Open In App

Python - seaborn.regplot() method

Last Updated : 15 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. Seaborn helps resolve the two major problems faced by Matplotlib; the problems are ?

  • Default Matplotlib parameters
  • Working with data frames

As Seaborn compliments and extends Matplotlib, the learning curve is quite gradual. If you know Matplotlib, you are already half-way through Seaborn.

seaborn.regplot() :

This method is used to plot data and a linear regression model fit. There are a number of mutually exclusive options for estimating the regression model. For more information click here.

Syntax : seaborn.regplot( x,  y,  data=None, x_estimator=None, x_bins=None,  x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, dropna=True, x_jitter=None, y_jitter=None, label=None, color=None, marker='o',    scatter_kws=None, line_kws=None, ax=None)

Parameters: The description of some main parameters are given below:

  • x, y: These are Input variables. If strings, these should correspond with column names in "data". When pandas objects are used, axes will be labeled with the series name.
  • data:  This is dataframe where each column is a variable and each row is an observation.
  • lowess: (optional) This parameter take boolean value. If "True", use "statsmodels" to estimate a nonparametric lowess model (locally weighted linear regression).
  • color: (optional) Color to apply to all plot elements.
  • marker: (optional) Marker to use for the scatterplot glyphs.

Return: The Axes object containing the plot.

Below is the implementation of above method:

Example 1:

Python3
# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt

# loading dataset
data = sns.load_dataset("mpg")

# draw regplot
sns.regplot(x = "mpg", 
            y = "acceleration", 
            data = data)

# show the plot
plt.show()

# This code is contributed 
# by Deepanshu Rustagi.

Output :

Example 2:

Python3
# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt

# loading dataset
data = sns.load_dataset("titanic")

# draw regplot
sns.regplot(x = "age",
            y = "fare",
            data = data,
            dropna = True)
# show the plot
plt.show()

# This code is contributed 
# by Deepanshu Rustagi.

Output :

Example 3:

Python3
# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt

# loading dataset
data = sns.load_dataset("exercise")

# draw regplot
sns.regplot(x = "id",
            y = "pulse", 
            data = data)

# show the plot
plt.show()

# This code is contributed 
# by Deepanshu Rustagi.

Output :

Example 4 :

Python3
# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt

# loading dataset
data = sns.load_dataset("attention")

# draw regplot
sns.regplot(x = "solutions",
            y = "score",
            data = data)

# show there plot
plt.show()

# This code is contributed 
# by Deepanshu Rustagi.

Output :


Article Tags :
Practice Tags :

Similar Reads

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy