Open In App

numpy.arccosh() in Python

Last Updated : 29 Nov, 2018
Comments
Improve
Suggest changes
Like Article
Like
Report
numpy.arccosh() : This mathematical function helps user to calculate inverse hyperbolic cosine, element-wise for all arr. Syntax :
numpy.arccosh(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, ufunc 'arccosh') Parameters : arr : array_like Input array. out : [ndarray, optional] A location into which the result is stored.   -> If provided, it must have a shape that the inputs broadcast to.   -> If not provided or None, a freshly-allocated array is returned. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs :Allows to pass keyword variable length of argument to a function. Used when we want to handle named argument in a function. Return : An array with inverse hyperbolic cosine of arr for all arr i.e. array elements. Note : 2pi Radians = 360 degrees The convention is to return the angle of arr whose imaginary part lies in [-pi, pi] and the real part in [0, inf].
  Code #1 : Working Python
# Python program explaining
# arccosh() function

import numpy as np

in_array = [2, 1, 10, 100]
print ("Input array : \n", in_array)

arccosh_Values = np.arccosh(in_array)
print ("\nInverse hyperbolic Cosine values : \n", arccosh_Values)
Output :
Input array : 
 [2, 1, 10, 100]

Inverse hyperbolic Cosine values : 
 [ 1.3169579   0.          2.99322285  5.29829237]
  Code #2 : Graphical representation Python
# Python program showing
# Graphical representation  
# of arccosh() function
%matplotlib inline 
import numpy as np
import matplotlib.pyplot as plt
in_array = np.linspace(1, np.pi, 18)
out_array1 = np.cos(in_array)
out_array2 = np.arccosh(in_array)
 
print("in_array : ", in_array)
print("\nout_array with cos : ", out_array1)
print("\nout_array with arccosh : ", out_array2)
#blue for numpy.cosh() 
# red for numpy.arccosh()
plt.plot(in_array, out_array1,
            color = 'blue', marker = ".")
             
plt.plot(in_array, out_array2,
            color = 'red', marker = "+")
             
plt.title("blue : numpy.cos() \nred : numpy.arccosh()")
plt.xlabel("X")
plt.ylabel("Y")
Output :

in_array :  [ 1.          1.12597604  1.25195208  1.37792812  1.50390415  1.62988019
  1.75585623  1.88183227  2.00780831  2.13378435  2.25976038  2.38573642
  2.51171246  2.6376885   2.76366454  2.88964058  3.01561662  3.14159265]

out_array with cos :  [ 0.54030231  0.43029566  0.31346927  0.19167471  0.0668423  -0.0590495
 -0.18400541 -0.30604504 -0.42323415 -0.53371544 -0.63573787 -0.72768451
 -0.80809809 -0.87570413 -0.92943115 -0.96842762 -0.99207551 -1.        ]

out_array with arccosh :  [ 0.          0.49682282  0.69574433  0.84411504  0.96590748  1.07053332
  1.16287802  1.24587516  1.32145434  1.39096696  1.45540398  1.51551804
  1.57189678  1.62500948  1.67523791  1.7228975   1.76825238  1.81152627]
)

Similar Reads

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy