Open In App

How to access different rows of a multidimensional NumPy array?

Last Updated : 11 Oct, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report

Let us see how to access different rows of a multidimensional array in NumPy. Sometimes we need to access different rows of multidimensional NumPy array-like first row, the last two rows, and even the middle two rows, etc. In NumPy , it is very easy to access any rows of a multidimensional array. All we need to do is Slicing the array according to the given conditions. Whenever we need to perform analysis, slicing plays an important role.

Case 1: In 2-Dimensional arrays

Example 1: Accessing the First and Last row of a 2-D NumPy array

Python3
# Importing Numpy module
import numpy as np

# Creating a 3X3 2-D Numpy array
arr = np.array([[10, 20, 30], 
                [40, 5, 66], 
                [70, 88, 94]])

print("Given Array :")
print(arr)

# Access the First and Last rows of array
res_arr = arr[[0,2]]
print("\nAccessed Rows :")
print(res_arr)

Output:

In the above example, we access and print the First and Last rows of the 3X3 NumPy array.

Example 2: Accessing the Middle row of 2-D NumPy array

Python3
# Importing Numpy module
import numpy as np

# Creating a 3X4 2-D Numpy array
arr = np.array([[101, 20, 3, 10], 
                [40, 5, 66, 7], 
                [70, 88, 9, 141]])
               
print("Given Array :")
print(arr)

# Access the Middle row of array
res_arr = arr[1]
print("\nAccessed Row :")
print(res_arr)

Output:

In the above example, we access and print the Middle row of the 3X4 NumPy array.

Example 3: Accessing the Last three rows of 2-D NuNumPy py array

Python3
# Importing Numpy module
import numpy as np

# Creating a 4X4 2-D Numpy array
arr = np.array([[1, 20, 3, 1], 
                [40, 5, 66, 7], 
                [70, 88, 9, 11],
               [80, 100, 50, 77]])

print("Given Array :")
print(arr)

# Access the Last three rows of array
res_arr = arr[[1,2,3]]
print("\nAccessed Rows :")
print(res_arr)

Output:

In the above example, we access and print the last three rows of the 4X4 NumPy array.

Example 4: Accessing the First two rows of a 2-D NumPy array

Python3
# Importing Numpy module
import numpy as np

# Creating a 5X4 2-D Numpy array
arr = np.array([[1, 20, 3, 1], 
                [40, 5, 66, 7], 
                [70, 88, 9, 11],
               [80, 100, 50, 77],
               [1, 8.5, 7.9, 4.8]])

print("Given Array :")
print(arr)

# Access the First two rows of array
res_arr = arr[[0,1]]
print("\nAccessed Rows :")
print(res_arr)

Output:

In the above example, we access and print the First two rows of the 5X4 NumPy array.

Case 2: In 3-Dimensional arrays

Example 1: Accessing the Middle rows of 3-D NumPy array

Python3
# Importing Numpy module 
import numpy as np

# Creating 3-D Numpy array
n_arr = np.array([[[10, 25, 70], [30, 45, 55], [20, 45, 7]], 
                  [[50, 65, 8], [70, 85, 10], [11, 22, 33]]])

print("Given 3-D Array:")
print(n_arr)

# Access the Middle rows of 3-D array
res_arr = n_arr[:,[1]]
print("\nAccessed Rows :")
print(res_arr)

Output:

In the above example, we access and print the Middle rows of the 3-D NumPy array.

Example 2: Accessing the First and Last rows of 3-D NumPy array

Python3
# Importing Numpy module 
import numpy as np

# Creating 3-D Numpy array
n_arr = np.array([[[10, 25, 70], [30, 45, 55], [20, 45, 7]], 
                  [[50, 65, 8], [70, 85, 10], [11, 22, 33]],
                 [[19, 69, 36], [1, 5, 24], [4, 20, 96]]])


print("Given 3-D Array:")
print(n_arr)

# Access the First and Last rows of 3-D array
res_arr = n_arr[:,[0, 2]]
print("\nAccessed Rows :")
print(res_arr)

Output:  

In the above example, we access and print the First and Last rows of the 3-D NumPy array.


Practice Tags :

Similar Reads

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy