dy-
namical behaviours, thus giving rise to a noise robustness phase diagram.
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2. Online learning

The aim of the learning process is to change the student vector J in such a way
that it approaches the teacher vector B. Both vectors have N real components,
and we can set B-B = 1 without loss of generality. Input vectors S are
independently drawn from a distribution which satisfies (S;) = 0 and (S;3;) =
0(%, ), where 6(i, j) is the Kronecker delta. Upon presentation of a particular
input vector S, the student perceptron gives an output o’/ = sign(h#), where
h#* =J-8¥/J,J =+/J-J. The teacher final output is denoted by £*, which is a
noisy version of g% = sign(b*), b* = B - S¥. The noise level e is defined as twice
the probability of flipping op: P(¢ | oB) = (¢/2)8(¢, —0oB) + (1 — €/2)6(¢,0B).

The learning set is made up of oV noisy examples {(S#,£#)}, u =1,...,aN,
which are presented sequentially. Each new example induces a single change in
the student vector,

T+ 1) =3 + 5 FS*, 1)

being discarded after that (note that in this case the index u can be used as a
discrete time counter). F is called the modulation function, and it defines the
algorithm. Its explicit form is to be determined by the optimization process to
be described in the next section.

The error measure to be studied here is the generalization error e, =
nLarccos(p). e, is the probability that o; # op upon presentation of a
new random input vector. The overlap p = J - B/J is thus the relevant order
parameter for this problem. Its evolution during the learning process can be
described by a differential equation when the limit N — oo is taken. From
eq. 1, keeping terms of O(N 1), one obtains

£-5(g) o

where the brackets denote average over the randomness of the examples. Since
the right hand side of the above equation depends only on the fields h and b,
the Central Limit Theorem can be used, yielding the following simplification:
((-+)) = 3¢ [ P(€ ] b)Po(h,b) dhdb(---), where P, is a Gaussian with (h) =
(b) =0, (h?) = (b*) = 1 and (hb) = p.

3. Variational optimization

Eq. 2 is valid for any modulation function F. Examples of algorithms usu-
ally found in the literature include the Hebbian rule (F' = &), the Perceptron
learning rule (F' = £ ©(—0;€)) or the Adatrom algorithm (F = —h¢ ©(—h§)),
where © is the Heaviside function. The aim of the optimization process is to
obtain an algorithm which leads to the smallest generalization error for a given
number of examples, instead of proposing an ad hoc prescription.
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The learning condition determines which stochastic quantities are available
to the student perceptron during learning, and it should be specified a priori.
Two sets of random variables can be defined: the set X', which contains the
unknown variables, and the set ), which contains the known ones. These sets
are defined in such a way that they contain all the information concerning the
randomness of the learning process. For instance, the learning conditions for the
three mentioned algorithms can be described by: X = {b,h},Y = {¢} (Hebb),
X = {b,|h|},Y = {{, 05} (Perceptron) or X = {b},Y = {¢,h} (Adatrom).
With the learning condition defined prior to the optimization procedure, it
is clear that the resulting algorithm should depend only on available variables.
That is, F' = F(Y). Rewriting the average on the examples as ((---)) = [ P(X |
V) P(Y)dX dY (- --), integration on X’ can be immediately performed on eq. 2.

Kinouchi and Caticha’s optimization scheme [5] relies on two main points.
Note that a) eg4 is a monotonically decreasing function of p and b) the depen-
dence of dp/da on F is functional. The optimal algorithm F* is then given by

=0, ()

the condition
6 (dp

where §/6F is a functional derivative. This simple calculation yields

FO)=J (% B apy <h>x,y) . @)

4. Performance

Eq. 4 holds for any X and Y. I now proceed to show the explicit results for
four different learning conditions. The expressions of the corresponding optimal
algorithms and their asymptotic performances (behaviour of e, for & — 00) are
given below:

o X = {b}, Y = {{, h}: This is the learning condition where all the avail-
able information is used. The corresponding F,,; is thus the best possible
algorithm [1, 3] for online learning in this scenario:

(1-e¢) e h* /2N 5
Vir 2+ (= H (&N’ ®
where A = p~1y/1~p?, H(z) = [.° Dt and Dt = dt(2m)~1/2e=t*/2, For this

a2
algorithm, e, ~ %a_l, where I(e) = (1 —¢€)? [ %.

o X = {b,os}, Y = {¢ |h|}: In this learning condition, only the absolute
value of the student field b is known, but not its sign. The optimal algorithm
in this case corresponds to a more general version of the Symmetric Weight
algorithm [4],

Fopt (fa h; €, p) = J’\f

Fou(&,|h;6,0) = (1 - e)\/ngse"h'z/W : (6)
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and its asymptotic performance is given by e, =~ v/2(1 — ¢)~2a~ 1.

o X ={b,|h|}, Y = {{, 04} In this case only the sign of the student field is
known, but not its absolute value. The corresponding Step algorithm resembles
the Perceptron algorithm in its step-like shape. Yet it has a non-zero value for
positive os€, whose relative importance increases with the noise level € and
decreases with increasing p:

Futep(&,0756,p) = J,\2P§Q.:€_) £y (1-¢) arccos(—ploy) - (7
step\S» IAS) \/ﬂ 9 T psog :

There is an interesting transition in the performance of this algorithm. For
€ = 0 (i.e. the noiseless case), the asymptotic result is e, ~ (4/7)a~!. However,
for € # 0 the decay is qualitatively different: e, ~ |1—¢|~!+/e(2 — €)/(2m)a~1/2.

o X = {b,h}, Y = {£}: This is the learning condition with least available
information. The corresponding algorithm,

. _ 2
FulEe,p) = Jf\/g(lT”)(l 9, ®)

was shown in [3] to correspond exactly to the Hebbian algorithm, despite the

apparently time-dependent prefactor. Its performance [1, 3] is given by e, =~
(2m) 2|1 — | 1 Y/2.

5. Phase diagrams

The above algorithms are optimal for their specific learning conditions. They
share some common features among themselves, like the explicit dependence on
the noise level € and the student performance (as parametrized by the overlap
p). They lead to optimal generalization ability only if those quantities can be
used during learning. The question to be now addressed is the following: how
do the algorithms perform when the noise level € is unknown?

Let  be a fixed estimate of the noise level in the system. Assuming that
p is known, the student learns with a modulation function F*(}Y; 5, p), which
is optimal only when n = e. However, for 77 # €, sub-optimal performance
is attained. For each algorithm, different dynamical behaviours can be seen,
depending on the values of 7 and e. Whenever the noise level is superestimated
(n > €), the student is able to asymptotically learn the rule (p — 1 when
a — 00). This is the robust learning regime, which can be reached even for
some 77 < e. For given 7, there is however a critical value ¢ = ¢, above which
perfect learning is no longer reached. The system converges to a new fixed
point pg < 1. As can be seen in Figure 1, the critical line e.(n) is different
for the four algorithms under study. A more detailed analysis of each phase
diagram is given below.

Figure 1(a) depicts the noise robustness phase diagram for Fip;. In the
robust learning regime (grey), the asymptotic behaviour is governed by the
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by

Figure 1: Noise robustness phase diagrams for (a) F,pi; (b) Faw; (¢) Fipep and
(d) Fy; (see text for details). When a — oo, the overlap p tends either to 1
(grey), 0 (white) or pg, with 0 < pg < 1 (black).

same exponent as for the optimal performance described in section 4., e, =~
Cl(e,n)a~t. The critical line e.(n) is numerically obtained by imposing the
condition 1/C(eq, 1) = 0. For € > €. (black) the system converges to e, # 0
(imperfect learning), still with the same exponent. However, a worse under-
estimation of the noise level may lead to total loss of generalization: pg = 0
(eg = 1/2) becomes an attractive fixed point of the dynamics for € > (1 +7)/2
(white).

The diagram for Fy,, (Figure 1(b)) does not present the imperfect learning
phase. The region where perfect learning occurs extends until the line € =
(14n)/2, which again is the border of the region with total loss of generalization.
The asymptotic value of p drops discontinuously from 1 to 0. Note that even
though Fj,, has a worse performance than F,,; under ideal conditions (1 = €),
its robust phase is bigger in the e x n plane. Like in the previous case, the
asymptotic convergence in this region is governed by the same exponent, e, ~
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a1

The apparent trade-off between optimal performance and robustness, which
was seen in the previous two cases, does not hold for Fyep,. Apart from the
noiseless case, Fyi.p performs qualitatively worse than Fy,, for € = . Yet
its perfect learning phase is smaller than that of F,,. As can be seen in
Figure 1(c), even Fop; is more robust than Fiep,. The critical line in this case
is simply given by 2¢, = 4n — 3% + n3, while the region with po = 0 remains
bounded by ¢ = (1 + 7)/2. Both perfect and imperfect learning are governed
by the same exponent, p — po ~ o L.

As shown in [3], the prefactor in eq. 8 is just a constant when the real
noise level € is used. This suggests the study of a slightly modified version
of Fy, namely Fy; = (1 — €)é. This is the simple way of writing Hebb’s
rule, which leads to Figure 1(d). Written in this way, the algorithm leads to
perfect learning in the whole plane. However, when the p dependence of Fy
is mantained (as originally written in eq. 8), the corresponding phase diagram
is given by Figure 1(b). In this case, Fy and Fy, differ only in the exponent
governing the asymptotic convergence. For F, eg ~ a~1/2,

In conclusion, there is a price paid for the optimality of the algorithms
obtained via variational optimization. They depend critically on parameters
that are not always readily available. The results presented here strongly mo-
tivate the development of methods for estimating relevant parameters during
learning, as done in [1].
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