Open In App

Grouping Rows in pandas

Last Updated : 14 Jan, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
Pandas is the most popular Python library that is used for data analysis. It provides highly optimized performance with back-end source code is purely written in C or Python. Let's see how to group rows in Pandas Dataframe with help of multiple examples. Example 1: For grouping rows in Pandas, we will start with creating a pandas dataframe first. Python3
# importing Pandas
import pandas as pd

# example dataframe
example = {'Team':['Arsenal', 'Manchester United', 'Arsenal',
                   'Arsenal', 'Chelsea', 'Manchester United',
                   'Manchester United', 'Chelsea', 'Chelsea', 'Chelsea'],
                   
           'Player':['Ozil', 'Pogba', 'Lucas', 'Aubameyang',
                       'Hazard', 'Mata', 'Lukaku', 'Morata', 
                                         'Giroud', 'Kante'],
                                         
           'Goals':[5, 3, 6, 4, 9, 2, 0, 5, 2, 3] }

df = pd.DataFrame(example)

print(df)
Now, create a grouping object, means an object that represents that particular grouping. Python3
total_goals = df['Goals'].groupby(df['Team'])

# printing the means value
print(total_goals.mean())    
Output:   Example 2: Python3 1==
import pandas as pd

# example dataframe
example = {'Team':['Australia', 'England', 'South Africa',
                   'Australia', 'England', 'India', 'India',
                        'South Africa', 'England', 'India'],
                        
           'Player':['Ricky Ponting', 'Joe Root', 'Hashim Amla',
                     'David Warner', 'Jos Buttler', 'Virat Kohli',
                     'Rohit Sharma', 'David Miller', 'Eoin Morgan',
                                                 'Dinesh Karthik'],
                                                 
          'Runs':[345, 336, 689, 490, 989, 672, 560, 455, 342, 376],
          
          'Salary':[34500, 33600, 68900, 49000, 98899,
                    67562, 56760, 45675, 34542, 31176] }

df = pd.DataFrame(example)

total_salary = df['Salary'].groupby(df['Team'])

# printing the means value
print(total_salary.mean())     
Output:

Practice Tags :

Similar Reads

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy