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ABSTRACT OF THE DISSERTATION

Context-Aware and Energy-Efficient Autonomous Systems

By

Arnav Vaibhav Malawade

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2023

Professor Mohammad Abdullah Al Faruque, Chair

Autonomous systems (AS) are beginning to play a significant role in modern society. Exam-

ples of AS include robotic systems that perceive and react to changes in their environment,

such as aerial drones, ground/aquatic robots, and consumer autonomous vehicles (AVs),

among others. Breakthroughs in deep learning and increased consumer interest in ubiqui-

tous autonomy have fueled recent advances in perception, modeling, and control algorithms.

However, these advances come with rising energy costs. Modern AS require large deep-

learning (DL) models to perceive the environment and safely detect and avoid objects. The

computational demands of these models significantly increase the hardware requirements of

the complete system, such that modern AV systems can require several kilowatts of power

to enable autonomy, reducing range and utility. These impacts affect most AS since AVs,

ground robots, and drones are typically edge devices that operate in energy-constrained

environments.

The need for large, complex DL models is primarily driven by the fact that, in the real

world, challenging and unpredictable scenarios can occur and must be modeled appropriately

by the AS. However, existing approaches are exceedingly cautious, preferring to execute a

large, inefficient model even in typical scenarios just in case a difficult edge case arises. This

approach to autonomy hinders both the utility of existing AS and the broad-scale adoption of
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AS. Instead, an AS should be able to understand the context of its surrounding environment

and adapt its model to fit each situation.

This dissertation explores methods for developing context-aware AS to improve percep-

tion and prediction performance, reduce energy consumption, and enable adaptation to

dynamic environments. Three different perspectives are studied: (i) scene-graph embedding

approaches are proposed and evaluated for improved semantic understanding and state esti-

mation; (ii) methods for implementing split ML models for dynamic, resource-efficient com-

putation offloading from edge to cloud within real-time latency constraints are studied; and

(iii) context-aware, dynamic ML perception models that jointly optimize performance and

energy efficiency are studied from an algorithmic and system-wide optimization perspective.

Overall, the results show that context-aware models achieve state-of-the-art performance

across applications, and dynamic architectures conditioned on context can help resolve the

energy-performance trade-off by enabling the joint optimization of these objectives.
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Chapter 1

Introduction

1.1 Autonomous Systems

Autonomous systems (AS) are systems that can change behavior in response to unanticipated

events [2]. Colloquially, this term refers to systems that operate without human control

except for assigning a high-level objective (e.g., telling a robot to navigate to a location vs.

having a human steer the robot). AS are expected to radically improve productivity, logistics,

and safety by enabling aerial drones, ground/aquatic robots, and consumer autonomous

vehicles (AVs) to operate without direct human control. Support for building AS is broad,

with many looking forward to benefits such as automated drone delivery, undersea and space

exploration, and improved search and rescue. AVs, in particular, are expected to improve

road safety, passenger comfort, and mobility significantly [3, 4]. These applications require

closely-coupled perception, state estimation, path planning, and control algorithms to safely

maneuver the robot across complex and unpredictable real-world scenarios in real-time.

Advances in deep learning, hardware design, and modeling over the past decade have made

the dream of AS closer than ever to becoming a reality. However, the path to developing
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AS has been anything but straightforward. A broad spectrum of AS approaches has been

tried and tested with varying degrees of efficacy, ranging from rule-based expert systems to

fully deep-learning-based methods. Most modern AS use one of two computing paradigms:

(i) the modular architecture or (ii) the end-to-end architecture [3]. We study end-to-end

architectures in Chapter 3 and study the perception module of modular architectures in

Chapters 2, 4, 5.

Modular architectures are implemented as a pipeline of separate components for performing

each sub-task of the AS (e.g., perception, localization, planning, control) [5, 3]. In contrast,

end-to-end architectures generate actuator outputs (e.g., steering, brake, accelerator, motor

control) directly from their sensory inputs [6]. One advantage of a modular design approach

is that it divides the driving task into an easier-to-solve set of sub-tasks addressed in other

fields, such as robotics, computer vision, and vehicle dynamics, from which prior knowledge

can be leveraged. However, one disadvantage of such an approach is the complexity of

implementing, executing, and validating the complete pipeline [3]. Worse, these approaches

typically make assumptions at design time that may not scale to diverse real-world scenarios

where edge cases are prevalent.

End-to-end approaches can achieve good performance with smaller network size and low

implementation costs because they implicitly perform feature extraction from sensor inputs

through the network’s hidden layers [6]. This design also enables end-to-end models to

share intermediate features between subtasks implicitly through the hidden layer features,

which can improve overall modeling capability. However, the authors in [7] point out that

the needed level of supervision is too weak for end-to-end models to learn critical control

information (e.g., from image to steering angle), so they can fail to handle complicated driving

maneuvers or be insufficiently robust to disturbances. These approaches also typically require

vast datasets, increasing training time and associated costs, and result in a black-box model

that makes decisions that are unexplainable and thus untrustworthy [8]. Therefore, modern
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AS developers tend to prefer modular architectures.

Over the past decade, the supporting technologies (e.g., sensors, hardware platforms, al-

gorithms) have developed considerably, and companies such as Waymo [9], Tesla [10], and

Baidu [11] have been developing and refining AS solutions using these approaches. However,

AVs have yet to prove safe for consumers, supported by numerous reports of AV crashes

[12, 13, 14]. Additionally, smaller AS, such as autonomous drones and ground robots, have

only recently seen broader deployment. These facts raise a crucial question, what makes

developing safe, reliable AS so challenging?

The answer is real-world driving scenarios are often unpredictable, complex, and difficult to

replicate in simulations and challenging to account for at design time. Autonomous models

are typically trained on large synthetic datasets because developers can easily simulate many

operating conditions, environment types, and interaction scenarios to create an extensive

database to train a driving model. Despite recent advances, a misalignment exists between

synthesized datasets’ scope and real-world driving complexity. This challenge is often called

the Sim2Real gap [15]. Sim2Real is a term that describes the capability of a robotic system

to effectively transfer knowledge gained from simulation environments to real-world appli-

cations [15]. Additional aspects that make real-world autonomy difficult to model include

visual differences between sensor inputs, regional differences in road/environment layout,

and interactions with unpredictable agents such as humans and animals. Negotiating in-

tersections, crosswalks, and stop signs with human-driven vehicles and pedestrians proves

challenging as an AV must understand the intent and behavior of the other agents in the

environment. Thus, an AS should be able to (i) effectively generalize across scenarios and

datasets and (ii) model interactions between agents to understand the environment better.

Notably, most current modular and end-to-end approaches utilize rigid model architectures

that can limit adaptability to new driving scenarios. As a result, existing AS solutions are

overly conservative, relying on exceedingly large and inefficient models to improve general-
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ization and performance across scenarios. However, since most AS are designed to be mobile

systems (e.g., AVs, drones, small ground robots), they have a fixed battery capacity and are

thus energy-constrained edge devices. This constraint limits the size of AS algorithms to

what can feasibly execute on the edge hardware platform for a reasonable operating time.

Although these constraints are significant, energy efficiency is often overlooked in AS.

1.2 Energy Constraints in Autonomous Systems

Compared to a conventional robotic system, an AS requires multiple heterogeneous sensors

(e.g., camera, radar, lidar) to collect data about the surroundings, large sensor processing

and deep learning models to infer the current and future states of the environment, and

large high-speed hardware computation platforms to execute these models within real-time

latency constraints. The increasing complexity of modern AS comes with rising energy costs

[5]. For example, the Nvidia Drive PX2, used in 2016-2018 Tesla models for their Autopilot

system [10], can achieve 12 Tera Operations Per Second (TOPS) with a Thermal Design

Power (TDP) of 250 Watts (W). Following the PX2 was the Nvidia AGX Pegasus, built for

level 5 autonomy; it can achieve 320 TOPS with a TDP of 500W [16]. Moreover, the next-

generation hardware platform using the Nvidia AGX Orin SoC is expected to be capable of

2000 TOPS with a TDP of 800W [17]. Although AV hardware platforms are becoming more

efficient in TOPS/W, the baseline energy demands continue to increase as more advanced DL

models and hardware platforms are developed. Additionally, current state-of-the-art radar

and lidar sensors consume over 24W and 12W, respectively, and modern AVs use multiple of

each sensor [18, 19]. The combined sensing, computation, and thermal loads can reduce the

operational range of an AV by over 11.5% [5, 20]. Smaller AS (e.g., drones, ground robots)

are more impacted due to their smaller battery capacity. For example, Boston Dynamics’

Spot is a four-legged ground robot with a typical battery life of just 90 minutes [21], and
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current DJI drones have a flight time of only 30 minutes [22]. This issue is critical since

most AS are energy-constrained edge devices [23, 24, 25, 26]. Moreover, reduced battery

life necessitates more frequent recharging, which can negatively impact battery longevity

long-term [27, 28, 29, 30, 31].

Researchers attempting to address this problem for AS have proposed several approaches

for reducing energy consumption, including application-specific hardware design, cloud/fog

server offloading, or model simplification/pruning [5, 32, 33, 29, 34, 35]. Although solutions

like Application-Specific Integrated Circuits (ASICs) can reduce energy consumption through

hardware optimization, they are prohibitively expensive to develop. Furthermore, with ASIC

designs, all model specifications and contingencies must be accounted for at design time,

meaning there is little to no support for adding new features, fixing algorithmic errors, or

modifying model architectures. Costly development stages will need to be repeated for every

revision to the model. The next logical choice is to attempt model simplification/pruning

without changing hardware platforms; however, it is difficult to significantly reduce energy

consumption by pruning without adversely affecting the AV’s performance and safety. To

address the limitations of the previous two approaches, some works propose offloading some

or all AS tasks from the edge platform to the cloud for processing to reduce the energy

consumption of the AS without changing the hardware or algorithms. Unfortunately, current

offloading approaches have significant scalability and latency issues with the existing network

infrastructure. Meanwhile, current clock and power gating methods are not flexible enough

to adapt to different scenarios, so performance can suffer in difficult conditions. Overall,

resolving the trade-off between energy efficiency and performance is still an open research

problem. Addressing these issues necessitates a model capable of adapting to changing

conditions to enable both energy efficiency and performance depending on the situation.

Next, we discuss how context can help solve this problem.
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1.3 Context-Awareness and Dynamic Neural Networks

Context is a set of facts or circumstances surrounding an event, situation, or object [36].

These facts are critically important to human cognition since humans naturally use context

to improve their understanding of complicated scenarios and learn how to adapt to new

situations. Intuitively, the performance of an AS depends on its ability to model context

and understand scenarios since spatial awareness and scene understanding are critical to

mission tasks such as motion planning and obstacle avoidance. However, traditional methods

often only implicitly utilize context as part of the sensory input perceived by the model. If

an AS can instead capture and model contextual information directly, it can improve its

scene understanding and, thus, its performance across diverse scenarios and environments.

Furthermore, context can enable AS to adapt to changing scenarios to improve robustness

and energy efficiency compared to static approaches. The next question is, what kinds of

contextual information exist?

An AS can leverage several different types of contextual information. Each type has utility in

different kinds of problems. For example, [37] used three types of context for object detection:

(i) likelihood of an object existing in a category of location, (ii) relative sizes of objects, and

(iii) positional relations between objects. Contextual information can even take the form of

inter-agent relationships [38, 39, 40] in settings with multiple dynamic agents (e.g., driving

through a busy intersection). [41] suggests that a human’s ability to understand complex

scenarios and identify potential risks relies on cognitive mechanisms for representing structure

and reasoning about inter-object relationships. This form of context is used in Chapter 2.

More broadly, weather, location type, and environmental features (e.g., street signs, traffic

controls, pedestrian distance to the curb) can all be useful contextual information for an

AS[42]. Features extracted from sensor data can also be used as contextual information,

as in [43]. This approach, used in Chapters 4 and 5, is distinct from the implicit context

identification of conventional models because the feature extractor is explicitly trained to
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distinguish between feature spaces and adapt the model. As a result, the features extracted

represent a global state estimate inferred across all sensory inputs and can thus improve scene

understanding. Extending to the vehicular networking (e.g., V2V, V2I, V2X) domain, the

types of context can include the number and type of connected nodes, channel interference,

and network throughput [44]. We use this form of context in Chapter 3. Although many

types of contextual information exist, only a few works have proposed methods for creating

context-aware machine learning models.

Context-aware machine learning approaches have proven effective for several applications.

In these works, the context is typically modeled by passing the contextual information as an

additional set of input features to the ML model. In [45], modeling human-to-human and

human-to-space interactions as contextual features for an LSTM improves human trajectory

prediction performance. Context has also proven effective in medical applications, where

machine settings were used to determine if the sensor data is normal or abnormal, which is

useful when a sensor can move out of place if the patient changes positions [46]. Context has

also proven helpful for eliminating noise, fusing sensors, and improving the accuracy of small

ML models across different human behaviors in mobile, wearable devices [47, 48, 49, 50].

Despite these successes in adjacent fields, context-aware approaches for implementing AS

are under-studied. Contextual information such as driving environment and kinematics

have also proven useful for energy optimization. [51] proposes dynamically adjusting an AV

compute platform’s scheduling parameters and processor speeds to meet dynamic deadlines

that minimize energy usage. The dynamic deadlines are calculated using factors such as

vehicle acceleration and driving context. Similarly, [52] proposes dynamically adjusting an

AV lidar’s power and operation state depending on environmental factors and vehicle speed

to improve energy efficiency.

A key benefit of context modeling is enabling intelligent adaptation of deep neural network ar-

chitectures. Compared to traditional, static models with fixed parameters and computation
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flow, dynamic networks can adapt and change structure to optimize different objectives at

runtime [53]. Compared to static methods, this capability gives dynamic networks improved

energy efficiency, representation power, adaptiveness, and generality. This dissertation ex-

plores how dynamic architectures conditioned on contextual information can enable energy

efficiency and cross-scenario robustness via adaptation. Specifically, Chapters 4 and 5 explore

dynamic-width sensor fusion networks, while Chapter 3 explores dynamic routing networks.

Dynamic width refers to networks where the number of parallel processing submodels can

increase or decrease. In contrast, dynamic routing refers to models that dynamically change

the computation path with the same amount of processing. Other variants include dynamic

depth networks, where the computation path can be exited early if the model is confident

enough [54]. A complete taxonomy of dynamic networks is presented in [53]. Next, we

discuss the research scope of this dissertation.

1.4 Research Scope

Fundamentally, current AS solutions are rigid, domain-specific, and energy-inefficient. Ex-

isting solutions only address one or two sub-problems at a time, while all three constraints

must be considered to develop truly advanced and dependable AS. This dissertation ad-

dresses these challenges by exploring methods for implementing context-aware autonomous

systems that can dynamically adapt to changing environments, save energy without com-

promising performance, and enable human-like understanding. Each chapter presents a new

method for addressing these challenges in different AS applications:

• Chapter 2 studies how graph representations of road scenes can improve scene under-

standing for collision prediction. In this case, the contextual information is embedded

in the graph edges that model relationships between objects in a scene, enabling a more

human-like understanding of how changing inter-object relationships relate to collision
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risk.

• Chapter 3 studies how a split-architecture deep-learning model can enable energy-

efficient end-to-end AV control via low latency computation offloading. The current

networking conditions are used to decide when to make offloading decisions.

• Chapter 4 studies how a dynamic width context-aware sensor fusion model can enable

energy-efficient sensor fusion across diverse driving contexts. The proposed method

first identifies the current driving context, then selects the best downstream model

configuration to perceive in the current context. Here context can be external factors

defined by domain knowledge (e.g., weather, lighting, road type). Additionally, context

can be an abstract state estimate inferred from sensor data and encoded in the hidden

representation of a deep-learning model.

• Chapter 5 explores how the approach from Chapter 4 can be extended to a system-wide

energy optimization. It explores how model reconfiguration on an FPGA, sensor clock

gating, and intermittent context identification can enable greater energy savings.

• Chapter 6 presents overall findings from these studies, elaborates on limitations, and

discusses potential future research directions.

Though these problems affect all AS, we specifically study the benefits of these approaches

for AVs due to the large scale of these systems, the challenge associated with interacting

with human road users, and the direct benefits associated with developing AVs from safety,

logistics, and mobility standpoints. However, it should be noted that the proposed methods

can be applied to all comparable AS since the core tasks (e.g., perception, planning, con-

trol) and enabling factors (e.g., heterogeneous sensors, energy-constrained edge hardware,

dynamic environments) are shared across systems.
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Chapter 2

Scene-Graph Embedding for Collision

Prediction

2.1 Introduction

Recent reports of AV crashes indicate that the development of safe and robust AVs remains

a difficult challenge. For example, multiple fatal Tesla Autopilot crashes can primarily be

attributed to perception system failures [12, 13]. Additionally, the infamous fatal collision

between an Uber self-driving vehicle and a pedestrian can be attributed to perception and

prediction failures by the AV [14]. These accidents (among others) have eroded public trust

in AVs, and nearly 50% or more of the public have expressed their mistrust in AVs [4].

Current statistics indicate that perception and prediction errors were factors in over 40% of

driver-related crashes between conventional vehicles [55]. However, a significant number of

reported AV collisions are also the result of these errors [56, 57].
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2.1.1 Research Challenges

Currently, most AV perception architectures rely entirely on either (i) deep learning tech-

niques using Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs)

[58, 6, 59, 60]; or (ii) model-based methods, which use known road geometry information

and vehicle trajectory models to estimate the state of the road scene [61, 62]. Although

these approaches have been successful in typical use cases, they cannot obtain a high-level,

human-like understanding of complex road scenarios. This limitation is due to their inabil-

ity to explicitly capture inter-object relationships or the overall structure of the road scene.

Understanding these relationships could be critical as it is suggested that a human’s ability

to understand complex scenarios and identify potential risks relies on cognitive mechanisms

for representing structure and reasoning about inter-object relationships [41]. These models

also require large datasets that are often costly or unsafe to generate. Synthetic datasets are

typically used to augment the limited real-world data to train the models in such cases [63].

However, these trained models must then be able to transfer the knowledge gained from syn-

thetic datasets to real-world driving scenarios. Furthermore, DL models contain millions of

parameters and require IoT edge devices with significant computational power and memory

to run efficiently. Likewise, hosting these models on the cloud is infeasible because it re-

quires persistent low-latency internet connections. In summary, the key research challenges

associated with autonomous vehicle perception are:

1. Capturing complex relationships between road users.

2. Accurately perceiving current and future risk factors to enable the AV to take corrective

actions to avoid dangerous situations.

3. Generalizing to a wide range of traffic scenarios.

4. Developing algorithms that can run efficiently on automotive IoT edge devices.
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Figure 2.1: How camera data can be used to construct a road scene-graph representation.

2.1.2 Novel Contributions

To address these challenges, we propose sg2vec, which uses scene-graphs as intermediate

representations (IR) of road scenes that explicitly model inter-object relationships to improve

perception and scene understanding. Recently, several works have shown that graph-based

methods that capture and model complex relationships between entities can improve perfor-

mance at high-level tasks such as behavior classification [64, 65] and semantic segmentation

[66]. A scene-graph representation encodes rich semantic information of an image or ob-

served scene, essentially bringing an abstraction of objects and their complex relationships

as illustrated in Figure 2.1. While each of these related works proposes a different form

of scene-graph representation, all demonstrate significant performance improvements over

conventional perception methods.

The scene-graph representation we propose represents traffic objects as nodes and the re-

lationships between them as edges. The novelty of sg2vecs scene-graph representation lies

in its graph construction technique that is specifically designed for higher-level scene un-

derstanding tasks such as collision prediction, as shown in Figure 2.2. We combine sg2vecs

scene-graph representation with a spatio-temporal graph-embedding architecture to gener-

ate a sequence of scene-graph embeddings for the sequence of visual inputs perceived by an

AV and predict the likelihood of a future collision. Overall, our novel contributions are as

follows:
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Figure 2.2: How sg2vec predicts collisions using scene-graphs. Each node’s color indicates
its attention score (importance to the collision likelihood) from orange (high) to green (low).

1. We propose sg2vec, an end-to-end graph construction and embedding approach for

modeling scene-graph representations of road scenes.

2. We demonstrate how our approach significantly improves collision prediction perfor-

mance over that of state-of-the-art methods on simulated lane-change datasets and a

very challenging real-world collision dataset containing a wide range of driving actions,

collision types, and weather/road conditions.

3. We empirically show that our approach transfers knowledge gained from simulated

data to real-world driving data more effectively than the state of the art.

4. We demonstrate that our approach performs faster inference and requires less power

than the state-of-the-art method on the industry-standard Nvidia DRIVE PX 2 au-

tonomous driving hardware platform, used in 2016-2018 Tesla vehicles for their Au-

topilot system [10].
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2.2 Related Work

2.2.1 Graph Learning

Graphs are composed of nodes and edges where the edges represent relations between the

nodes. Graphs naturally exist in a wide range of real-world scenarios such as social graphs

in social media networks, citation graphs in research areas, user-interest graph in electronic

commerce area [67]. Graphs are also known to have complicated structures that contain rich

underlying values [68]. Unlike images, audios, and texts which have a clear grid architecture,

graphs are non-euclidean data that has irregular structures, making it hard to generalize some

basic mathematical operations to graphs. As a result, how to utilize deep learning approaches

for graph data has attracted considerable research attention in the past few years.

Most of the works in this field adopt the idea of graph embedding that aims to encode

the structural information about the graph [69]. The main idea is to learn a mapping

that embed nodes or the entire graphs as points in a low-dimensional vector space. The

goal of these graph embedding methods is to optimize this mapping so that the geometric

relationships in the embedding space reflect the structure of the original graph. Once this

mapping is optimized, the learned embeddings of the graphs can be used as features inputs

for downstream machine learning tasks.

The most popular approach for modeling the structure of graph data is the graph con-

volutional network (GCN), which implements graph convolutions [70]. Traditional CNNs

leverage the regularity of image data structure, so the kernel is simply a rectangle that is

swept across the image pixels. In contrast, the structure of each graph can be completely

different, so the graph convolution kernel operates over the 1-hop edges to the center node.

With multiple graph convolutions we can propagate across more hops. The convolution op-

eration is commonly referred to as “message passing” [71]. To perform graph embedding,
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the resultant node embeddings are passed to a readout layer that condenses them into a

single graph embedding. Then, tasks such as classification and regression can be done by

simply passing this embedding to an MLP model. [72] presents several examples on how

graph embedding can be applied across domains.

2.2.2 Graph-Based Scene Understanding

In contrast to existing methods that use CNN-based deep learning models for perception,

we propose using a scene-graph IR that encodes the spatial and semantic relations between

all the traffic participants in a frame. This form of representation is similar to a knowledge

graph with the key distinction that scene-graphs explicitly encode knowledge about a visual

scene. Several works have applied graph-based formulations for road scene understanding.

In [73], the authors propose a 3D-aware egocentric Spatio-temporal interaction framework

that uses both an Ego-Thing graph and an Ego-Stuff graph to encode how the ego vehicle

interacts with both moving and stationary objects in a scene, respectively. In [64], the

authors propose a pipeline using an MRGCN for classifying the driving behaviors of traffic

participants. The MRGCN combines spatial and temporal information, including relational

information between moving and landmark objects. In [74], the authors propose extracting

road scene graphs in a manner that includes pose information for scene layout reconstruction.

A similar approach was also proposed in [66]. Authors in [75] propose using a probabilistic

graph approach for explainable traffic collision inference. Our prior work demonstrated that

a scene-graph representation used with an MRGCN leads to state-of-the-art performance at

assessing the subjective risk of driving maneuvers [38].
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2.2.3 Collision Prediction and Avoidance

For the past several years, automotive manufacturers have begun equipping consumer ve-

hicles with statistics-based collision avoidance systems based on calculated Single Behavior

Threat Metrics (SBTMs) such as Time to Collision (TTC), Time to React (TTR), etc.

[76, 77]. However, these methods lack robustness since they make significant assumptions

about the behavior of vehicles on the road. A very limiting assumption they make is that

vehicles do not diverge from their current trajectories [77]. SBTMs can also fail in specific

scenarios. For example, TTC can fail when following a vehicle at the same velocity within a

very short distance [77]. As a result, these methods are less capable of generalizing and can

perform poorly in complex road scenarios. Moreover, to reduce false positives, these systems

are designed to respond at the last possible moment [61]. Under such circumstances, the AV

control system can fail to take timely corrective actions [78] if the system fails to predict a

collision or estimates the TTC inaccurately.

Model-based probabilistic and deep learning approaches for collision prediction have also

been proposed. For example, [79] proposes a model-based probabilistic technique that uses

the roadway geometry, ego trajectory, and position/velocity of road objects to predict future

object positions. However, this model is highly conservative and is likely to have a high

false-positive rate. Similarly, [80] and [81] use model-based approaches but require significant

domain knowledge about the driving scene, such as road geometry information as well as

accurate vehicle position and velocity information. [82] proposes a deep learning collision

prediction approach. Still, due to its use of pre-processed trajectory data captured from

cameras overlooking a highway, it is not ego-centric and cannot be practically used for on-

vehicle collision prediction. In a different approach, [83] proposes a Deep Predictive Model

(DPM) that used a Bayesian Convolutional LSTM for collision risk assessment where image

data, vehicle telemetry data, and driving inputs were all factors in the risk assessment

decision. However, this approach was only evaluated on simulated street scenes containing
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two vehicles and no other dynamic objects. Thus, DPM’s performance may suffer when

evaluated on more complex road scenarios.

In contrast to these existing works, we propose sg2vec which captures structural and rela-

tional information of a road scene in a scene-graph representation and computes a spatio-

temporal embedding to predict collisions. Additionally, we perform experiments that were

not done in many prior works, such as evaluating each model’s capability to transfer knowl-

edge, efficiency on AV hardware, performance on a complex real-world crash dataset, and

ability to predict collisions early. We primarily compare our methodology with the DPM as

it is the state-of-the-art data-driven collision prediction framework for AVs that considers

both spatial and temporal factors. Although the DPM uses multiple modalities for sensing,

the results in [83] show that it achieves an accuracy (of 81.95%) that is just 0.24% less using

just the image sensing modality. In this work, we compare our proposed sg2vec methodology

and the DPM on image-only datasets, which is fair because the DPM’s performance does

not vary much with the inclusion of other modalities.

2.2.4 AV Power and Energy Optimization

Current autonomous driving systems consume a substantial amount of power (up to 500

Watts for the Nvidia DRIVE AGX Pegasus), demanding more robust cooling and power

delivery mechanisms. Thus, many have tried to optimize AV tasks for efficiency without

sacrificing performance. Existing approaches have proposed methods for jointly optimizing

power consumption and latency for localization [84], perception [85], and control [86]. How-

ever, to the best of our knowledge, no work has explored this optimization for AV safety

systems, such as collision prediction systems.
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2.3 Scene-Graph Embedding Methodology

In sg2vec, we formulate the problem of collision prediction as a time-series classification

problem where the goal is to predict if a collision will occur in the near future. Our goal is

to accurately model the spatio-temporal function f , where

Yn = f({I1, ..., In−1, In}),Yn ∈ {0, 1}, for n > 2, (2.1)

where Yn = 1 implies a collision in the near future and Yn = 0 otherwise. Here the variable

In denotes the image captured by the on-board camera at time n. The interval between each

frame varies with the camera sampling rate.

sg2vec consists of two parts (Figure 4.3) : (i) the scene-graph extraction, and (ii) collision

prediction through spatio-temporal embedding, described in Section 2.3.1 and Section 2.3.2

respectively.

2.3.1 Scene-Graph Extraction

The first step of our methodology is the extraction of scene-graphs for the images of a

driving scene. The extraction pipeline forms the scene-graph for an image as in [87, 88] by

first detecting the objects in the image and then identifying their relations based on their

attributes. The difference from prior works lies in the construction of a scene-graph that is

designed for higher-level AV decisions. We propose extracting a minimal set of relations such

as directional relations and proximity relations. From our design space exploration we found

that adding many relation edges to the scene-graph adds noise and impacts convergence

while using too few relation types reduces our model’s expressivity. The best approach we

found across applications involves constructing mostly ego-centric relations for a moderate

range of relation types. Figure 2.1 shows an example of the graph extraction process.
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We denote the extracted scene-graph for the frame In by Gn = {On, An}. Each scene-graph

Gn is a directed, heterogeneous multi-graph, where On denotes the nodes and An is the

adjacency matrix of the graphGn. As shown in Fig. 2.1, nodes represent the identified objects

such as lanes, roads, traffic signs, vehicles, pedestrians, etc., in a traffic scene. The adjacency

matrix An indicates the pair-wise relations between each object in On. The extraction

pipeline first identifies the objects On by using Mask R-CNN [89]. Then, it generates an

inverse perspective mapping (also known as a “birds-eye view” projection) of the image to

estimate the locations of objects relative to the ego car, which are used to construct the

pair-wise relations between objects in An. For each camera angle, we calibrate the birds-eye

view projection settings using known fixed distances, such as the lane length and width, as

defined by the highway code. This enables us to estimate longitudinal and lateral distances

accurately in the projection. For datasets captured by a single vehicle, this step only needs

to be performed once. However, for datasets with a wide range of camera angles such as the

620-dash dataset introduced later in the chapter, this process needs to be performed once

per vehicle. With a human operator, we found that this calibration step takes approximately

1 minute per camera angle on average.

The extraction pipeline identifies three kinds of pair-wise relations: proximity relations (e.g.

visible, near, very near, etc.), directional (e.g. Front Left, Rear Right, etc.) relations, and

belonging (e.g. car 1 isIn left lane) relations. Two objects are assigned the proximity rela-

tion, r ∈ {Near Collision (4 ft.), Super Near (7 ft.), Very Near (10 ft.), Near (16 ft.), Visible

(25 ft.)} provided the objects are physically separated by a distance that is within that rela-

tion’s threshold. The directional relation, r ∈ {Front Left, Left Front, Left Rear, Rear Left,

Rear Right, Right Rear, Right Front, Front Right}, is assigned to a pair of objects, in this

case between the ego-car and another car in the view, based on their relative orientation

and only if they are within the Near threshold distance from one another. Additionally, the

isIn relation identifies which vehicles are on which lanes (see Fig. 2.1). We use each vehicle’s

horizontal displacement relative to the ego vehicle to assign vehicles to either the Left Lane,
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Middle Lane, or Right Lane using the known lane width. Our abstraction only considers

three-lane areas, and, as such, we map vehicles in all left lanes and all right lanes to the same

Left Lane node Right Lane node respectively. If a vehicle overlaps two lanes (i.e., during a

lane change), it is mapped to both lanes.

2.3.2 Collision Prediction

As shown in Figure 4.3, in our collision prediction methodology, each image In is first con-

verted into a scene-graph Gn = {On, An} with the pipeline mentioned in Section 2.3.1. Each

node v ∈ On is initialized by a one-hot vector (embedding), denoted by h
(0)
v . Then, the

MRGCN [90] layers are used to update these embeddings via the edges in An. Specifically,

the l-th MRGCN layer computes the node embedding for each node v, denoted as h
(l)
v , as

follows:

h(l)
v = Φ0 · h(l−1)

v +
∑
r∈An

∑
u∈Nr(v)

1

|Nr(v)|
Φr · h(l−1)

u , (2.2)

where Nr(v) denotes the set of neighbors of node v with respect to the relation r ∈ An, Φr

is a trainable relation-specific transformation for relation r, and Φ0 is the self-connection

for each node v that accounts for the influence of h
(l−1)
v on h

(l)
v [90]. After the input is

passed through multiple MRGCN layers, the set of node embeddings output by each layer

is collected and concatenated along the feature dimension to produce the final embedding

for each node v, denoted by HL
v = CONCAT({h(l)

v }|l = 0, 1, ..., L), where L is the index

of the last layer. Thus, if the model uses two MRGCN layers with output size 64, the final

embedding for each node will contain 128 features.

The final embeddings for scene-graph Gn, denoted by Xprop
n , are then passed through a graph

pooling layer to filter out irrelevant nodes from the graph, creating the pooled set of node
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embeddings Xpool
n and their edges Apool

n . The pooling layer is implemented as follows:

α = SCORE(Xprop
n ,Aprop

n ) (2.3)

P = topk(α) (2.4)

where SCORE can either be implemented as a top-k pooling (Top-K ) [91] or self-attention

graph pooling function (SAGPool) [92], α contains the score of each node in Gn, and P is

the set of k highest scoring nodes in Gn. After pooling, the node embeddings and adjacency

matrix are denoted as Xpool
t and Apool

t computed as follows:

Xpool
t = (Xprop

t ⊙ tanh(α))P, (2.5)

Apool
t = Aprop

t (P,P) (2.6)

where ⊙ represents element-wise multiplication, ()P refers to the operation that selects only

the subset of nodes defined by P and ()(P,P) refers to the formation of the adjacency matrix

between the nodes in this subset.

Then, for each scene-graph Gn, the correspondingX
pool
n is passed through the graphREADOUT

operation that condenses the node embeddings to a single graph embedding hGn as follows:

hGn = READOUT(Xpool
t ) (2.7)

whereREADOUT can be an operation such as averaging (mean-readout), summation (add-

readout), or retrieving the maximum (max-readout) in each feature dimension for the set of

pooled node embeddings Xpool
t .

Then, this spatial embedding hGn is passed to the temporal model (LSTM) to generate a
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spatio-temporal embedding zn as follows:

zn, sn = LSTM(hGn , sn−1) (2.8)

Where sn−1 represents the hidden state of the LSTM after the previous time step. For each

timestamp n, the LSTM produces an output embedding zn and updates its hidden state sn.

Since the hidden state is carried over to the next time step n+1 and used to compute zn+1,

it enables the LSTM to model how the spatial embeddings hGn change over time.

Lastly, each spatio-temporal embedding zn is then passed through a Multi-Layer Perceptron

(MLP) that outputs each class’s confidence value. The two outputs of the MLP are compared,

and Ŷn is set to the index of the class with the greater confidence value (0 for no-collision

or 1 for collision). During training, we calculate the cross-entropy loss between each set of

non-binarized outputs Ŷn and the corresponding labels for backpropagation.

2.4 Experimental Results

This section provides extensive experimental results to demonstrate sg2vec’s performance,

efficiency, and transferability compared to the state-of-the-art collision prediction model,

DPM [83]. For sg2vec, we used 2 MRGCN layers, each of size 64, one SAGPooling layer

with a pooling ratio of 0.25, one add-readout layer, one LSTM layer with hidden size 20,

one MLP layer with an output of size 2, and a LogSoftmax to generate the final confidence

value for each class. For the DPM, we followed the architecture used in [83], which uses

one 64x64x5 Convolutional LSTM (ConvLSTM) layer, one 32x32x5 ConvLSTM layer, one

16x16x5 ConvLSTM layer, one MLP layer with output size 64, one MLP layer with output

size 2, and a Softmax to generate the final confidence value. For both models, we used a

dropout of 0.1 and ReLU activation. The learning rates were 0.00005 for sg2vec and 0.0001
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for DPM. We ran the experiments shown in Sections 2.4.2 and 2.4.3 on a Windows PC with

an AMD Ryzen Threadripper 1950X processor, 16 GB RAM, and an Nvidia GeForce RTX

2080 Super GPU.

2.4.1 Dataset Preparation

a) 1043-syn

b) 571-honda

c) 620-dash

no lane markings varying camera angles

consistent camera anglesclear lane markings

Figure 2.3: Examples of driving scenes from our a) synthetic datasets, b) typical real-world
dataset, and c) complex real-world dataset. In a), all driving scenes occur on highways
with the same camera position and clearly defined road markings; lighting and weather are
dynamically simulated in CARLA. In b) driving scenes occur on multiple types of clearly
marked roads but lighting, camera angle, and weather are consistent across scenes. c) con-
tains a much broader range of camera angles as well as more diverse weather and lighting
conditions, including rain, snow, and night-time driving; it also contains a large number of
clips on unpaved or unmarked roadways, as shown.

We prepared three types of datasets for our experiments: (i) synthesized datasets, (ii) a

typical real-world driving dataset, and (iii) a complex real-world driving dataset. Examples

from each dataset are shown in Figure 2.3. Our synthetic datasets focus on the highway lane

change scenario as it is a common AV task. To evaluate the transferability of each model from

synthetic datasets to real-world driving, we prepared a typical real-world dataset containing

lane-change driving clips. Finally, we prepared the complex real-world driving dataset to

evaluate each model’s performance on a challenging dataset containing a broad spectrum

of collision types, road conditions, and vehicle maneuvers. All datasets were collected at a
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1280x720 resolution, and each clip spans 1-5 seconds.

Synthetic Datasets

To synthesize the datasets, we developed a tool using CARLA [63], an open-source driving

simulator, and CARLA Scenario Runner1 to generate lane change video clips with/without

collisions. We generated a wide range of simulated lane changes with different numbers of

cars, pedestrians, weather and lighting conditions, etc. We also customized each vehicle’s

driving behavior, such as their intended speed, probability of ignoring traffic lights, or the

chance of avoiding collisions with other vehicles. We generated two synthetic datasets: a

271-syn dataset and a 1043-syn dataset, containing 271 and 1,043 video clips, respectively.

These datasets have no-collision:collision label distributions of 6.12:1 and 7.91:1, respectively.

In addition, we sub-sampled the 1043-syn dataset to create 306-syn: a balanced dataset that

has a 1:1 distribution. Our synthetic scene-graph datasets2 and our source code3 are open-

source and available online. sg2vec is also now a part of the roadscene2vec library [93].

Typical Real-World Driving Dataset

This dataset, denoted as 571-honda, is a subset of the Honda Driving Dataset (HDD) [94]

containing 571 lane-change video clips from real-world driving with a distribution of 7.21:1.

The HDD was recorded on the same vehicle during mostly safe driving in the California Bay

Area.

1https://github.com/carla-simulator/scenario_runner
2https://dx.doi.org/10.21227/c0z9-1p30
3https://github.com/AICPS/sg-collision-prediction
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Complex Real-World Driving Dataset

Our complex real-world driving dataset, denoted as 620-dash, contains very challenging

real-world collision scenarios drawn from the Detection of Traffic Anomaly dataset [95].

This dataset contains a wide range of drivers, car models, driving maneuvers, weather/road

conditions, and collision types, as recorded by on-board dashboard cameras. Since the

original dataset contains only collision clips, we prepared 620-dash by splitting each clip in

the original dataset into two parts: (i) the beginning of the clip until 1 second before the

collision, and (ii) from 1 second before the collision until the end of the collision. We then

labeled part (i) as ‘no-collision’ and part (ii) as ‘collision.’ The 620-dash dataset contains

315 collision video clips and 342 non-collision driving clips.

Labeling and Pre-Processing

We labeled the synthetic datasets and the 571-honda dataset using human annotators. The

final label assigned to a clip is the average of the labels assigned by the human annotators

rounded to 0 (no collision) and 1 (collision/near collision). Each frame in a video clip is given

a label identical to the entire clip’s label to train the model to identify the preconditions of

a future collision.

For sg2vec, all the datasets were pre-processed using the scene-graph extraction pipeline

mentioned in Section 2.3.1 to construct the scene-graphs for each video clip. For a given

sequence, sg2vec can leverage the full history of prior frames for each new prediction. For

the DPM, the datasets were pre-processed to match the input format used in its original

implementation [83]. Thus, the DPM uses 64x64 grayscale versions of the clips in the datasets

turned into sets of sub-sequences Jn for a clip of length l defined as follows.
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Jn = {In, In+1, In+2, In+3, In+4}, for n ∈ [1, l − 4] (2.9)

Since DPM only uses five prior frames to make each prediction, we also present results for

sg2vec using the same length of history, denoted as sg2vec (5-frames) in the results.

2.4.2 Collision Prediction Performance

We evaluated sg2vec and the DPM using classification accuracy, area under the ROC curve

(AUC) [96], and Matthews Correlation Coefficient (MCC) [97]. MCC is considered a bal-

anced measure of performance for binary classification even on datasets with significant class

imbalances. The MCC score outputs a value between -1.0 and 1.0, where 1.0 corresponds

to a perfect classifier, 0.0 to a random classifier, and -1.0 to an always incorrect classifier.

Although class re-weighting helps compensate for the dataset imbalance during training, clas-

sification accuracy is typically less reliable for imbalanced datasets, so the primary metric

we use to compare the models is MCC. We used stratified 5-fold cross-validation to produce

the final results shown in Table 2.1 and Figure 2.4.

Synthetic Datasets

The performance of sg2vec and the DPM on our synthetic datasets is shown in Table 2.1. We

find that our sg2vec achieves higher accuracy, AUC, and MCC on every dataset, even when

only using five prior frames as input. In addition to predicting collisions more accurately,

sg2vec also infers 5.5x faster than the DPM on average. We attribute this to the differences

in model complexity between our sg2vec architecture and the much larger DPM model.

Interestingly, sg2vec (5-frames) achieves slightly better accuracy and AUC than sg2vec on
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Dataset Model Accuracy AUC MCC

271-syn sg2vec (5-frames) 0.8979 0.9541 0.5362
271-syn sg2vec 0.8812 0.9457 0.5145
271-syn DPM 0.8733 0.8939 0.2160

306-syn sg2vec (5-frames) 0.7946 0.8653 0.5790
306-syn sg2vec 0.8372 0.9091 0.6812
306-syn DPM 0.6846 0.6881 0.3677

1043-syn sg2vec (5-frames) 0.9142 0.9623 0.5323
1043-syn sg2vec 0.9095 0.9477 0.5385
1043-syn DPM 0.8834 0.9175 0.2912

620-dash sg2vec (5-frames) 0.6534 0.7113 0.3053
620-dash sg2vec 0.7007 0.7857 0.4017
620-dash DPM 0.4890 0.4717 -0.0366

Table 2.1: Classification accuracy, AUC, and MCC for sg2vec (Ours) and DPM.

the imbalanced datasets and slightly lower overall performance on the balanced datasets.

This is likely because the large number of safe lane changes in the imbalanced datasets adds

noise during training and makes the full-history version of the model perform slightly worse.

However, the full model can learn long-tail patterns for collision scenarios and performs

better on the balanced datasets.

The DPM achieves relatively high accuracy and AUC on the imbalanced 271-syn and 1043-

syn datasets, but suffers significantly on the balanced 306-syn dataset. This drop indicates

that the DPM could not identify the minority class (collision) well and tended to over-predict

the majority class (no-collision). In terms of MCC, the DPM scores higher on the 306-syn

dataset than what it scores on the other datasets. This result is because the 306-syn dataset

has a balanced class distribution compared to the other datasets, which could enable the

DPM to improve its prediction accuracy on the collision class.

In contrast, the sg2vec methodology performs well on both balanced and imbalanced syn-

thetic datasets with an average MCC of 0.5860, an average accuracy of 87.97%, and an

average AUC of 0.9369. Since MCC is scaled from -1.0 to 1.0, sg2vec achieves a 14.72%

higher average MCC score than the DPM model.
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The results from our sg2vec ablation study are shown in Table 2.3 and support our hypothesis

that both spatial modeling with MRGCN and temporal modeling with LSTM are core to

sg2vec’s collision prediction performance. However, the MRGCN appears to be slightly more

critical to performance than the LSTM. Interestingly the choice of pooling layer (no pooling,

Top-K pooling, or SAG Pooling) does not seem to significantly affect performance at this task

as long as LSTM is used; when no LSTM is used SAG Pooling presents a clear performance

improvement.

Complex Real-World Dataset

The performance of both the models significantly drops on the highly complex real-world

620-dash dataset due to the variations in the driving scenes and collision scenarios. This drop

is to be expected as this dataset contains a wide range of driving actions, road environments,

and collision scenarios, increasing the difficulty of the problem significantly. We took several

steps to try and address this performance drop. First, we improved the birds-eye view

(BEV) calibration on this dataset in comparison to the other datasets. Since the varying

camera angles and road conditions in this dataset impact our ability to properly calibrate

sg2vec’s BEV projection in a single step, we created custom BEV calibrations for each clip

in the dataset, which improved performance somewhat. However, as shown in Figure 4c,

a significant part of the dataset consists of driving clips on roads without any discernible

lane markings, such as snowy, unpaved, or unmarked roadways. These factors make it

challenging to correlate known fixed distances (i.e., the width and length of lane markings)

with the projections of these clips. To further improve performance on this particular dataset,

we performed extensive architecture and hyperparameter tuning. We found that, with one

MRGCN layer of size 64, one LSTM layer with hidden size 100, no SAGPooling layer, and

a high learning rate and batch size, we achieved significantly better performance than the

model architecture discussed in the beginning of Section 2.4 (2 MRGCN layers of size 64,
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one LSTM layer with hidden size 20, and a SAGPooling layer with a keep ratio of 0.5).

We believe this indicates that the temporal features of each clip in this dataset are more

closely related to collision likelihood than the spatial features in each clip. As a result,

the additional spatial modeling components were likely causing overfitting and skewing the

spatial embedding output. The spatial embeddings remained more general with a simpler

spatial model (1 MRGCN and no SAGPooling). This change, combined with using a larger

LSTM layer, enabled the model to capture more temporal features when modeling each clip

and better generalize to the testing set. Model performance on this dataset and similar

datasets could likely be improved by acquiring more consistent data via higher-resolution

cameras with fixed camera angles and more accurate BEV projection approaches. However,

as collisions are rare events, there are little to no datasets containing real-world collisions

that meet these requirements. Despite these limitations, sg2vec outperforms the DPM model

by a significant margin, achieving 21.17% higher accuracy, 31.40% higher AUC, and a

21.92% higher MCC score. Since DPM achieves a negative MCC score, its performance

on this dataset is worse than that of a random classifier (MCC of 0.0). Consistent with

the synthetic dataset results, sg2vec using all frames performs better on the balanced 620-

dash dataset than sg2vec (5-frames). Overall, these results show that, on very challenging

and complex real-world driving scenarios, sg2vec can perform much better than the current

state-of-the-art.

Time of Prediction

Since collision prediction is a time-sensitive problem, we evaluated our methodology and

the DPM on their average time-of-prediction (ATP) for video clips containing collisions. To

calculate the ATP, we recorded the first frame index in each collision clip when the model

correctly predicts that a collision would occur. We then averaged these indices and compared

them with the average collision video clip length. Essentially, ATP gives an estimate of how
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early each model can predict a future collision. These results are shown in Table 2.2. On the

1043-syn dataset, sg2vec achieves 0.1725 for the ratio of the ATP and the average sequence

length while the DPM achieves a ratio of 0.2382, indicating that sg2vec predicts future

collisions 39.07% earlier than the DPM on average. In the context of real-world collision

prediction, the average sequence in the 1043-syn dataset represents 1.867 seconds of data.

Thus, our methodology predicted collisions 122.7 milliseconds earlier than DPM on average.

This extra time can be critical for ensuring that the AV avoids an impending collision.

Dataset Model ATP Avg. Seq. Len. Ratio

271-syn sg2vec (Ours) 10.004 33.920 0.2949
271-syn DPM 17.399 32.899 0.5289
1043-syn sg2vec (Ours) 6.442 37.343 0.1725
1043-syn DPM 9.018 37.856 0.2382

Table 2.2: Average time of prediction (ATP) for collisions.

Experiment Spatial Model Graph Pooling Temporal Model Acc. MCC

Ablation
Study

MLP none none 0.7605 0.2612
MLP none LSTM 0.7660 0.2874

MRGCN none none 0.8605 0.4792
MRGCN none LSTM 0.8931 0.5561

Graph
Attn.
and
Pooling

MRGCN Top-K none 0.8288 0.3458
MRGCN SAGPool none 0.8738 0.5032
MRGCN Top-K LSTM 0.9014 0.5565
MRGCN SAGPool LSTM 0.9076 0.5407

Table 2.3: sg2vec ablation study on the 1043-syn dataset.

2.4.3 Transferability From Synthetic to Real-World Datasets

The collision prediction models trained on simulated datasets must be transferable to real-

world driving as it can differ significantly from simulations. To evaluate each model’s ability

to transfer knowledge, we trained each model on a synthetic dataset before testing it on the

571-honda dataset. No additional domain adaptation was performed. Figure 2.4 compares

the accuracy and MCC for both the models on each training dataset and the 571-honda

dataset after transferring the trained model.
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Figure 2.4: Performance after transferring the models trained on synthetic 271-syn and
1043-syn datasets to the real-world 571-honda dataset.

We observe that the sg2vec model achieves a significantly higher MCC score than the DPM

model after the transfer, suggesting that our methodology can better transfer knowledge from

a synthetic to a real-world dataset compared to the state-of-the-art DPM model. The drop in

MCC values observed for both the models when transferred to the 571-honda dataset can be

attributed to the characteristic differences between the simulated and real-world datasets;

the 571-honda dataset contains a more heterogeneous set of road environments, lighting

conditions, driving styles, etc., so a drop in performance after the transfer is expected.

We also note that the MCC score for the sg2vec model trained on 271-syn dataset drops

more than the model trained on the 1043-syn dataset after the transfer, likely due to the

smaller training dataset size. Regarding accuracy, the sg2vec model trained on 1043-syn

achieves 4.37% higher accuracy and the model trained 271-syn dataset achieves 1.47% lower

accuracy than the DPM model trained on the same datasets. The DPM’s similar accuracy

after transfer likely results from the class imbalance in the 571-honda dataset. Overall, we

hypothesize that sg2vec’s use of an intermediate representation (i.e., scene-graphs) inherently

improves its ability to generalize and thus results in an improved ability to transfer knowledge

compared to CNN-based deep learning approaches.
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2.4.4 Evaluation on Industry-Standard AV Hardware

To demonstrate that the sg2vec is implementable on industry-standard AV hardware, we

measured its inference time (milliseconds), model size (kilobytes), power consumption (watts),

and energy consumption per frame (milli-joules) on the industry-standard Nvidia DRIVE

PX 2 platform, which was used by Tesla for their Autopilot system from 2016 to 2018 [10].

Our hardware setup is shown in Figure 2.5. For the inference time, we evaluated the average

inference time (AIT) in milliseconds taken by each algorithm to process each frame. We

recorded power usage metrics using a power meter connected to the power supply of the

PX 2. To ensure that the reported numbers only reflected each model’s power consumption

and not that of background processes, we subtracted the hardware’s idle power consumption

from the averages recorded during each test. For a fair comparison, we captured the metrics

for the core algorithm (i.e., the sg2vec and DPM model), excluding the contribution from

data loading and pre-processing. Both models were run with a batch size of 1 to emulate the

real-world data stream where images are processed as they are received. For comparison, we

also show the AIT on a PC for the two models.

Our results are shown in Table 2.4. sg2vec performs inference 9.3x faster than the DPM

on the PX 2 with an 88.0% smaller model and 32.4% less power, making it undoubtedly

more practical for real-world deployment. Our model also uses 92.8% less energy to process

each frame, which can be beneficial for electric vehicles with limited battery capacity. With

an AIT of 0.4828 ms, sg2vec can theoretically process up to 2,071 frames/second (fps). In

contrast, with an AIT of 4.535 ms, the DPM can only process up to 220 fps. In the context

of real-world collision prediction, this means that sg2vec could easily support multiple 60 fps

camera inputs from the AV while DPM would struggle to support more than three.
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Figure 2.5: Our experimental setup for evaluating sg2vec and DPM on the industry-standard
Nvidia DRIVE PX 2 hardware.

Model PC AIT (ms) PX2 AIT (ms) Size (KB) Power (W) Energy/frame (mJ)

sg2vec 0.2549 0.4828 331 2.99 1.44
DPM 1.393 4.535 2,764 4.42 20.0

Table 2.4: Performance evaluation of inference on 271-syn on the Nvidia DRIVE PX 2.

2.5 Summary

Our experiments demonstrate that our scene-graph extraction and embedding methodology

for collision prediction, sg2vec, outperforms the state-of-the-art method, DPM, in terms

of average MCC (0.5055 vs. 0.2096), average inference time (0.255 ms vs. 1.39 ms), and

average time of prediction (39.07% sooner than DPM). Additionally, they show that sg2vec

can transfer knowledge from synthetic datasets to real-world driving datasets more effectively

than the DPM, achieving an average transfer MCC of 0.327 vs. 0.060. Finally, we find that

our methodology performs faster inference than the DPM (0.4828 ms vs. 4.535 ms) with

a smaller model size (331 KB vs. 2,764 KB) and reduced power consumption (2.99 W vs.

4.42 W) on the industry-standard Nvidia DRIVE PX 2 autonomous driving platform. In the

context of real-world collision prediction, these results indicate that sg2vec is a more practical

choice for AV safety and could significantly improve consumer trust in AVs. Few works have
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explored graph-based solutions for other complex AV challenges such as localization, path

planning, and control. These are open research problems that we reserve for future work.

This chapter focused on improving scene understanding by modeling the context as inter-

object relations in a scene-graph. Thus, transfer learning ability and robust performance

were prioritized over energy optimization. The next chapter focuses much more closely on

the energy problem and explores how dynamic networks can help traditional DL architectures

reduce energy consumption in AVs.
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Chapter 3

Split-Architecture Computing for

Energy-Efficient End-to-End Control

3.1 Introduction and Related Work

The core task of an AV is to perceive the state of the road and safely control the vehicle

in place of a human driver. The difficulty in achieving this goal lies in the fact that road

scenarios can be highly complex and dynamic, presenting a wide range of potential challenges

and obstacles (e.g., rain, snow, construction zones, animals, etc.). To address this challenge,

modern AV algorithms rely heavily on (i) large deep learning (DL) models to capture this

high degree of complexity and (ii) high-performance edge hardware to reduce processing

latency and ensure passenger safety at higher speeds.

As a result, AVs require significant computational power to operate reliably and safely in

the real world. However, as AV computing capabilities have scaled up, so have their power

and energy requirements. As discussed in Chapter 1, the combined computational and

thermal loads induced by modern AV SoCs can reduce an AV’s driving range by up to 11.5%

35



[5], which is especially detrimental for electric vehicles due to their limited range and long

recharge times.

Chapter 1.2 also discusses limitations of existing energy saving approaches, such as application-

specific hardware design, cloud/fog server offloading, or model simplification/pruning. Of

these methods, the only approach that enables computation flexibility without costly hard-

ware or algorithmic changes is offloading. Unfortunately, current offloading approaches have

significant scalability and latency issues, as will be discussed in the next paragraph. In con-

trast, we propose a cloud server offloading methodology that is efficient, safe, and practical

for current networking infrastructure.

A näıve solution to the problem of edge energy consumption is to offload self-driving tasks

to a cloud server or a Mobile Edge Computing (MEC) server [98]. These ‘direct offloading’

approaches involve sending images or sensor inputs directly to the server, which processes

the data before returning the desired control outputs to the vehicle. However, the real-time

latency constraints of autonomous driving and the limitations of current wireless network

infrastructure significantly impact this solution’s feasibility; to drive and react effectively,

AVs must be able to process each input within 100 milliseconds [5]. This bound comes from

the fact that the fastest attainable reaction by a human when driving falls within the range

of 100-150 ms, meaning that for efficient AV navigation, AVs need to at least perform at the

same level as the human driver counterpart. Also, spinning sensors on AVs such as lidar and

radar typically have a sensing frequency between 4-20 Hz [19, 18], so AVs should be able

to react to each new input sample. Additionally, most real-world AVs, such as those from

Tesla [10], Baidu Apollo [11], and Argo AI [99], use multiple high-definition cameras and

sensors and would require very high network bandwidths to offload data within the latency

constraints. In some cases, the energy needed to transmit and receive data from the cloud

server can even exceed the energy consumed by edge-only processing. Together, these factors

make direct offloading infeasible in most real-world autonomous driving scenarios. Currently,
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most of the literature has proposed solving this problem by improving network robustness

and throughput via solutions such as 5G C-V2X [100] and WAVE [101], or even by placing

sensors on the roads themselves [32]. However, implementing these solutions would require

significant investments in the networking infrastructure to become realistically feasible.

Several works have proposed methods for offloading some or all AV tasks. For example,

[102] proposed a technique for reducing AV processing latency by offloading sub-tasks of

LiDAR SLAM to the cloud depending on network conditions. Although they demonstrate

good performance, their approach is limited since it only considers LiDAR data, which is

significantly smaller than camera data. Additionally, they developed a distributed SLAM

algorithm that allowed task-level parallelism; this sort of optimization will need to be applied

for every part of a modular AV pipeline and may not be applicable in some areas. In

another work, [103] proposed an offloading strategy where computations are executed on

either an MEC server or a cloud server depending on network conditions. However, their

method requires all sensor input data and internal state information to be sent to the server

for processing. Since they only evaluated a micro-car transmitting IMU data (position,

velocity, yaw), their approach is not scalable to real-world AVs that would need to offload

multiple high-definition camera inputs. The work in [104] proposes a hierarchical approach

for offloading in which AVs can offload to road-side units (RSUs) when MEC servers are

overloaded, but this work does not consider network bandwidth constraints. Moreover,

none of these works [102, 103, 104] considered edge energy consumption in their evaluation,

which significantly constrains direct offloading approaches. The authors in [105] evaluated

the energy consumption for offloading to MEC servers; however, they do not assess this

approach’s practicality for large upload data sizes, which are typical for AVs with multiple

high-resolution input cameras. In summary, the problem of offloading large data sizes while

meeting latency and energy constraints on current network infrastructure is exceedingly

challenging and is currently unsolved by existing methods.
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3.1.1 Research Challenges

For efficient AV offloading, the following key research challenges need to be addressed:

1. Offloading AV tasks without exceeding safety-critical latency constraints or increasing

AV energy consumption.

2. Adapting AV deep learning architectures to support dynamic offloading depending on

the corresponding network conditions.

3. Developing a technique efficient enough to meet latency constraints with data from

multiple high-definition camera inputs on current industry-standard AV hardware.

4. Producing a cost-efficient, safe solution that can operate within the constraints of

current networking infrastructure.

Instead of altering the AV hardware or the communication network infrastructure, we pro-

pose SAGE: a methodology to significantly reduce the size of the data transmitted over

the network and enable efficient computation offloading. By introducing a bottleneck layer

near the beginning of end-to-end DL control models, the size of the data uploaded to the

cloud server is reduced significantly, allowing a large portion of the model computation to be

offloaded to the server even at low network bandwidths. This benefit is especially valuable

in multi-camera offloading due to the significant bandwidth requirements and edge energy

consumption of multi-camera models. Furthermore, it was shown in [106] that, with a par-

ticular training strategy, the model’s performance after introducing the bottleneck remains

nearly the same.
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Figure 3.1: A comparative analysis demonstrating the of the overall latency (top) and energy
consumption (bottom) for the All-Cloud, All-Edge, and SAGE (Ours) execution strategies
given three typical effective data rate values attainable through a 4G LTE connection. The
red line indicates the AV processing latency deadline of 100 ms.

3.1.2 Motivational Example

We provide a brief example to demonstrate the merit of our approach in Figure 3.1. Here, we

compare three possible execution strategies for an end-to-end AV control model: executing

locally on the edge (All-Edge), offloading the entirety of execution to the cloud (All-Cloud),

and our proposed split approach (SAGE). Our analysis is conducted at three distinct data

rate values typical for 4G LTE connections, and the evaluations are performed on a Jetson

TX2 for a ResNet-50 model [107] adapted for end-to-end AV control. In terms of latency,

it is clear that the All-Cloud approach is impractical at low data rate values as it fails to

meet the 100 ms processing latency constraint of the AV. On the other hand, performing

all the processing locally in the All-Edge approach keeps the latency unaffected by the

39



state of the network. However, the downside is that the edge device is fully operational and

consumes sizeable amounts of power for longer periods, leading to higher energy consumption

in theory than the All-Cloud approach at the more favorable data rates. SAGE offers

to leverage the best of these both approaches. In brief, SAGE entails replacing an early

computational block from the model architecture with a more efficient encoder-decoder-

like structure. Then, this modified architecture is divided between the edge and cloud at

the encoder output. The encoder, acting as a bottleneck, projects the input data into a

low-dimensional representation that is more suited to be transmitted to the cloud over the

wireless medium. On the other hand, the decoder component is situated as part of the

cloud to receive the encoder’s output data and map it into a representation analogous to

the output of the original computational block from the unaltered model architecture. This

structural modification results in significantly lower: (i) local execution latency than the

All-Edge, and (ii) transmission latency than the All-Cloud. Moreover, these improvements

are reflected in the energy consumption as the edge device is only required to perform

computations for a much shorter interval within the 100 ms time window, which is beneficial

for the edge device itself in terms of performance efficiency. More details about the proposed

SAGE methodology and how resource-efficiency is promoted across the edge and cloud while

maintaining the same degree of accuracy shall be described in detail in Section 3.3.

3.1.3 Novel Contributions

Our novel contributions are as follows:

1. We propose SAGE: a novel split-network architecture methodology that allows for a

significant reduction in the energy consumption of AV on-board processing units by

dynamically offloading part of the model’s computations to the cloud.

2. We demonstrate that introducing bottlenecks into deep end-to-end AV control models
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reduces energy consumption significantly with little to no performance loss.

3. We show that SAGE reduces network throughput requirements significantly compared

to conventional cloud server offloading techniques, enabling it to meet latency con-

straints even at low network bandwidths on 3G, 4G LTE, and WiFi1.

4. We demonstrate that SAGE is scalable to practical AV use cases by evaluating its

performance with three high-definition camera inputs, typical for real-world AVs [10,

11, 99, 108].

5. We demonstrate the practicality and feasibility of our technique by evaluating its per-

formance on the Nvidia Jetson TX2, as well as the industry-standard Nvidia Drive PX

2 autonomous driving platform, used in all 2016-2018 Tesla models for their Autopilot

system [10].

3.2 System Model

This section aims to provide a generalized model of how an AV edge device may complete

processing a task either through local computation or collaboration with a cloud server.

Mainly, the modeling comprises the communication and computation costs that the AV edge

device would incur until the task is finished. Our model comprises a direct link between a

vehicle i, requiring computation for its designated task, and a cloud server j to whom tasks

can be offloaded.

1We did not evaluate 5G C-V2X and WAVE in this work because these technologies are currently not
widespread and require significant infrastructure changes to be viable. Also, comparable real-world power
models for 5G are not available yet in the literature. However, SAGE will be scalable to these emerging
technologies.
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3.2.1 Communication Model

As the AV runtime optimization solution spans multiple levels in the system architectural

hierarchy (i.e., edge and cloud), a communication model is needed to identify the cost of

transferring data between entities of different levels. These costs can be represented through

transmission latency and energy. More formally, the task to be offloaded can be represented

as ti = {ai, bi, ci}, where ai, bi, and ci correspond to the size of data to be transmitted, size of

data to be received back from the server, and the number of CPU cycles required to complete

the task, respectively. To estimate the communication overhead, we will need to determine

the upload and download data rates, rUi,j and r
D
i,j, experienced at vehicle i’s edge device when

transmitting data to cloud server j. Although the data rate can be determined theoretically

through Shannon’s law, this resembles an optimistic estimate, not taking into consideration

potential errors or packet losses. Instead, we are more interested in the ’effective’ data rates

by which we mean the actual data transfer speeds experienced at the edge device when

accounting for errors and re-transmissions. These values can be measured at the target

device and accordingly, the upload and download latencies can be given as:

TU
i,j =

ai
rUi,j

, TD
i,j =

bi
rDi,j

(3.1)

Thus, the total communication overhead encountered by at vehicle i in terms of latency and

energy for offloading task execution to computing server j is given by:

T comm
i,j = TU

i,j + TD
i,j + TRTT

i,j (3.2)

Ecomm
i,j = pTi T

U
i + pRi T

D
i (3.3)

where pTi , p
R
i and TRTT

i,j represent vehicle i’s transmitting power, receiving power, and the

round-trip time between vehicle i and server j, respectively.
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3.2.2 Computation Model

Assuming that any task requested by vehicle i consists of several sequential sub-tasks, i.e.,

as in an end-to-end control pipeline or layers in a DL model, let Ci = {ci1, ci2, ..., ciK} denote

the set of K clock cycles required to execute each sub-task. Thus, potential execution times

(local or remote) and the energy needed to execute sub-task k locally are:

T l
ik =

cik
f l
i

(3.4)

T r
ik =

cik
f r
i

(3.5)

El
ik = ϑicik (3.6)

where f l
i , f

r
i and ϑi represent the operational frequency at vehicle i, operational frequency

at the remote server, and a coefficient denoting energy consumed per CPU cycle at vehicle

i. However, since offloading some or all sub-tasks is a viable option in this scheme, the total

computational latency and energy consumption for vehicle i can be written as:

T comp
i =

kp∑
k=1

T l
ik +

K∑
k=kp+1

T r
ik (3.7)

Ecomp
i =

kp∑
k=1

El
ik + Eidle

i (t) (3.8)

where kp is the execution partitioning point after which execution is assigned to the remote

server, and Eidle
i (t) is the energy consumed by vehicle i waiting for the remote server’s results

as a function of the idle time t. Note that when kp = K, T comp
i reflects the local execution

case without any form of offloading as the second summation becomes an empty sum.
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Figure 3.2: An illustration of how systems developed through SAGE support end-to-end AV
control. The tail component is replicated on both the edge and the cloud. At runtime, a
decision is to be made whether the tail should be executed locally or in the cloud. Final
results are applied as inputs to the AV control system.

3.2.3 Problem Formulation

From the previous model derivations, the offloading problem for vehicle i can be formulated

as:

min
kp

wT
i (I(kp ̸= K)× T comm

i + T comp
i ) + wE

i (I(kp ̸= K)× Ecomm
i + Ecomp

i ) (3.9)

s.t. (I(kp ̸= K)× T comm
i + T comp

i ) <= 100 ms

where wT
i and wE

i ∈ [0, 1] represent user-defined weights associated with the latency and

energy metrics, and I(kp ̸= K) is an indicator function becoming 0 in the case of local

execution. As presented earlier, the 100 ms constraint is the window within which the AV

must finish its processing task [5]. Note that as kp varies, so will the values associated with

the offloaded task ai and ci.
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3.3 Methodology

In this section, we present SAGE and discuss its building blocks in detail. Figure 3.2 illus-

trates how the final system developed through SAGE would support end-to-end AV control.

We target end-to-end AV architectures (introduced in Chapter 1.1) because they provide

more opportunities for model splitting and allow detailed analysis of each layer’s contribu-

tion. However, SAGE can also be applied to modular architectures, as discussed in 3.5.2.

The implemented DL model is divided into two components: (i) a head deployed on the

edge and (ii) a tail which is replicated across both the edge and cloud. The head component

contains within its structure a bottleneck layer, which represents an optimal offloading point

compared to other options. Inputs to the model can come through a camera feed and sensory

measurements (e.g., current speed). After the head portion executes at runtime, it is decided

whether tail processing should be done locally or be delegated to the cloud depending on

current network conditions. The tail portion of each DL model contains the bulk of layers

and outputs the control values to the AV.

3.3.1 Perception

Much like human beings, perception is concerned with how an AV interprets and understands

events occurring in its surrounding environment. To enable perception, AVs are equipped

with sensory capabilities to capture representative data from the environment. This data

is then processed to extract a comprehensive understanding of the events unfolding around

them. Contemporary AVs sense their environment via cameras, LiDAR, or radar equipment

[109, 110, 111]. After data acquisition, DL models process the data and estimate the course

of action that the AV should take in the following time-step [112]. Without any loss of

generality, our evaluations are based on the data-intensive image-based perception from a

set of cameras capturing the AV’s surroundings. To implement the perception pipeline, we
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utilize state-of-the-art DL model architectures, which are known to achieve high accuracy

on image classification tasks, as baselines. This allows us to leverage these models’ abilities

to capture fine-grained features from images for processing camera data as part of an end-

to-end AV control architecture. Mainly, we consider DenseNet-169 [113], ResNet-34 [107]

(used for end-to-end multi-camera AV control in [108]), ResNet-50 [107], and CarlaNet [112]

which is implemented specifically as an end-to-end AV control solution.

DenseNet-169
[113]

ResNet-50
[107]

ResNet-34
[107]

CarlaNet
[112]

Perception 98.76% 97.74% 97.36% 59.64%
Imitation Learning (IL) 1.24% 2.26% 2.64% 40.36%

Modified head speedup 80.11% 79.97% 67.25% 13.39%
Overall Model speedup 27.01% 41.51% 34.39% 2.65%

Table 3.1: Contribution of perception and IL components in terms of the total processing
(top), and how modifying the head components in SAGE speeds up model executions (bot-
tom).

3.3.2 Imitation Learning for End-to-End AV Control

Next, the baseline models must be adapted to predict AV control outputs from camera

input data. This can be achieved by integrating an Imitation Learning (IL) component at

the back-ends of the baseline models to enable them to mimic a human’s behavior in regard

to a particular task. In this context, the driving algorithm’s core objective is to imitate

the vehicle control outputs (steering angle, brake pedal angle, and accelerator pedal angle)

produced by a human driver for a given set of input images [114]. IL models are typically

trained via supervised learning, where the goal is to map the input features captured at

time-step t to the corresponding human control output values. To effectuate the learning

process, a loss function, e.g., Mean Absolute Error (MAE), is used to evaluate the difference

between a model’s predictions and the ground truth values. Take the baseline ResNet-

50 for example, its vanilla network architecture constitutes five main convolutional blocks,

representing the main perception component, followed by a final fully-connected layer for
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image classification tasks. To adapt the model for IL, we replace this fully-connected layer

with an IL component developed for end-to-end AV control where the final layer has three

separate neurons: one for each control output (steering, accelerator, brake). These outputs

are used in both the loss function for MAE computation and controlling the vehicle during

deployment. We follow the IL implementation in [112] where firstly, the output from the

preceding perception component and the corresponding pre-processed speed measurement

at time-step t are concatenated together as the input to the IL component. Next, one of

several processing branches is activated based on the driver’s command value (e.g., navigation

signal). This notion of branching is implemented to associate unique learning features with

different driving intentions. For instance, the second branch can only be activated whenever

the driver issues the ”Turn right” navigation signal because this branch’s parameters were

trained to take actions in anticipation of a right turn, dissimilar to what parameters in other

branches learned. The outputs from the active branch are the ones that are directly applied

to the AV control system at that particular time step t.

To summarize, a baseline DL-based solution for AV control comprises (i) a perception mod-

ule, (ii) a speed measurement processing unit, and (iii) an IL back-end. Henceforth, these

DL models adapted for IL shall have ”IL-” preceding their original names, e.g., IL-ResNet-

50. Moreover, to give an idea of each component’s contribution to the overall processing

time, The upper part of Table 3.1 shows how perception can be the most computationally-

intensive component, especially when utilizing state-of-the-art image classification models.

Note that the speed processing unit is executed concurrently with the perception module,

which dominates their combined execution time. Thus, our structural modifications target

the perception modules to maximize the performance impact.
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3.3.3 Structural Alterations for Split Computing

Deploying the AV control algorithm on the edge device is essential for such a mission-critical

application. However, dynamically assigning some or all of the processing tasks to a more

powerful cloud server if the wireless network conditions are favorable can lead to substantial

latency and energy savings on the edge device. As was shown in the motivational example,

directly offloading inputs to the cloud can be inefficient at sub-par network conditions: a

significant communication overhead can arise from transmitting the raw input images, re-

sulting in a poorer overall performance than that of local execution. Prior work in [115] tries

to address this by compressing the input image before transmission, but accuracy degrades

significantly. One alternative in [116] proposes scanning each layer within the DL model to

identify those which output smaller data sizes than the input as potential data offloading

points in a split computing approach. However, this is dependent on each architecture’s

structure, deeming it ineffective for models that do not shrink data size enough.

A more tractable alternative is modifying the DL model structure by injecting a bottleneck

amongst the first few layers. This bottleneck layer presents an optimal offloading point very

early in the model because its structure is designed to output exceedingly small-sized data.

This idea is presented in [106, 117, 118], where it is implemented by initially dividing a DL

model architecture into two sections: a head and a tail. The structure of the tail remains

unchanged. Whereas, a simpler more efficient version of the head is constructed to mimic the

functionality of the original head section. The merits of constructing this new head model

are twofold. Firstly, the new head is structurally more efficient to run than the original

head providing a local execution speedup, as illustrated in the lower part of Table 3.1.

Secondly, the head contains the bottleneck operating as an encoder-decoder model rigorously

transforming its input to lower dimensions (encoder) before raising the dimensionality at its

output (decoder), making the encoder serviceable as an efficient data offloading layer. We

follow the instructions provided in [106] on how to design a new head model with a bottleneck
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Figure 3.3: The head network distillation process to train the perception component with
the bottleneck. Note that in the final deployment, the bottleneck layer is to be the last layer
on the edge device.

from the original head. Structurally, both the bottleneck ’s number of output channels and its

preceding layers’ complexity should be minimized. However, the modified model’s accuracy

still needs to be maintained by retraining the new head portion, as discussed in the following

subsection. This leads us to place the bottleneck earlier in the architecture to minimize local

processing overheads, and transmission latency. All in all, offloading at the bottleneck is 14×

faster than offloading at the input. The overhead for creating a bottleneck layer is analogous

to that of creating a small deep learning model manually, which is represented through the

human design effort of performing successive refinements in order to attain the desired degree

of performance. The main difference is the requirement to have an encoder-decoder structure

within the overall architecture to provide the efficient offloading point.

3.3.4 Head Network Distillation (HND)

Knowledge Distillation (KD), presented in [119, 120], has emerged as an effective training

technique to render a compressed yet accurate version of a deeper, more complex neural net-

work model. The main reason this technique came about is that shallower neural networks,

when trained conventionally, achieve sub-par performance at many tasks compared to deeper

networks. Hence, this technique aims to leverage the deeper network as a teacher to distill its
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acquired knowledge into the smaller student model. Consequently, student models trained

through KD achieve superior performance relative to their traditionally-trained counterparts

[119]. This technique is advantageous when high-performance neural network solutions are

needed for edge devices with limited resources. Formally, the student’s loss function, which

is minimized during training, needs to incorporate a distillation component as follows:

Lstudent = αLorig + (1− α)LKD (3.10)

where Lorig is the conventional loss function using hard labels, whereas LKD represents the

KD loss component, which can be computed using KL divergence, L2 loss, or logits regression

[119]. Through providing a control variable α, the effective weight of each loss component

can be fine-tuned. This works because the student is learning by minimizing the divergence

from a vector of the teacher’s real values, rather than on a single label representation. Hence,

the student becomes more capable of capturing the finer details of how the final decision was

reached and attempts to learn a simple function to minimize the divergence from this vector

of values, thus achieving better generalization.

However, works in [121, 122] discuss how using more complex and accurate teacher models

makes training through KD for the student models more challenging as a result of the

capacity mismatch. In these scenarios, more training heuristics are introduced, and more

restrictions are imposed on the structures of student models. To avoid this in the context of

the AV problem, KD is applied between the original and modified head components rather

than the entirety of models, making them the teacher and student, respectively. This process

entails training the learnable parameters within the modified head model while maintaining

the pre-trained tail parameters unchanged from the original model. Consequently, the loss

component for the student-head model can be computed using the sum of squared difference,
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as presented in [106]:

LKD(X) =
∑
x∈X

||sh(x)− th(x)||2 (3.11)

where sh and th represent the output vectors from the head portions of the student and

teacher on an input x, respectively. For this loss function to be attainable, the final layers in

both head models must have the same dimensions. Figure 3.3 illustrates the Head Network

Distillation (HND) process. Note that although the loss function is computed between the

final layers in the head modules, in the final deployment, any layers succeeding the bottleneck

are deployed on the cloud.

3.3.5 Offloading Strategy

After training the modified model using HND and deploying it across the edge and cloud, a

runtime strategy must be implemented to determine, for each time step, whether to continue

execution at the bottleneck or delegate the remaining DL processing tasks to the cloud. The

corresponding network conditions, mainly the effective upload data rate: rUi,j, govern this

decision. Note that the focus is on rUi,j because the bulk of the data transmission (tens of

kBs) occurs in the uplink, whereas merely the final values (in bytes) are sent through the

downlink. So, the task here is to devise a policy based on a data rate threshold rth where:

1. if (rUi,j > rth): the edge device offloads the result of computation at the bottleneck to

the cloud server where it is processed through the tail part of the model before sending

the resultant control inputs back to the edge device.

2. else: execution proceeds locally at the edge device.

To estimate rth, the 100 ms constraint on AV processing, stated in Equation 3.9, must be

considered, where all communication- and computation-related tasks must conclude within
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that time frame. Moreover, there have to be expected performance gains to justify the

offloading decision. Therefore in our formulation, this decision is dependent on whether or

not there exist potential energy reductions from offloading. Hence, we can denote rth as:

rth =
Upload Data Size

100− (T edge
head + T cloud

tail + TD
i,j + TRTT

i,j )
s.t. (rth > 0) and (Ecomm

i + Eedge
idle < Eedge

tail )

(3.12)

where T edge
head and TRTT

i,j represent the edge head component’s execution time and the round-

trip time between the edge and cloud, respectively. The sum of T cloud
tail and TD represents the

time the edge device is idle waiting for the cloud server to compute and transmit back the

control inputs for the AV. The rth > 0 restriction guarantees that the sum of the latency

estimates in the denominator does not exceed the 100 ms time constraint. Furthermore, the

sum of the energy required to offload the data at the bottleneck and the idle energy consump-

tion (Ecomm
i +Eedge

idle ) must be less than the energy required to execute the tail component of

the model (Eedge
tail ) in order to attain a beneficial offload. Algorithm 1 demonstrates a runtime

algorithm implementing this strategy. We have built this algorithm to promote performance

efficiency through offloading whenever the network conditions are benign. Note that lines

12-14 represent a fail-safe mechanism accounting for the network variability within a single

time window, where it is vital to keep room within the 100 ms time window to invoke local

tail execution if the result has not received from the cloud within the expected time limit.

This is guaranteed by starting a counter each time window that wakes the edge device to

resume execution if the remaining time within the window is equivalent to that of the edge

tail model. Also, TRTT
i,j in our case is obtained through averaging multiple pings to a remote

server, which accounted for < 10ms overhead, however, this value may vary depending on

the operational scenarios and the capabilities of network components involved in the commu-

nication link. Figure 3.4 illustrates the three possible outcomes from our runtime strategy.

It should be noted that, since Algorithm 1 has a computational complexity of O(1), its ex-
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ecution time is negligible compared to executing the DL models. As such, we excluded its

execution time from our calculations.

Figure 3.4: Three possible execution scenarios: local execution, successful offloading to the
cloud, and unsuccessful offloading to the cloud which entails rolling back to edge computing.

Algorithm 1: Runtime Energy Optimization Algorithm

Input: Upload Data Size, T edge
head , T

cloud
tail , Eedge

idle , E
edge
tail

1 for each time step t do
2 Measure rUi,j, r

D
i,j, and T

RTT
i,j // obtain current network parameters

3 Calculate TD
i,j, rth, and E

comm
i // using current network parameters

4 x = edge head() // execute locally until bottleneck

5 if (rU > rth) and (rth > 0) and (Ecomm
i + Eedge

idle < Eedge
tail ) then

6 Tx data(x) // transmit bottleneck output to the cloud server

7 Timer ← reset() // initialize timer

8 edge state← idle // edge goes to idle mode

9 if rx event then
10 edge state← wakeup // edge wakes up to receive server results

11 x = Rx data()

12 else if Timer > (100− (T edge
tail + ϵ)) then

13 edge state← wakeup // edge wakes up to execute tail model

14 x = edge tail(x)

15 else
16 x = edge tail(x) // execute tail model locally

17 Input Control(x) // apply control values to the AV
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3.4 Experiments

3.4.1 Experimental Setup

We evaluate SAGE on two edge devices with significantly different computational capa-

bilities: the Nvidia Jetson TX2 (TX2) and the industry-standard Nvidia DRIVE PX2 Au-

toChauffeur (PX2). The TX2 is capable of 1.33 TeraFlops (TFLOPS) while operating within

a power budget of 15 Watts (W). The more powerful PX2 is designed for real-world au-

tonomous driving use-cases and has been used in vehicles such as the Tesla Model S [10]. It

is capable of 8 TFLOPS within a power budget of 80 W. To serve as our cloud server, we

used a Windows Desktop with an Nvidia 2080 Super, capable of 11.1 TFLOPS. It should

be noted that, in a real-world deployment of SAGE, a more powerful cloud server could be

used to increase the benefits of offloading.

In terms of the dataset, we use the CARLA conditional IL dataset from [112]. It contains

RGB images in 200x88 resolution and control/sensor values extracted from the CARLA

urban driving simulator [63]. We used the image data as well as the steering, accelerator,

brake, and navigational command information from the dataset for training and evaluat-

ing the accuracy of both our original IL models as well as their bottlenecked counterparts.

We implement and train our models in PyTorch to assess the difference in error between

the original and bottlenecked models. To evaluate the model latency and energy consump-

tion (T comp
i and Ecomp

i from Equations 3.7 and 3.8), we directly obtained the measurements

through the Caffe model timing API for the TX2. For the PX2 and cloud server, we used

Nvidia’s TensorRT library to compile and optimize the models for the hardware. TensorRT

is designed to optimize the model architecture automatically (i.e., optimizing weights, paral-

lelizing computations, combining redundant layers, etc.) to maximize inference performance

on a given platform.
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In our experiments, we evaluated both 1-camera and 3-camera implementations of our IL

models. Our 1-camera experiments aim to demonstrate SAGE for a low-cost AV implemen-

tation consisting of either a TX2 or PX2 as the edge device equipped with a single forward-

facing camera. This implementation is practical for simple AV tasks such as adaptive cruise

control, lane following, etc. Aligning with this goal, we evaluate the energy consumption

and feasibility of SAGE with both low-resolution (88x200) and high-resolution (1280x720)

camera data.

We also perform 3-camera experiments to demonstrate the feasibility of SAGE on more

comprehensive AV hardware platforms. Multi-camera platforms are essential for real-world

AV use cases such as urban/highway driving and point-to-point travel. Thus, we evaluated

our IL models using three high-definition 1280x720 (720p) camera inputs on the PX2. Here,

each model was modified to include three separate perception modules to process data from

each camera. The outputs of the perception modules were then concatenated before being

processed by the IL module, as was done in [108].

To evaluate the communication power cost needed in Equation 3.3, we use the transmitting

and receiving power models derived in [123] for 3G, WiFi, and 4G LTE wireless technologies.

Note that 5G energy evaluations are not available since we could not find any 5G-specific

real-world power models in the literature as we found for the other technologies. In terms

of the computation energy in Equation 3.8, we leverage the onboard sensing circuits within

the TX2 board for estimating the execution and idle powers, whereas we use an external

power meter for the PX2. We assume no packet losses in our evaluations, and as men-

tioned, we demonstrate SAGE’s feasibility with widespread and currently available network

technologies.
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3.4.2 Performance Comparison of Original vs. Bottlenecked Mod-

els

Recall that the bottleneck acts as an encoder whose main purpose is to reduce the output

data size to attain an efficient data transmission if needed. This data reduction is mainly

achieved through reducing the number of output channels at the bottleneck layer (3 in the

experiments). To give perspective, the output channels for any layer in any of the original

DL models discussed here before introducing our alterations is 32, meaning that there is

an ≈ 10× reduction in output data size at least. To ensure that the introduction of a

bottleneck into our models does not impact their predictive performance, we evaluated the

mean absolute error (MAE) of our models both with and without the bottleneck, shown

in Table 3.2. In the cases with the bottleneck, we used HND to train the head of the

bottlenecked model to mimic the original model’s head, as described in Section 3.3.4. The

results clearly show that the bottlenecked models perform very similar to the original models,

with only a slight increase in MAE. For context, an MAE increase of 0.01 corresponds to

a 1% increase in error between the model outputs and the outputs provided by the human

driver.

Model Mean Absolute Error (MAE)
Steering Accelerator Brake

IL-DenseNet-169 0.0177 0.0356 0.0129
IL-DenseNet-169 w/HND 0.0159 (-0.0018) 0.0509 (+0.0153) 0.0195 (+0.0066)

IL-ResNet-34 0.0259 0.0506 0.0199
IL-ResNet-34 w/HND 0.0263 (+0.0004) 0.0545 (+0.0039) 0.0259 (+0.0060)

IL-ResNet-50 0.0260 0.0514 0.0180
IL-ResNet-50 w/HND 0.0266 (+0.0006) 0.0601 (+0.0087) 0.0330 (+0.0150)

IL-CarlaNet 0.0259 0.0546 0.0228
IL-CarlaNet w/HND 0.0204 (-0.0055) 0.0589 (+0.0043) 0.0326 (+0.0098)

Table 3.2: Comparison between the original IL models and their modified counterparts with
bottlenecks after HND. Values in parentheses are the differences in error between the models.
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3.4.3 Power, Energy, and Latency Evaluation on Hardware

From this point onwards, all IL models referred to are with bottleneck layers added. In Table

3.3, we compare the power consumption, energy consumption, and latency of different parts

of the IL models on each hardware platform. By comparing the end-to-end (E2E) latency

of the edge devices with the edge head latency and server tail latency, we see that offloading

at the head provides ample time to account for network transmission latency. Furthermore,

the table shows a significant energy reduction when processing the head model instead of

the entire model end-to-end. These metrics illustrate the feasibility and potential benefits

of our model.

Network Device
Power (W) Latency (ms) Energy (J)

E2E Head Idle E2E Head Tail E2E Head

IL-DenseNet-169
Server – – – – – 2.238 – –
TX2 5.446 5.430 1.659 215.543 8.043 207.5 1.1740 0.0437
PX2 43.58 47.42 40.23 10.420 1.112 9.308 0.4541 0.0527

IL-ResNet-34
Server – – – – – 0.572 – –
TX2 5.95 5.221 1.659 65.560 11.612 53.948 0.3901 0.0606
PX2 46.99 47.51 40.23 4.534 0.695 3.839 0.2131 0.0330

IL-ResNet-50
Server – – – – – 0.607 – –
TX2 5.682 5.415 1.659 89.231 10.432 78.799 0.5070 0.0565
PX2 46.89 47.17 40.23 7.413 1.195 6.218 0.3476 0.0564

IL-CarlaNet
Server – – – – – 0.188 – –
TX2 5.391 5.039 1.659 28.795 8.727 20.068 0.1552 0.0440
PX2 45.54 46.33 40.23 1.659 0.593 1.066 0.0756 0.0275

Table 3.3: Hardware performance metrics for processing one 88x200 camera input. E2E =
processing the entire model end-to-end on the edge device. Cloud server power/energy is
ignored because this is not a constraint.
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IL-CarlaNet rth =

1.02 Mbps

Edge-only 

computation

Offloading at 

the bottleneck

IL-ResNet-34/50 rth =

350 Kbps

IL-DenseNet-169

rth = 340 Kbps

Figure 3.5: Energy consumption of IL models developed through SAGE while processing
a single 88x200 camera input at different data rates with 3G, 4G LTE, and WiFi. The
transition point in each line occurs at rth, which is when offloading begins at the bottleneck.
Before this point, the energy consumption for the edge-only processing is (Eedge

head + Eedge
tail ).

After this point, the energy consumption is calculated as (Eedge
head + Ecomm

i + Eedge
idle ).

IL-CarlaNet’s larger 

bottleneck size increases 

data rate requirements

Figure 3.6: End-to-end latency of each model for offloading at the bottleneck for an AV with
a single 88x200 camera input. The end-to-end latency includes edge head processing latency,
wireless network latency, and server processing latency at various network data rates. The
red line indicates the 100 ms latency constraint

3.4.4 Offloading Evaluation

Low Resolution

In Figures 3.5 and 3.6, we show results from evaluating models implemented through SAGE

with a single 200x88 resolution camera input using the TX2 and the PX2.

Figure 3.5 shows the energy consumption of each IL model with each technology type at

different values of effective data rate rU . Recall that these values are obtained based on the

offloading strategy in Section 3.3.5, where it is only feasible to offload when (rUi,j > rth) and
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(Ecomm
i +Eedge

idle < Eedge
tail ). For each model, observe the sharp change in Figure 3.5 at rth where

the model switches from edge-only computation to cloud offloading. For IL-DenseNet-169,

IL-ResNet-34, and IL-ResNet-50, this switching point occurs at approximately 350-400 Kbps

on both the TX2 and PX2.

Although offloading can meet the latency constraint for some rU values, the energy consumed

by the networking components must still be considered. As shown in Figure 3.6, IL-CarlaNet

can feasibly offload at 1 Mbps on both devices, but on 3G and 4G LTE, offloading consumes

more power than edge-only computation. Thus, we only consider ru values which are greater

than rth, at which offloading saves energy on the edge device compared to edge-only process-

ing. For IL-CarlaNet on the TX2, rth is 7.7 Mbps on 3G, 3.62 Mbps on 4G LTE, and 1.02

Mbps on WiFi. This is likely because IL-CarlaNet has a larger data size at the bottleneck

than the other models, increasing communication latency and energy. Interestingly, on the

PX2, IL-CarlaNet’s rth is 13.66 Mbps for WiFi and there is no 3G or 4G LTE rth under 100

Mbps for IL-CarlaNet that saves energy compared to edge-only computation. This is likely

a result of the data size and the fact that IL-CarlaNet is a very small model and the PX2 has

a moderately high idle power consumption (40.23W), meaning that offloading would con-

sume more power than simply running on the edge. Since IL-DenseNet-169, IL-ResNet-34,

and IL-ResNet-50, are larger models, there is a clear benefit to offloading. Thus, the rth

remains at 320-390 Kbps. The only exception is IL-ResNet-34 using LTE on the PX2, which

has an rth of 550 Kbps, likely due to the efficiency of the PX2 compared to its idle power

consumption and the network latency at this data rate.

Overall, when offloading at the rth for each model and technology, the TX2 and PX2 con-

sume an average of 49.78% and 22.48% less energy, respectively, compared to edge-only

computation. Interestingly, when running edge-only, the PX2 consumes half as much energy

as the TX2; however, when both offload at rth, the PX2 consumes ≈ 25% more energy than

the TX2. This is likely because the network latency outweighs the efficiency benefit of the
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PX2 at these low throughputs. Regardless, both devices significantly reduce edge energy

consumption by offloading.

For all models except IL-CarlaNet, the rth is well within the operating range for all three

network technology types. Figure 3.6 clearly shows that all models can meet the deadline of

100 ms with network throughputs as low as 320 Kbps. Above 15 Mbps, the benefit of higher

data rates is minimal for this data size.

High Resolution

The previous experiment demonstrated that our approach is feasible and has significant

benefits for low-resolution camera data. However, real-world AVs use high-definition cameras

to improve perception performance and safety [11, 10, 99]. To emulate this application,

we evaluate SAGE on camera data with a 1280x720 (720p) resolution, the resolution used

for Tesla Autopilot 2.0 systems. We only assessed the PX2 on this application since it is

infeasible for the TX2 to meet the deadline of 100 ms with this input size even when running

on the edge only. The results of this experiment are shown in Figures 3.7 and 3.8.

The larger input image size increases model sizes and data sizes at the bottleneck (59× larger

for IL-CarlaNet and 47× larger for all other models), increasing the edge processing latency,

communication latency, and energy consumption significantly. This change is reflected in the

figures, as IL-ResNet-34 and IL-ResNet-50 have an rth of ≈ 16.5 Mbps. This data rate is well

within the normal operating ranges of 4G LTE and WiFi connections. IL-DenseNet-169 has

rth values of 30.53 Mbps and 16.65 Mbps on 4G LTE and WiFi, respectively, but does not

have a practical rth under 100 Mbps for 3G. This is likely because 3G consumes significantly

more energy to upload data than 4G LTE and WiFi. Also, TensorRT better optimized

the IL-DenseNet-169 model since it consists of a large number of relatively small layers,

reducing its energy consumption significantly compared to IL-ResNet-34 and IL-ResNet-50.
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This reduction decreases the potential benefits of offloading in this case. Compared to edge-

only processing, offloading the models at rth with 3G, 4G LTE, and WiFi reduces edge energy

consumption by 48.54%, 41.96%, and 50.72%, respectively. With high-resolution data,

the energy consumption benefit is more than double that of offloading low-resolution data,

indicating that offloading is more beneficial for large, demanding edge models.

Since the data size at the IL-CarlaNet model’s bottleneck is 3.86× larger than that of other

models, it requires a higher throughput (57.8 Mbps) than the other models to meet the

deadline. Also, IL-CarlaNet’s small model size reduces its edge energy consumption, meaning

that the communication energy consumption and idle power consumption could outweigh

any potential savings. We found no rth below 100 Mbps for any networking technology that

reduces the energy consumption of IL-CarlaNet below that of edge-only processing.

No feasible throughput

for offloading
WiFi offloading saves 

more energy

IL-ResNet-34/50

rth = 16.5 Mbps

IL-DenseNet-169  

rth = 30.5 Mbps

Figure 3.7: Energy consumption of each model for processing a single 1280x720 (720p)
camera input

Similar latency for

DenseNet and ResNets

Figure 3.8: End-to-end latency of each model for offloading at the bottleneck at different
network data rates for an AV with a single 1280x720 (720p) camera input.
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3.4.5 Multi-Camera Evaluation

State-of-the-art AVs use multiple high-definition cameras to capture more information about

the vehicle’s surroundings to improve decision-making, control, and safety [108, 10, 11, 99].

This problem is highly demanding in terms of energy consumption and network connectivity

since the latency constraint remains the same at 100 ms despite the significant increase in

input and model size. To evaluate SAGE on this application, we provide three 720p camera

inputs to our models.

We adapt our models for this task by replicating the original 720p perception pipelines to

form three parallel perception pipelines (one for each camera input). The outputs of these

pipelines are then concatenated and passed to the IL portion of each model. Consequently,

each of the parallel perception pipelines contains one bottleneck layer from which data can

be offloaded. During offloading, we assume the data at all three bottlenecks are sent to the

cloud simultaneously. To reduce the maximum throughput requirement in this application,

we quantize the values at the bottleneck from 32-bit precision to either 16-bit or 8-bit precision

before transmission. We tested IL-DenseNet-169 with quantizations of 16-bits and 8-bits at

the bottleneck layer and found that the average difference in MAE compared to the original

is just 1.6 × 10−10, which is imperceptible. Thus, with 16-bit and 8-bit quantization, we

reduce our throughput requirements by 50% and 75%, respectively, while having a negligible

effect on performance. Once again, we only evaluate the PX2 in this application since the

TX2 cannot meet the deadline of 100 ms with the 3-camera models.

In this application, all-cloud offloading approaches are entirely infeasible. Given that the

input data size (three 720p images) is 8.29 MB total, they would require a minimum through-

put of 664 Mbps to meet the 100 ms deadline. In contrast, the data size offloaded by our

model with 16-bit bottleneck quantization is only 264 KB (31× smaller); with 8-bit quanti-

zation, this drops to 132 KB (62× smaller). In our experiments, we find that our approach
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is feasible at throughputs easily achievable by WiFi and 4G LTE. Our experimental results

are shown in Figures 3.9 and 3.10.

As shown in Figures 3.10 and 3.9, with 16-bit quantization, IL-DenseNet-169, IL-ResNet-34,

and IL-ResNet-50 can all offload at rth values of 51.57 Mbps, 37.98 Mbps, and 39.05 Mbps,

respectively. With 8-bit quantization, these rth values drop to 25.79 Mbps, 18.99 Mbps,

and 19.53 Mbps, respectively. With 8-bit quantization, most 4G LTE and WiFi connections

can easily support the rth data rates. Regarding 16-bit quantization, good quality 4G LTE

and most WiFi connections should be able to support the rth data rates [124]. On 4G

LTE and WiFi, these models consume 52.67% and 50.40% less energy, respectively, by

offloading at their rth throughputs. The energy reduction is much more significant for IL-

ResNet-34 and IL-ResNet-50 than IL-DenseNet-169, which we again attribute to TensorRT’s

model optimizations. It should be noted that, during offloading, all models appear to have

very similar energy consumption. Practically, this means that an AV can run much larger

models (e.g., use IL-ResNet-50 instead of IL-ResNet-34) without much difference in energy

consumption provided a network connection with a data rate greater than rth is available

most of the time.

Once again, there is little benefit for offloading IL-CarlaNet due to the larger data size at

the bottleneck (1.01 MB) and the relatively low energy consumption of the model running on

the edge. With 16-bit quantization, IL-CarlaNet only saves energy on WiFi at a data rate

above 99.51 Mbps. However, with 8-bit quantization, offloading becomes feasible for both

4G LTE and WiFi at 49.76 Mbps. Since IL-CarlaNet is a relatively small model, it may be

better to run it on the edge device most of the time and only offload on WiFi when network

throughput is high.

63



8-bit rth

16-bit rth
8-bit saves 

more energy

16-bit IL-CarlaNet

rth is infeasible

Figure 3.9: Energy consumption of each model for processing three 1280x720 (720p) camera
inputs. Results are shown for both 16-bit quantization and 8-bit quantization at the bottle-
neck.

8-bit reduces data rate 

requirement by ~50%

Figure 3.10: End-to-end latency of each model for offloading at the bottleneck at different
network data rates for an AV with three 1280x720 (720p) camera inputs. Results are shown
for both 16-bit quantization and 8-bit quantization at the bottleneck.

3.5 Discussion

In this section, we discuss our key findings from our experiments as well as the limitations,

feasibility, and cost of SAGE. We also discuss future research directions.

3.5.1 Overall Findings

We found that SAGE was feasible for most IL models for all hardware configurations. By

offloading at rth, SAGE reduced edge device energy consumption by 36.05% with one low

resolution camera, 47.07% with one high-resolution camera, and 55.66% with three high-

resolution cameras. More energy could be saved by offloading at throughputs higher than rth

when possible. Additionally, our results indicate that SAGE saves more energy by offloading
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when input data sizes are larger (i.e., when using more cameras or higher resolutions). SAGE

also reduces upload data size by 96.81% and 98.40% with 16-bit and 8-bit quantization,

respectively, compared to directly offloading three 720p camera inputs. Besides, we found

that our introduction of bottleneck layers only increased mean error by≈ 1% and quantization

had a negligible effect on error, meaning that SAGE could be scaled to even higher camera

resolutions easily.

3.5.2 Limitations

In our experiments, we found that our offloading methodology was not particularly effective

for IL-CarlaNet. With low-resolution data, it required a significantly higher rth to provide a

benefit than the other models; with high-resolution data and multiple cameras, there was no

rth below 100 Mbps that reduced energy consumption. In its current form, SAGE may not

present useful offloading for small models and models with a proportionally large bottleneck

size due to the increased energy cost of transmitting and receiving data compared to just

running the entire model on the edge.

Additionally, although the 100 ms represents a reasonable worst-case bound, the current

industry standard for real-time video processing is 30 frames/second, meaning that practi-

cally, the bound for completing the AV prediction task can be even tighter reaching ≈ 33

ms. From our experimental analysis, SAGE can meet this constraint when offloading the

quantized version of the single full HD image data transformation. However, it fails to satisfy

this requirement in the case of 3 HD camera inputs. Thus, experimentation with respect to

AV industry-standard hardware and 5G wireless technology can provide a fair assessment of

SAGE’s capability to meet these tighter bounds.

Although our methodology has shown promise in terms of improving the overall performance

efficiency, several other factors can impact the extent of this improvement given some real-
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world situations. It is possible that channel contention between users, packet loss, and

channel coherence issues related to vehicle speed and environmental conditions could limit

the benefits of our methodology. These effects are difficult to simulate accurately, so real-

world experiments are still needed to gauge the energy savings offered by our methodology

in these situations.

Lastly, we did not evaluate our approach on modular pipelines. However, since modular

pipelines’ perception modules generate the most latency [5], SAGE could be directly applied

to these modules to achieve similar energy benefits. AV hardware platforms also handle other

tasks such as route planning and user interfaces, but these applications constitute a minute

part of the overall AV driving system. [5] has shown that the object detection, tracking, and

localization modules ( i.e., components of the modular version of the perception pipeline)

comprise over 98% of the total computation, consuming 1.99 J per input. This proportion

is very similar to the results we show in Table 3.1. Based on our energy savings with 3-

camera offloading, if we introduce a bottleneck to the object detection module and offload

the remaining modules to the cloud, we could reduce energy consumption from 1.99 J to

0.896 J, a savings of 55%.

3.5.3 Practicality and Cost

Since SAGE does not require any hardware modifications to the AV or network infrastruc-

ture, it is much more cost-efficient and flexible than other solutions such as ASIC design

or 5G C-V2X/WAVE installation. The only added costs are those associated with hosting

a cloud server to run the offloaded models. However, we demonstrated SAGE’s feasibility

with a Desktop PC as the cloud server, so hosting similar hardware in the cloud would likely

be inexpensive. These costs could even be passed on to consumers, where a vehicle owner

could elect to extend their AV driving range by paying for an offloading service as proposed
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in [104]. Compared to direct offloading, SAGE has significantly lower throughput require-

ments, making it much more practical for real-world deployment with the current networking

infrastructure.

3.5.4 Future Work

In this work, we demonstrated the performance benefits attainable through the SAGE

methodology over two NVIDIA hardware platforms, JETSON TX2 and DRIVE PX2. Al-

though our approach is platform-agnostic, we intend to apply SAGE in our future works

on different target hardware with different capabilities, like the high performance inference

Neural Processing Units (NPUs) developed by ARM [125]. To ensure that our methodology

does not introduce additional safety risks, it would also be prudent to evaluate each model on

closed-loop evaluations in future work, such as judging each model’s success rate at driving

point-to-point in a simulator as in other works [112, 126, 127, 63]. Moreover, even though

we demonstrated the merit of SAGE using the current prevalent network technologies, this

research area is still relatively new, and problems such as energy optimization with multiple

servers, modular AV architectures, and 5G networks remain unstudied. For example, SAGE

can be adapted to address a multi-MEC server problem context. In this case, the action-

space would expand from the AVs’ perspective, for they would not only need to make an

offloading decision each time step, but also identify which server should be selected for data

transfer and task delegation. This would also entail additional dynamic factors to be con-

sidered, such as each server’s load. Hence, a more sophisticated approach, like reinforcement

learning [128], would need to be applied to solve the problem each time-step, in which previ-

ous connection experiences with the various servers could be leveraged through an in-place

policy to guide the MEC server selection. These problems are left to be addressed in future

works.
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3.6 Summary

Designing AV control algorithms that are both safe and energy-efficient is a complex challenge

that cannot be practically solved using simple direct offloading strategies. In this chapter,

we propose SAGE: a methodology for splitting the computation of IL end-to-end control

models between the edge and the cloud while minimizing network throughput requirements

by adding bottleneck layers to the models. We evaluate SAGE on both large and small IL

models and show that adding bottleneck layers only results in a minor performance impact.

Our experiments demonstrate that SAGE reduces the edge energy consumption of IL end-to-

end control algorithms with both low-resolution and high-resolution camera data by 36.13%

and 47.07%, respectively. Additionally, we show that SAGE is scalable to AVs that use

three high-definition camera inputs, reducing energy consumption by 55.66%, and can be

practically implemented using current state-of-the-art AV hardware (PX2) and networking

infrastructure (3G, 4G LTE, and WiFi). On all three applications, we demonstrate that

the IL models can be offloaded at effective data rates that are well within the constraints

of current network infrastructure while still meeting AV latency deadlines. We also find

that the throughput requirements for offloading reduce by 50% and 75% when quantizing

the bottleneck output to 16-bits and 8-bits, respectively, with a negligible change in model

performance. Overall, we show that SAGE is practical for real-world, end-to-end control

applications and can significantly curtail AV energy consumption.

This chapter demonstrated how dynamic routing networks conditioned on network conditions

can enable significant energy savings on the edge. In the following chapter, we study how

dynamic width networks conditioned on either domain-knowledge context or abstract global

state context (modeled from sensor data) can enable energy-efficient, high-fidelity perception

across diverse driving scenarios.
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Chapter 4

Context-Aware Dynamic

Architectures for Energy-Efficient

Sensor Fusion

4.1 Introduction

As discussed in Chapter 1.2 and Chapter 3, the computational demands of heterogeneous

sensors and large DL models significantly increase the hardware requirements of AS and

limit operating range. Since some of the largest energy consumers in AVs are the sensing

and perception modules, energy-efficient perception and sensor fusion can help alleviate these

computational demands and improve range.
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Figure 4.1: Performance and energy comparison for various AV perception sensor fusion
methods in city and rainy driving.

4.1.1 Research Challenges

Several works have proposed efficient sensor-fusion approaches that attempt to combine

multiple sensing modalities to achieve good perception performance with less energy than

conventional fusion [129, 52, 130]. However, these approaches are also limited because they

use statically designed fusion algorithms (e.g., early or late fusion) that can lack robustness

in difficult driving scenes [131]. Figure 4.1 illustrates the trade-off between performance

and energy between different sensor fusion methods for two contexts: city and rain. None

refers to using a single sensor with no fusion, early fusion combines raw sensor data before

processing, and late fusion processes each sensor separately before fusing the final outputs.

As shown, no fusion consumes the least energy but also performs the worst, late fusion

performs much better but uses almost 3x more energy, and early fusion is energy efficient

but performs poorly in difficult driving scenarios.

In summary, our key research challenges include: (i) perceiving the environment accurately
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in difficult contexts, (ii) reducing the energy consumption of AV perception systems, and

(iii) adapting the perception model to the current context to minimize energy consumption

without compromising perception performance.

4.1.2 Novel Contributions

Humans intuitively leverage contextual information about the driving scene (e.g., weather,

lighting, road type, high-level visual features) to adjust their decisions and focus while driv-

ing. Similarly, contextual information can inform AV perception and enable the fusion

algorithm to adapt to different scenarios. To address the above research challenges, we pro-

pose EcoFusion: an energy-aware sensor fusion approach that uses context to dynamically

switch between different sensor combinations and fusion locations. Our approach can reduce

energy consumption without degrading perception performance in comparison to both early

and late fusion methods. As shown in Figure 4.1, our approach (shown in gold) achieves

higher performance than other fusion methods while significantly reducing energy consump-

tion.

The key contributions of this chapter are as follows:

1. We propose EcoFusion: an energy-aware sensor fusion approach that uses context to

adapt the fusion method and reduce energy consumption without affecting perception

performance.

2. We propose novel gating strategies that can identify the context and use it to dynam-

ically adjust the model architecture as part of a joint optimization between energy

consumption and model performance.

3. We benchmark the hardware performance of EcoFusion on the industry-standard Nvidia

Drive PX2 autonomous driving platform.
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4. We present an in-depth analysis of the performance of each sensing modality in a range

of difficult driving contexts.

4.2 Related Work

In past years, research on energy-efficient AVs has focused mainly on reducing the energy

needs for locomotion and actuation. However, due to the rise in DL perception algorithms

and the computational requirements of modern AVs, minimizing the energy consumption of

AV E/E systems is becoming a core problem [132, 133]. Authors in [130] focus on improving

computational efficiency through algorithmic changes for a camera-lidar AV platform while

using knowledge-based network pruning in their DL model. Selectively fusing sensors, as

done in [134], also has potential benefits to save computational energy on AVs. Distinct

from these methods, EcoFusion utilizes the context of the environment to enable further

energy optimization for AVs. Studies have demonstrated the value of context identification,

such as in [52], where authors propose altering the power levels and operating state of an AV

lidar sensor depending on the environmental factors, such as the vehicle’s speed, to improve

perception efficiency. Likewise, [129] proposes adjusting the sensing frequency for indoor

robot localization according to environmental dynamics. However, these approaches are

limited as they rely on statically designed context-based rules, whereas EcoFusion employs

a self-adaptive design to learn the context of the environment dynamically. This approach

to context-modeling improved perception robustness in [131], however this work did not

consider the energy consumption of different model configurations.

Trade-offs between the energy and performance of deep neural networks (DNNs), like those

used in AV perception, have been studied in several prior works. [135] improves the com-

putational efficiency of DNNs for classification by using component-specialization during

training and component-selection during inference. [136] presents a structure simplification
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procedure that removes redundant neurons within DNNs. [137] performs incremental train-

ing with DNNs to consider energy-accuracy trade-offs at run-time. Unlike EcoFusion, these

works are only applied to classification using a single input modality and do not incorporate

context. Additionally, we tackle the complex, cross-domain problem of AV energy optimiza-

tion with our dynamic sensor fusion architecture, and present experiments involving real AV

hardware.

4.3 Problem Formulation

Here we detail the formulation for AV object detection and the joint energy-performance

optimization implemented in our work.

4.3.1 Sensor Fusion for Object Detection

For each input sample, the goal of an object detector ϕ is to utilize the set of sensor mea-

surements in the sample, X, to accurately detect the objects in the scene, Y:

Y = ϕ(X), where Y = {Yi
class,Y

i
reg}i=1...d (4.1)

where d is the number of objects in the sample. ϕ can be implemented via conventional

sensor fusion techniques, an ML/DL model, or an ensemble of ML/DL models. The targets

for object i in the sample are defined as follows:

Yi
class ∈ {c1, c2, c3, . . . }, Yi

reg = [µ1, ν1, µ2, ν2] ∈ R2 (4.2)

where Yi
class represents the class of the object (e.g., c1: car, c2: truck, c3: pedestrian) from

a set of defined object classes, and Yi
reg represents the 2D bounding box coordinates of the
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object in reference to the coordinate frame of the sample. We denote the model’s estimate

of Y as Ŷ.

Since X represents data from multiple heterogeneous sensing modalities, sensor fusion can

be used to fuse the data to provide a better estimate of Y. In early fusion, the raw sensor

inputs are fused before being passed through the object detector as follows:

Ŷ = ϕ(ψ(X1,X2, . . . ,Xs)) (4.3)

where ψ represents the function for fusing the different inputs. In contrast, late fusion,

involves fusing the outputs of an ensemble of sensor-specific object detectors as follows:

Ŷ1, Ŷ2, . . . , Ŷs = ϕ1(X1), ϕ2(X2), . . . , ϕs(Xs) (4.4)

Ŷ = ϕ(Ŷ1, Ŷ2, . . . , Ŷs) (4.5)

4.3.2 Energy Modeling

In this work, we aim to jointly optimize the energy consumption and performance of the

perception system of an AV. To enable this optimization, we use real-world measurements

from three different sensors to model the energy consumption of various object detectors ϕ on

the industry-standard Nvidia Drive PX2 autonomous driving hardware platform, depicted in

Figure 4.2. For a given object detector implementation ϕ and fixed-size input X, we model

energy consumption E as follows:

E(ϕ,X) = P(ϕ,X) ∗ t(ϕ,X) (4.6)
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where t(ϕ,X) represents the processing latency in seconds, and P(ϕ,X) represents the hard-

ware power consumption in Watts of running input X through ϕ as measured on the hard-

ware. We measured the PX2’s average power consumption under load as 45.4 Watts. As-

suming X has a fixed size, we calculate E(ϕ) for all ϕ ∈ Φ offline. Next, we use this energy

calculation within a joint optimization framework.

Perception System

Velodyne HDL 

–32e LiDAR

Navtech Radar 

CTS 350-X

ZED Stereo 

Camera

Figure 4.2: Sensor diagram [1] with our Nvidia Drive PX2.

4.3.3 Joint Energy-Performance Optimization

We formulate our optimization as a joint minimization problem between energy consumption

and model loss. We denote the list of all object detector configurations as Φ. For each

configuration ϕ in Φ, we use a model to predict the loss after the outputs of ϕ are fused via

late fusion, denoted Lf (ϕ). The loss is defined as the combined regression and classification

loss (using smooth L1 loss and cross-entropy loss, respectively) between the ground-truth

Y and the Ŷ predicted by the model as defined in [138]. Then, the minimum fusion loss

configuration ϕ′ is identified. We also define the function ρ, which determines the set of ϕs

that have a fusion loss within γ of ϕ′. This set Φ∗ is defined as follows:

Φ∗ = ρ(Lf (Φ), γ) = {ϕ ∈ Φ s.t. Lf (ϕ)− Lf (ϕ
′) ≤ Lf (ϕ

′) + γ} (4.7)
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where γ is the maximum allowable difference in loss between any ϕ and ϕ′ in order for ϕ

to be included in Φ∗. γ can be defined based on the problem and represents the maximum

deviation in performance from the best performing configuration ϕ′ that is allowed to enable

the exploration of more efficient configurations. In some cases, maximum performance may

not be necessary, so energy can be saved by increasing γ. Otherwise, if maximum performance

is desired, then γ can be set to 0, so only ϕ′ is in Φ∗.

Given that E(ϕ) is known, we have the following joint loss function for each ϕ in Φ∗:

Ljoint(ϕ, λE) = (1− λE) ∗ Lf (ϕ) + λE ∗ E(ϕ) (4.8)

where L(ϕ) and E(ϕ) represent the predicted fusion loss and energy consumption, respec-

tively, of ϕ; and λE ∈ [0.0 – 1.0] is the weighting factor that weights the importance of energy

consumption vs. performance in the joint optimization. Next, we select ϕ∗, a configuration

in Φ∗ which lies on the Pareto frontier of the following minimization:

ϕ∗ = argmin
∀ϕ∈Φ∗

(Ljoint(ϕ, λE)) (4.9)

After ϕ∗ is identified, it is executed to produce the final set of detections Ŷ.

4.4 EcoFusion Methodology

We propose EcoFusion, a novel adaptive sensor fusion approach that jointly optimizes per-

formance and energy consumption by identifying the context of an environment before sub-

sequently adapting the model and fusion architecture. Our model can: (i) adapt between

using no fusion, early fusion, and late fusion, (ii) select from one or more radar, lidar, or

camera sensor inputs, and (iii) execute different types of fusion simultaneously depending

on what it determines is the best execution path to minimize loss and energy consumption
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in the current context jointly.
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Figure 4.3: Our proposed EcoFusion methodology.

The workflow for EcoFusion is shown in Figure 4.3 and is detailed in Algorithm 2. First,

sensor measurements are passed through modality-specific stem models, which produce an

initial set of features F for each sensor. Next, the gate model uses F and the set of possible

model configurations Φ to estimate the loss of each possible configuration for the given

inputs. After selecting the candidates for optimization using γ, we pass these candidates

Φ∗, their known energy consumption E, and their estimated losses Lf to produce Ljoint for

the optimization function. Then, the ϕ with the lowest Ljoint, denoted ϕ∗, is selected to

execute as is done in Equation 4.9. Since each ϕ represents an ensemble of one or more

object detectors, denoted as branches, we run each branch in ϕ∗ with its expected inputs

and collect the results Ŷ∗. These are then fused using our late fusion block, producing a

final set of detections Ŷ. The following subsections elaborate on the different components

in EcoFusion.

4.4.1 Stem Model

The stem models are implemented as a small set of CNN layers that produce an initial set

of features for each input modality. The stems are modality-specific, so there is one stem
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Algorithm 2: EcoFusion Algorithm

Input: X, λE, Φ, γ, E(Φ)
Output: Object Detections Ŷ

1 Initialize feature vector F and branch output vector Ŷ∗.
2 for s in sensors do
3 F[s]← stem(s) // extract features by modality

4 Lf (Φ)← gate(F,Φ) // estimate model losses

5 Φ∗ ← ρ(Lf (Φ), γ) // select candidates

6 for ϕ in Φ∗ do
7 Ljoint(ϕ, λE)← (1− λE) ∗ Lf (ϕ) + λE ∗ E(ϕ)
8 ϕ∗ ← argmin∀ϕ∈Φ∗(Ljoint(ϕ, λE)) // joint opt.

9 for branch in ϕ∗ do

10 Ŷ∗[branch]← branch(F∗) // pass subset of F

11 Ŷ ← fusion block(Ŷ∗) // fuse branch detections

for each type of sensor used. The collection of features F output by the stems is collectively

passed to the gate model to identify the context and select the set of branches to execute.

Then, F is input to the selected branches.

4.4.2 Context-Aware Gating Model

We implement several gating strategies to estimate the fusion losses of each sensor config-

uration and facilitate the selection of ϕ∗. The goal of each gating model is to (i) identify

the context based on the input features, (ii) estimate the performance of each model con-

figuration in the context, and (iii) compute the optimization result and use it to select ϕ∗.

Next, we detail the different methods we implemented for performing steps (i) and (ii). The

architectures of our three gating models are shown in Figure 4.4.

Rigid Knowledge-Based Gating Since there exists some domain knowledge as to how

each context will affect each sensing modality, we can implement Knowledge Gating, where

this domain knowledge is used to statically encode the subset of branches to execute for a
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Figure 4.4: Gating Model Architectures.

given context. This assumes the set of possible contexts is finite, and the current context

can be identified via external sources. For example, weather information, time of day, and

map data can all be used to define the current context. In our approach, we define the set

of fixed contexts based on metadata from the RADIATE dataset [1] describing the type of

driving data in each sequence. Thus, our set of fixed contexts is: {city, motorway, junction,

rural, snow, fog, and night}. We leverage domain knowledge from the RADIATE paper

to rank the relative performance of each sensor in each fixed context. Then, at run-time,

the external context information (e.g., data from a navigation/weather system) is used to

identify the current context. The top-k ranked branches for that context are selected to be

executed and fused. The limitation of this gating strategy is that it requires a fixed context

definition, potentially limiting performance in cases where contexts are less rigidly defined.

With our other gating strategies, we define the context as a continuous feature space to

enable the modeling of more complex contexts.
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Deep Gating In Deep Gating, we implement a CNN followed by a multi-layer perceptron

(MLP) to model the relationship between the features output from the stems and rank the

branches based on their expected performance for this feature set. The outputs of the CNN

are flattened to one dimension before being passed to the MLP. Then, the optimization

function is run on these outputs. In this gating method, the context can be viewed as a

continuous feature space defined by the stem outputs.

Attention Gating In some contexts, certain regions of the feature map may be more

informative than others about the scene’s context and, consequently, the branch-wise per-

formance. We implement an attention-based gating strategy, denoted as Attention Gating,

that infers an attention map over the stem features to evaluate this hypothesis. This at-

tention map is used with CNN and MLP layers to model the relationship between branch

performance and stem features. We use the visual attention layer proposed in [139] in our

implementation.

Loss-Based Gating

We implement this fourth type of gate purely for benchmarking purposes. In this strategy,

the a posteriori ground-truth loss from each configuration for a given input is used to select

ϕ∗. Thus, this implementation is not deployable in the real world but represents the theo-

retical best-case performance for a gate model that can perfectly predict the fusion loss of

every configuration for every input.

4.4.3 Branch Models

The branches in the model take the form of various object detectors. Each branch performs

object detection by implementing a Faster R-CNN [138] object detector containing a ResNet-
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18 CNN model [140] to extract features from input images and a Region Proposal Network

(RPN) to propose object locations across the feature map. The RPN proposals are then

fed through a region-of-interest layer that predicts Y i
class, Y

i
reg for each box i, as well as

the confidence scores for the predicted boxes. We split each ResNet-18 model after the

first convolution block, such that the first block becomes the stem, and the remaining three

convolution blocks are used in each branch. Each branch can be configured to process either

a single sensor or a set of sensors. In this work, we implement one branch for each input

sensor and three early fusion branches that fuse both homogeneous and heterogeneous sets

of sensors. Using the gate to select the branches, our model can dynamically choose between

no fusion, early fusion, late fusion, and combinations of the three.

4.4.4 Fusion Block

The fusion block is implemented via a typical late-fusion algorithm. The detections from

any number of branches are first converted to a uniform coordinate system before being

statistically processed and fused using the weighted box fusion method from [141]. This

process helps refine the accuracy of the bounding box predictions by reinforcing predictions

with high confidence and overlap with other predictions.

4.5 Experiments

In our experiments, we used the RADIATE [1] dataset, which provides annotated real-world

object detection data from an AV with the following sensors: a Navtech CTS350-X radar,

a Velodyne HDL-32e lidar, and a ZED stereo camera. The following classes of objects are

annotated in the dataset: {car, van, truck, bus, motorbike, bicycle, pedestrian, group of

pedestrians}. The dataset consists of various difficult driving contexts (e.g., rain, fog, snow,
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city, motorway) that are challenging for typical object detectors. In EcoFusion, we use a

70:30 train-test split across the dataset and train our model with all of the stems and branches

enabled using supervised learning. Next, we take the trained stem and branch outputs and

use them to separately train the gate model to select the branches that produce the lowest

loss for a given stem output (F). We evaluate each model’s performance at object detection

using average loss and mean average precision (mAP), which is widely used for benchmarking

object detection models [138, 142]. We compute the mAP for bounding boxes with an

intersection-over-union (IoU)≥ 0.5, aligning with the PASCAL Visual Object Classes (VOC)

Challenge [142]. We calculated the energy consumption of each model configuration ϕ ∈ Φ

on the Nvidia Drive PX2 shown in Figure 4.2. We ignore the energy consumed by the

gate models as we measured that they have negligible energy consumption (< 0.005 J)

compared to the stems and branches of the model after TensorRT compilation. In all of our

experiments, we set γ = 0.5 as we experimentally determined that it ensures performance at

least as good as early and late fusion while enabling energy optimization. However, we note

that γ can be tuned based on the requirements for a given application.

4.5.1 Joint Optimization Analysis

We evaluated the trade-off between the performance (model loss) and energy consumption

(in Joules) for each gating model in Figure 4.5. We varied λE between 0-1.0, where each

point in the chart is color-coded according to its λE value. As shown, tuning λE higher or

lower skews the model towards either increasing energy efficiency or increasing performance,

respectively, so λE should be chosen depending on the requirements for a given application.

The configuration for Loss-Based that best minimizes both objectives is λE = 0.5 with a

loss of 0.966 and energy consumption of 0.844 J. Attention and Deep have similar Pareto

frontiers, but Attention achieves better solutions for higher λE values while Deep achieves

slightly lower loss with some low λE values. The gap between Attention/Deep and Loss-
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Figure 4.5: Analysis of the energy-loss trade-off of EcoFusion’s optimization function with
gating models and λE values.

Based is likely due to modeling limitations and could potentially be closed using larger or

more advanced gate models. For Attention, λE = 1 (most energy efficient) results in a loss

of 1.317 and an energy consumption of 0.945 J, while λE = 0 (best performing) results in

a loss of 0.9153 and an energy consumption of 3.566 J. As shown by the nearly flat trend

on the right side of the plot, Deep and Attention can reduce energy significantly with little

effect on loss by tuning λE. Knowledge is statically programmed such that, for each scenario

type, we use domain knowledge to manually select the best sensor combination to use. Due

to these constraints, Knowledge can be less efficient in some scenarios and is not tunable

with our optimization.
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4.5.2 Energy and Performance Evaluation

Our results for energy consumption and performance evaluation are shown in Table 4.1. In

all of our experiments, early fusion takes in both cameras and lidar as input, while late fusion

uses both cameras, lidar, and radar. The energy consumption and latency increase as the

fusion method is varied from none to early to late, which is as expected as the latter methods

require increasingly larger detection pipelines. The single-sensors are the most efficient, but

their mAP scores vary widely from 67% to 79%, likely due to inconsistent performance across

scenarios. Early fusion is faster, more efficient, and achieves a higher mAP score and than

late fusion; however, early fusion is insufficiently robust in poor driving conditions as will be

discussed in Section 4.5.4. EcoFusion with λE = 0.01 achieves higher mAP than all other

methods with less energy than late fusion. With λE = 0.05, EcoFusion still outperforms

early fusion with less energy usage. As stated in [5], an AV must be able to process inputs at

least once every 100 ms (10 frames per second) to ensure safety. In addition to meeting this

latency requirement, EcoFusion also executes faster than both early and late fusion, which

can improve safety and responsiveness by enabling the AV to process inputs more frequently.

With λE = 0.01, EcoFusion achieves a mAP score 5.1% and 9.5% higher than early and

late fusion, respectively, with 60% less energy and 58% lower latency than late fusion.

Fusion Type Configuration mAP (%) Energy (J) Latency (ms)

None (single sensor)

L. Camera (CL) 74.48% 0.945 21.57
R. Camera (CR) 79.00% 0.945 21.57

Radar (R) 67.74% 0.954 21.85
Lidar (L) 70.45% 0.954 21.85

Early Fusion CL + CR + L 80.26% 1.379 31.36

Late Fusion CL + CR + L+R 77.98% 3.798 84.32

EcoFusion (Ours)
λE = 0 82.92% 3.566 81.49

λE = 0.01 84.32% 1.533 35.14
λE = 0.05 82.16% 1.110 25.43

Table 4.1: Energy Consumption and Performance Evaluation
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4.5.3 Gating Method Evaluation

Table 4.2 shows mAP, loss, and energy results from evaluating our gating strategies at

different λE values. With λE = 0, the models tend to pick better-performing branches

regardless of their energy consumption. As λE increases, the joint optimization significantly

reduces energy consumption while keeping loss within γ of the lowest-loss configuration.

Although Knowledge achieves decent mAP scores, it lacks tunability and thus achieves the

same loss and energy consumption for all λE; the encoded knowledge would need to be

manually updated to adjust the trade-off. Loss-Based achieves the lowest loss and energy

consumption but a lower mAP than Deep and Attention. This result is likely because loss

is not perfectly correlated with mAP score; mAP primarily scores object classification over

properly aligned bounding boxes, while loss is measured across both classification and box

regression. Overall, Attention performs slightly better than Deep and offers the best trade-off

of performance and energy.

λE Gating Method mAP (%) Avg. Loss Energy (J)

0 Knowledge 82.43% 1.519 2.021
0 Deep 82.68% 0.915 3.556
0 Attention 82.92% 0.915 3.566

0 Loss-Based 82.50% 0.808 1.719

0.01 Knowledge 82.43% 1.519 2.021
0.01 Deep 83.72% 1.124 1.457
0.01 Attention 84.32% 1.089 1.533

0.01 Loss-Based 81.65% 0.809 1.280

0.1 Knowledge 82.43% 1.519 2.021
0.1 Deep 81.98% 1.432 1.008
0.1 Attention 79.72% 1.280 0.960

0.1 Loss-Based 79.70% 0.818 1.044

Table 4.2: Gating method evaluation.
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4.5.4 Scenario-Specific Evaluation

Figure 4.6 shows loss and energy results for different driving scenarios in the dataset. We

evaluated no fusion (radar-only), early fusion, late fusion, and EcoFusion with Attention

Gating. As shown in the figure, EcoFusion performs similarly to late fusion in terms of loss

across all scenarios. It is also clear that early fusion performs poorly in the difficult driving

conditions present in the Fog and Snow scenarios. Late fusion is more robust and achieves

relatively good performance across scenes; however, late fusion also consumes significantly

more energy than all other methods. In contrast, EcoFusion’s energy efficiency is on-par

with early fusion and is significantly lower than that of late fusion. No fusion was the most

energy-efficient but also had the highest overall loss.

4.6 Discussion

4.6.1 Practicality

Since we evaluated EcoFusion with the industry-standard Nvidia Drive PX2 autonomous

driving platform, it is clear that EcoFusion can save energy on real-world AV hardware while

meeting real-time latency constraints. Furthermore, by achieving better object detection

performance with lower latency, EcoFusion improves safety and robustness over existing

methods. Our evaluation on a diverse driving dataset proves that EcoFusion is robust across

scenarios and is thus more practical for real-world driving. To implement EcoFusion on a

real driving system, the designer would first need to train the model on the appropriate

dataset before selecting the best λE and γ for their design requirements. Then, the model

can be compiled for hardware using TensorRT or a similar library and integrated into the

AV stack.
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Figure 4.6: Average loss and energy consumption per scenario for each fusion method.
Junction and Motorway are abbreviated as Jct. and Mwy., respectively. EcoFusion achieves
low loss across scenes with 43.7% lower energy consumption than late fusion.

4.6.2 Sensor Clock Gating

More energy could be saved by disabling unused sensors using clock gating. The Navtech

CTS350-X radar uses 24 W [18], the Velodyne HDL-32E lidar uses 12 W [19] and the ZED

camera uses 1.9 W [143], so reducing sensor energy usage can significantly improve AV effi-

ciency. Temporal modeling can enable the context to be estimated across time instead of for

a single input, allowing clock gating for specific periods. In Table 4.3, we analyze the benefits

of sensor clock gating with our Knowledge Gating approach in each driving scenario since

it uses external context to inform sensor selection. We also show baseline results with late
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Fusion
Method

Avg. Energy Consumption (J) by Scene Type
City Fog Jct. Mwy. Night Rain Rural Snow Overall

Late Fusion 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27
EcoFusion
(Ours)

5.45 13.96 2.87 2.87 12.10 13.29 3.81 13.96 6.45

EcoFusion
Savings

58.91% -5.15% 78.40% 78.40% 8.81% -0.09% 71.28% -5.15% 51.41%

Table 4.3: Combined sensor and AV hardware platform energy consumption in each driving
scenario.

fusion across the four sensors. Using the power consumption P and measurement frequency

f of each sensor s, we estimate the energy that could be saved by stopping measurements

without slowing the motor’s rotation. We cannot completely power gate the rotating lidar

and radar sensors because they have inertia and require several seconds to get back up to

speed from a stand-still, which can compromise safety. We model the energy consumption

Es of each sensor and the total energy consumption Etotal as follows:

Es = (Pmeas.
s + Pmotor

s ) ∗ 1/fs, Pmeas.
s = Ps − Pmotor

s (4.10)

Etotal = E(ϕ) +
∑
s∈ϕ

Es (4.11)

where ϕ is the model configuration defined for the context. After our calculation, we set

Pmeas. = 0 to simulate clock gating of the sensor. The Navtech CTS350-X consumes 2.4 W to

spin the motor, so its Pmeas. = 21.6 W. Based on comparable lidar motor models, we estimate

the Velodyne HDL-32E’s Pmeas. = 9.6 W. As shown in Table 4.3, EcoFusion would use up to

78.40% less energy than late fusion in common driving scenarios. EcoFusion uses slightly

more energy than late fusion in more difficult driving scenarios, but these scenarios are rare,

so overall energy consumption is still lower. On average, clock gating unused sensors with

EcoFusion uses 51.41% less energy than running all sensors with late fusion and 43.90%

less energy than EcoFusion without sensor clock gating. Since Knowledge Gating is less

effective than Deep and Attention, Chapter 5 explores methods for enabling smart sensor

clock gating with these gate models via intermittent sensing and context re-identification.
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4.7 Summary

This chapter introduces EcoFusion — a novel adaptive sensor fusion approach that uses

contextual information to adapt its architecture and jointly optimize performance and energy

consumption. We show that EcoFusion outperforms early and late fusion in terms of mAP

(84.32% vs. 80.26% and 77.98%), with similar energy consumption and latency to early

fusion. We also demonstrate that in difficult driving contexts, EcoFusion is more robust

than early fusion (up to 85.6% lower loss) and more efficient than late fusion (60% less

energy). We additionally propose and evaluate multiple gating strategies and find that a

learned strategy outperforms a knowledge-based strategy. Overall, we show that an energy-

aware adaptive sensor fusion approach can significantly improve the energy efficiency and

perception performance of AVs. The next chapter explores how this methodology can be

extended to a broader system-wide optimization via intermittent sensing and a reconfigurable

hardware platform.
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Chapter 5

Hardware/Software Reconfiguration

for Energy-Efficient Sensor Fusion

5.1 Introduction

As discussed in Chapter 4, advanced deep-learning models and multiple heterogeneous sen-

sors (e.g., cameras, radars, and lidars) are necessary for perception across different weather

and lighting conditions. The previous chapter demonstrated how context-aware dynamic

sensor fusion architectures (EcoFusion) can effectively manage the trade-off between percep-

tion performance and energy-efficiency in perception algorithms, allowing joint optimization

of both objectives and thus robust and energy-efficient performance across driving scenarios.

5.1.1 Research Challenges

Still, EcoFusion focuses on algorithmic optimizations, while large energy consumers, such

as the sensors and the GPU-based hardware computation platform, are not included in
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the energy optimization. If the complete perception pipeline (sensors, hardware platform,

and algorithms) can be included in the joint optimization, greater energy savings could be

achieved. In summary, the key challenges targeted by this chapter include: (i) perceiving

effectively in complex and adverse driving scenarios; (ii) reducing the energy consumption

of the complete perception system, including sensors, hardware, and algorithms; and (iii)

adapting the system configuration to different contexts, enabling energy efficiency without

compromising performance.

5.1.2 Novel Contributions

To overcome these challenges, we propose using field-programmable gate arrays (FPGAs)

with Deep-learning Processing Units (DPUs) [144] for energy-efficient, low-latency runtime

model reconfiguration in hardware. FPGAs provide lower latency, lower power consump-

tion than GPU-based hardware, and greater flexibility than application-specific integrated

circuits (ASICs). DPUs are soft-logic compute cores programmed onto FPGAs, enabling

them to achieve negligible model switching latency and flexible accelerator configuration

compared to typical reprogramming methods. By leveraging the flexibility of FPGAs with

the high-throughput and low context-switching latency of DPUs, we can achieve energy-

efficient real-time perception via end-to-end, system-wide optimizations. Thus, we propose

CARMA: a context-aware dynamic sensor fusion approach that uses runtime model reconfig-

uration to adapt its DPU-based architecture on an FPGA. CARMA implements a tunable

energy-performance optimization over the complete perception system, including the sen-

sors, model architecture, and computation hardware platform, to maximize energy savings

without compromising perception performance. To our knowledge, this is the first work to

propose energy-efficient sensor fusion via context-aware runtime model reconfiguration on

FPGAs. Our major contributions can be summarized as follows:
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1. We propose CARMA, an approach for dynamically reconfiguring a complete perception

and sensor fusion system for object detection at runtime using contextual information

from the sensors. CARMA uses DPUs on FPGA to enable runtime model reconfigu-

ration with negligible model switching latency.

2. We propose a method for intermittently performing state estimation and context iden-

tification to enable intelligent sensor and submodel clock gating to maximize energy

efficiency.

3. We use a tunable joint optimization between perception performance and system energy

consumption to maximize energy efficiency while minimizing perception performance

impacts.

4. We show that CARMA significantly reduces system-wide energy usage vs. state-of-the-

art sensor fusion methods and achieves equivalent or better object detection perfor-

mance across diverse autonomous driving scenarios with up to 1.3× inference speedup

and 73% lower energy consumption.

5.2 Related Works

5.2.1 Adaptive Computing Systems on FPGA

Self-adaptive systems can modify their runtime behavior according to changing environments

and system goals. [145] presents a dynamically reconfigurable convolutional neural network

(CNN) accelerator optimized for throughput. In [146], an FPGA reconfigures at runtime to

use a lower power design when the battery level decreases. However, it has limitations such as

latency overhead proportional to the size of the bitstream file, which restricts reconfiguration

to small components, and the time and knowledge needed to create hardware designs for each
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reconfiguration option.

The Xilinx DPU with the Vitis AI software stack enables adaptable and efficient AI infer-

ence for FPGAs. Users can reconfigure the NN model at runtime with minimal latency

overhead by changing the input of the DPU without altering the FPGA’s hardware logic.

[147] explored a DPU-based energy-efficient hardware accelerator. However, it failed to op-

timize energy efficiency system-wide and its approach was too simplified to handle complex

environments.

5.2.2 Energy-Performance Optimization

Several works have explored methods for managing the trade-off between energy consump-

tion and the performance of deep learning algorithms at runtime, e.g., dynamic width neural

network [135] and dynamic model selection for classification [148]. However, these works

only support a single input modality and are restricted to image classification. More recent

works address this limitation by applying optimizations to multi-sensor fusion for percep-

tion [149, 130]. The methodology proposed in Chapter 4 proposes a dynamic-width sensor

fusion model that aims to select lower energy submodels while maintaining performance.

Although this approach incorporates multimodality, it only optimizes the object detection

model parameters and omits system-wide energy optimizations. This chapter proposes ex-

tending EcoFusion to a heterogeneous FPGA-driven compute platform to maximize the

energy saved by dynamic model selection while applying system-wide energy optimizations

to reduce energy usage further.
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5.2.3 Intermittent Sensing and Control in Autonomous Systems

Due to the energy constraints of many AS, several methods for intermittent sensing and

control have been proposed to reduce energy consumption without compromising perfor-

mance [129, 86]. For example, [129] proposes an adaptive sensor fusion algorithm for indoor

robot localization that adjusts the sensing rate of different sensors to match the dynamics of

the physical environment while saving energy. In the control domain, [86] uses safety guar-

antees to determine if actuation can be skipped for brief intervals to save energy without

entering an unsafe state, reducing energy usage. Similarly, [150] proposes using an inter-

mittent control strategy for autonomous driving to emulate human-like control behavior. It

improves stability, robustness, and energy efficiency over continuous control approaches by

only applying control outputs when errors exceed set thresholds. Like these works, CARMA

targets energy efficiency by intermittently reconfiguring the model architecture and the set

of active sensors to match the current environment context.

5.3 Methodology

5.3.1 Problem Formulation

Object Detection Model

CARMA uses the same object detection problem formulation as EcoFusion. Please refer to

Chapter 4.3 for more details. To summarize, the goal of the object detector ϕ is to use the

sensor measurements X to accurately identify the objects Y in the environment:

Y = ϕ(X), where Y = {Yi
class,Y

i
reg}i=1...d (5.1)
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where Yi
class,Y

i
reg denote the class and bounding box, respectively, of object i. Our proposed

approach uses context to identify the best combination of early and late fusion to improve the

accuracy of the resultant predictions across driving contexts. As such, the object detection

model becomes:

Ŷ = ϕ(ϕ1(X1), ϕ2(X2), . . . , ϕ3(ψ(X2, Xs))) (5.2)

Where ϕ1 and ϕ2 represent single-sensor object detectors, ϕ3 is a multi-sensor object detector

using early fusion, and ϕ is the late fusion function for fusing the detectors’ outputs to obtain

Ŷ . Section 5.3.2 describes how CARMA identifies context and selects the appropriate model

configuration.

Energy Model

CARMA’s energy model aligns with that of EcoFusion with extensions to model sensor

clock gating and system-wide energy usage. We model the energy usage of the complete AV

driving system Esys as the total energy consumed by the sensors Es and the execution of the

algorithm Ea on the hardware platform.

Esys = Es + Ea (5.3)

We omit factors such as drivetrain energy usage and battery lifetime as these factors have

been studied in existing work [27, 25, 151, 30] and can be used in conjunction with our

approach. Typical AS contain some combination of static sensors (e.g., cameras, ultrasonic

sensors, front-facing radar) and rotating sensors (e.g., spinning top-mounted lidar). The

energy consumption per sensor s ∈ S can be computed from the measurement power Pmeas.
s ,

95



measurement frequency fs, and, for spinning sensors, the motor power Pmotor
s , as follows:

Es = (Pmeas.
s + Pmotor

s ) ∗ 1/fs (5.4)

To reduce the energy consumption of the complete system, we clock gate sensors unused in

the current visual context. The lidar and radar sensors in our testbed, discussed in Section

5.4.1, are top-mounted spinning sensors, while the cameras are fixed sensors without motors.

Since the lidar and radar have inertia and require several seconds to start and stop rotating,

we assume that we only clock gate the measurement components while keeping the motor

spinning so they can be quickly re-enabled to ensure safety. As discussed in Chapter 4.6.2,

the Navtech CTS350-X radar uses 24 W, while the Velodyne HDL-32E lidar uses 12 W

and the ZED camera uses 1.9 W. The Navtech CTS350-X needs 2.4 W to spin the motor,

so Pmeas.
radar = 21.6 W. Using comparable lidar motor models for the Velodyne HDL-32E, we

estimate Pmeas.
lidar = 9.6 W.

Since our object detection model is reconfigurable, the algorithm energy consumption Ea

can be computed as:

Ea(ϕ,X) = Pa(ϕ,X) ∗ t(ϕ,X), (5.5)

where t(ϕ,X) represents the processing latency in seconds and Pa(ϕ,X) represents the power

consumption in Watts of processing input X through the current model configuration ϕ on

the hardware platform. We measured the power and latency of each model configuration on

our hardware platform, the Xilinx Kria KV260 FPGA, to compute Ea offline for use in our

multi-objective optimization.
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Multi-Objective Optimization

CARMA implements a tunable joint optimization between system-wide energy consumption

and model performance to enable it to minimize energy without compromising performance.

Similar to EcoFusion, CARMA uses a λE term to allow model designers to specify the

preference for energy efficiency over performance depending on the application of the system.

Given that we know the expected performance L of configuration ϕ for an inputX, denoted as

L(ϕ,X), and the expected system-wide energy consumption of that configuration Esys(ϕ,X),

our optimization can be formulated as:

Lopt(ϕ,X) = L(ϕ,X) ∗ (1− λE) + Esys(ϕ,X) ∗ λE (5.6)

ϕ∗(X) = argmin
ϕ∈Φ

(Lopt(ϕ,X)), (5.7)

where ϕ∗(X) represents the model configuration that best minimizes the joint optimization

loss Lopt for input X for the given λE. [43] used a similar optimization to select which

branches to execute, with all other system components remaining fixed. However, our pro-

posed approach includes clock gating of unused sensors and stems, drastically increasing the

potential energy savings and enabling system-wide optimization.

5.3.2 System Architecture

CARMA’s architecture is shown in Fig. 5.1. CARMA consists of a runtime reconfigurable

multi-branch sensor fusion model for object detection. Section 5.3.4 elaborates on our run-

time reconfiguration approach on hardware, while the following text describes our sensor

fusion model. Similar to EcoFusion, the model consists of four key components, (i) feature

extraction, (ii) context identification, (iii) submodel selection, and (iv) output fusion. First,

multi-modal sensor data is processed by modality-specific Stem models to extract an initial
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Figure 5.1: CARMA System Architecture and Reconfiguration Workflow

set of features for each sensor. These features are then used by the Gate model to identify

the current visual context. This context is used to select the set of submodels (Branches) to

execute that optimizes performance and energy efficiency. Each active branch outputs a set

of object detections collected and fused by the Fusion Block to produce a final set of refined

detections. We detail each of these model components below.

Stem and Branches

We use the popular Single Shot MultiBox Detector (SSD) [152] for object detection. SSD

processes sensor data using a CNN and outputs a bounding box (location) and classification

for each object it detects. It outperforms Faster R-CNN [138] in terms of both speed and

performance on well-known benchmarks. SSD is similar to Faster R-CNN in architecture

but is more hardware-friendly because region proposal and object detection are performed in

a single pass by the CNN, while Faster R-CNN is a two-stage model that requires a separate
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Region Proposal Network (RPN). Additionally, SSD has a smaller model size and fewer

intermediate feature maps to store and transfer between different layers of the network. These

factors make SSD faster to execute on FPGAs since it requires fewer hardware resources and

lower memory bandwidth.

In our proposed architecture, the stem models serve as modality-specific preprocessors, so we

use the first six layers of SSD’s ResNet-18 backbone to build each stem. Each stem produces

a set of features F for one sensor. The remaining 23 layers of SSD form each branch. Thus,

when data from a sensor passes through one stem and one branch, it equates to processing

the sensor through a complete SSD model. We implement single-sensor branches for four

sensor inputs: two front-facing cameras, one top-mounted lidar, and one top-mounted radar.

We also implement three early-fusion branches that take multiple sensors as input: dual

camera, lidar and radar, and dual camera with lidar. These branches include a single merge

convolution layer to combine the sensors across the channel dimension before continuing with

processing.

Context Identification and Gating

To identify the current visual context and perform branch selection, we use the three gate

models proposed in Chapter 4. To summarize, the knowledge gate uses fixed domain-

knowledge rules to select submodels using external contextual information (e.g., weather,

time of day, road type). The rules encode domain knowledge on the sensor modalities least

likely to be degraded by current environmental factors such as rain, snow, fog, or lighting.

Meanwhile, the deep gate uses a 3-layer CNN to infer the current context from the stem

output features and directly output the set of branches it infers will perform best in the

current visual context. Here, context refers to an abstract visual state estimate generated

within the CNN’s hidden layers, while the gate output indicates which branches to execute.

The attention gate is the same as the deep gate with the addition of a self-attention layer.
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Given the set of all possible model configurations Φ, the objective of the gate is to estimate

the performance L of each configuration ϕ for the current set of input features F :

L(Φ,F) = π(ϕ,F),∀ϕ ∈ Φ (5.8)

ρ(L(Φ,F), γ) = {ϕ ∈ Φ s.t. L(ϕ,F) ≤ L(ϕ′,F) + γ} (5.9)

Φ∗ = ρ(L(Φ,F), γ), (5.10)

where π represents the gating model and ρ represents a function for identifying the set Φ∗

of top performing configurations with an estimated error within γ of the best performing

configuration ϕ′.

Fusion Block

The objective of the fusion block is to fuse the object detections from the active branches

to produce a more accurate set of final bounding box predictions. In this chapter, we use

weighted boxes fusion [141], which uses the confidence scores of all proposed boxes to average

the boxes into a refined set of object detections. The fusion block in CARMA is executed on

the CPU, as shown in Fig. 5.1, because it involves complex program logic, which is better

supported on the CPU compared to DPU. The CPU can also create a thread for box fusion,

which utilizes idle CPU resources during DPU inference.

5.3.3 Hardware Design Choices

Although our proposed sensor fusion methodology can be used across different hardware plat-

forms, the characteristics of the computing platforms must be carefully considered to balance

high performance and energy efficiency. FPGAs are superior to GPU and ASIC platforms for
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AS due to increased energy efficiency and flexibility. They process large amounts of data with

minimal power and can be reprogrammed to accommodate changes. However, safety-critical

real-time environments necessitate systems with high throughput and low context-switching

latency to adapt to changing environments. We discuss the key benefits of our hardware

design choices below.

High Throughput

In AS, data must be processed in real-time with low latency to ensure safe and efficient vehicle

operation. Typically, AS must process data at a minimum rate of 10 frames per second (fps)

[5] to enable accurate control in changing environments. This requires high parallelism of

data processing with constrained resources. The DPU features user-configurable parameters

to optimize resource utilization and to select which features are needed for a given deployment

scenario. In the DPU, we can configure three dimensions of parallelism for convolutions:

pixel, input channel, and output channel parallelism.

Fast Context Switch Interval

CARMA changes branch configurations (context switches) at runtime. Fast context switch

intervals are necessary to handle various tasks and events that may occur during vehicle

operation. CARMA uses Vitis AI Runtime to load the instruction files into the DPU for

inference and switch the context by changing the calling threads corresponding to different

configurations. Loading of model instruction files and inference are performed simultane-

ously, reducing the context switch time to the time of the thread switch (less than 1ms), while

traditional FPGA runtime reconfiguration waits until the new bitstream is fully deployed

on-board. Since each model file is <25MB and our system has 4GB on-board memory, our

system can store all model configurations in DDR memory.
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5.3.4 Hardware Execution Model

Fig. 5.2 illustrates our hardware execution model. CARMA runs in the application layer on

PetaLinux and controls our complete sensor fusion system. It uses the Vitis AI Runtime, a

set of high-level APIs, to interact with the DPU. Xilinx Runtime (XRT) is a set of low-level

APIs that connect the User Space and Kernel Space and control the hardware. The on-

chip processor (Arm CPU) serves as the hardware host control node and controls the DPU,

services interrupts, and coordinates data transfers. The processing system (PS) connects

to the DPU via the Advanced eXtensible Interface (AXI) bus for transferring data and

control signals. When initializing the system, the compiled models for all sensor-fusion

configurations are loaded into the off-chip memory, waiting to be called. At runtime, the

DPU fetches compiled instructions from off-chip memory to control the operation of the

computing engine on the DPU.

102



5.3.5 Runtime Workflow and Intermittent Context Identification

Several works have demonstrated safe and effective intermittent perception and control ap-

proaches, as discussed in Section 5.2.3. These approaches are intuitive since real-world

visual contexts often remain the same for several seconds, especially in the case of broad

visual contexts like rainy weather or night driving. We propose using intermittent context-

identification to enable broader energy optimizations such as clock-gating unused sensors

and stem models for brief periods before re-enabling them to identify the current context.

CARMA can directly integrate with existing methods for safe intermittent perception since

they use similar strategies, such as clock gating, to control sensing frequency.

To reduce the overhead of context identification and switching, we propose the Context-ID

Frame design, shown in Fig. 5.1. In sensor fusion mode, we only execute the stems and

branches needed for a particular model configuration, minimizing energy consumption. In

Context-ID mode, we reconfigure the DPU to the Context-ID Frame to select the next model

configuration. The following two algorithms describe the workflow of our proposed approach.

Alg. 3 shows the typical operation of CARMA. For each time step t, data is retrieved from

the active set of sensors and processed by the current branch configuration ϕ∗ to produce

the output detections Ŷ. Tc represents the context re-identification interval; when t/Tc = 0,

execution transfers to Alg. 4 for the next time step t + 1. Here, Tc can be dynamically

configured by an intermittent algorithm, such as those from Section 5.2.3. In Alg. 4, all

sensors and stems are activated, and the sensor features F are passed to the gate module π to

estimate the loss of each branch configuration. The lowest loss branches are selected by ρ as

described in Equation 5.10. Then, this set Φ∗ is passed to the joint optimization to identify

the optimal configuration ϕ∗. The outputs of the active branches are fused to produce Ŷ.

After this step, we clock gate the unused sensors, switch to the new model configuration

containing just ϕ∗, and continue executing Alg. 3 with the new ϕ∗ and active sensors at

the next time step.
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Algorithm 3: Runtime Sensor Fusion Algorithm
Input: t, ϕ∗, active sensors, Tc

Output: Object Detections (Ŷ)
1 Initialize feature vector F and branch output vector Ŷ∗

2 for s in active sensors do
3 Xs ← s(t) // data input

4 F[s]← stems(Xs) // extract features

5 for branch in ϕ∗ do

6 Ŷ∗[branch]← branch(F∗) // pass subset of F

7 Ŷ ← fusion block(Ŷ∗) // fuse detections

8 if t/Tc = 0 then
9 ϕ∗, active sensors← Algorithm2(t+ 1)

Algorithm 4: Context ID and Reconfiguration Algorithm

Input: t, λE , Φ, γ, Esys(Φ), all sensors
Output: Object Detections (Ŷ), ϕ∗, active sensors

1 Initialize feature vec. F and output vec. Ŷ∗

2 for s in all sensors do
3 Xs ← s(t) // data input

4 F[s]← stems(Xs) // extract features

5 L(Φ)← π(F,Φ) // estimate model losses

6 Φ∗ ← ρ(L(Φ), γ) // select candidates

7 for ϕ in Φ∗ do
8 Ljoint(ϕ)← (1− λE) ∗ L(ϕ) + λE ∗ Esys(ϕ)

9 ϕ∗ ← argmin∀ϕ∈Φ∗(Ljoint(ϕ)) // joint opt.

10 load branches(ϕ∗) // reconfiguration

11 for branch in ϕ∗ do

12 Ŷ∗[branch]← branch(F∗) // pass subset of F

13 Ŷ ← fusion block(Ŷ∗) // fuse detections

14 Initialize empty set active sensors
15 for s in all sensors do
16 if ϕ∗ requires s then
17 active sensors← active sensors ∪ {s}
18 else
19 clock gate(s) // clock gate sensors

20 disable stem(stems) // reconfiguration
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5.4 Experiments

5.4.1 Experimental Setup

CARMA can be applied to any multi-sensor AS to enable energy-efficient perception. In

our experiments, we evaluate CARMA on a popular AS use case: autonomous driving for

AVs. Our hardware testbed is shown on the left side of Fig. 5.2. We use the Xilinx

Kria KV260 FPGA as our computing platform. Due to its portability and compatibility,

our design could feasibly be implemented on Xilinx automotive-grade FPGAs in a similar

manner. Each model is trained on the RADIATE dataset [1], which contains three hours of

high-resolution radar, lidar, and stereo camera data across challenging perception contexts.

We compare against Faster R-CNN object detectors for single sensor inputs, early and late

multi-sensor fusion, and EcoFusion [43]. To measure the object detection performance of each

model, we use the object detection loss function from [153], which combines bounding box

loss with classification loss. The object detection metrics we present are for a Faster R-CNN

variant of our model trained using the same hyperparameters as [43] for fairer comparison

with EcoFusion. However, we verified experimentally that the SSD-based model achieves

50% lower average loss and consumes 15% less energy than the Faster R-CNN version. We

used built-in functions in the host code and system commands to measure the end-to-end

latency and power consumption of different configurations.

5.4.2 Performance on FPGA

We compare the object detection performance and energy consumption of different fusion

techniques in Table 5.1. Across different gating and λE configurations, CARMA achieves

lower average energy usage and loss than almost every early fusion, late fusion, and single

sensor model. The only exceptions were the camera-only configurations, which had higher
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losses than our method but lower energy usage due to the efficiency of the camera sensors.

Notably, with an equivalent model loss, CARMA (λE = 0, deep) achieves a 41.3% reduction

in energy compared to EcoFusion (λE = 0, attn). With a higher λE = 0.01 for both models,

CARMA achieves 73.7% lower energy usage with only a 3.2% higher loss than EcoFusion.

EcoFusion’s inability to account for sensor energy or apply sensor and model clock gating

leads to higher average energy consumption, putting it on par with high-energy early fusion

and late fusion variants. Regarding latency, CARMA achieves 6%-33% speed-up compared

to EcoFusion, with higher λE values resulting in lower model latencies. The results also

illustrate the trade-offs for each sensing modality; branches using radar use significantly

more energy than camera-only or lidar branches, since radar is less energy-efficient. The

lidar and radar branches have higher average loss and energy consumption than the camera

branches; however, these sensor modalities are more reliable in contexts where cameras can

fail. This point is supported by the lower loss achieved by the late fusion model.

Fusion Type Configuration Avg. Loss Energy (J) Latency (ms)

None
Radar (R) 2.858 6.73 14.2
Lidar (L) 4.682 3.73 14.2

Camera (C) 1.680 1.81 14.2

Early
R+ L 2.784 9.16 17.1

CL + CR 1.203 2.31 17.1
L+ CL + CR 3.476 3.73 19.7

Late R+ L+ CL + CR 0.967 10.48 42.6

EcoFusion [43]
λE = 0, attn 0.915 10.41 54.0

λE = 0.01, attn 0.924 10.36 48.0
λE = 0.1, attn 1.147 10.18 27.7

CARMA (Ours)

λE = 0, attn 0.915 7.35 51.9
λE = 0, deep 0.915 6.12 51.2

λE = 0.0001, attn 0.920 6.68 50.2
λE = 0.001, deep 0.944 3.31 42.6
λE = 0.001, attn 0.959 3.23 38.5
λE = 0.01, deep 0.954 2.73 36.1

Table 5.1: Performance and energy comparison between different fusion methods. Results
for CARMA are with a Tc of 30 samples.

106



5.4.3 Impact of Different Context Identification Intervals

Table 5.2 shows how the performance characteristics of CARMA would vary at various

context identification intervals under an intermittent method such as those in Section 5.2.3.

As mentioned in Section 5.3.5, Tc determines the duration to run Alg. 3 before switching

to Alg. 4 to re-identify the context and reconfigure the model. Alg. 4 requires enabling all

sensors and stems, increasing energy usage every Tc samples. Table 5.2 shows the impacts

on energy usage and model responsiveness for different values of Tc under the assumption

that sensor data is received at 30 fps.

Context ID Interval (Tc samples) 1 3 10 30 100

Interval @ 30 fps (s) 0.03 0.1 0.33 1 3.33
Average Energy (J) 10.39 5.1 3.25 2.73 2.54

Table 5.2: Energy savings for different context ID frequencies for CARMA (λE = 0.01, deep)
where the Context ID block is executed every Tc samples.

Evaluating the context every time-step eliminates clock gating, resulting in the highest energy

usage but the fastest model switching interval. With Tc = 3, clock gating reduces average

energy by over 50%. Values of Tc > 3 provide more energy savings with diminishing returns

and reduce the model’s ability to respond quickly to scenario changes. In our experimental

results, we assume the intermittent sensing algorithm sets Tc = 30, thus reconfiguring our

model every 1.0s. From our analysis, CARMA tends to change configurations less often

with a higher λE; for example, CARMA with (λE = 0.01, deep) and (λE = 0.001, deep) only

used 5 and 11 different configurations across all driving contexts, respectively. This finding

illustrates how contexts can remain consistent for long periods, so intermittent context re-

identification can increase energy savings without impacting performance.
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5.4.4 Optimization Analysis

Fig. 5.3 illustrates the trade-off between system-wide energy consumption and model per-

formance for each gate module at different values of λE. Both deep and attn gates present

a clear trade-off between performance and energy efficiency as λE increases. However, the

large flat region along the right side of both Pareto frontiers illustrates how system-wide

energy can be reduced significantly with a minimal performance impact. Interestingly, the

attn gate is more sensitive to changes in λE than the deep gate, which can be seen in Table

5.1. The results for loss-based gating indicate the performance of an optimal gate module

and serve as a theoretical upper bound for performance. The results also illustrate why the

knowledge gate is ineffective, as it cannot minimize either objective well. Overall, the deep

and attn gate reduce energy consumption by over 55% while maintaining an average loss

within 5% of the λE = 0 models.
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5.4.5 Scenario-Specific Performance

Fig. 5.4 shows how different driving scenarios affect the energy consumption and performance

of different fusion methods. The results show that CARMA can reduce energy consumption

below that of early fusion, late fusion, and EcoFusion across all scenarios. Interestingly, our

model minimizes energy consumption in the Snow scenario by selecting camera branches

only throughout the context (CL, CR, and CL + CR). Early fusion is especially weak in

the Fog, Rural, and Snow contexts, likely due to its susceptibility to sensor noise. Late

fusion, EcoFusion, and CARMA are robust across all scenarios, with Rural being the most

challenging.
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5.5 Summary

In this chapter, we proposed a context-aware sensor fusion approach that uses context to

reconfigure the perception model on an FPGA at runtime dynamically. CARMA is capable

of switching model computation paths with negligible latency while intermittent context

identification, system-wide energy-performance optimization, and sensor clock gating max-

imize energy savings without compromising performance. Overall, CARMA achieves up to

1.3× speedup and reduces energy consumption by over 73% over leading static and dynamic

sensor fusion techniques across complex driving contexts. By using a DPU-based implemen-

tation, CARMA can easily be tailored and ported to various FPGA platforms with different

amounts of resources. Future works could explore the feasibility of mixing hard-logic and

DPU-based solutions for greater energy efficiency.

110



Chapter 6

Conclusion

6.1 Discussion and Key Findings

Overall, the results support the claim that integrating contextual information into AS models

improves scene understanding, improves performance across changing environments, and

enables joint energy-performance optimization.

Across the chapters, context modeling is shown to help improve robustness and scene un-

derstanding across applications. Chapter 2 shows that explicit modeling of inter-object rela-

tionships via scene-graphs can improve scene understanding and transfer learning. Chapter

4 shows how abstract global state estimates drawn from sensor data can be an effective form

of context that enable runtime model adaptation for robust cross-scenario performance.

The results also show that context enables adaptations that reduce energy usage without

compromising performance. Chapter 4 shows that, since multiple architectural configura-

tions can perform similarly for a given context, an adaptive architecture can selectively

choose the most energy-efficient architecture for each context. Chapter 5 illustrates how
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this joint optimization could be extended to system-wide optimization for greater energy

savings. Chapter 3 shows how modeling current network conditions could enable intelligent,

low-latency computation offloading from the edge.

Overall, the capability of a model to adapt to changing environments was crucial for opti-

mizing performance, robustness, and energy efficiency. Dynamic ML models can achieve the

same caliber of performance as large static ML models with significantly fewer resources,

making them more suitable for deployment on edge AS. Chapter 5 demonstrates how a

dynamic ML sensor fusion architecture could be mapped to industry-standard FPGAs and

be reconfigured within runtime latency constraints. Chapter 3 illustrates how smart low-

latency offloading could be implemented using existing network infrastructure with failsafe

mechanisms. Currently, most commercially deployed AS use static model designs that follow

conventional supervised ML paradigms. However, the benefits of dynamic models cannot be

overlooked, so methods for developing, testing, and verifying dynamic models within typical

engineering workflows should be studied to enable their broader adoption and utility.

6.2 Limitations and Future Work

Though the methodologies presented in this dissertation provide clear benefits in their re-

spective applications, the scope of these research areas is much broader.

Chapter 2 exemplifies the modeling power and computation efficiency of graph learning.

However, graph learning has the potential to enable broader energy savings. Dynamic graph

sparsity and hardware optimizations can help reduce computational loads from graph learn-

ing models. In addition, Chapter 2 primarily studies graphs extracted using rule-based

domain-specific inter-object relations; data-driven graph representations could improve per-

formance by enabling domain adaptation of graphs [40]. An initial study on how data-driven
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graphs can improve performance and transfer learning is shown in Appendix A. However,

data-driven graph extraction and modeling has yet to be studied through the lens of energy

efficiency or across other modeling tasks, so this is a clear research direction that can be

explored.

Though Chapter 3 demonstrates the benefits of split-architecture computing for end-to-

end vehicle control, most current AV pipelines use modular architectures due to the ease

of dividing engineering tasks, testing/verifying modules, and integrating domain-knowledge

rules and classical algorithms in the complete pipeline. Notably, the perception system is

still a significant energy consumer in modular architectures [5], so SAGE can still provide

benefits in these cases. Additionally, the offloading algorithm uses a fixed deadline for

receiving a response from the cloud; in the real world, deadlines can vary depending on the

context of the driving scene and safety guarantees must be met even when offloading. In

dangerous situations, the deadline can be lower, while the deadline could be extended on

empty roads. To address this limitation, recent works have proposed methods for combining

formal safety guarantees with a cloud offloading approach to enable both safety and energy-

efficiency[154, 155, 156]. Though these works are promising, combining energy-efficient AS

algorithms with formal safety guarantees requires further study.

Chapter 4 explores how a learned abstract context extracted from sensor data via CNNs can

enable energy-efficient adaptive sensor fusion. This work also analyzes how fixed domain

knowledge context performs in terms of object detection capability and energy efficiency

across scenarios. Although the learned context significantly outperforms both static mod-

els and domain knowledge context, more advanced context modeling techniques could be

employed in future work. Temporal features are often highly relevant in AS, so a spatio-

temporal context model could prove more effective. Further, combining domain knowledge

and learned contexts could also provide benefits and allow model designers to control adap-

tation behavior more precisely.
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In Chapter 5, energy usage was reduced system-wide by using an FPGA compute platform

with sensor clock gating. However, modern edge AS often utilize System-on-Chip (SoC)

hardware consisting of multiple heterogeneous computing cores. A promising future research

direction would be to study how dynamic architectures can be mapped to different compute

cores in a heterogeneous SoC to maximize throughput while minimizing latency and energy

consumption across contexts [157]. A combined approach between CARMA and SAGE

could also be studied in future work. [158] presents an initial study in this direction and

demonstrates clear energy efficiency benefits, proving that there is merit in exploring this

research direction.

Overall, most of the methodologies proposed in this dissertation tackled specific AS subprob-

lems (e.g., perception, state estimation) instead of the complete AS pipeline (perception,

state estimation, planning, control). The notable exception is Chapter 3, which explored

end-to-end control; however, this approach was evaluated using open-loop analysis (i.e., no

feedback from control outputs). In the real world, feedback and closed-loop control are

essential for effective robot locomotion. In future work, it would be prudent to analyze

how closed-loop feedback affects these methodologies’ real-world safety, performance, and

energy-saving capabilities. In addition, it would be valuable to explore how context can en-

able adaptation in other modular AS tasks such as localization, path planning, and control.

Lastly, most of the proposed methods were evaluated regarding AV constraints and capa-

bilities. Since drones, ground robots, and other small edge AS have unique characteristics

but perform fundamentally the same subtasks as AVs, it would be interesting to analyze

how these methodologies can be mapped or adapted to other AS with consideration for

domain-specific constraints and objectives.
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6.3 Final Remarks

Designing energy-efficient autonomous systems remains a complex yet essential research chal-

lenge. This dissertation proposes several methodologies that utilize contextual information

to improve the performance, energy efficiency, or cross-scenario adaptability of AS. AS en-

ergy usage is a growing problem; the scaling up of sensor arrays, compute platforms, and

algorithms over time will inevitably lead to more significant resource requirements. System-

wide energy usage must be carefully managed to enable large and small AS to benefit society.

Since an AS must be able to sense and adapt to changes in its environment to operate effec-

tively, the ML software and hardware systems that power them should also be able to adapt.

Though this dissertation presents several solutions to these problems, this research area is

broad, and further study is needed along these research directions to enable truly ubiquitous

autonomy. Overall, context-aware adaptive AS can enable a safer, more reliable, and more

efficient autonomous future.
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Appendix A

Data-Driven Scene-Graph Extraction

and Embedding for Robust Scene

Understanding

A.1 Overview

This appendix discusses my recent work which proposes using data-driven scene-graph ex-

traction and embedding for AS scene understanding applications. Chapter 2 demonstrated

how a rule-based scene-graph extraction and embedding approach enables DL algorithms

to explicitly model inter-object relationships for scene understanding tasks such as collision

prediction. The proposed method uses domain-knowledge rules to define when to build graph

edges for each relation type. In contrast, this appendix proposes a data-driven approach for

learning the rules for building relations and demonstrate how it can improve performance

over that of rule-based graph extraction across domains. The approach is applied to the

problem of subjective risk assessment following [38].
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A.2 Introduction

As discussed in Chapter 2, humans naturally model interactions between agents (e.g., hu-

mans, animals, dynamic obstacles) [41] to reason about diverse driving scenarios. As a

human driver’s subjective risk assessment is inversely related to the risk of traffic acci-

dents [159], many works attempt to model the human driving experience to improve the

safety of autonomous driving systems further. Under this circumstance, the effectiveness

of understanding the driving scenes becomes critical for enhancing the robustness of AVs.

Generally speaking, AV tasks that involve understanding and interacting with human agents

are the most challenging tasks to solve. Negotiating intersections, crosswalks, and stop signs

with human-driven vehicles and pedestrians proves challenging as an AV must understand

the intent and behavior of the other agents in the environment. These challenges become

even more difficult to overcome, given that AVs are typically designed, trained, and tested

using simulations and curated datasets, while real-world scenarios are much more dynamic,

unpredictable, and complex. These challenges motivate the need for generalizable models

that can effectively transfer knowledge gained from simulation environments to real-world

driving conditions without major performance degradation.

A.2.1 Research Challenges

To date, many works leverage Deep Learning (DL) to model human driving capabilities, at-

tempting to generalize driving knowledge gained from training datasets to real-world driving

scenarios. For example, Convolution Neural Networks (CNNs) or physics-based models have

been used for this purpose [160, 78]. However, they can fail to account for high-level semantic

scene information, thus underperforming in complex or novel scenarios. Specifically, when

developing these approaches, the interactions between road users and the environmental fac-

tors in the scene (e.g., traffic signals may affect behavior) may not be considered [38]. To
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address this gap, graph-based modeling utilizing Graph Learning (GL) have been proposed

over the years [161, 162, 93, 65, 64, 163]; While CNN-based approaches focus on extracting

visual features from the road scenes, GL-based ones extract the scene-graph representations

of road scenarios, which has proven more effective at explicitly modeling the interactions

between these visual features at a higher level [38, 39]. The approach proposed in Chapter

2 supports this point, since it outperforms the state-of-the-art DL-based method at collision

prediction. Nevertheless, existing graph-based approaches typically require expert knowledge

to design the graphical structure (e.g., rule-based distance relations in [162], [163], and [38];

domain knowledge of road topology in [66]; rule-based directional relations in [64, 38]). This

constraint results in a rigid graph construction approach that may not be flexible enough to

generalize to new domains and real-world scenarios absent from the training data.

For data-driven approaches, many existing solutions can improve the ability of a model to

generalize across domains, i.e., can enhance the model’s robustness. One straightforward ap-

proach is to train DL models on massive labeled driving datasets. However, these datasets

are often biased toward everyday driving situations and lack a diversity of edge cases cor-

related with higher safety risks. These limitations can lead to poor performance in rare

scenarios and cause an otherwise highly functional system to maneuver the vehicle into a

dangerous situation. In addition, massive datasets can be prohibitively expensive as it in-

curs significant model training and data storage costs. Alternatively, one can improve the

generalization of models using large DL models to process driving data, assuming that large

enough models can better capture the complexity and nuance of road scenarios and thus

perform better in complex driving situations. However, AVs are real-time systems and edge

devices with constrained computational capacity and limited onboard energy storage. As

a result, infinitely large models cannot be used, and model size is limited by the ability of

the hardware to execute the model in real time. In summary, the key research challenge in

developing a data-driven AV system is to support these capabilities.
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Figure A.1: The differences between the scene-graphs generated by RS2G and those extracted
with a rule-based method for a driving scene. The rule-based graphs are more rigid and can
only excel at the domain for which the rules are designed, making them domain-specific. In
contrast, the data-driven graphs can specialize to the input data, resulting in more dynamic
domain-adaptive graph representations.

• The system has to generalize to a wide range of complex driving scenarios without the

need for large datasets,

• The system should learn to explicitly model and understand interactions between

agents and the driving environment,

• The system can effectively transfer knowledge gained from simulation and training

environments to real-world use cases.

A.2.2 Novel Contributions

Prior work has shown that graph representations of road scenes can improve modeling ca-

pability, data efficiency, and transfer learning at AV safety-related tasks. Specifically, [38]

and [39] have shown the benefits in risk assessment and collision prediction, both of which

are important for tasks such as driver control hand-off, Advanced Driver Assistance Sys-

tems (ADAS), and dynamic driving profile adjustment. However, these methods require
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expertise to define topology and domain-specific rules for graph construction, thus being

limited to generalizing and adapting to out-of-domain scenarios, a similar limitation faced

by expert systems in the past. To address this limitation, we propose RoadScene2Graph

(RS2G): a data-driven graph extraction and modeling approach that learns to extract the

best graph representation of a road scene for solving autonomous scene understanding tasks.

By adjusting the modeling strategy to fit the input data distribution jointly with fitting the

problem, we can generalize to new data distributions for the same problem. As illustrated

in Figure A.1, the rule-based graph extraction method uses fixed rules to define the set of

graph edges to extract for each image [38]. As a result, the graphs produced are more static

and domain-specific. In contrast, our data-driven graph extraction method, RS2G, learns to

specialize the set of graph edges to best model the input data, creating more dynamic graph

structures that are domain-adaptive. Overall, our novel contributions are as follows:

1. We propose RS2G: a data-driven graph extraction and learning methodology for au-

tonomous driving where the structure of the graph and node embeddings are learned

dynamically.

2. We prove that RS2G outperforms the state-of-the-art DL-based and GL-based methods

at subjective risk assessment. Besides, we analyze RS2G’s benefits over rule-based

graph extraction via ablation studies.

3. We show that RS2G can better transfer knowledge from simulation to real-world (e.g.,

Sim2Real) driving than state-of-the-art.

4. We illustrate how RS2G can model several rule-based relations simultaneously with

each learned relation and how RS2G enables graph sparsity tuning with minimal per-

formance impacts.

5. We open-source our implementations to the community to foster the development

of data-driven graph extraction and modeling approaches at https://github.com/
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AICPS/RS2G.

As for the remainder of this chapter, Section A.3 discusses related works, and Section A.4

elaborates on our problem formulation and methodology. Section A.5 presents our experi-

mental results, Section A.6 discusses our key findings and analysis, and finally, Section A.7

presents our conclusions.

A.3 Related Works

In this section, we discuss related works on interaction modeling via rule-based graphs and

methods for learning data-driven graph representations of visual contexts. We also introduce

background on transfer learning in AVs and discuss existing approaches to train generalizable

models for effective knowledge transfer.

A.3.1 Interaction Modeling for Autonomous Driving

Recently, several works have found that explicitly modeling interactions between agents in

dynamic environments can improve an autonomous system’s ability to understand and rea-

son about its environment. Specifically, in the AV use case, multiple works have proposed

using domain-knowledge-derived rules to extract graph representations of driving scenarios,

denoted as scene-graphs. These approaches typically use (i) a perception algorithm to iden-

tify the set of agents in the scene and their attributes, (ii) a set of graph-extraction rules

to build the graph edges, and (iii) a deep-learning-based graph model, such as the popu-

lar multi-relational graph convolution network (MRGCN). [74] proposes a rule-based graph

extraction method that encodes relationships such as Same-lane, Following, Approaching,

Overtaking between road users. They show that their representation enables a graph au-
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toencoder to learn to infer relationships between road users in new scenarios. [164] uses

rule-based scene-graph extraction and MRGCN modeling to enable explainable predictions

of future driver actions. [38] demonstrates how a rule-based scene-graph improves risk as-

sessment performance over conventional CNN-based methods. [165] uses a rule-based graph

extracted from multi-modal sensor data to perform accurate driver action prediction. The

aforementioned methods have the same limitation: they rely on rule-based graph extraction.

This constraint restricts these approaches to their specialized tasks and data domains, with

different tasks requiring new rules to be defined; each work above uses a different set of

rules. In our data-driven extraction approach, such overhead is eliminated as we learn the

graph extraction rules directly from the data, enabling high performance across tasks and

data domains.

A.3.2 Learning Graph Representations for Autonomous Vehicles

Several methods for data-driven graph extraction have been proposed for solving various

semantic understanding and reasoning tasks. Graph R-CNN [87] proposes a general frame-

work for scene graph extraction from image data. They use a relation proposal network

and an attentional GCN to extract the relation types and prune the graph. This method

produces graphs more tailored to visual question-answering tasks (e.g., what is the semantic

relationship between two objects in a visual scene?) since the model’s primary objective is

to extract a domain-specific scene-graph composed of semantically meaningful edges. As a

result, the generated graphs are less effective at other modeling tasks and transfer learn-

ing. To address the generalization issue, Universal-RCNN [166] uses a transferable Graph

R-CNN to propagate semantic information across different domains and improve the transfer

learning capabilities of object detectors, however, this transfer learning approach depends

on knowledge of the data distribution of both the source and target domains.
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Specific to autonomy, [65] proposes a method for extracting graph representations of visual

road scenes for driver behavior recognition. This method extracts the node features using

object detection models. It extracts the graph adjacency matrix from the processed node

features, enabling the model to capture spatial features and learn inter-object relations.

However, this approach is limited as it only implements one type of relation and only uses

visual features to determine whether or not to add an edge between two nodes.

[167] proposes the graph transformer network, which learns to convert heterogeneous graph-

structured data into homogeneous meta-graphs, enabling performance improvements with

traditional homogeneous graph models such as GCNs and GATs for node classification.

However, by reducing heterogeneous graph data to a single relation type (meta-relation),

some information encoded in the edge types is lost. Instead, models that can explicitly

handle heterogeneous multigraphs, such as MRGCNs, can better model these structures and

increase performance significantly.

A.3.3 Transfer Learning for Autonomous Driving

A key challenge for autonomous driving approaches is generalizing a trained model to unseen

real-world scenarios with varying degrees of complexity without performance degradation.

Autonomous driving models are typically trained on a large synthetic dataset because devel-

opers can easily simulate many traffic conditions, road types, and driving scenarios. Sim2Real

is a term that describes the capability of a robotic system to effectively transfer knowledge

gained from simulation environments to real-world applications [15]. Thus, Sim2Real is a

textbook transfer learning problem since the goal of the model is to transfer the knowledge

gained from the known source domain (training set) to the unknown test domain (real-world

driving) for a specific driving task[168].

Two common forms of transfer learning are inductive transfer learning and transductive
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transfer learning [168]. Inductive transfer learning involves learning a general set of rules

from the source domain (e.g., training a supervised learning model) before applying them

to the test domain. In contrast, transductive transfer learning utilizes some knowledge of

the test domain distribution so that characteristics of the source and test domain distri-

butions can be used to adapt the model. This work focuses on the inductive case, which

more closely aligns with typical autonomous system use cases (e.g., training ML models

using processed/simulated data and testing them in diverse real-world settings). In [169],

inductive transfer learning between a CNN-based motion prediction model trained on pedes-

trian/vehicle trajectories to a model trained on cyclist trajectories is evaluated. The authors

find that transferring knowledge from pedestrian motion predictors improves the perfor-

mance of the cyclist motion predictor. In [170], authors propose transferring knowledge

from semi-supervised models using contrastive learning and teacher-student methods to im-

prove trajectory prediction performance. [171] evaluates transfer learning from traditional

camera models to event camera models for steering angle prediction. Similarly, [172] transfers

spatio-temporal features and uses salient data augmentation to improve sim-to-real transfer

performance. Performance improvements are shown for steering angle prediction and colli-

sion detection. More recently, [38] demonstrated that graph-based scene modeling improves

Sim2Real transfer performance compared to CNN-based methods. Still, this approach re-

mains constrained by the domain-specific rules used for graph extraction, as illustrated in

Figure A.1. This limitation can impact the model’s ability to adapt to different domains.

A.4 RS2G: Scene-Graph Extraction and Embedding

Methodology

In this section, we formulate the problem we aim to solve with data-driven graph extraction

and scenario modeling. We target subjective risk assessment as it is a task that necessi-
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tates robust scenario understanding and accurate modeling of interactions between agents.

Additionally, it is closely related to the important area of ADAS and can directly benefit

tasks such as driver hand-off, collision avoidance, and emergency braking. After introduc-

ing the problem, we present our methodology for data-driven scene-graph extraction and

spatio-temporal graph modeling.

A.4.1 Problem Formulation

The problem of subjective risk assessment can be modeled as inspired by [38]. First, a

sequence of sensor data is pre-processed by an object detection model. Next, the outputs

are converted to a set of scene graphs. Finally, the scene graphs are converted to a spatio-

temporal embedding for performing the subjective risk assessment. At a high level, given

that the input to the model I is a sequence of sensor data (e.g., camera images) of length T ,

and the output of the model is Y is used by the AV, the overall system can be modeled at

a high level as:

Y = ϕ(I); X = {i1, i2, ..., iT}

s.t. Y =

 0, if the driving sequence is safe

1, if the driving sequence is risky

(A.1)

where Y represents the subjective risk of the driving scene and ϕ represents the function

that maps the inputs I to Y . We can use a machine learning model to approximate the

function defined by ϕ, and denote the inference output by the machine learning model as Ŷ .

Though some machine learning methods, namely CNNs, directly operate on sensor inputs

to produce output classifications Ŷ , these approaches only model pixel-level features and

fail to model inter-object relationships for high-level objectives as discussed in Section A.2.

However, CNN-based models are good at low-level tasks, such as object detection, since
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these tasks are less dependent on inter-object semantic relationships. Thus, we first use a

pre-trained CNN-based object detection model Ω to extract the set of objects Ot and their

attributes Dt from each image it ∈ I. Then, these outputs are passed to our graph extraction

model Ψ to produce a scene-graph Gt.

Ot, Dt = Ω(it) (A.2)

Gt = Ψ(Ot, Dt) (A.3)

Using Ω to extract objects from the scene enables us to efficiently produce scene-graphs

from sensor data since we can focus our graph extraction model Ψ on semantic relationship

modeling between the extracted objects instead of low-level perception. Once we have ex-

tracted all the scene-graphs for the current scene, we pass the collection of graphs G to our

spatio-temporal graph embedding model ϕ̂ to make a risk classification Ŷ for the driving

scene. Thus, our complete system model can be represented as follows.

Ŷ = ϕ̂(G) s.t. G = {Ψ(Ω(it)) ∀t ∈ {1, 2, ..., T}} (A.4)

We elaborate on the implementation of Ψ, and ϕ̂ in Sections A.4.2 and A.4.3, respectively.

A.4.2 Data-Driven Scene-Graph Extraction

Algorithm 5 presents our approach for extracting a scene-graph G from a set of objects O

and their attributes D. We model our scene-graphs as directed, heterogeneous multi-graphs.

In this model, objects in the scene are modeled as nodes, and edges model relationships

between objects. Each node contains an attribute vector, each edge is a directed edge with

binary types, and multiple types of edges can exist between any two nodes. In contrast to

the state-of-the-art method from [38], which uses fixed domain-knowledge rules to define the
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conditions for building each graph edge (e.g., threshold-based distance relations, compass-

based directional relations), RS2G uses a data-driven edge encoder Encedge to generate

domain-specialized edge types and learns the rules for building each edge dynamically.

Our approach consists of the following steps. First, a node encoder model Encnode converts

the attributes dj of each object oj into a set of encoded node features hj. Next, we take each

pair of nodes, concatenate their feature vectors, and pass the resulting vector to an edge

encoder Encedge. The edge encoder aims to infer if there is an edge of a given relation type

r between node j and node k, given their features hj and hk, respectively. Each relation

type has a different set of learnable weights in the edge encoder, enabling it to learn different

rules for constructing each relation type. After the edge encoder has processed all node pairs,

the result is an n × n × R adjacency matrix for n total nodes and R relation types. This

adjacency matrix A and the node features H form the scene-graph G.

Algorithm 5: Data-driven scene graph extraction

1 Input: Objects O and their attributes D at time t.
2 Output: Scene-graph G.
3 def Ψ(O,D):
4 H ← { }
5 A← {{{ }}} // adjacency matrix

6 for oj, dj ∈ O,D do
7 hj ← Encnode(oj, dj) // node encoding

8 end
9 combos← HC2 // get all node combinations

10 for r ∈ R do
11 for hj, hk ∈ combos do

/* get edges for relation r */

12 Ar,j,k ← Encedge(r, hj, hk)

13 end

14 end
15 G← {H,A} // add nodes & edges to G

16 return G
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A.4.3 Spatio-Temporal Graph Embedding Model

We use a combination of graph modeling and sequence modeling components to spatio-

temporally model a sequence of scene-graphs for risk assessment. Open-source code for

our model is provided at https://github.com/AICPS/RS2G. Our model architecture is

illustrated in Figure A.2 and consists of the following steps. First, an object detection model

extracts the set of objects in the scene, which are then processed into a graph using Algorithm

5. The resulting graphs are passed to our spatial graph model to produce a set of graph

embeddings. These graph embeddings are then temporally modeled to produce a final risk

assessment for the driving scene. The spatial graph embedding model we use is the same

as the one presented in Chapter 2. The temporal model is derived from [38] for the task of

risk assessment and is detailed below. Our complete risk-assessment workflow is detailed in

Section A.4.4.
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Figure A.2: The architecture of RS2G. First, an object detector extracts the set of objects
from the input sensor data. Then, our data-driven scene-graph extraction approach generates
node embeddings and heterogeneous graph edges. Then, these scene-graphs are spatio-
temporally modeled using an MRGCN and an LSTM. The output embedding generated by
the LSTM is processed by an MLP to infer if the scenario is risky or non-risky.
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Temporal Modeling

After the set of scene-graphs is spatially modeled by the MRGCN, the sequence of scene-

graph embeddings is temporally modeled by a long short-term memory (LSTM) [173] net-

work. For each timestamp t, the LSTM updates the hidden state pt and cell state ct as

follows,

pt, ct = LSTM(hGt , ct−1), (A.5)

where hGt is the final scene-graph embedding from timestamp t. After the LSTM processes

all the scene-graph embeddings, a temporal readout operation is applied to the resultant

output sequence to compute the final spatio-temporal embedding Z given by

Z = TEMPORAL READOUT(p1, p2, ..., pT ) (A.6)

where the TEMPORAL READOUT operation could be the extraction of only the last

hidden state pT (LSTM-last) or could be a temporal attention layer (LSTM-attn).

In [38], adding an attention layer b between successive LSTM layers improves performance

in AV risk assessment and consists of the following components. LSTM-attn calculates a

context vector q using the hidden state sequence {p1, p2, ..., pT} returned from the LSTM

encoder layer as given by

q =
T∑
t=1

βtpt (A.7)

where the probability βt reflects the importance of pt in generating q. The probability βt is

computed by a Softmax output of an energy function vector e, whose component et is the

145



energy corresponding to pt. Thus, the probability βt is formally given by

βt =
exp(et)∑T
k=1 exp(ek)

, (A.8)

where the energy et associated with pt is given by et = b(s0, pt). The temporal attention layer

b scores the importance of the hidden state pt to the model objective (e.g., binary classifica-

tion for risk assessment). The variable s0 in the temporal attention layer b is computed from

the last hidden representation pT . The input sequence’s final spatio-temporal embedding,

Z, is produced by feeding the context vector q to an LSTM decoder layer.

Output Classification

The last layer in our model generates an output risk classification Ŷ from the spatio-temporal

embedding Z as follows.

Ŷ = Softmax(MLP(Z)) (A.9)

Our model is implemented as a binary classifier, so we use Cross-Entropy Loss to train the

model. Next, we discuss the end-to-end workflow of our approach.

A.4.4 Risk Assessment Workflow

Algorithm 6 defines our complete workflow for risk assessment from sensor data. First, each

sensor input in I is processed by an object detector Ω to get the set of visible objects in the

scene Ot and their attributes Dt. This result is processed by the graph extraction model Ψ

to produce a scene-graph Gt for each timestep t in I. The sequence of extracted graphs is

then passed to the risk assessment model ϕ̂, which uses its spatial model to convert each

scene-graph into a graph embedding. These embeddings are then temporally modeled to
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produce a spatio-temporal sequence embedding Z. Finally, Z passed through an MLP to

classify the risk of the driving scenario as risky (1) or non-risky (0).

Algorithm 6: Complete workflow for scene-graph extraction and risk assessment

1 Input: Sequence of sensor inputs I.

2 Output: Risk assessment Ŷ .

3 def ϕ̂(G):
4 hG ← { }
5 for Gt in G do
6 hGt ← Spatial Model(Gt)
7 end
8 Z ← Temporal Model(hG)
9 ŷ0, ŷ1 ← Softmax (MLP(Z))

10 if ŷ1 ≥ ŷ0 then
11 return 1 // risky

12 else if ŷ0 > ŷ1 then
13 return 0 // not risky

14 def ASSESS RISK(I):
15 G← { }
16 for it in I do
17 Ot, Dt ← Ω(it) // detect objects

18 Gt ← Ψ(Ot, Dt) // extract graphs

19 end

20 Ŷ ← ϕ̂(G) // predict risk

21 return Ŷ

22 Ŷ ← ASSESS RISK(I)

A.5 Experiments

In this section, we present our experiments comparing our data-driven scene-graph extrac-

tion and learning methodology with current state-of-the-art graph-based and DL-based ap-

proaches. We first discuss our experimental setup, training procedure, and key metrics.

Next, we present results for subjective risk assessment across diverse driving datasets. We

also evaluate the Sim2Real transfer learning capability of each method and perform an abla-

tion study demonstrating the benefits of our data-driven graph extraction method. Finally,
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we analyze the key differences between the relations and graph structures learned by RS2G

and the rule-based relations used by state-of-the-art graph extraction methods.

A.5.1 Experimental Setup

We used three different types of datasets for our experiments: (i) simulated lane change

scenarios of varying risk in the CARLA driving simulator [63]; (ii) real-world, clear-weather

safe driving in the California Bay Area from the Honda Driving Dataset [94]; and (iii) real-

world crashes and dangerous road scenarios from dash-cam footage in the Detection of Traffic

Anomaly Dataset [95]. We refer to these datasets as (i) 271-syn and 1043-syn, (ii) 1361-

honda, and (iii) 620-dash, respectively, with the number indicating the number of driving

clips in each dataset. Each driving clip is between 10-40 seconds in duration. We also used

a subset of 1361-honda consisting of only lane-changing clips, denoted as 571-honda for our

transfer learning experiments. For further details about dataset preparation, please refer to

Chapter 2. We use the roadscene2vec library [93] to represent the scene-graphs, train the

models, and perform the evaluation in PyTorch.

Our proposed model comprises three main modules, graph extraction, spatial model, and

temporal model. For graph extraction, we implement two variants with RS2G: 1D MLP and

2D MLP, corresponding to the number of MLP layers used for the encoders (1 layer and

2 layers). The 1D MLP has a node encoder shape of 15x15 and an edge encoder shape of

30x15, since the edge encoder takes in the features of two nodes at a time. The 2D MLP has

a node encoder shape of 15x15x15 and an edge encoder shape of 30x30x15. Our spatial and

temporal modeling components follow the structure of the MRGCN+LSTM model from [38]

for fair comparison. Thus, for modeling spatial graph features, we use a 2-layer MRGCN

with Self-Attention Graph Pooling and mean readout. We use a 2-layer LSTM with temporal

attention as the temporal readout operation. Since we model risk assessment as a binary
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classification task, we evaluate each model in terms of Accuracy, Matthews Correlation

Coefficient (MCC) [97], and Area Under the ROC Curve (AUC) [96]. Accuracy in this case

is the standard metric indicating the percentage of correctly classified scenes. AUC score is

a typical metric for scoring classifiers across multiple decision boundaries; it ranges from 0.0

to 1.0 with higher performance indicating a more robust model. MCC score is considered

a more reliable metric than accuracy for scoring models on imbalanced datasets; an MCC

score of -1.0 represents an always wrong classifier, 1.0 represents an always correct classifier,

and 0.0 represents a random classifier. The number of risky and non-risky scenes in each

dataset is shown in Table A.1.

Dataset Non-Risky Scenes Risky Scenes Non-Risky:Risky Ratio
271-syn 223 48 4.65:1

571-honda 475 99 4.80:1
620-dash 323 297 1.09:1
1043-syn 898 146 6.15:1

1361-honda 1207 154 7.84:1

Table A.1: Number of risky and non-risky scenarios in each dataset. The ratio indicates the
label distribution between negative and positive samples.

Regarding baseline models, we primarily compare with the rule-based graph-extraction and

learning approach proposed in [38] as it is a state-of-the-art method for this task. We denote

this method as ”Rule-Based” graph extraction in the experiments. We also compare against

the previous state-of-the-art: the CNN+LSTM architecture from [58]. Since this method

does not use graphs, we denote its graph extraction as ”None.”

For training and evaluating each model, we use a 7-to-3 train-test split for each dataset. The

only exception is the transfer experiments, where we train with 70% of the training dataset

and evaluate with 100% of the testing dataset since they are distinct. We used a Linux server

with an Intel Xeon E5 CPU and an Nvidia Titan Xp GPU for training and evaluating each

model. Notably, the RS2G models were slower to train since they needed to train the graph

encoder layers in addition to the MRGCN and LSTM layers. Additionally, the edge density
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of the graphs affected training time since each edge adds graph convolution operations,

enabling the sparser rule-based graphs to train faster. Training speed and convergence could

be improved in future work if graph sparsity is encouraged during RS2G training (e.g., via

additional training objectives).

A.5.2 Experiment I: Risk Assessment Performance

Table A.2 shows the performance of each model variant at risk assessment on the datasets.

We present results for the synthetic datasets (271-syn, 1043-syn) as well as the real-world

driving datasets (620-dash, 1361-honda). Overall, all the models demonstrate notably lower

learning quality (i.e., accuracy, MCC, and AUC) for real-world driving datasets than syn-

thetic datasets. However, models utilizing 1D MLP and 2D MLP graph extraction techniques

suffer from less degradation and are more able to provide effective performance. In particu-

lar, the CNN+LSTM with no graph extraction shows a weak MCC score across all datasets

(i.e., only slightly better than a random classifier), indicating it cannot distinguish positive

and negative instances well.

Across all datasets, using 1D MLP and 2D MLP graph extraction layers provide significantly

higher accuracy than those using “None” (CNN+LSTM) or rule-based graph extraction. On

average, the 2D MLP graph extraction technique provides 25.99% higher accuracy than the

CNN+LSTM and 4.29% higher accuracy than rule-based graph extraction. Additionally, our

1D MLP and 2D MLP provide higher MCC and AUC scores, indicating that using 1D MLP

and 2D MLP graph extraction techniques has a decisive advantage in distinguishing positive

and negative samples. In contrast, using none graph extraction with CNN+LSTM provides

significantly lower learning quality. In particular, for a real-world imbalanced dataset with

more crashes and risky scenarios (620-dash), CNN+LSTM delivers seriously degraded ac-

curacy and an MCC score worse than a random classifier (less than 0.0). 2D MLP graph
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extraction also has reduced performance for 620-dash, but it is still significantly better than

the baselines.

Dataset Model Acc. MCC AUC
Graph Ext. Downstream

271-syn

None [58] CNN+LSTM 73.17% 0.1887 0.8043
Rule-Based [38] MRGCN+LSTM 87.80% 0.6140 0.9676
RS2G (1D MLP) MRGCN+LSTM 90.24% 0.6583 0.9643
RS2G (2D MLP) MRGCN+LSTM 93.90% 0.7876 0.9850

1043-syn

None [58] CNN+LSTM 71.66% 0.1111 0.7173
Rule-Based [38] MRGCN+LSTM 95.86% 0.8238 0.9861
RS2G (1D MLP) MRGCN+LSTM 97.77% 0.9055 0.9888
RS2G (2D MLP) MRGCN+LSTM 97.77% 0.9055 0.9898

1361-honda

None [58] CNN+LSTM 60.39% 0.0391 0.7110
Rule-Based [38] MRGCN+LSTM 86.31% 0.2445 0.9341
RS2G (1D MLP) MRGCN+LSTM 87.04% 0.1626 0.9315
RS2G (2D MLP) MRGCN+LSTM 89.00% 0.3029 0.9383

620-dash

None [58] CNN+LSTM 48.92% -0.1749 0.5256
Rule-Based [38] MRGCN+LSTM 70.97% 0.4230 0.7804
RS2G (1D MLP) MRGCN+LSTM 68.82% 0.3967 0.7403
RS2G (2D MLP) MRGCN+LSTM 77.42% 0.5620 0.8358

Table A.2: Risk Assessment Performance for different graph extraction methods and
datasets. Rule-Based graph extraction is derived from [38], while RS2G is our proposed
approach. ”Downstream” indicates the type of model processing the graph representation,
with CNN+LSTM using raw images and MRGCN+LSTM using scene-graphs as input.

A.5.3 Experiment II: Transfer Learning Evaluation

Here we evaluate the Sim2Real transfer learning capability of each model. To perform the

evaluation, we first train each model on one of the simulation datasets (271-syn or 1043-

syn), then evaluate the trained model on a real-world dataset (620-dash). The analysis is

two-fold: (i) the driving behaviors differ from the simulation (lane changes only) to the real-

world datasets (all driving maneuvers are present), and (ii) the visual context differs between

the simulation environment and the real-world scenarios. The results of this experiment are

shown in Table A.3. In particular, we train our models on simulated datasets 271-syn

and 1043-syn and perform transfer learning on 620-dash, where there are many instances
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Figure A.3: Transfer learning comparison between different graph extraction methods: None
(CNN+LSTM model) [58], Rule-Based (MRGCN+LSTM model) [38], and RS2G with 2D
MLP (MRGCN+LSTM model). Results are denoted as “(Train Dataset) to (Test Dataset)”.

of crash scenarios. As shown, RS2G achieves notably higher accuracy, MCC, and AUC

than the CNN+LSTM model and rule-based graph extraction with the MRGCN. Since

620-dash includes significantly more risky scenarios and differs greatly from the simulated

datasets, all learning methods demonstrate degraded performance. However, RS2G suffers

from notably less degradation and shows higher accuracy, MCC, and AUC after transfer than

the other methods. Notably, the two baselines (CNN+LSTM and Rule-Based MRGCN)

trained on 1043-syn perform worse after transfer than the same models trained on 271-syn,

likely because these models overfit to their training domain (synthetic data) at a detriment

to the test domain performance (real-world driving). In contrast, RS2G can generalize well

across dataset sizes without overfitting in the same manner, resulting in higher transfer

performance when trained on 1043-syn. We note that, when evaluated on datasets that

are more closely related to the training domain (e.g., lane change scenes in the 571-honda

dataset), RS2G can achieve higher performance figures (82% accuracy), likely because the

data distribution and action space are closer to the training data.
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A.5.4 Experiment III: Ablation Study

To demonstrate the contributions of each sub-component of our proposed methodology,

we present an ablation study in Table A.3. We evaluate rule-based graph extraction vs.

different variants of our data-driven graph extraction methodology. As demonstrated in

Table A.3, both 1D MLP and 2D MLP graph extraction techniques provide better accuracy,

MCC, and AUC than rule-based graph extraction. Using MRGCN for the spatial model

delivers better accuracy, MCC, and AUC than using MLP in rule-based and 1D MLP graph

extraction, demonstrating the benefits of explicitly modeling the relations between agents.

Additionally, using LSTM for the temporal model provides better accuracy than using mean,

likely because the LSTM can better model temporal patterns in the graph embeddings.

Notably, the 1D MLP graph extractor with the MLP+LSTM model outperforms the rule-

based graph extractor with the MRGCN+LSTM model, indicating that our data-driven

graphs produce a higher quality representation that is easier for multiple kinds of downstream

models to classify, not just MRGCNs. Comparing models using 1D MLP and 2D MLP graph

extractors, the model using a 2D MLP layer has slightly lower accuracy while demonstrating

stronger MCC and AUC scores, indicating a slightly better capability and distinguishing

between positive and negative samples.

Graph Ext. Spatial Model Temporal Model Acc. MCC AUC

Rule-Based [38] MLP mean 52.15% 0.0000 0.4973
Rule-Based [38] MLP LSTM 62.90% 0.2741 0.6811
Rule-Based [38] MRGCN mean 63.44% 0.2696 0.6867
Rule-Based [38] MRGCN LSTM 75.27% 0.5197 0.8248

RS2G (1D MLP) MLP mean 61.29% 0.2284 0.6436
RS2G (1D MLP) MLP LSTM 72.04% 0.4572 0.8062
RS2G (1D MLP) MRGCN mean 68.28% 0.3865 0.7154
RS2G (1D MLP) MRGCN LSTM 78.49% 0.5746 0.8514
RS2G (2D MLP) MRGCN LSTM 77.96% 0.5784 0.8618

Table A.3: Ablation study across different graph extraction methods, spatial models, and
temporal models. Models are trained and evaluated on 620-dash.
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A.5.5 Experiment IV: Learned vs. Rule-Based Relation Analysis

Data-driven graph extraction can result in significantly different graph structures than rule-

based graph extraction. To analyze the differences between these two extraction methods,the

following experiments evaluate (i) the similarity between the relations learned by RS2G and

the rule-based relations from the baseline [38], and (ii) graph structure metrics for each

method.

Cosine Relation Similarity

We compare the cosine similarity between the data-driven relations learned by RS2G and

the set of rule-based relations extracted by [38] for the 1043-syn dataset in Figure A.4.

Cosine similarity is a popular metric for comparing sparse vectors and is often used to

compute document similarity over term-frequency vectors [174]. We use cosine similarity

to compare the adjacency matrices extracted by rule-based graph extraction with the data-

driven adjacency matrices produced by RS2G to determine if the extracted graphs can

implicitly learn some of the rules from the data itself. Our graphs are 3-dimensional binary

adjacency matrices, with an NxN matrix for each relation r ∈ R for a graph with N nodes.

For each of our 12 learned relations, we compute the cosine similarity of its adjacency matrices

with those for each rule-based relation, averaging across all graphs in the dataset.

The similarity in relations highlighted across datasets supports the fact that our model

can effectively transfer knowledge; the relations that the model deems relevant to the task

are relevant across datasets. Additionally, the differences in the relative weights of these

relations across datasets show how our model specializes to different datasets by adjusting

the density of different relation types depending on the data. This finding supports our point

that data-driven graph extraction can boost performance while maintaining generalization

ability.
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Figure A.4: Cosine similarity between relations learned by RS2G (2D MLP) and the set
of rule-based relations used in [38] for the synthetic 1043-syn dataset and the real-world
620-dash dataset.
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Graph Structure Comparison

In addition to measuring the similarity of different relation types, we also evaluate the

structural differences between rule-based graphs and the data-driven graphs extracted by

RS2G. We evaluate how the methods differ regarding graph sparsity and edge distribution

and correlate these metrics with risk assessment accuracy. We also assess how increasing

RS2G’s edge extraction threshold (γ) affects the sparsity of generated graphs and the model’s

overall performance. The threshold γ indicates the sigmoid score that Encedge must overcome

to add a given edge to the graph, so higher γ results in sparser graphs. Our results using 2D

MLP graph extraction are shown in Table A.4. 2D MLP extraction with various thresholds

exhibits higher accuracy than rule-based graph extraction. We achieved the best accuracy

using γ = 0.5, so this setting was used for the rest of the experiments shown in the chapter.

Using γ = 0.25 lowers the performance, possibly due to overfitting. On the other hand, using

γ = 0.75 also offers lower accuracy since fewer features are extracted.

Graph Ext. Acc. Avg. Deg. Avg. Edges σ Edges

Rule-Based [38] 95.86% 3.84 16.50 10.51
RS2G (2D MLP, γ = 0.25) 96.82% 78.58 636.22 556.10
RS2G (2D MLP, γ = 0.5) 97.77% 36.42 286.84 231.07
RS2G (2D MLP, γ = 0.75) 96.82% 5.92 46.74 38.13

Table A.4: Comparison of graph structure metrics across different extraction methods. γ
represents the edge extraction decision threshold. RS2G(2D MLP, γ = 0.5) has the highest
accuracy.

A.6 Discussion

Overall, our experimental results support our claim that data-driven graph extraction im-

proves representation quality and generalization over that of rule-based graph extraction,

resulting in performance improvements on both simulated and real-world datasets. Our re-

sults also demonstrate that RS2G can more effectively perform Sim2Real transfer learning,
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support configurable graph sparsity, and learn relations overlapping with multiple rule-based

relations to improve modeling. Next, we discuss how RS2G can be deployed in a real-world

autonomous system, the limitations of our research scope, and potential future research

directions.

A.6.1 Practicality

Fundamentally, RS2G leverages existing deep-learning and graph-learning libraries for exe-

cution, so integration with a typical autonomous computing platform should follow standard

training, validation, and model compilation procedures. The complexity of deploying RS2G

will be the same as deploying a rule-based graph model since the primary difference is the

addition of a few layers for node/edge encoding. The requisite inputs and outputs are also

present in most autonomous driving and ADAS pipelines (e.g., camera inputs, object de-

tection model, ADAS control system). Regarding utility, RS2G’s output can be sent to

the ADAS system to inform tasks such as driver control handoff, emergency braking, and

dynamic driving profile adjustment.

A.6.2 Limitations and Future Work

Although RS2G demonstrates improved generalization capabilities compared to rule-based

graph extraction, further improvements could be realized by adding auxiliary training ob-

jectives such as self-supervision or Kullback-Liebler Divergence (KLD) loss across adjacency

matrices of each relation type. By adding a learned self-supervision component between the

node and edge encoder inputs and their output node embeddings and adjacency matrices,

the node and edge encoders would learn to model an invertible function mapping from the

inputs to the outputs and may, as a result, produce a more general graph representation.

Similarly, adding a KLD loss would encourage the model to learn different adjacency matri-
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ces for each relation type, potentially improving the quality of the encoded representation in

the scene-graph and, subsequently, the model’s generalization ability. We conducted prelim-

inary experiments to test these theories, but the results were inconclusive. Thus, we leave

the further study of these topics for future work.

Another potential source of improvement is the node and edge encoder models. In this work,

we exhaustively studied how 1D and 2D MLPs could enable data-driven graph extraction

and benefit the model. However, more complex deep-learning approaches could be leveraged

to improve expressive quality. Further, rule-based graphs could be integrated with learned

graphs (e.x., by combining their adjacency matrices) to leverage the benefits of both methods.

However, this strategy may only benefit certain application domains, so we leave this for

future work.

In terms of application domains, we studied subjective risk assessment for AVs in this chapter.

Still, AVs must perform various tasks to perceive, plan, and maneuver safely. Tasks such

as localization, motion prediction, and path planning involve semantic scene understanding,

and graph-based modeling approaches have been shown to improve performance at these

tasks [163]. Thus, graph-based methods in these applications could benefit from using a

learned scene-graph representation similar to RS2G.

A.7 Summary

This chapter presents RS2G, an innovative data-driven graph extraction approach that learns

to optimize the graph topology for each domain. We show that RS2G produces better quality

representations resulting in higher performance at subjective risk assessment across diverse

driving datasets than state-of-the-art methods. RS2G also significantly improves gener-

alization and outperforms state-of-the-art methods at transferring knowledge gained from
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synthetic datasets to more complex, unpredictable, and risky real-world scenarios. Addi-

tionally, our ablation study showed clear benefits from using data-driven graph extraction

compared to rule-based graph extraction. RS2G also produced a representation that could

be modeled more effectively even by simpler downstream models. Finally, we demonstrated

how each relation learned by RS2G could model multiple domain-knowledge-defined rules

simultaneously and how the sparsity of graphs can be dynamically tuned while mitigating

performance impacts. Our findings open the door for deep exploration into data-driven graph

extraction and graph structure optimization in future works. Our results demonstrate the

power of data-driven graph extraction and its applicability to various autonomous systems

and scenario-understanding applications.
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Appendix B

Other Research Areas

B.1 Overview

In addition to the research areas discussed in the main body of this dissertation, I have also

studied several other research topics. Below, these topics and their related publications are

briefly summarized.

B.2 Machine Learning for Advanced Manufacturing

B.2.1 Acoustic Side-Channel Attacks on DNA Synthesis Machines

Synthetic biology is developing into a promising science and engineering field. One of the

enabling technologies for this field is the DNA synthesizer. It allows researchers to custom-

build sequences of oligonucleotides (short DNA strands), which are valuable intellectual

property. Incorporating these sequences into organisms can result in improved disease resis-

tance and lifespan for plants, animals, and humans. However, these DNA synthesizers are
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fully automated systems with cyber-domain processes and physical domain components and

may be prone to security breaches like any other computing system. In [175], we present

a novel acoustic side-channel attack methodology which can be used on DNA synthesizers

to breach their confidentiality and steal valuable oligonucleotide sequences. In addition,

we reconstruct DNA sequences to show how effectively an attacker with biomedical-domain

knowledge would be able to derive the intended functionality of the sequence using the

proposed attack methodology. More details are presented in [176, 177].

B.2.2 Sabotage Attack Detection in Additive Manufacturing

AM, or 3D Printing, is seeing practical use for the rapid prototyping and production of

industrial parts. The digitization of such systems not only makes AM a crucial technology

in Industry 4.0 but also presents a broad attack surface that is vulnerable to sabotage

attacks [178]. In the field of AM security, sabotage attacks are cyberattacks that introduce

inconspicuous defects to a manufactured component at any specific process of the AM digital

process chain, resulting in the compromise of the component’s structural integrity and load-

bearing capabilities [179]. Defense mechanisms that detect such attacks using side-channel

analysis have been studied [180, 181, 179, 182]. However, most current works focus on

modeling the state of AM systems using a single side-channel, thus limiting their effectiveness

at attack detection. To address this challenge, we present a novel multi-modal sabotage

attack detection system for Additive Manufacturing (AM) machines in [183]. By utilizing

multiple side-channels (e.g., vibration, acoustic, magnetic, power), we improve system state

estimation significantly over that of existing methods. Besides, we analyze the value of each

side-channel for performing attack detection in terms of mutual information shared with

the machine control parameters. More details on how side-channels can be leveraged in

manufacturing systems are provided in [184].
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B.2.3 Neuromorphic Computing for the Predictive Maintenance

of Manufacturing Systems

If machine failures can be detected preemptively, then maintenance and repairs can be per-

formed more efficiently, reducing production costs. Many machine learning techniques for

performing early failure detection using vibration data have been proposed; however, these

methods are often power and data-hungry, susceptible to noise, and require large amounts of

data preprocessing. Also, training is usually only performed once before inference, so they

do not learn and adapt as the machine ages. Thus, [185] proposes a method of performing

online, real-time anomaly detection for predictive maintenance using Hierarchical Temporal

Memory (HTM). Inspired by the human neocortex, HTMs learn and adapt continuously and

are robust to noise. Our approach outperforms both state-of-the-art deep learning and statis-

tical algorithms at preemptively detecting real-world cases of bearing failures and simulated

3D printer failures.

B.3 Automotive Security

B.3.1 In-Vehicle Network Security

The complexity of automotive E/E systems is increasing with time as discussed in Chapter

1. Modern systems use highly interconnected hardware and software systems, presenting

a broad attack surface for adversaries. Specifically, the in-vehicle network stack is closely

tied to critical functionality such as steering, braking, acceleration, all of which are con-

trolled electronically in modern vehicles. Further, systems such as door locks and alarms,

active safety systems, airbags, and infotainment are all connected via shared buses and in-

terconnects. This fact enables adversaries to exploit a vulnerability in one subsystem to
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attack other critical subsystems. Furthermore, the emergence of Vehicle-to-Vehicle (V2V)

and Vehicle-to-Infrastructure (V2I) communication protocols presents an even broader at-

tack surface. In [186] we explore the taxonomy of in-vehicle and V2V/V2I networks, security

vulnerabilities of these networks, and current methods for exploiting these vulnerabilities.

Overall, modern vehicles are highly exposed to attacks, and the potential impact of attackers

will increase with the development of autonomous driving systems, V2X communication, and

other advanced technologies. More details on the security risks associated with connected

vehicles are discussed in [187].

B.3.2 Physical Layer Key Generation for Secure V2X Communi-

cation

An emerging paradigm for intelligent transportation is the integration of communication ca-

pabilities between vehicles and infrastructure, collectively denoted as vehicle-to-everything

(V2X) communication. V2X promises to improve road safety, reduce congestion, and re-

duce the complexity of designing autonomous vehicles by allowing vehicles and signaling

equipment to broadcast their intentions. However, due to the sensitivity of the information

exchanged in Vehicle-to-Everything (V2X) communication, generating secret keys is critical

to secure these communications to prevent spoofing and false data injection [186]. As nature

is open access, distributed symmetric keys are more vulnerable to attacks in the vehicular en-

vironment. Additionally, V2X applications necessitate low-latency communication for rapid

decision making, so asymmetric encryption is less practical. Physical layer key generation

methods using wireless channel characteristics show promise in preventing such attacks by

enabling the keys to be generated independently by each party and removing the need for dis-

tribution [188, 189]. In [190], we present a novel key generation approach in a real vehicular

environment based on Channel State Information (CSI), including a new algorithm for key bit

extraction. We implement our algorithm using USRP B210 Software-Defined Radios (SDR)
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and the industry-standard V2X communication protocol: IEEE 802.11p. The proposed key

generation protocol uses the CSI values of each sub-carrier as a source of randomness. We

compare our technique to state-of-the-art Received Signal Strength (RSS)-based approaches,

and show that our method achieves better performance.

B.4 Autonomous Vehicle Motion Prediction

B.4.1 Context-Aware Dynamic Architectures for Robust Motion

Prediction

The ability of an autonomous vehicle to accurately predict the motion of other road users

across a wide range of diverse scenarios is critical for both motion planning and safety. In

modular AV architectures, the path planning and control modules depend on the outputs

of the motion prediction module to understand where other road users are likely to be in

the future. However, existing motion prediction methods do not explicitly model contextual

information about the environment which can cause significant variations in performance

across diverse driving scenarios. To address this limitation, we propose CASTNet: a

dynamic, context-aware approach for motion prediction that (i) identifies the current driving

context using a spatio-temporal model, (ii) adapts an ensemble of motion prediction models

to fit the current context, and (iii) applies novel trajectory fusion methods to combine

predictions output by the ensemble. This approach enables CASTNet to improve robustness

by minimizing motion prediction error across a wide range of scenario types. We demonstrate

how CASTNet can improve both CNN-based and graph-learning-based motion prediction

approaches and conduct ablation studies on the performance, latency, and model size for

various architecture choices.
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