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ABSTRACT
In an iterative voting system, candidates are eliminated in consecu-

tive rounds until either the set of remaining candidates does not

change or a fixed number of rounds is reached. In this paper, we

consider four prominent iterative voting systems, which are all

based on positional scoring rules. The Hare and Coombs systems

are based on the plurality and veto rules, respectively, while the

Baldwin and Nanson systems are based on the Borda rule. We study

the resistance of these four systems against shift bribery. Hereby,

we consider both constructive and destructive settings. It is known

that all four iterative voting systems are resistant to shift bribery,

that is, both constructive and destructive shift bribery problems

are NP-hard for these voting systems. We complement these NP-

hardness results by examining parameterized complexity of the

shift bribery problems with respect to some natural parameters.

Our results provide further evidence for the observation that shift

bribery problems for iterative voting systems are computationally

harder than for the corresponding non-iterative cases. In addition,

our reductions apply several techniques which might be useful for

proving hardness results for other iterative voting systems.
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1 INTRODUCTION
The problem of aggregating the preferences of different agents (or

voters) occurs in diverse situations and plays a fundamental role in

artificial intelligence and social choice [5, 25]. Furthermore, study-

ing the complexity of manipulative attacks on voting systems is one

of the main themes in computational social choice. Besides manip-

ulation (also referred to as strategic voting) and electoral control,

bribery attacks aim at influencing the outcome of the election by

bribing some voters to change their votes. Each voter is associated

with a price. The total price of the voters to be bribed should not

exceed a given budget. In constructive (or destructive) bribery, the

briber’s target is to make a specific candidate win (or lose) the

election. The study of computational behavior of bribery was initi-

ated by Faliszewski et al. [15]. For a comprehensive overview on

computational results of control, manipulation, and bribery, we
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refer to the book chapters by Conitzer and Walsh [6] for manipula-

tion, by Faliszewski and Rothe [17] for control and bribery, and by

Baumeister and Rothe [3] for all three attacks.

Faliszewski [14] proposed a new notion of bribery, called nonuni-

form bribery. Under nonuniform bribery, a voter’s price depends

on the nature of changes. A similar notion called microbribery was

considered by Faliszewski et al. [16], where the briber may choose

which voter to bribe on which issue, in order to influence the out-

come of the voting according to the evaluation criterion used. Swap

bribery introduced by Elkind et al. [13] is a specialization of mi-

crobribery. In swap bribery, the briber asks a voter to perform a

sequence of swaps in her vote and each swap changes the order of

two consecutive candidates in this voter’s vote. The briber pays for

each swap a prespecified cost, which is one for the so-called unit

price function. We study a special case of swap bribery, called shift

bribery, where only the swaps involving the specific candidate are

allowed. Shift bribery was introduced in [11, 13], and since then, a

number of results have been achieved.

Both constructive and destructive shift bribery are polynomial-

time solvable for the plurality and veto rules [13, 18]. Kaczmar-

czyk and Faliszewski [18] showed that destructive shift bribery is

polynomial-time solvable for the Maximin and Borda rules, which

contrasts with the results that the constructive shift bribery is NP-

hard for Maximin [13] and Borda [12]. Motivated by the hardness

results, Elkind et al. [13] provided a 2-approximation algorithm for

constructive shift bribery for Borda. Elkind and Faliszewski [11]

obtained approximations for Copeland, Maximin, and all positional

scoring rules. In terms of parameterized complexity, Bredereck et

al. [4] achieved a collection of results for constructive shift bribery.

Among others, they proved that with respect to the number of

affected votes, constructive shift bribery is𝑊 [2]-hard for Borda,

Maximin, and Copeland. With the total number of swap operations,

that is, the bribery budget in the case of unit price function, as

parameter, the problem is fixed-parameter tractable (FPT) for Borda

and Maximin, and is𝑊 [1]-hard for Copeland.

In this paper, we study shift bribery for four iterative voting

systems. Iterative voting systems eliminate candidates in consecu-

tive rounds until either the set of candidates does not change or a

specific number of rounds is reached. We investigate four promi-

nent voting rules applied to iterative voting systems, namely, Hare,

Coombs, Baldwin, and Nanson. In each round, the Hare rule [24]

eliminates the candidates with the least plurality score, while the

Coombs rule [21] eliminates the candidates with the least veto score.

The Baldwin rule [1] eliminates the candidates with the least Borda

score, while the Nanson rule [23] eliminates the candidates, whose

Borda scores are less than the current average Borda score. With all

four rules, the candidate(s) eliminated in the last round represents

the winner(s) of voting. Among the four voting rules, the Hare
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rule and its variants are most widely used, for example, in Aus-

tralia, India, Ireland, New Zealand, Pakistan, the UK, and the USA.

Davies et al. [8] studied the complexity of manipulation problems

for Nanson and Baldwin voting rules. They proved that manipulat-

ing Baldwin and Nanson voting systems is computationally more

difficult than manipulating Borda voting, since it is NP-hard for

a single manipulator to compute a manipulation strategy for the

Baldwin and Nanson rules, while Borda manipulation is trivial for

one manipulator. Maushagen et al. [22] initiated complexity study

of shift bribery for Hare, Coombs, Baldwin, and Nanson rules. They

achieved NP-hardness of both constructive and destructive cases

for all four iterative voting systems.

From these classical complexity results, one can observe that

compared to the non-iterative voting scenario with plurality or

veto rules, the Hare and Coombs voting systems seem computa-

tionally more difficult to attack for shift bribery [2, 9]. However,

the comparison of Borda and Baldwin/Nanson provides no such

obvious gap concerning classical complexity status. Both iterative

and non-iterative voting systems are resistant to constructive shift

bribery [12, 22].

Motivated by these results, we examine parameterized complex-

ity of the shift bribery problems for the four iterative voting systems

with respect to some natural parameters such as the number of

candidates or the number of votes. Our results provide further

evidences for the observation that strategy attack for iterative vot-

ing systems is computationally harder than for the corresponding

non-iterative cases. It is known that constructive and destructive

shift bribery problems are trivial for both plurality and veto vot-

ing. Maushagen et al. [22] proved both problems become NP-hard

in Hare and Coombs voting systems. We strengthen the result by

showing that even with a small number of shift operations allowed,

it is unlikely to have an efficient algorithm computing an optimal

shift bribery strategy for Hare and Coombs. Only in the cases of

few votes or candidates, Hare and Coombs voting systems might

be vulnerable, that is, there exist FPT algorithms. Concerning the

comparison between Borda and Baldwin/Nanson, we can now ob-

serve a parameterized complexity difference for computing optimal

shift bribery strategy. Bredereck et al. [4] proved that constructive

Borda shift bribery is fixed-parameter tractable with the number of

allowed swap operations as parameter. In contrast, we show W[1]-

hardness for this parameterization in Baldwin/Nanson systems.

Further, we achieve W[1]-hardness with respect to the number of

votes and FPT results with respect to the number of candidates for

Baldwin and Nanson. Table 1 gives an overview of our results.

2 PRELIMINARIES
2.1 Election and voting system
An election is specified as a pair (𝐶,𝑉 ) with 𝐶 = {𝑐1, . . . , 𝑐𝑚}
being a set of candidates and 𝑉 = {𝑣1, . . . , 𝑣𝑛} a profile of the

voters’ preferences over 𝐶 , typically given by a multiset of linear

orders of the candidates, also called votes. For example, given 𝐶 =

{𝑐1, 𝑐2, 𝑐3, 𝑐4}, a vote 𝑐1 > 𝑐2 > 𝑐3 > 𝑐4 means 𝑐1 is most preferred

and 𝑐4 is least preferred for a voter. A voting rule is a function that

maps each election to a subset𝑊 of𝐶 , where the candidate(s) in𝑊

is(are) the winner(s) of the election. Positional scoring rules form

an important class of voting systems. A positional scoring rule is

defined as a scoring vector 𝛼 =< 𝛼1, . . . , 𝛼𝑚 >, where 𝛼1 ≥ 𝛼2 ≥
· · · ≥ 𝛼𝑚 . This means that the candidate ranked at the 𝑖-th position

of a vote 𝑣 receives 𝛼𝑖 points from 𝑣 . The candidate receiving the

most points from all votes wins the election. The most prominent

scoring rules are plurality, veto, and Borda.

• In plurality, each vote gives the top-ranked candidate one

point, 𝛼 =< 1, 0, 0, · · · , 0 >;

• in veto, each vote gives all except the bottom-ranked candi-

date one point, 𝛼 =< 1, 1, · · · , 1, 0 >;

• in Borda, each vote gives the candidate in the 𝑖-th posi-

tion𝑚 − 𝑖 points, 𝛼 =< 𝑚 − 1,𝑚 − 2,𝑚 − 3, · · · , 0 >.

The score of a candidate is the total points given by all votes.

2.2 Iterative voting system
In an iterative voting system with scoring rules, the winner is

determined in consecutive rounds. In each round, the candidates

with the lowest score (or scores lower than the current average

score) are eliminated. If in a round, all candidates have the same

score (there may be only one candidate), then these candidates are

the winners. The voting systems of Hare, Coombs, and Baldwin

use plurality, veto, and Borda scores, respectively, and each round

eliminates the candidates with the least score. In the Nanson system,

each round eliminates all candidates who have Borda scores less

than the current average score.

2.3 Shift Bribery
We now define the 𝜀-Shift-Bribery problem where 𝜀 ∈ {Hare,
Coombs, Baldwin, Nanson}. In shift bribery problems, only swaps

involving the specific candidate are allowed. In this paper, we con-

sider only the unit price function, that is, each swap operation has

a cost of one.

𝜀-Constructive-Shift-Bribery (𝜀-CSB)

Input: An election (𝐶,𝑉 ) with 𝑛 votes and𝑚 candi-

dates, a specific candidate 𝑝 ∈ 𝐶 , a budget 𝐵 ∈ N.
Question: Is it possible to make 𝑝 the unique winner

of the election according to the 𝜀 voting system by

performing at most 𝐵 swap operations?

The defination of 𝜀-DSB is similar to 𝜀-CSB. The aim of 𝜀-CSB

is to make a specific candidate 𝑝 to be the unique winner while

𝜀-DSB is to prevent 𝑝 from being the unique winner. In this paper,

we focus on the unique winner model; the case seeks for making

𝑝 a co-winner can be processed in a similar way. We study the

parameterized complexity with respect to three parameters:𝑚 the

number of candidates, 𝑛 the number of votes, and 𝐵 the number of

swap operations.

Throughout this paper, we use

−→
𝑋 to denote an arbitrary but fixed

ordering of the elements in 𝑋 and

←−
𝑋 the reversed ordering of

−→
𝑋 .

2.4 Parameterized complexity
Parameterized complexity allows to give a more refined analysis of

computational problems and can provide a deep exploration of the

connection between the problem complexity and various problem

specific parameters in particular. The main hierarchy of parameter-

ized complexity classes is: FPT ⊆W[1] ⊆W[2] ... ⊆W[𝑡] ... ⊆ XP.
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Table 1: Parameterized complexity of constructive and destructive shift bribery for Hare, Coombs, Baldwin, and Nanson sys-
tems.𝑚 : number of candidates, 𝑛 : number of votes, 𝐵 : number of swap operations.

Hare Coombs Baldwin Nanson

Constructive Destructive Constructive Destructive Constructive Destructive Constructive Destructive

𝐵
W[1]-h W[1]-h W[1]-h W[1]-h W[1]-h W[1]-h W[1]-h W[1]-h
[Thm.3.2] [Thm.3.2] [Thm.3.2] [Thm.3.2] [Thm.3.3] [Thm.3.4] [Thm.3.3] [Thm.3.4]

𝑚
FPT FPT FPT FPT FPT FPT FPT FPT

[Thm. 3.1] [Thm. 3.1] [Thm. 3.1] [Thm. 3.1] [Thm. 3.1] [Thm. 3.1] [Thm. 3.1] [Thm. 3.1]

𝑛
FPT FPT

OPEN OPEN

W[1]-h
OPEN

W[1]-h W[1]-h
[Thm.3.5] [Thm.3.5] [Thm.3.6] [Thm.3.6] [Thm.3.7]

A problem is FPT (stands for “fixed-parameter tractable"), if it ad-

mits𝑂 (𝑓 (𝑘) · |I|𝑂 (1) )-time algorithm, where I is the input, 𝑘 is the

parameter, and 𝑓 can be any computable function. The class W[1]

is the basic fixed-parameter intractability class. For more details on

parameterized complexity we refer to [7, 10].

3 OUR RESULTS
3.1 The number of candidates
We first consider the parameterization with respect to the number

of candidates𝑚. Both constructive and destructive cases are FPT

with respect to𝑚 for all four voting systems.

Theorem 3.1. 𝜀-CSB and 𝜀-DSB are FPT with respect to the number
of candidates𝑚, where 𝜀 ∈ {Hare, Coombs, Baldwin, Nanson}.

Proof. Let 𝑉 = {𝑣1, · · · , 𝑣𝑛} and 𝐶 = {𝑐1, · · · , 𝑐𝑚} denote the
vote and candidate sets, respectively. The algorithm enumerates

all possible elimination orders of candidates and for each elimi-

nation order, decides by solving an integer linear program (ILP)

whether it is possible to transform the given votes by at most 𝐵

swap operations to a set of votes where the candidates can be elim-

inated according to the order by the respective voting rules. An

elimination order specifies the order of candidate eliminations. For

example, given 𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}, ({𝑐1, 𝑐2}, {𝑐3}, {𝑐4}) represents
an elimination order, meaning that candidates 𝑐1 and 𝑐2 are elimi-

nated in the first round, 𝑐3 in the second round, and 𝑐4 in the third

round. Clearly, there are at most 2
𝑚 ·𝑚!many different elimination

orders.

Next, we give the ILP formulation. Note that given𝑚 candidates,

there are at most𝑚! many different vote types. We say that two

votes in 𝑉 are of the same type if they have the same preference.

Let 𝐻 be the set of all vote types. Clearly, |𝐻 | ≤ 𝑚!. For each vote

type ℎ ∈ 𝐻 , let 𝑛ℎ be the number of votes in𝑉 of type ℎ. We define

now the variables of ILP. For each pair of vote types ℎ and ℎ′, we
define an integer variable 𝑥ℎ,ℎ′ , where 𝑥ℎ,ℎ′ ≥ 0 means that 𝑥ℎ,ℎ′

many votes in 𝑉 of type ℎ can be transformed to votes of type

ℎ′ by performing swap operations. Given two types ℎ and ℎ′, the
number of swap operations needed to transform a vote of type ℎ

to a vote of type ℎ′ is clearly fixed and computable in polynomial

time, denoted as 𝑆ℎ,ℎ′ . Note that some transformations from one

vote type ℎ to another type ℎ′ are not possible by swapping 𝑝 with

other candidates; in this case, we set 𝑆ℎ,ℎ′ = 𝐵 + 1 with 𝐵 being the

number of allowed swap operations.

Given an elimination order 𝑒 , let 𝑟𝑒 be the number of elimination

rounds and 𝐶𝑖 with 0 ≤ 𝑖 ≤ 𝑟𝑒 be the set of candidates eliminated

in the 𝑖-th round. In the above example, 𝑟𝑒 = 3,𝐶0 = ∅,𝐶1 =

{𝑐1, 𝑐2},𝐶2 = {𝑐3}, and 𝐶3 = {𝑐4}. We set 𝐶 ′
𝑖
=
⋃𝑖

𝑗=0𝐶 𝑗 and 𝐶
′
𝑖
=

𝐶 \𝐶 ′
𝑖
for 0 ≤ 𝑖 ≤ 𝑟𝑒 . Clearly,𝐶 = 𝐶 ′𝑟𝑒 =

⋃𝑟𝑒
𝑗=0

𝐶 𝑗 = 𝐶 ′
0
and𝐶 ′𝑟𝑒 = ∅.

For a subset 𝑋 ⊆ 𝐶 , let 𝑉 [𝑋 ] be the multiset of votes, which are

constructed by removing all candidates in 𝐶 \ 𝑋 from all votes

in 𝑉 . Let score(𝑐𝑖 , 𝑋, ℎ) denote the points that 𝑐𝑖 receives from a

vote in 𝑉 [𝑋 ], which is constructed from a vote in 𝑉 of type ℎ. The

ILP instance for an elimination order 𝑒 consists of the following

constraints which can also be derived from the framework in [19]:

1.
∑
ℎ′∈𝐻

𝑥ℎ,ℎ′ = 𝑛ℎ,∀ ℎ ∈ 𝐻 ;

2.
∑
ℎ∈𝐻

∑
ℎ′∈𝐻
(𝑥ℎ,ℎ′ · 𝑆ℎ,ℎ′) ≤ 𝐵;

3.
∑
ℎ′∈𝐻

∑
ℎ∈𝐻
(𝑥ℎ,ℎ′ · score(𝑐,𝐶 ′𝑖 , ℎ

′))

=
∑
ℎ′∈𝐻

∑
ℎ∈𝐻
(𝑥ℎ,ℎ′ · score(𝑐 ′,𝐶 ′𝑖 , ℎ

′)),

∀ 0 ≤ 𝑖 ≤ 𝑟𝑒 − 1,∀ 𝑐, 𝑐 ′ ∈ 𝐶𝑖+1 with |𝐶𝑖+1 | ≥ 2;

4.
∑
ℎ′∈𝐻

∑
ℎ∈𝐻
(𝑥ℎ,ℎ′ · score(𝑐,𝐶 ′𝑖 , ℎ

′))

<
∑
ℎ′∈𝐻

∑
ℎ∈𝐻
(𝑥ℎ,ℎ′ · score(𝑐 ′,𝐶 ′𝑖 , ℎ

′)),

∀ 0 ≤ 𝑖 ≤ 𝑟𝑒 − 1,∀ 𝑐 ∈ 𝐶𝑖+1,∀ 𝑐 ′ ∈ 𝐶 ′𝑖+1;
5. 𝑥ℎ,ℎ′ ∈ {0, 1, 2, ..., 𝑛},∀ ℎ,ℎ′ ∈ 𝐻.

The first equality guarantees that for each ℎ ∈ 𝐻 , the number of

votes of typeℎ, which are transformed to other types, is equal to the

number of votes of this type in𝑉 . Note that ℎ′ could be ℎ, meaning

that 𝑥ℎ,ℎ many votes of typeℎ remain unchanged. This equality also

makes sure that after the transformation there are exactly 𝑛 votes.

The second equalitymeans that the total number of swap operations

needed for the transformation does not exceed the budget 𝐵. The

third equality and the fourth inequality guarantee that the votes

after the transformation admit the same elimination order as 𝑒 .

More precisely, the third equality means that the candidates, who

are eliminated in the (𝑖 + 1)-th round, should have the same score

after the 𝑖-th round. The condition that the candidates, who are

eliminated in the (𝑖+1)-th round, have a score less than the scores of
the candidates, who remain after the (𝑖 + 1)-th round, is guaranteed
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by the fourth inequality. Therefore, the solution of the ILP instance

gives a transformation of 𝑉 , resulting in 𝑛 votes, which eliminate

the candidates according to the order 𝑒 .

The algorithm works for both constructive and destructive shift

bribery. The only difference lies in the elimination orders to be

examined by ILP: the constructive case considers only the orders,

where only the specific candidate 𝑝 is eliminated in the last round,

whereas the destructive case examines all other orders. Note that

the enumeration of elimination orders and the ILP formulation are

the same for Hare, Coombs, and Baldwin rules. Only score(𝑐, 𝑋, ℎ)
is calculated according to respective definitions of scores. For the

Nanson rule, we need to replace the third and forth (in)equalities

by the following inequality.∑
ℎ′∈𝐻

∑
ℎ∈𝐻
(𝑥ℎ,ℎ′ · score(𝑐,𝐶 ′𝑖 , ℎ

′)) · |𝐶 ′
𝑖
|

<
∑
𝑐′∈𝐶′

𝑖

∑
ℎ′∈𝐻

∑
ℎ∈𝐻
(𝑥ℎ,ℎ′ · score(𝑐 ′,𝐶 ′𝑖 , ℎ

′))

∀ 0 ≤ 𝑖 ≤ 𝑟𝑒 − 1,∀ 𝑐 ∈ 𝐶𝑖+1 .

Since the number of the variables of the ILP instance is bounded

by (𝑚!)2, it is solvable in FPT time with𝑚 as parameter [20]. The

theorem follows then from the number𝑚! ·2𝑚 of elimination orders.

□

3.2 The number of swap operations
In the following, we consider the case with the number 𝐵 of swap

operations as parameter. We show𝑊 [1]-hard results of both con-

structive and destructive cases for all four iterative voting systems.

We consider first Hare and Coombs.

Theorem 3.2. Hare-CSB, Hare-DSB, Coombs-CSB, and Coombs-
DSB are𝑊 [1]-hard with respect to the parameter 𝐵.

Proof. We prove the theorem for Hare-CSB by giving a reduc-

tion from Independent Set. The hardness results of other problems

can be proven by similar reductions. An independent set 𝐼 in an

undirected graph G is a set of pairwisely non-adjacent vertices.

Given a graph G = (V, E) and an integer 𝑘 , Independent Set
asks for a size-𝑘 independent set and is𝑊 [1]-hard with respect

to 𝑘 [10]. Let V = {𝑣1, · · · , 𝑣𝑛′} and E = {𝑒1, · · · , 𝑒𝑚′}. Without

loss of generality, assume 𝑘 ≥ 2, 𝑛′ > 2𝑘 + 1 and𝑚′ ≥ 𝑛′. We use

deg(𝑣) to denote the degree of 𝑣 in G. We construct a Hare-CSB

instance (𝐶,𝑉 , 𝐵) from (G = (V, E), 𝑘) as follows.
For each vertex 𝑣𝑖 ∈ V , we create a vertex candidate 𝑐𝑖 ∈ 𝐶1, and

for each edge 𝑒ℓ ∈ E, we create an edge candidate 𝑑ℓ ∈ 𝐶2. We also

create two dummy candidate sets 𝐶3 and 𝐶4 with |𝐶3 | = |𝐶4 | = 𝑘 .

Let 𝐶 := 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ 𝐶4 ∪ {𝑝} and 𝐵 := 𝑘 . The vote set 𝑉

consists of five subsets 𝑉 := 𝑉1 ∪ 𝑉2 ∪ 𝑉3 ∪ 𝑉4 ∪ 𝑉5, which are

constructed as follows. Hereby, if we do not give an explicit order

for the candidates in a set, then the candidates in the set can be

ordered arbitrarily.

• For each vertex 𝑣𝑖 ∈ V , we create one vote 𝑣1
𝑖
in 𝑉1:

𝑣1
𝑖
: 𝑐𝑖 > 𝑝 > 𝐶3 > 𝐶4 > (𝐶1 \ {𝑐𝑖 }) ∪𝐶2,

and 𝑛′ − deg(𝑣𝑖 ) − 1 identical votes 𝑣 𝑗𝑖 in 𝑉2:

𝑣
𝑗
𝑖
: 𝑐𝑖 > (𝐶1 \ {𝑐𝑖 }) > 𝐶2 > 𝐶3 > 𝐶4 > 𝑝 for 2 ≤ 𝑗 ≤

𝑛′ − deg(𝑣𝑖 ).

• For each edge 𝑒ℓ = {𝑣𝑖 , 𝑣 𝑗 } ∈ E, we create two votes in 𝑉3:

𝑣1
ℓ
: 𝑐𝑖 > 𝑐 𝑗 > 𝑑ℓ > (𝐶1 \ {𝑐𝑖 , 𝑐 𝑗 }) > (𝐶2 \ {𝑑ℓ }) > 𝐶3 >

𝐶4 > 𝑝 ,

𝑣2
ℓ
: 𝑐 𝑗 > 𝑐𝑖 > 𝑑ℓ > (𝐶1 \ {𝑐𝑖 , 𝑐 𝑗 }) > (𝐶2 \ {𝑑ℓ }) > 𝐶3 >

𝐶4 > 𝑝;

and 𝑛′ identical votes in 𝑉4:
𝑣𝑟
ℓ
: 𝑑ℓ > (𝐶2 \ {𝑑ℓ }) > 𝐶3 > 𝑝 > 𝐶4 > 𝐶1 for 3 ≤ 𝑟 ≤ 𝑛′ + 2.

• In addition, we create 𝑛′ + 1 − 𝑘 identical votes in 𝑉5:

𝑣 𝑗 : 𝑝 > 𝐶3 > 𝐶4 > 𝐶1 > 𝐶2 for 1 ≤ 𝑗 ≤ 𝑛′ + 1 − 𝑘 .

The current plurality scores of the candidates are: score(𝑝) = 𝑛′ +
1 − 𝑘, score(𝑐) = 𝑛′ for 𝑐 ∈ 𝐶1 ∪𝐶2, score(𝑐) = 0 for 𝑐 ∈ 𝐶3 ∪𝐶4 .

Thus, the dummy candidates in 𝐶3 ∪𝐶4 are eliminated in the first

round. Note that removing the candidates in 𝐶3 ∪ 𝐶4 from the

votes does not change the plurality scores of the remaining candi-

dates. Thus, the candidate 𝑝 is eliminated in the second round. The

candidate 𝑝 is not the unique winner. Now, we show the equiva-

lence between the Independent Set instance and the instance of

Hare-CSB.

“=⇒”: Suppose that there exists a size-𝑘 independent set 𝐼 =

{𝑣𝑖 𝑗 : 1 ≤ 𝑗 ≤ 𝑘}. We swap 𝑝 with each vertex candidates 𝑐𝑖 𝑗

in the corresponding vote 𝑣1
𝑖 𝑗
of 𝑉1. Clearly, we need 𝑘 = 𝐵 swap

operations, satisfying the budget restriction. Now, we calculate the

plurality scores of the candidates: score(𝑝) = 𝑛′ + 1, score(𝑐𝑖 ) =
𝑛′ − 1 for 𝑐𝑖 ∈ 𝐶1 with 𝑖 ∈ {𝑖1, · · · , 𝑖𝑘 }, score(𝑐𝑖 ) = 𝑛′ for 𝑐𝑖 ∈
𝐶1 with 𝑖 ∉ {𝑖1, · · · , 𝑖𝑘 }, score(𝑐) = 𝑛′ for 𝑐 ∈ 𝐶2; score(𝑐) =

0 for 𝑐 ∈ 𝐶3 ∪𝐶4 .

Again, the candidates in 𝐶3 ∪ 𝐶4 are eliminated in the first

round. Afterwards, the candidates 𝑐𝑖 ∈ 𝐶1 with 𝑖 ∈ {𝑖1, · · · , 𝑖𝑘 }
are eliminated. Note that, since the corresponding vertices form

an independent set, removing these 𝑘 candidates increases the plu-

rality scores of some candidates in 𝐶1, but has no influence on the

scores of the edge candidates in𝐶2. Thus, the next round eliminates

all candidates in 𝐶2 and some candidates in 𝐶1. With the candi-

dates in 𝐶2 being removed, all votes in 𝑉4 rank 𝑝 on the top. Then,

score(𝑝) = 𝑛′·𝑚′+𝑛′+1. Since in total, there are𝑛′·𝑚′+𝑛′2−𝑘+1+𝑛′
many votes, score(𝑝) > 1

2
|𝑉 |. Moreover, since removing candidates

cannot decrease the plurality score of any remaining candidate. The

scores of other candidates are always less than score(𝑝), and thus,

𝑝 is the unique winner.

“⇐=”: Suppose that we can make 𝑝 the unique winner with at

most 𝐵 swap operations. Since |𝐶3 | = |𝐶4 | = 𝐵, we cannot swap 𝑝

with the candidates in 𝐶2 in any vote in 𝑉 . Let 𝐶 ′
1
be the set of

vertex candidates, which are swapped with 𝑝 , and let V ′ be the
corresponding vertex set. Let 𝛼 = |𝐶 ′

1
| and 𝛽 be the number of

the candidates in 𝐶3 ∪ 𝐶4, who are swapped with 𝑝 . Note that

given |𝐶3 | = |𝐶4 | = 𝐵, applying swap operations in the votes in

𝑉2 ∪𝑉3 ∪𝑉4 does not change the scores of the candidates. However,
swapping 𝑝 with a candidate 𝑐 in 𝐶3 ∪𝐶4 in a vote in 𝑉5 increases

the score of 𝑐 by at most one and decreases the score of 𝑝 by at most

one. Therefore, since we have 𝑛′ > 2𝑘 + 1, the candidates in𝐶3 ∪𝐶4

have scores less than score(𝑝) and thus, are first eliminated. To

guarantee that 𝑝 is not eliminated afterwards, it must hold 𝛼 ≥ 𝐵−1.
In this way, the candidates in 𝐶 ′

1
are eliminated with the lowest

score 𝑛′ − 1. Then, the score of 𝑝 remains 𝑛′ + 1 − 𝐵 + 𝛼 , and the

scores of other candidates are at least 𝑛′. Since 𝑝 is the unique

winner, it implies 𝛼 = 𝐵. Suppose that there is an edge 𝑒ℓ = {𝑣, 𝑣 ′}
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with 𝑣, 𝑣 ′ ∈ V ′. Then, after the candidates in 𝐶 ′
1
are eliminated,

we have score(𝑑ℓ ) = 𝑛′ + 2 and score(𝑝) = 𝑛′ + 1. Then, in the

next round where the candidates with a score 𝑛′ are eliminated,

the candidate 𝑑ℓ is not eliminated. As a consequence, the score of

𝑝 remains 𝑛′ + 1 and thus, 𝑝 is eliminated before 𝑑ℓ , contradicting

that 𝑝 is the unique winner. Therefore, there is no edge 𝑒ℓ = {𝑣, 𝑣 ′}
with 𝑣, 𝑣 ′ ∈ V ′, andV ′ forms an independent set of size 𝑘 . □

In the following, we consider the parameterized complexity of

shift bribery of Baldwin and Nanson with respect to the parameter

𝐵. We first show hardness for the constructive case.

Theorem 3.3. Baldwin-CSB and Nanson-CSB are𝑊 [1]-hard with
respect to the parameter 𝐵.

Proof. We prove the theorem for Baldwin-CSB by giving a

reduction from Independent Set on 𝐷-regular graphs. The re-

sult for Nanson-CSB can be shown by a similar reduction. A 𝐷-

regular graph is a graph, where all vertices have the same de-

gree 𝐷 . Independent Set remains W[1]-hard with respect to the

size 𝑘 of independent sets on 𝐷-regular graphs. Let G = (V, E)
with V = {𝑣1, · · · , 𝑣𝑛′} and E = {𝑒1, · · · , 𝑒𝑚′}. We construct a

Baldwin-CSB instance (𝐶,𝑉 , 𝐵) as follows. Recall that −→𝑋 denotes

an arbitrary but fixed ordering of the candidates in a set 𝑋 and

←−
𝑋

the reversed ordering of

−→
𝑋 . For a set of candidates𝐶 and 𝑐1, 𝑐2 ∈ 𝐶 ,

we construct the following vote pair :

𝑊 (𝑐1, 𝑐2) = (𝑐1 > 𝑐2 >
−−−−−−−−−→
𝐶 \ {𝑐1, 𝑐2},

←−−−−−−−−−
𝐶 \ {𝑐1, 𝑐2} > 𝑐1 > 𝑐2) .

Similarly, for a set of candidates 𝐶 and 𝑐1, 𝑐2, 𝑐3 ∈ 𝐶 , we construct
the following vote pair:

𝑊 (𝑐1, 𝑐2, 𝑐3) = (𝑐1 > 𝑐2 > 𝑐3 >
−−−−−−−−−−−−→
𝐶 \ {𝑐1, 𝑐2, 𝑐3},

←−−−−−−−−−−−−
𝐶 \ {𝑐1, 𝑐2, 𝑐3} > 𝑐1 > 𝑐3 > 𝑐2) .

According to the Borda rule, from the two votes in𝑊 (𝑐1, 𝑐2), candi-
date 𝑐1 gets |𝐶 | points, 𝑐2 gets |𝐶 | − 2 points, and each of the other

candidates gets |𝐶 | − 1 points. For simplicity, we compare the score

of each candidate with the average Borda score. Thus, from the

two votes in𝑊 (𝑐1, 𝑐2), we say that candidate 𝑐1 gets 1 point, 𝑐2
gets −1 point, and all other candidates get 0 point. Moreover, we

say that with respect to𝑊 (𝑐1, 𝑐2), candidate 𝑐2 “gains” one point
by eliminating 𝑐1, since 𝑐2 gets the same points as other candidates

in 𝐶 \ {𝑐1, 𝑐2} after the elimination of 𝑐1. Similarly, 𝑐1 “loses” one

point by eliminating 𝑐2. By a similar analysis, each of 𝑐2 and 𝑐3
“gains” one point from the vote pair in𝑊 (𝑐1, 𝑐2, 𝑐3) by eliminating

𝑐1 and candidate 𝑐1 “loses” one point by eliminating 𝑐2 or 𝑐3.

For each vertex 𝑣𝑖 ∈ V , we construct a vertex candidate 𝑐𝑖 ∈
𝐶1 (1 ≤ 𝑖 ≤ 𝑛′). For each edge 𝑒 𝑗 ∈ E, we construct an edge

candidate 𝑑 𝑗 ∈ 𝐶2 (1 ≤ 𝑗 ≤ 𝑚′). Moreover, we construct four

special candidates {𝑐𝑠 , 𝑐ℎ, 𝑐𝑡 , 𝑐ℓ } and two dummy candidate sets 𝐶3

and 𝐶4 where |𝐶3 | = |𝐶4 | = 𝐵. Let 𝐶 := 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ 𝐶4 ∪
{𝑐𝑠 , 𝑐ℎ, 𝑐𝑡 , 𝑐ℓ , 𝑝} and 𝐵 := 𝑘 . We construct the set of votes as follows:

• For each vertex 𝑣𝑖 with 1 ≤ 𝑖 ≤ 𝑛′, we add two votes to 𝑉1:

𝑐𝑖 > 𝑝 >
−→
𝐶3 >

−→
𝐶4 >

−−−−−−−→
𝐶1 \ {𝑐𝑖 } >

−→
𝐶2 > 𝑐𝑠 > 𝑐ℎ > 𝑐𝑡 > 𝑐ℓ ,

and 𝑐ℓ > 𝑐𝑡 > 𝑐ℎ > 𝑐𝑠 >
←−
𝐶2 >

←−−−−−−−
𝐶1 \ {𝑐𝑖 } > 𝑐𝑖 >

←−
𝐶4 >

←−
𝐶3 > 𝑝 , and the following votes to 𝑉2: two identical vote

pairs𝑊 (𝑐𝑠 , 𝑐𝑖 ), 𝐷 + 3 identical vote pairs𝑊 (𝑐𝑖 , 𝑐𝑡 ), and 𝐷 + 4
identical vote pairs𝑊 (𝑐ℓ , 𝑐𝑖 );
• For each edge 𝑒 𝑗 = {𝑣𝑖 , 𝑣𝑖′} with 1 ≤ 𝑗 ≤ 𝑚′, we add the

following votes to𝑉2: one vote pair𝑊 (𝑑 𝑗 , 𝑐𝑖 , 𝑐𝑖′) with 𝑐𝑖 and
𝑐𝑖′ corresponding to 𝑣𝑖 and 𝑣𝑖′ respectively, two identical vote

pairs𝑊 (𝑑 𝑗 , 𝑐ℎ), three identical vote pairs𝑊 (𝑐𝑡 , 𝑑 𝑗 ), 𝐷 + 2
identical vote pairs𝑊 (𝑐ℓ , 𝑑 𝑗 );
• Furthermore, we add the following votes to𝑉2: two identical

vote pairs 𝑊 (𝑐ℎ, 𝑐𝑠 ), 𝑛′ − 𝐷 − 𝐵 − 2 identical vote pairs

𝑊 (𝑝, 𝑐ℓ ), 2𝑛′ − 2𝐵 + 𝐷 + 1 identical vote pairs 𝑊 (𝑐ℓ , 𝑐𝑠 ),
(𝑛′ − 𝐵) (𝐷 + 3) − 𝐷 − 3 identical vote pairs𝑊 (𝑐𝑡 , 𝑐ℓ ), and
2𝑚′ − 𝐷 − 3 identical vote pairs𝑊 (𝑐ℎ, 𝑐ℓ ).
• We create 𝑚′2 groups of votes in 𝑉3, each containing the

following four votes:

–
−−−−−−−−−−−−−−−−−−→
𝐶 \ {𝐶3 ∪𝐶4 ∪ {𝑝}} >

−→
𝐶3 > 𝑝 >

−→
𝐶4,

– 𝑝 >
←−
𝐶3 >

←−−−−−−−−−−−−−−−−−−
𝐶 \ {𝐶3 ∪𝐶4 ∪ {𝑝}} >

←−
𝐶4,

–
−−−−−−−−−−−−−−−−−−→
𝐶 \ {𝐶3 ∪𝐶4 ∪ {𝑝}} >

−→
𝐶4 > 𝑝 >

−→
𝐶3,

– 𝑝 >
←−
𝐶4 >

←−−−−−−−−−−−−−−−−−−
𝐶 \ {𝐶3 ∪𝐶4 ∪ {𝑝}} >

←−
𝐶3 .

Note that in all votes of𝑉2, candidate 𝑝 is always in the middle of𝐶3

and 𝐶4, that is,

−→
𝐶3 > 𝑝 >

−→
𝐶4 or

←−
𝐶4 > 𝑝 >

←−
𝐶3. Let 𝑉 := 𝑉1 ∪𝑉2 ∪𝑉3.

The current Borda scores of the candidates are as follows. Again,

we compute the difference between the score of a candidate and

the average Borda score: score(𝑝) = −𝐷 − 𝑘 − 2, score(𝑐𝑖 ) =

−𝐷 − 2 for 𝑐𝑖 ∈ 𝐶1, score(𝑑 𝑗 ) = −𝐷 − 1 for 𝑑 𝑗 ∈ 𝐶2, score(𝑐𝑠 ) =
2𝑘 −𝐷 − 3, score(𝑐ℎ) = −𝐷 − 1, score(𝑐𝑡 ) = 3𝑚′ − 𝑘 (𝐷 + 3) − 3 −
𝐷, score(𝑐ℓ ) = 𝐷 (𝑚′ + 𝑘 + 4) + 2𝑛′ + 2𝑘 + 9. The candidate 𝑝 is

eliminated in the second round after the candidates in 𝐶3 ∪𝐶4 are

eliminated in the first round, and 𝑝 is not the unique winner. Now,

we show the equivalence between the Independent Set instance
and the instance of Baldwin-CSB. Note that, according to the𝑚′2

groups of votes in 𝑉3, the candidates in 𝐶3 ∪ 𝐶4 are eliminated

before other candidates, no matter where the at most 𝐵 swap oper-

ations apply. Furthermore, the operations that swapping 𝑝 with the

candidates in 𝐶3 ∪𝐶4 have no influence on the election results.

“=⇒”: Suppose that there is a size-𝑘 independent set 𝐼 in G. Let
𝐶 ′ contain the candidates in 𝐶1 corresponding to the vertices in

𝐼 . We swap the candidates in 𝐶 ′ with 𝑝 in the votes in 𝑉1, which

are created corresponding to the vertices in 𝐼 . That is, we perform

exactly 𝑘 = 𝐵 swap operations in exactly 𝑘 votes, one operation in

each vote. After the operations, the scores of the candidates in 𝐶 ′

and 𝑝 are changed: score(𝑝) = −𝐷−2, score(𝑐𝑖 ) = −𝐷−3 for 𝑐𝑖 ∈
𝐶 ′. The candidates in 𝐶3 ∪ 𝐶4 are still eliminated first and the

candidates in 𝐶 ′ are eliminated in the second round. Since the

corresponding vertices of the candidates in𝐶 ′ are independent, the
score of each edge candidate 𝑑 𝑗 is −𝐷 − 1 or −𝐷 − 2. There are still
𝑛′−𝑘 candidates of𝐶1 remaining. The candidate 𝑐𝑠 is eliminated in

the third round with a score of −𝐷 − 3. The following elimination

sequence is 𝑐ℎ,𝐶2, 𝑐𝑡 ,𝐶
′, 𝑐ℓ , 𝑝 and, the candidate 𝑝 is the unique

winner. The scores of the candidates in each round are shown in

Table 2.

“⇐=”: Suppose that there is no size-𝑘 independent set in G. Ac-
cording to the construction of votes, no matter how 𝑝 is swapped

with other candidates, the candidates in 𝐶3 ∪ 𝐶4 are eliminated

before other candidates. The operations swapping 𝑝 with the can-

didates in 𝐶3 ∪𝐶4 do not change the final winner. Therefore, it is
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Table 2: The scores of the candidates in each round in the proof of Theorem 3.3. The set 𝐶 ′ contains the candidates, who are
swapped with 𝑝. With 𝑑1

𝑗
we denote the edge candidates, whose corresponding edges are incident to some vertices in 𝐼 , and 𝑑2

𝑗

denotes the other edge candidates. The candidates in 𝐶3 ∪𝐶4 are eliminated before 𝐶 ′ and their scores are omitted.

𝑝 𝑐𝑖 𝑑 𝑗 𝑐𝑠 𝑐ℎ 𝑐𝑡 𝑐ℓ

Initial -𝐷-𝑘-2 -𝐷-2 -𝐷-1 2𝑘-𝐷-3 -𝐷-1 3𝑚′-(𝑘+1)(𝐷+3) 𝐷(𝑚′+𝑘 ′+4)+2𝑘 ′+2𝑛′+9
𝑐𝑖 ∉ 𝐶 ′ 𝑐𝑖 ∈ 𝐶 ′

After swapping -𝐷-2 -𝐷-2 -𝐷-3 -𝐷-1 2𝑘-𝐷-3 -𝐷-1 3𝑚′-(𝑘+1)(𝐷+3) 𝐷(𝑚′+𝑘 ′+4)+2𝑘 ′+2𝑛′+9
𝑑1
𝑗

𝑑2
𝑗

Eliminating 𝐶 ′ -𝐷-2 -𝐷-2 — -𝐷-1 -𝐷-2 -𝐷-3 -𝐷-1 3𝑚′-3-𝐷 𝐷(𝑚′+4)-2𝑘 ′+2𝑛′+9
Eliminating 𝑐𝑠 -𝐷-2 -𝐷 — -𝐷-1 -𝐷-2 — -𝐷-3 3𝑚′-3-𝐷 𝐷𝑚′+3𝐷+8
Eliminating 𝑐ℎ -𝐷-2 -𝐷 — -𝐷-3 -𝐷-4 — — 3𝑚′-3-𝐷 𝐷𝑚′+2D+2𝑚′+5
Eliminating 𝑑 𝑗 -𝐷-2 0 — — — — — -3-𝐷 2𝐷+5

Eliminating 𝑐𝑡 -𝐷-2 -𝐷-3 — — — — — — (𝑛′-𝑘 ′)(𝐷+3)+𝐷+2
Eliminating 𝑐𝑖 𝑛′-𝑘-𝐷-2 — — — — — — — -𝑛′+𝑘 ′+𝐷+2

Eliminating 𝑐ℓ and 𝑝 win |𝑉 |

only meaningful to swap 𝑝 with the candidates of 𝐶1 in the votes

of 𝑉1. Furthermore, if the number of swap operations is less than 𝑘 ,

𝑝 will be eliminated after 𝐶3 ∪𝐶4. In order to make 𝑝 the unique

winner, we have to swap 𝑝 with exactly 𝑘 = 𝐵 vertex candidates in

𝑉1. Clearly, these operations happen in exactly 𝐵 votes in 𝑉1, one

in each vote. Let 𝐶 ′ denote the set of vertex candidates, who are

swapped with 𝑝 . Since there is no size-𝑘 independent set in G, the
elimination of the candidates in 𝐶 ′ results in an edge candidate 𝑑 𝑗
of a score −𝐷 − 3. Then, 𝑑 𝑗 and 𝑐𝑠 are eliminated together in the

third round, which makes 𝑐ℎ gain at least one point and leads to

the elimination of 𝑝 in the fourth round. Then, 𝑝 is not the unique

winner. In summary, if there is no size-𝑘 independent set in G,
then candidate 𝑝 cannot be an unique winner by at most 𝑘 swap

operations. □

Next, we consider the destructive cases of Baldwin and Nanson.

Theorem 3.4. Baldwin-DSB and Nanson-DSB are𝑊 [1]-hard with
respect to the parameter 𝐵.

Proof. Weprove the theorem for Nanson-DSB by giving a reduc-

tion from Clique on 𝐷-regular graphs. The result for the Baldwin-

DSB can be shown in a similar way. Given a 𝐷-regular graph G =

(V, E) and an integer 𝑘 , asking for a size-𝑘 clique is𝑊 [1]-hard
with respect to 𝑘 [10]. LetV = {𝑣1, · · · , 𝑣𝑛′} and E = {𝑒1, · · · , 𝑒𝑚′}.
We construct a Nanson-DSB instance (𝐶,𝑉 , 𝐵) as follows. Again, we
compare the score of each candidate with the average Borda score.

Thus, from the two votes in𝑊 (𝑐1, 𝑐2) in the proof of Theorem 3.3,

candidate 𝑐1 gets 1 point, 𝑐2 gets −1 point, and all other candidates

get 0 point. Moreover, we say that with respect to𝑊 (𝑐1, 𝑐2), can-
didate 𝑐2 gains one point by eliminating 𝑐1, and 𝑐1 loses one point

by eliminating 𝑐2. Similarly, each of 𝑐2 and 𝑐3 gains one point from

𝑊 (𝑐1, 𝑐2, 𝑐3) by eliminating 𝑐1 and 𝑐1 loses one point by eliminating

𝑐2 or 𝑐3.

For each vertex 𝑣𝑖 ∈ V , we create a vertex candidate 𝑐𝑖 ∈ 𝐶1 (1 ≤
𝑖 ≤ 𝑛′). For each edge 𝑒 𝑗 ∈ E, we create an edge candidate 𝑑 𝑗 ∈
𝐶2 (1 ≤ 𝑗 ≤ 𝑚′). Moreover, we create six special candidates 𝐶5 =

{𝑐𝑡1 , 𝑐𝑡2 , 𝑐𝑞1 , 𝑐𝑞2 , 𝑐𝑞3 , 𝑐ℎ} and two dummy candidate sets 𝐶3 and 𝐶4

with |𝐶3 | = |𝐶4 | = 𝐵. Let 𝐶 := 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ 𝐶4 ∪ 𝐶5 ∪ {𝑝} and
𝐵 := 𝑘 . We construct the set of votes as follows:

• For each vertex 𝑣𝑖 with 1 ≤ 𝑖 ≤ 𝑛′, add two votes 𝑐𝑖 > 𝑝 >
−→
𝐶3 >

−→
𝐶4 >

−−−−−−−→
𝐶1 \ {𝑐𝑖 } >

−→
𝐶2 >

−→
𝐶5 and

←−
𝐶5 >

←−
𝐶2 >

←−−−−−−−
𝐶1 \ {𝑐1} >

𝑐𝑖 >
←−
𝐶4 >

←−
𝐶3 > 𝑝 to the set 𝑉1. Add 𝐷 identical vote pairs

𝑊 (𝑐𝑖 , 𝑐ℎ) to 𝑉2;
• For each edge 𝑒 𝑗 = {𝑣𝑖 , 𝑣𝑖′} with 1 ≤ 𝑗 ≤ 𝑚′: Add one vote

pair𝑊 (𝑑 𝑗 , 𝑐𝑖 , 𝑐𝑖′) and two identical vote pairs𝑊 (𝑐𝑡1 , 𝑑 𝑗 ) to
𝑉2;

• Add the following votes to 𝑉2:𝑚
′ + 𝑘 (𝑘 − 1) identical vote

pairs𝑊 (𝑐𝑡2 , 𝑐𝑡1 ),𝑚′ identical vote pairs𝑊 (𝑐𝑡1 , 𝑝), and one

vote pair𝑊 (𝑝, 𝑐𝑡2 );
• Add the following votes to𝑉3:𝑚

′
identical vote pairs𝑊 (𝑝, 𝑐𝑞1 ),

𝑚′ identical vote pairs 𝑊 (𝑐𝑞1 , 𝑐𝑞2 ), and 𝑚′ identical vote
pairs𝑊 (𝑐𝑞2 , 𝑐𝑞3 ).

Note that in all votes in 𝑉 \ 𝑉1, candidate 𝑝 is always in the

middle of 𝐶3 and 𝐶4, that is,

−→
𝐶3 > 𝑝 >

−→
𝐶4 or

←−
𝐶4 > 𝑝 >

←−
𝐶3. Let 𝑉 :=

𝑉1 ∪𝑉2 ∪𝑉3. The candidates 𝑐𝑞1 , 𝑐𝑞2 , 𝑐𝑞3 and the votes in 𝑉3 make

sure that the candidate 𝑝 has a score greater than the average Borda

score in the first four rounds. The equivalence between the two

instances can be proved in a similar but more tricky way as in the

proof in Theorem 3.3. □

3.3 The number of votes
In the following, we show FPT results for Hare-CSB and Hare-

DSB, and𝑊 [1]-hard results for Baldwin-CSB, Nanson-CSB, and

Nanson-DSB with the number of votes 𝑛 as parameter.

Theorem 3.5. Hare-CSB and Hare-DSB are FPT with respect to
the number of votes 𝑛.

Proof. Let 𝑉 = {𝑣1, · · · , 𝑣𝑛} and 𝐶 = {𝑐1, · · · , 𝑐𝑚} denote the
vote and candidate sets, respectively.We prove only the constructive

case. The destructive case can be proved in a similar way. The case

of𝑚 ≤ 𝑛 follows directly from Theorem 3.1. For the case𝑚 > 𝑛,

observe that there are at most 𝑛 candidates, who can get at least one

point. Other candidates are eliminatedwith 0 point in the first round.

Therefore, we enumerate all 2
𝑛
subsets of votes, which represent the

votes in a possible solution, that rank 𝑝 at the top. For each subset

{𝑖1, · · · , 𝑖𝑘 } with 1 ≤ 𝑖1 < · · · < 𝑖𝑘 ≤ 𝑛, we calculate the number

of swap operations needed to shift 𝑝 in 𝑣𝑖 𝑗 to the first position for
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each 1 ≤ 𝑗 ≤ 𝑘 . If the total number of swap operations exceeds

𝐵, we exclude this subset from further consideration; otherwise,

we calculate the plurality scores of the candidates with the votes

𝑣 ′
1
, · · · , 𝑣 ′𝑛 , where 𝑣 ′𝑖 = 𝑣𝑖 for 𝑖 ∉ {𝑖1, · · · , 𝑖𝑘 } and for 𝑖 ∈ {𝑖1, · · · , 𝑖𝑘 },

𝑣 ′
𝑖
ranks the candidates in the same orders as 𝑣𝑖 with the possible

exception that 𝑝 is in the first position. Then, after eliminating the

candidates with the least plurality score in the first round, there

remain at most 𝑛 candidates. The optimal shift strategy in the votes

𝑣𝑖 with 𝑖 ∉ {𝑖1, · · · , 𝑖𝑘 } can be then computed with the ILP approach

given in the proof of Theorem 3.1. In summary, we solve at most

2
𝑛
ILP’s, each solvable in FPT time. This completes the proof. □

In the following, we show the hardness results for Baldwin-CSB

and Nanson-CSB.

Theorem 3.6. Baldwin-CSB and Nanson-CSB are𝑊 [1]-hard with
respect to the parameter 𝑛.

Proof. We prove the theorem for Nanson-CSB by giving a re-

duction from theMulti-colored Independent Set problem. The

result for Baldwin-CSB follows from a similar but more tricky re-

duction. Given an undirected graph G = (V, E) with each vertex

being colored by one of 𝑘 colors, Multi-colored Independent
Set asks for a colorful independent set of size 𝑘 . A colorful set

contains no two vertices with the same color. A simple reduction

from Independent Set shows thatMulti-colored Independent
Set is W[1]-hard with respect to 𝑘 . Let G = (V, E) be our input
instance. Without loss of generality, we assume that the number of

vertices of each color is the same, the degree of each vertex is 𝐷 ,

and there is no edge between vertices of the same color. Further,

letV𝑖 = {𝑣𝑖
1
, . . . 𝑣𝑖𝑞} denote the set of vertices of color 𝑖 and E𝑖 be

the set of edges incident to the vertices of color 𝑖 . It is clear that

each edge is in two E𝑖 ’s. For each vertex 𝑣 , let E(𝑣) denote the set
of edges that are incident to 𝑣 .

We construct an instance of Nanson-CSB as follows. Let 𝐵 :=

𝑘 (𝑞+(𝑞−1)𝐷). The candidate set is𝐶 = V(G)∪E(G)∪{𝑐𝑡 , 𝑝}∪𝐷∪
𝐷 ′ ∪ 𝐹 ∪ 𝐹 ′, where 𝐷 , 𝐷 ′, 𝐹 , and 𝐹 ′ are sets of dummy candidates

and |𝐷 | = |𝐷 ′ | = |𝐹 | = |𝐹 ′ | = 𝐵. For each vertex 𝑣 , we define

an ordering

−−−→
𝑆 (𝑣) as 𝑣 >

−−−→
E(𝑣). For each color 𝑖 , we define

−−→
𝑅(𝑖) as

−→
𝐷 ′ >

−−−−−−→
V \V𝑖 >

−−−−−→
E \ E𝑖 > 𝑡 >

−→
𝐷 . Then

←−−−
E(𝑣) and

←−−
𝑅(𝑖) denote the

reversed orderings of

−−−→
E(𝑣) and

−−→
𝑅(𝑖), respectively. We construct the

set of votes as follows.

For each color 1 ≤ 𝑖 ≤ 𝑘 , we create four votes in 𝑉 𝑖
:

𝑥𝑖 :
−−−−→
𝑆 (𝑣𝑖

1
) > · · · >

−−−−→
𝑆 (𝑣𝑖𝑞) > 𝑝 >

−−→
𝑅(𝑖) > −→𝐹 >

−→
𝐹 ′,

𝑥 ′𝑖 :
←−−−−
𝑆 (𝑣𝑖𝑞) > · · · >

←−−−−
𝑆 (𝑣𝑖

1
) > 𝑝 >

−−→
𝑅(𝑖) > −→𝐹 >

−→
𝐹 ′,

𝑦𝑖 :
←−−
𝑅(𝑖) > 𝑝 >

←−−−−
𝑆 (𝑣𝑖𝑞) > · · · >

←−−−−
𝑆 (𝑣𝑖

1
) >
←−
𝐹 ′ >

←−
𝐹 ,

𝑦′𝑖 :
←−−
𝑅(𝑖) > 𝑝 >

←−−−−
𝑆 (𝑣𝑖

1
) > · · · >

←−−−−
𝑆 (𝑣𝑖𝑞) >

←−
𝐹 ′ >

←−
𝐹 .

Further, we create the following six votes in 𝑉 ′:

𝑧1 :
−−−−→
E(G) >

−−−−−→
V(G) > −→𝐹 > 𝑝 >

−→
𝐹 ′ > 𝑐𝑡 >

−→
𝐷 >

−→
𝐷 ′,

𝑧′
1
: 𝑐𝑡 >

←−−−−−
V(G) >

←−−−−
E(G) >

←−
𝐹 ′ > 𝑝 >

←−
𝐹 >
←−
𝐷 ′ >

←−
𝐷,

𝑧2 : 𝑐𝑡 >
−−−−→
E(G) >

−−−−−→
V(G) > −→𝐹 > 𝑝 >

−→
𝐹 ′ >

−→
𝐷 >

−→
𝐷 ′,

𝑧′
2
:

←−
𝐹 ′ > 𝑝 >

←−
𝐹 > 𝑐𝑡 >

←−−−−−
V(G) >

←−−−−
E(G) >

←−
𝐷 ′ >

←−
𝐷,

𝑧3 : 𝑝 > 𝑐𝑡 >
−→
𝐹 >
−→
𝐹 ′ >

−−−−→
E(G) >

−−−−−→
V(G) > −→𝐷 >

−→
𝐷 ′,

𝑧′
3
:

←−−−−−
V(G) >

←−−−−
E(G) >

←−
𝐹 ′ >

←−
𝐹 > 𝑝 > 𝑐𝑡 >

←−
𝐷 ′ >

←−
𝐷 .

The vote set 𝑉 is set equal to (⋃𝑘
𝑖=1𝑉

𝑖 ) ∪𝑉 ′. By the construction

of the votes, we can observe that each candidate in 𝐶 \ (𝐹 ∪ 𝐹 ′)
receives |𝐶 | + 2𝐵 points from the votes 𝑥𝑖 and 𝑦𝑖 for each 1 ≤ 𝑖 ≤ 𝑘 ,

while each candidate in 𝐹 ∪𝐹 ′ receives 2𝐵−1 points from these two

votes. In total, each candidate in 𝐶 \ (𝐹 ∪ 𝐹 ′) receives 2𝑘 ( |𝐶 | + 2𝐵)
points from the votes in

⋃𝑘
𝑖=1𝑉

𝑖
, while each candidate in 𝐹 ∪ 𝐹 ′

receives 2𝑘 (2𝐵 − 1) points. Thus, concerning the votes in

⋃𝑘
𝑖=1𝑉

𝑖
,

each candidate in 𝐹 ∪𝐹 ′ receives a Borda score less than the average
Borda score. From the remaining six votes, we can conclude that the

candidates in 𝐷 ∪𝐷 ′ have scores less than the average Borda score.

It is obvious that the scores of candidates in 𝐷 ∪𝐷 ′∪ 𝐹 ∪ 𝐹 ′ are less
than the average score, and thus, the first round eliminates these

candidates. Afterwards, all candidates receive the same points from⋃𝑘
𝑖=1𝑉

𝑖
. However, 𝑝 receives the least point from the remaining

six votes. Thus, 𝑝 is not the unique winner and is eliminated in the

second round.

“=⇒”: Suppose there is a colorful independent set 𝐼 for G and

for each color 1 ≤ 𝑖 ≤ 𝑘 , let 𝑣𝑖𝑠𝑖 be the vertex of color 𝑖 in 𝐼 . For each

pair of 𝑥𝑖 and 𝑥
′
𝑖
, we shift 𝑝 in 𝑥𝑖 by swap operations to the position

directly in front of the candidate 𝑣𝑖
𝑠𝑖+1 and in 𝑥 ′

𝑖
directly in front of

the candidate 𝑣𝑖𝑠𝑖 . For every pair of votes 𝑥𝑖 and 𝑥
′
𝑖
, 𝑞 + (𝑞 − 1) · 𝐷

swaps are needed and in total 𝐵 swaps are needed. Thus, in this way,

all edge and vertex candidates have been swapped with 𝑝 , and the

score of each edge and vertex candidate is decreased by at least one,

resulting in that instead of 𝑝 , the vertex and edge candidates are

eliminated in the second round. Then, the candidate 𝑐𝑡 is eliminated

next and 𝑝 is the unique winner.

“⇐=”: Suppose that 𝑝 is the unique winner after swapping 𝑝

with other candidates. Since |𝐷 | = |𝐷 ′ | = |𝐹 | = |𝐹 ′ | = 𝐵, 𝑝 can be

swapped with the dummy candidates, or the vertex and edge candi-

dates in 𝑥𝑖 or 𝑥
′
𝑖
. No matter which candidates 𝑝 is swapped with, the

dummy candidates have always scores less than the average Borda

score and are eliminated in the first round. Suppose that there exist

vertex candidates or edge candidates, which are not swapped with 𝑝 .

Let 𝐶 ′ denote the set of these candidates. Then, the candidates in
(V(G) ∪ E(G)) \ 𝐶 ′ are eliminated next. If |𝐶 ′ | = 1, then all re-

maining candidates have the same Borda score and are eliminated

together. Then 𝑝 is not the unique winner. If |𝐶 ′ | > 1, the score

of 𝑝 is less than the average Borda score and 𝑝 is eliminated after

eliminating dummy candidates. Then, 𝑝 is not the unique winner.

To guarantee that 𝑝 is the unique winner, it must satisfy |𝐶 ′ | = 0. It

also means that all vertex and edge candidates have been swapped

with 𝑝 . For each color, 𝑝 has to be swapped with at least𝑞+(𝑞−1) ·𝐷
candidates and in total, exact 𝐵 swaps for all colors. After these

swaps, 𝑝 lies directly in front of 𝑣𝑖
𝑠𝑖+1 in 𝑥𝑖 and directly in front

of 𝑣𝑖𝑠𝑖 in 𝑥
′
𝑖
. On the other hand, for each color 𝑖 , there is a set of edge

candidates E(𝑣𝑖𝑠𝑖 ), that are not swapped with 𝑝 . Thus, to guarantee

that the score of each edge candidate is decreased by one, there
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cannot be any edge between the vertices of 𝑣𝑖𝑠𝑖 with 1 ≤ 𝑖 ≤ 𝑘 .

It also means that the corresponding 𝑘 vertices form an indepen-

dent set. Therefore, Nanson-CSB is𝑊 [1]-hard with respect to the

parameter 𝑛. □

Finally, we prove W[1]-hardness of the destructive case of Nan-

son.

Theorem 3.7. Nanson-DSB is𝑊 [1]-hard with respect to the pa-
rameter 𝑛.

Proof. We prove the theorem by a similar but more tricky re-

duction from the Multi-colored Clique problem. Let G = (V, E)
be our input instance, i.e., an undirected graph with each vertex

being colored with one of 𝑘 colors. Without loss of generality, we

assume that the number of vertices of each color is the same, the

degree of each vertex is 𝐷 , and there is no edge between vertices

of the same color. Further, let V𝑖 = {𝑣𝑖
1
, . . . 𝑣𝑖𝑞} denote the set of

vertices of color 𝑖 and E𝑖 be the set of edges incident to vertices of

color 𝑖 . For each vertex 𝑣 , let E(𝑣) denote the set of edges that are
incident to 𝑣 .

We construct an instance of Nanson-DSB as follows. Let 𝐵 :=

𝑘 (𝑞 + (𝑞 + 1)𝐷). The candidate set is 𝐶 := V(G) ∪ E(G) ∪ 𝐶1 ∪
𝐶2 ∪ 𝐶3 ∪ {𝑝, 𝑐𝑠 , 𝑐𝑑 } ∪ 𝐻 , where 𝐻 is a set of dummy candidates

with |𝐻 | = 4𝐵, 𝐶1 = {𝑐𝑡1 , 𝑐𝑡2 , 𝑐𝑡3 , 𝑐𝑡4 }, 𝐶2 = {𝑐𝑟1 , 𝑐𝑟2 , 𝑐𝑟3 , 𝑐𝑟4 }, and
𝐶3 = {𝑐𝑢1

, 𝑐𝑢2
, 𝑐𝑢3

, 𝑐𝑢4
, 𝑐𝑢5
}. Again, for each vertex 𝑣 , we define

−−−→
𝑆 (𝑣)

as 𝑣 >
−−−→
E(𝑣). For each color 𝑖 , we define

−−→
𝑅(𝑖) as

−−−−−−→
V \V𝑖 >

−−−−−→
E \ E𝑖 >

−→
𝐶1 >

−→
𝐶2 >

−→
𝐶3 > 𝑐𝑠 > 𝑐𝑑 . We construct the set of votes as follows.

The set 𝐻 plays the same role as the dummy candidates in the

proof of Theorem 3.6. To simplify the presentation, we omit these

candidates in the votes.

For each color 1 ≤ 𝑖 ≤ 𝑘 , we create four votes in 𝑉 𝑖
:

−→𝑥𝑖 :
−−→
𝑅(𝑖) > 𝑝 >

−−−−→
𝑆 (𝑣𝑖

1
) > · · · >

−−−−→
𝑆 (𝑣𝑖𝑞),

−→
𝑥 ′𝑖 :
−−→
𝑅(𝑖) > 𝑝 >

←−−−−
𝑆 (𝑣𝑖𝑞) > · · · >

←−−−−
𝑆 (𝑣𝑖

1
),

and
−→𝑦𝑖 := ←−𝑥𝑖 ,

−→
𝑦′
𝑖
:=
←−
𝑥 ′
𝑖
(
←−𝑥𝑖 and

←−
𝑥 ′
𝑖
denote the reversed orderings of

−→𝑥𝑖 and
−→
𝑥 ′
𝑖
, respectively).

We create the following seven vote pairs in 𝑉2:

𝑧1 :
−→
𝐶1 >

−−−−→
E(G) >

−−−−−−−−−−−−−−−→
𝐶 \ (E(G) ∪𝐶1),

←−−−−−−−−−−−−−−−
𝐶 \ (E(G) ∪𝐶1) >

←−
𝐶1 >

←−−−−
E(G);

𝑧2 :
−−−−−→
V(G) > −→𝐶1 >

−−−−−−−−−−−−−−−→
𝐶 \ (V(G) ∪𝐶1),

←−−−−−−−−−−−−−−−
𝐶 \ (V(G) ∪𝐶1) >

←−−−−−
V(G) >←−𝐶1;

𝑧3 :
−→
𝐶2 >

−−−−−→
V(G) >

−−−−−−−−−−−−−−−→
𝐶 \ (V(G) ∪𝐶2),

←−−−−−−−−−−−−−−−
𝐶 \ (V(G) ∪𝐶2) >

←−
𝐶2 >

←−−−−−
V(G);

𝑧4 : 𝑝 >
−→
𝐶2 >

−−−−−−−−−−−−−→
𝐶 \ ({𝑝} ∪𝐶2),

←−−−−−−−−−−−−−
𝐶 \ ({𝑝} ∪𝐶2) > 𝑝 >

←−
𝐶2;

𝑧5 :
−→
𝐶1 > 𝑝 >

−−−−−−−−−−−−−→
𝐶 \ ({𝑝} ∪𝐶1),

←−−−−−−−−−−−−−
𝐶 \ ({𝑝} ∪𝐶1) >

←−
𝐶1 > 𝑝;

𝑧6 :
−−−−→
E(G) > 𝑐𝑠 >

−−−−−−−−−−−−−−−−→
𝐶 \ (E(G) ∪ {𝑐𝑠 }),

←−−−−−−−−−−−−−−−−
𝐶 \ (E(G) ∪ {𝑐𝑠 }) >

←−−−−
E(G) > 𝑐𝑠 ;

𝑧7 : 𝑝 > 𝑐𝑠 >
−−−−−−−−→
𝐶 \ {𝑝, 𝑐𝑠 },

←−−−−−−−−−−−−−−−−−−
𝐶 \ {𝑝, 𝑐𝑠 } > 𝑝 > 𝑐𝑠 .

Further, 𝑉3 contains the following seven vote pairs:

𝑧8 : 𝑝 > 𝑐𝑑 >
−−−−→
E(G) >

−−−−−−−−→
𝐶 \ E(G),

←−−−−−−−−
𝐶 \ E(G) > 𝑝 >

←−−−−
E(G) > 𝑐𝑑 ;

𝑧9 : 𝑐𝑑 > 𝑐𝑢1
>
−−−−−−−−−−→
𝐶 \ {𝑐𝑑 , 𝑐𝑢1

},
←−−−−−−−−−−
𝐶 \ {𝑐𝑑 , 𝑐𝑢1

} > 𝑐𝑑 > 𝑐𝑢1
;

𝑧10 : 𝑐𝑢4
> 𝑐𝑢2

>
−−−−−−−−−−−→
𝐶 \ {𝑐𝑢2

, 𝑐𝑢4
},
←−−−−−−−−−−−
𝐶 \ {𝑐𝑢2

, 𝑐𝑢4
} > 𝑐𝑢4

> 𝑐𝑢2
;

𝑧11 : 𝑐𝑢2
> 𝑝 >

−−−−−−−−−→
𝐶 \ {𝑐𝑢2

, 𝑝},
←−−−−−−−−−
𝐶 \ {𝑐𝑢2

, 𝑝} > 𝑐𝑢2
> 𝑝;

𝑧12 : 𝑐𝑢2
> 𝑐𝑢3

>
−−−−−−−−−−−→
𝐶 \ {𝑐𝑢2

, 𝑐𝑢3
},
←−−−−−−−−−−−
𝐶 \ {𝑐𝑢2

, 𝑐𝑢3
} > 𝑐𝑢2

> 𝑐𝑢3
;

𝑧13 : 𝑝 > 𝑐𝑢4
>
−−−−−−−−−→
𝐶 \ {𝑝, 𝑐𝑢4

},
←−−−−−−−−−
𝐶 \ {𝑝, 𝑐𝑢4

} > 𝑝 > 𝑐𝑢4
;

𝑧14 : 𝑐𝑢3
> 𝑐𝑢5

>
−−−−−−−−−−−→
𝐶 \ {𝑐𝑢3

, 𝑐𝑢5
},
←−−−−−−−−−−−
𝐶 \ {𝑐𝑢3

, 𝑐𝑢5
} > 𝑐𝑢3

> 𝑐𝑢5
.

Note that in𝑉3, there are four identical copies of 𝑧8 and 𝑧9, three

identical copies of 𝑧10, two identical copies of 𝑧11; and one copy

for each of other votes. Let 𝑉1 =
⋃
𝑉 𝑖

and 𝑉 := 𝑉1 ∪𝑉2 ∪𝑉3 and
|𝑉 | = 4𝑘 + 46. It is easy to verify that 𝑝 is the unique winner, as

E(G) ∪ {𝑐𝑠 , 𝑐𝑢1
, 𝑐𝑢5
} are eliminated in the first round,𝐶1∪{𝑐𝑑 , 𝑐𝑢3

}
in the second round, andV(G) ∪𝐶2∪{𝑐𝑢2

} in the third round. The

role of 𝐶1 ∪𝐶2 ∪ {𝑐𝑠 } is to control in which round E(G) ∪ V(G)
are eliminated, and 𝐶3 ∪ {𝑐𝑑 } is to control in which round 𝑝 is

eliminated. The proof of the equivalence between the two instances

is deferred to the long version. □

4 CONCLUSION
We achieved FPT and𝑊 [1]-hard results for both constructive and

destructive shift bribery problems on the iterative voting systems

of Hare, Coombs, Baldwin, and Nanson. There remain some open

problems. For instance, the parameterized complexity of Baldwin-

DSB, Coombs-CSB, and Coombs-DSB are open with respect to the

number of votes. Moreover, we only considered the shift bribery

with the unit price function. It would be interesting to study other

price functions such as the all-or-nothing price function. Some

of our results hold for other price functions (all FPT results), but

some do not. One might think that the shift bribery problems with

all-or-nothing price function could be easier to solve than the ones

with unit price function, because with the all-or-nothing function,

it seems reasonable to shift 𝑝 to the first position in the constructive

case and to the last position in the destructive case. However, there

exist concrete examples, where the optimal shift strategy is to

leave 𝑝 in the middle of some votes. Another direction for future

work can be the approximability of shift bribery problems for these

systems. Furthermore, the shift bribery behavior of other iterative

voting systems such as Plurality with Runoff could be an interesting

research topic. Finally, we are not aware of any computational

complexity result for controlling iterative voting systems.
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