Paper:
A Neuromodulation Model for Adaptive Behavior Selection by the Cricket – Nitric Oxide (NO)/Cyclic Guanosine MonoPhosphate (cGMP) Cascade Model –
Kuniaki Kawabata*, Tomohisa Fujiki**, Yusuke Ikemoto**,
Hitoshi Aonuma***, and Hajime Asama**
*RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
**RACE, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan
***RIES, Hokkaido University, Sapporo 060-0812, Japan
- [1] J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proc. of the National Academy of Sciences U.S.A., 79, pp. 2554-2558, 1982.
- [2] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” The MIT Press, 2000.
- [3] K. Takakusaki and H. Asama, “Mobiligence: Understanding the Intelligence through Behavioral Expressions by Means of Constructive and Biological Approaches,” Journal of the Society of Instrument and Control Engineers, 44, 9, pp. 580-589, 2005 (in Japanese).
- [4] P. Meyrand, J. Simmers, and M. Moulins, “Construction of a pattern-generating circuit with neurons of different networks,” Nature, 351, pp. 60-63, 1991.
- [5] H. Aonuma and R. Kanzaki, “Systematic Understanding of Neuronal Mechanisms for Adaptive Behavior in Changing Environment,” Proc. of the 1st Int. Symposium on Mobiligence, pp. 63-66, 2005.
- [6] T. Smith, P. Husbands, A. Philippides, and M. O’Shea, “Neural Plasticity and Temporal Adaptivity: GasNet Robot Control Networks,” Adaptive Behavior, 10, pp. 161-183, 2002.
- [7] A. Philippides, P. Husbands, T. Smith, and M. O’Shea, “Flexible Coupling: Diffusing Neuromodulators and Adaptive Robotics,” Artificial Life, 11, pp. 139-160, 2005.
- [8] T. Kondo, A. Ishiguro, Y. Uchikawa, and P. Eggenberger, “Autonomous Robot Control by a Neural Network with Dynamically-Rearranging Function,” Proc. of the 4th International Symposium on Artificial Life and Robotics (AROB99), Vol.1, pp. 324-329, 1999.
- [9] J. Nagamoto, H. Aonuma, and M. Hisada, “Discrimination of Conspecific Individuals via Cuticular Pheromones by Males of Cricket Gryllus bimaculatus,” Zoological Science, 22, pp. 1079-1088, 2005.
- [10] H. Aonuma, M. Iwasaki, and K. Niwa, “Role of NO Signaling in Switching Mechanisms in the Nervous System of Insect,” Proc. SICE Ann. Conf. CD-ROM, pp. 2477-2482, 2004 (in Japanese).
- [11] A. Philippides, P. Husbands, and M. O’Shea, “Four-dimensional Neural Signaling by Nitric Oxide: A Computational Analysis,” J. Neuroscience, 10, pp. 1199-1207, 2000.
- [12] H. Aonuma and K. Niwa, “Nitric Oxide Regulates the Levels of cGMP Accumulation in the Cricket Brain,” Acta Biologica Hungarica, 55, pp. 65-70, 2004.
- [13] Y. Matsumoto, S. Unoki, H. Aonuma, and M. Mizunami, “Nitric Oxide-cGMP Signaling is Critical for cAMP-dependent Long-term Memory Formation,” Learning & Memory, 13(1), pp. 35-44, 2006.
- [14] E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg, “Mathematical Model of Self-Organizing Hierarchies in Animal Societies,” Bulletin of Mathematical Biology, 58, 4, pp. 661-717, 1996.
- [15] S. A. Adamo, C. E. Linn, and R. R. Hoy, “The Role of Neurohormonal Octopamine During ‘Fight or Flight’ Behaviour in the Field Cricket GRYLLUS BIMACULATUS,” The Journal of Experimental Biology, 198, pp. 1691-1700, 1995.
- [16] P. A. Stevenson, V. Dynakonova, and K. Schildberger, “Octopamine and Experience-Dependent Modulation of Aggression in Crickets,” The Journal of Neuroscience, 25(6), pp. 1431-1441, 2005.
- [17] M. Ashikaga, T. Hiraguchi, M. Sakura, H. Aonuma, and J. Ota, “Modeling of adaptive behaviors in crickets,” Proc. of SICE Symposium on Decentralized Autonomous Systems, pp. 189-194, 2005 (in Japanese).
- [18] M. Ashikaga, T. Hiraguchi, M. Sakura, H. Aonuma, and J. Ota, “Modeling behavior of artificial crickets,” 6th Forum of European Neuroscience, A129.1, 2006.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2007 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.