Open In App

numpy.full_like() in Python

Last Updated : 09 Mar, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

The numpy.full_like() function return a new array with the same shape and type as a given array.
Syntax : 
 

numpy.full_like(a, fill_value, dtype = None, order = 'K', subok = True)


Parameters : 

shape : Number of rows
order : C_contiguous or F_contiguous
dtype : [optional, float(by Default )] Data type of returned array.  
subok : [bool, optional] to make subclass of a or not


Returns : 

ndarray


 

Python
# Python Programming illustrating
# numpy.full_like method

import numpy as geek

x = geek.arange(10, dtype = int).reshape(2, 5)
print("x before full_like : \n", x)

# using full_like
print("\nx after full_like : \n", geek.full_like(x, 10.0))

y = geek.arange(10, dtype = float).reshape(2, 5)
print("\n\ny before full_like : \n", x)

# using full_like
print("\ny after full_like : \n", geek.full_like(y, 0.01))

Output : 
 

x before full_like : 
 [[0 1 2 3 4]
 [5 6 7 8 9]]

x after full_like : 
 [[10 10 10 10 10]
 [10 10 10 10 10]]


y before full_like : 
 [[0 1 2 3 4]
 [5 6 7 8 9]]

y after full_like : 
 [[ 0.01  0.01  0.01  0.01  0.01]
 [ 0.01  0.01  0.01  0.01  0.01]]


References : 
https://numpy.org/doc/stable/reference/generated/numpy.full_like.html#numpy.full_like 
Note : 
These codes won’t run on online IDE's. So please, run them on your systems to explore the working.
 


Article Tags :
Practice Tags :

Similar Reads

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy