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ABSTRACT
We consider solving a cooperative multi-robot object manipulation
task using reinforcement learning (RL). We propose two distributed
multi-agent RL approaches: distributed approximate RL (DA-RL),
where each agent applies Q-learning with individual reward func-
tions; and game-theoretic RL (GT-RL), where the agents update
their Q-values based on the Nash equilibrium of a bimatrix Q-value
game. We validate the proposed approaches in the setting of cooper-
ative object manipulation with two simulated robot arms. Although
we focus on a small system of two agents in this paper, both DA-RL
and GT-RL apply to general multi-agent systems, and are expected
to scale well to large systems.
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1 INTRODUCTION
Deep reinforcement learning (RL) has recently been successfully
applied to various robot control problems [9], mostly in single-
agent settings. Generalization to multi-agent settings such as multi-
robot cooperation is extremely challenging, and requires scalable
solutions for managing the large number of degrees of freedom
(DoFs), heterogeneous physical constraints, and possibly partial or
asymmetric observations at different robots.

Parallel implementations of single-agent RL on different agents
scale well to large multi-agent systems, but suffer from issues such
as learning instability. This is due to non-stationarity of the envi-
ronment that each agent faces [4]. To ensure good performance,
the agents should be jointly trained [1, 3, 8, 13], in a distributed
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Figure 1: Each RL agent is responsible for one manipulator.

manner. In this paper, we propose two distributed multi-agent RL
approaches. In distributed approximate RL (DA-RL), each agent
applies Q-learning with individual reward functions being coupled
and aligned to the goal of the cooperative task. In game-theoretic
RL (GT-RL), the agents update their Q-values based on the Nash
equilibrium of the bimatrix game of estimated Q-values.

We validate our methods in the setting of cooperative object
manipulation (see Figure 1) with two Sawyer robotic manipulators
in the Gazebo simulator [7], but the methods are applicable to
other combinations of manipulators as well. In our scenario, the
state of robot 𝑘 at time 𝑡 is given by 𝑠𝑡 = (𝑞𝑘𝑡 , 𝑝𝑘𝑡 )𝑘∈N , where 𝑞𝑘𝑡
denotes the joint angles and 𝑝𝑘𝑡 is the global coordinate of the
robot’s end effector. The state-control dynamics for the 𝑖-th joint
is then 𝑞

𝑘,𝑖
𝑡+1 = 𝑞

𝑘,𝑖
𝑡 + Δ𝑎𝑘,𝑖Δ𝑡 + 𝜖

𝑘,𝑖
𝑡 , where Δ𝑎𝑘,𝑖 is the joint angle

increment.

2 DISTRIBUTED RL
The system for the multi-agent RL can be defined as the tuple
M = {N , 𝑆, (𝐴𝑘 )𝑘∈N , 𝑃, (𝑟𝑘 )𝑘∈N , (𝜋𝑘 )𝑘∈N ,𝑉𝑘 (·)}, with the set
N = {1, . . . , 𝑛} of agents, the set 𝑆 of states, the set 𝐴𝑘 of actions
available to the agent 𝑘 , the state transition function 𝑃 : 𝑆 ×𝐴1 ×
· · · ×𝐴𝑛 → 𝑃𝐷 (𝑆), the reward function 𝑟𝑘 : 𝑆 ×𝐴1 × · · · ×𝐴𝑛 → R,
and the policy 𝜋𝑘 : 𝑆 → 𝑃𝐷 (𝐴𝑘 ) for the agent 𝑘 . Each agent 𝑘 ∈ N
seeks to maximize its accumulated reward with the starting state 𝑠
at time 𝑡 : 𝑉𝑘 (𝑠) = E[∑𝑇−𝑡

𝑖=0 𝛾𝑖𝑟𝑘
𝑡+𝑖 | 𝑠𝑡 = 𝑠, (𝜋𝑘 )𝑘∈N].

We consider a setting where the agents share the common ob-
served state 𝑠𝑡 , but try to learn a deterministic policy 𝜋𝑘 : 𝑆 → 𝐴𝑘

individually. In such a setting, the key to distributed RL for co-
operative tasks is the proper engineering of individual reward
functions 𝑟𝑘 that capture the common goal of the task while re-
specting the distributed structure of the system. Specific to the
bi-robot object manipulation problem, we first identify the key
constituents of the reward for the task: i) those that capture the ob-
ject displacement from target, respectively 𝑟𝑔1 = −𝑑 (𝑝1

𝑡+1, 𝑝
1
𝑡𝑎𝑟𝑔𝑒𝑡 )
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and 𝑟𝑔2 = −𝑑 (𝑝2
𝑡+1, 𝑝

2
𝑡𝑎𝑟𝑔𝑒𝑡 ) for the two robots; and ii) that which

captures the object posture deviation, 𝑟𝑔3 = −𝑎(𝑝1
𝑡+1, 𝑝

2
𝑡+1). Here

𝑑 (𝑝, 𝑝 ′) = ∥𝑝 − 𝑝 ′∥1 characterizes the distance between 𝑝 and 𝑝 ′,
and 𝑎(𝑝1, 𝑝2) is the absolute angle between the vector (𝑝1 − 𝑝2)
and the target (𝑝1

𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝2
𝑡𝑎𝑟𝑔𝑒𝑡 ). We then present two ways of

distributing the afore three constituents to the two robots:

RS-1:

{
𝑟1 (𝑠𝑡 , 𝑎1

𝑡 ) = −𝑑 (𝑝1
𝑡+1, 𝑝

1
𝑡𝑎𝑟𝑔𝑒𝑡 ) − 𝜅1𝑎(𝑝1

𝑡+1, 𝑝
2
𝑡+1),

𝑟2 (𝑠𝑡 , 𝑎2
𝑡 ) = −𝑑 (𝑝2

𝑡+1, 𝑝
2
𝑡𝑎𝑟𝑔𝑒𝑡 ) − 𝜅2𝑎(𝑝1

𝑡+1, 𝑝
2
𝑡+1);

(1)

RS-2:

{
𝑟1 (𝑠𝑡 , 𝑎1

𝑡 ) = −𝑑 (𝑝1
𝑡+1, 𝑝

1
𝑡𝑎𝑟𝑔𝑒𝑡 ) − 𝑑 (𝑝2

𝑡+1, 𝑝
2
𝑡𝑎𝑟𝑔𝑒𝑡 ),

𝑟2 (𝑠𝑡 , 𝑎2
𝑡 ) = −𝜅𝑎(𝑝1

𝑡+1, 𝑝
2
𝑡+1) .

(2)

In RS-1, each robot is concerned with both its end effector displace-
ment to the target and the object posture deviation. In RS-2, one
robot is concerned with the object displacement to the target, while
the other is concerned with the object posture deviation. Here,
𝜅1 > 0, 𝜅2 > 0, and 𝜅 > 0 are parameters used to strike different
tradeoffs between different constituents, where 𝜅1 + 𝜅2 = 𝜅.

Given a multi-agent system, it is of paramount importance to
identify a reasonable outcome from the multi-agent interaction and
determine how to achieve that outcome. This can be approached
from two complementary perspectives. One perspective starts with
a specification of individual agent behavior (e.g., learning algo-
rithm in our problem), and then studies how the resulting system
performs. The other perspective starts with a specification of rea-
sonable outcome such as the Nash equilibrium [10], and then studies
how to achieve that outcome. Next, we present both perspectives.

2.1 Distributed Approximate RL (DA-RL)
Similarly to independent RL methods [11, 14], each agent (i.e., ro-
bot) 𝑘 applies the single-agent Q-learning with individual reward
𝑟𝑘 (𝑠𝑡 , 𝑎𝑘𝑡 ) [12, 16]. Like those methods, this distributed RL approach
does not have a convergence guarantee. However, notice that the
sum of individual agent rewards 𝑟 (𝑠𝑡 , 𝑎1

𝑡 , 𝑎
2
𝑡 ) = 𝑟1 (𝑠𝑡 , 𝑎1

𝑡 ) +𝑟2 (𝑠𝑡 , 𝑎2
𝑡 )

is a well-defined systemwide reward for the whole multi-agent sys-
tem. Our approach can be seen as a distributed approximation of
the centralized RL with reward function 𝑟 (𝑠𝑡 , 𝑎1

𝑡 , 𝑎
2
𝑡 ), and hence

termed distributed approximate RL (DA-RL).

2.2 Game-Theoretic RL (GT-RL)
We now take the second perspective, and use the Nash equilibrium
as the solution concept for the desired outcome from the multi-
agent interaction. Specifically, we consider the general-sumMarkov
game formulation for our bi-robot object manipulation problem,
with N = {1, 2}. The Markov game (a.k.a., stochastic game) G
includes the same components as M [10]. However, instead of
direct optimization of𝑉𝑘 (·), agents aim to reach a Nash equilibrium
(𝜋1∗ , 𝜋2∗ ) of G such that ∀𝑠 ∈ 𝑆 ,

𝑉 1 (𝑠 | 𝜋1∗ , 𝜋2∗ ) ≥ 𝑉 1 (𝑠 | 𝜋1, 𝜋2∗ ), ∀𝜋1; (3)

𝑉 2 (𝑠 | 𝜋1∗ , 𝜋2∗ ) ≥ 𝑉 2 (𝑠 | 𝜋1∗ , 𝜋2), ∀𝜋2 . (4)

At the Nash equilibrium, no agent has incentive to change its pol-
icy given that the other agent takes the equilibrium policy. Also
note that, in our problem, we consider only the stationary policies
𝜋𝑘 = (𝜋𝑘 (𝑠1), 𝜋𝑘 (𝑠2), . . . ), and hence the existence of the Nash
equilibrium is guaranteed by Theorem 4.6.4 in [2].

Having specified the Nash equilibrium as a desired outcome,
we leverage Nash-Q learning [6, 10, 15] and deep Q-networks to
design a distributed RL scheme, termed game-theoretic RL (GT-RL),
to achieve the equilibrium for the bi-robot object manipulation
problem. The convergence to the Nash equilibrium guarantees the
stability of the policies learned by each agent, effectively accounting
for the non-stationary nature of multi-agent systems.

Specifically, at step 𝑡 , agent 𝑘 observes state 𝑠𝑡 and takes action
𝑎𝑘𝑡 ∼ 𝜋𝑘 (· | 𝑠𝑡 ) with the help of 𝑄𝑘

𝜋

(
𝑠𝑡 , (𝑎1

𝑡 , 𝑎
2
𝑡 )
)
. Each step can be

considered as a bimatrix game G𝑏𝑖 (𝑠) = {N , (𝑄𝑘 )𝑘∈N , (𝜋𝑘 )𝑘∈N , 𝑠}.
The derived bimatrix equilibrium (𝜇1∗ , 𝜇2∗ ) satisfies:

𝜇1∗𝑀1𝜇2∗ ≥ 𝜇1𝑀1𝜇2∗ , ∀𝜇1 ∈ 𝑃𝐷 (𝐴1); (5)

𝜇1∗𝑀2𝜇2∗ ≥ 𝜇1∗𝑀2𝜇2, ∀𝜇2 ∈ 𝑃𝐷 (𝐴2). (6)

In fact, the whole Markov game can be decomposed as a sequence
of bimatrix games G = {G𝑏𝑖 (𝑠𝑡 )}𝑡=1,2,... , and Theorem 3 in [5]
ensures that the Nash equilibrium

(
𝜇1∗, 𝜇2∗) of G𝑏𝑖 (𝑠𝑡 ) is also part

of the Nash equilibrium of G. Hence, if we assume that the Nash
equilibrium of G is defined by 𝜋𝑘

∗
= {𝜋𝑘∗ (𝑠ℓ )}ℓ=1,..., |𝑆 |, there exists

one (𝜋1∗ (𝑠 ′), 𝜋2∗ (𝑠 ′)) that is also the Nash equilibrium of G𝑏𝑖 (𝑠𝑡 )
with 𝑠𝑡 = 𝑠 ′ and 𝜋𝑘 (𝑠𝑡 ) = 𝜇𝑘∗. The 𝑄𝑘

𝑡 update [5] is thus Eq. (7):

𝑄𝑘
𝑡+1 (𝑠𝑡 , (𝑎

1, 𝑎2)) = (1 − 𝛼𝑡 )𝑄𝑘
𝑡 (𝑠𝑡 , (𝑎1, 𝑎2))

+ 𝛼𝑡 [𝑟𝑘𝑡+1 + 𝛾𝜋
1 (𝑠𝑡+1)𝑄𝑘

𝑡 (𝑠𝑡+1)𝜋2 (𝑠𝑡+1)] .
(7)

3 RESULTS AND CONCLUSION

Figure 2: Learning curve. Figure 3: Success ratio.

During training, both methods exhibit stable policy learning
curves, as shown in Figure 2 where the y-axis value is the sum of
average 𝑟1 and 𝑟2 at each episode. After 4,000 episodes of training,
the two methods with different reward structures reach conver-
gence and continue finetuning the learned polices. Figure 3 shows
the success ratios for the two methods, averaged over 10 different
random seeds. DA-RL attains a success ratio of 80% within 8,000
episodes. With GT-RL, RS-2 leads to better performance compared
to RS-1. We conclude that DA-RL is more robust to the use of dif-
ferent reward structures, but GT-RL is more sensitive to choice
of reward structure. Although we focus on a small system of two
agents, both DA-RL and GT-RL apply to general multi-agent sys-
tems and are expected to scale well to large systems.
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