Open In App

numpy.log2() in Python

Last Updated : 29 Nov, 2018
Comments
Improve
Suggest changes
Like Article
Like
Report
numpy.log2(arr, out = None, *, where = True, casting = 'same_kind', order = 'K', dtype = None, ufunc 'log1p') : This mathematical function helps user to calculate Base-2 logarithm of x where x belongs to all the input array elements. Parameters :
array    : [array_like]Input array or object.
out      : [ndarray, optional]Output array with same dimensions as Input array, 
           placed with result.
**kwargs : Allows you to pass keyword variable length of argument to a function. 
           It is used when we want to handle named argument in a function.
where    : [array_like, optional]True value means to calculate the universal 
           functions(ufunc) at that position, False value means to leave the 
           value in the output alone.
Return :
An array with Base-2 logarithmic value of x; 
where x belongs to all elements of input array. 
Code 1 : Working Python3
# Python program explaining
# log2() function
import numpy as np

in_array = [1, 3, 5, 2**8]
print ("Input array : ", in_array)

out_array = np.log2(in_array)
print ("Output array : ", out_array)


print("\nnp.log2(4**4) : ", np.log2(4**4))
print("np.log2(2**8) : ", np.log2(2**8))
Output :
Input array :  [1, 3, 5, 256]
Output array :  [ 0.          1.5849625   2.32192809  8.        ]

np.log2(4**4) :  8.0
np.log2(2**8) :  8.0
  Code 2 : Graphical representation Python3
# Python program showing
# Graphical representation of 
# log2() function
import numpy as np
import matplotlib.pyplot as plt

in_array = [1, 1.2, 1.4, 1.6, 1.8, 2]
out_array = np.log2(in_array)

print ("out_array : ", out_array)

plt.plot(in_array, in_array, color = 'blue', marker = "*")

# red for numpy.log2()
plt.plot(out_array, in_array, color = 'red', marker = "o")
plt.title("numpy.log2()")
plt.xlabel("out_array")
plt.ylabel("in_array")
plt.show()  
Output :
out_array :  [ 0.          0.26303441  0.48542683  0.67807191  0.84799691  1.        ]
References : https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.exp.html .

Practice Tags :

Similar Reads

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy