
Synthesis of Controllable Nash Equilibria in Quantitative Objective Games

Shaull Almagor1, Orna Kupferman2, Giuseppe Perelli1∗,
1 University of Oxford
2 Hebrew University

Abstract

In Rational Synthesis, we consider a multi-agent
system in which some of the agents are control-
lable and some are not. All agents have objec-
tives, and the goal is to synthesize strategies for
the controllable agents so that their objectives are
satisfied, assuming rationality of the uncontrollable
agents. Previous work on rational synthesis con-
siders objectives in LTL, namely ones that describe
on-going behaviors, and in Objective-LTL, which
allows ranking of LTL formulas. In this paper,
we extend rational synthesis to LTL[F]– an ex-
tension of LTL by quality operators. The satisfac-
tion value of an LTL[F] formula is a real value in
[0, 1], where the higher the value is, the higher is
the quality in which the computation satisfies the
specification. The extension significantly strength-
ens the framework of rational synthesis and enables
a study its game- and social-choice theoretic as-
pects. In particular, we study the price of stabil-
ity and price of anarchy of the rational-synthesis
game and use them to explain the cooperative and
non-cooperative settings of rational synthesis. Our
algorithms make use of strategy logic and deci-
sion procedures for it. Thus, we are able to handle
the richer quantitative setting using existing tools.
In particular, we show that the cooperative and
non-cooperative versions of quantitative rational
synthesis are 2EXPTIME-complete and in 3EXP-
TIME, respectively – not harder than the complex-
ity known for their Boolean analogues.

1 Introduction
The synthesis problem for LTL (linear temporal logic) gets
as input a specification in LTL and outputs a reactive system
that satisfies it — if such exists [Pnueli and Rosner, 1989].
The specification is over input signals, controlled by the en-
vironment, and output signals, controlled by the system. The
system should satisfy the specification in all environments.
The environment with which the system interacts is often

∗The author is thankful for the the financial support of the ERC
Advanced Investigator grant 291528 (“RACE”) at Oxford.

composed of other systems. For example, the clients inter-
acting with a server are by themselves distinct entities (which
we call agents). In the traditional approach to synthesis, the
agents can be seen as if their only objective is to conspire to
fail the system. Hence the term “hostile environment” that is
traditionally used in the context of synthesis. In real life, how-
ever, many times agents have objectives of their own, other
than to fail the system. The approach taken in the field of al-
gorithmic game theory [Nisan et al., 2007] is to assume that
agents interacting with a computational system are rational;
i.e., agents act to achieve their own objectives.

In [Fisman et al., 2010], Fisman et al. introduced rational
synthesis. The input to the rational-synthesis problem con-
sists of LTL formulas specifying the objectives of the system
and the agents that constitute the environment. The signals
over which the objectives are defined are partitioned among
the system and the agents, so that each of them controls a sub-
set of the signals. There are two approaches to rational syn-
thesis. In cooperative rational synthesis, the desired output is
a strategy profile such that the objective of the system is satis-
fied in the computation that is the outcome of the profile, and
the agents that constitute the environment have no incentive
to deviate from the strategies suggested to them; that is, the
profile is a Nash equilibrium (NE) [Nash, 1950]. Thus, in the
cooperative setting, we assume that once we suggest to the
agents strategies that constitute an equilibrium, they follow
them. Then, in non-cooperative rational synthesis, studied in
[Kupferman et al., 2016], the desired output is a strategy for
the system such that its objective is satisfied in all NE pro-
files in which the system follows this strategy. Thus, in the
non-cooperative setting, the agents are rational, but need not
follow a suggested profile. The rational-synthesis problem
for LTL in the cooperative setting is 2EXPTIME-complete
[Fisman et al., 2010], as is traditional LTL synthesis. In the
non-cooperative setting, the best known complexity is 3EXP-
TIME [Kupferman et al., 2016].1

Traditional games in game theory are finite and their out-
come depends on the final position of the game [Nisan and
Ronen, 1999; Nisan et al., 2007]. In contrast, the systems

1The complexity specified in [Kupferman et al., 2016] is actually
2EXPTIME-complete, yet the complexity analysis there misses one
alternation between strategy quantifiers in the strategy-logic formula
to which the problem is reduced. Taking this additional alternation
into account, the complexity goes up to 3EXPTIME.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

35

we reason about maintain an on-going interaction with their
environment [Harel and Pnueli, 1985], and reasoning about
their behavior refers not to their final state (in fact, we con-
siders non-terminating systems, with no final state) but rather
to the language of computations that they generate. While
LTL specifications enable the description of rich on-going
behaviors, the semantics of LTL is Boolean: a computation
may satisfy a specification or it may not. As argued in [Al-
magor et al., 2016], the Boolean nature of LTL is a real ob-
stacle in synthesis. Indeed, while many systems may satisfy
a specification, they may do so at different levels of quality.
Consequently, designers would be willing to give up manual
design only after being convinced that the automatic proce-
dure that replaces it generates systems of comparable quality.
As argued in [Kupferman et al., 2016], the extension of the
synthesis problem to the rational setting makes the quantita-
tive setting even more appealing. Indeed, objectives in typi-
cal game-theory applications are quantitative, and interesting
properties of games often refer to their quantitative aspects.
In [Kupferman et al., 2016], the authors add a quantitative
layer to LTL and studied rational synthesis for Objective LTL
(OLTL, for short). There, each specification is a set Ψ of
specifications, and a reward function maps each subset of Ψ
to the reward gained when this subset of formulas is satisfied.
In the rational synthesis problem for OLTL, the input consists
of OLTL specifications for the system and the other agents,
and the objective of the system is to maximize its reward with
respect to environments that are in an equilibrium.

We study the rational-synthesis problem for a much
stronger quantitative formalism, namely LTL[F]. The logic
LTL[F] is a multi-valued logic that augments LTL with qual-
ity operators [Almagor et al., 2016]. The satisfaction value of
an LTL[F] formula is a real value in [0, 1], where the higher
the value is, the higher is the quality in which the computa-
tion satisfies the specification. The quality operators in F
can prioritize different scenarios or reduce the satisfaction
value of computations in which delays occur. For example,
as in earlier work on multi-valued extensions of LTL (c.f.,
[Faella et al., 2008]), the set F may contain the min {x, y},
max {x, y}, and 1−x functions, which are the standard quan-
titative analogues of the ∧, ∨, and ¬ operators. The nov-
elty of LTL[F] is the ability to manipulate values by arbi-
trary functions. For example, F may contain the weighted-
average function ⊕λ. The satisfaction value of the formula
ϕ ⊕λ ψ is the weighted (according to λ) average between
the satisfaction values of ϕ and ψ. This enables the speci-
fication of the quality of the system to interpolate different
aspects of it. As an example, consider the LTL[F] formula
G(req → (grant ⊕ 2

3
Xgrant)). The formula states that we

want requests to be granted immediately and the grant to hold
for two transactions. When this always holds, the satisfaction
value is 2

3 + 1
3 = 1. We are quite okay with grants that are

given immediately and last for only one transaction, in which
case the satisfaction value is 2

3 , and less content when grants
arrive with a delay, in which case the satisfaction value is 1

3 .

The extension to LTL[F] significantly strengthens the
framework of rational synthesis. In addition, we study the
stability of rational synthesis and additional game- and social-

choice theoretic aspects of it. We generalize the setting
to an arbitrary partition of the set of agents to controllable
and uncontrollable ones. In particular, the case there are
no controllable agents corresponds to interactions with no
authority. We refine the stability-inefficiency measures of
price of stability (PoS) [Anshelevich et al., 2008] and price
of anarchy (PoA) [Koutsoupias and Papadimitriou, 2009;
Papadimitriou, 2001] to a setting where some of the agents
are controllable. Essentially, these notions measure how
much we lose from the absence of a central authority by com-
paring the utility of a social-optimum profile (that is, a profile
that maximizes the profits of all agents together) with that of
NE profiles. Our refinement enables a distinction between
cases where the behavior of the controllable agents is fixed
and cases it is not.

Studying the stability of rational synthesis, we prove that
a rational-synthesis game need not have an NE, and that for
some utility functions, the PoS and PoA may not be bounded.
We relate the cooperative and non-cooperative settings with
the two stability-inefficiency measures. In the cooperative
setting, we may suggest to the agents a best NE, thus the
cooperative setting corresponds to the PoS measure. On the
other hand, in the non-cooperative setting, the agents may
follow the worst NE, which corresponds to the PoA measure.
This settles a discussion in the community about the neces-
sity of both settings, and also implies that the profit to the
controllable components in the non-cooperative setting may
be unboundedly smaller than the profit in the cooperative set-
ting.

We solve decision problems for rational synthesis with
LTL[F] objectives. Our algorithms make use of strategy
logic and decision procedures for it [?; Mogavero et al., 2010;
2012; 2014]. Thus, we are able to handle the richer quan-
titative setting using existing tools. In particular, we show
that the cooperative and non-cooperative versions of LTL[F]
rational synthesis are 2EXPTIME-complete and in 3EXP-
TIME, respectively, and that so are the problems of calcu-
lating the various stability-inefficiency measures, and other
measures that quantify the game and its outcomes. Thus, the
complexity of rational synthesis in the quantitative setting is
not harder than the best known complexity in the Boolean set-
ting. Due to the lack of space, some of the proofs are omitted
and can be found in the full version, in the authors’ URLs.

Related Work In [Gutierrez et al., 2015; Wooldridge et
al., 2016], the authors introduce the problems of E-Nash and
A-Nash for different classes of iterated games, which corre-
spond to the special cases of cooperative and non-cooperative
rational synthesis, respectively, in which there is no con-
trollable player, showing that the problems are 2EXPTIME-
complete. These problems have been analyzed also in dif-
ferent settings, e.g., imperfect information [Gutierrez et al.,
2016; 2018], finite traces goals [Gutierrez et al., 2017b], and
lexicographic objectives [Gutierrez et al., 2017a]. In [Con-
durache et al., 2016], the authors analyze the rational syn-
thesis problem for qualitative goals whose complexity ranges
from simple reachability to the full power of ω-regular ex-
pressions. In [Almagor et al., 2015], the authors study repair
of specifications in multi-player games, where the goal is to

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

36

reach specifications in which the uncontrollable players are
in an NE, in both a cooperative and non-cooperative setting.

2 Preliminaries
The Temporal Logic LTL[F] The linear temporal logic
LTL[F], introduced in [Almagor et al., 2016], generalizes
LTL by replacing the Boolean operators of LTL with arbi-
trary functions over [0, 1]. The logic is actually a family of
logics, each parameterized by a set F of functions.

Syntax. LetAP be a set of Boolean atomic propositions, and
let F ⊆ {g : [0, 1]m → [0, 1] |m ∈ N} be a set of functions
over [0, 1]. Note that the functions in F may have different
arities. An LTL[F] formula is one of the following:

• True, False, or p, for p ∈ AP .
• g(ϕ1, ..., ϕm), Xϕ1, or ϕ1Uϕ2, for LTL[F] formulas
ϕ1, . . . , ϕm and a function g ∈ F .

Semantics. The semantics of LTL[F] formulas is defined
with respect to infinite computations over AP . A computa-
tion is a word ρ = ρ0, ρ1, . . . ∈ (2AP)ω . We use ρi to denote
the suffix ρi, ρi+1, The semantics maps a computation ρ
and an LTL[F] formula ϕ to the satisfaction value of ϕ in ρ,
denoted [[ρ, ϕ]]. The satisfaction value is defined inductively
as described in Table 1 below.2

Formula Satisfaction value
[[ρ, True]] 1
[[ρ, False]] 0

[[ρ, p]]
1 if p ∈ ρ0

0 if p /∈ ρ0

[[ρ, g(ϕ1, ..., ϕm)]] g([[ρ, ϕ1]], ..., [[ρ, ϕm]])
[[ρ,Xϕ1]] [[ρ1, ϕ1]]

[[ρ, ϕ1Uϕ2]] max
i≥0
{min{[[ρi, ϕ2]], min

0≤j<i
[[ρj , ϕ1]]}}

Table 1: The semantics of LTL[F].

It is not hard to prove, by induction on the structure of the
formula, that for every computation ρ and formula ϕ, it holds
that [[ρ, ϕ]] ∈ [0, 1].

The logic LTL coincides with the logic LTL[F] for F that
corresponds to the usual Boolean operators. For simplicity,
we use the common such functions as abbreviation, as de-
scribed below. In addition, we introduce notations for some
useful functions. Let x, y, λ ∈ [0, 1]. Then,
• x ∨ y = max {x, y} • ¬x = 1− x • Oλx = λx
• x ∧ y = min {x, y} • x⊕λ y = λx+ (1− λ)y

To see that LTL indeed coincides with LTL[F] for F =
{¬,∨,∧}, note that for this F , all formulas are mapped to
{0, 1} in a way that agrees with the semantics of LTL.
Lemma 1 ([Almagor et al., 2016]). For every LTL[F] for-
mula ϕ there exists a finite set V (ϕ) ⊆ [0, 1] of possible sat-
isfaction values, such that for every computation ρ, it holds
that [[ρ, ϕ]] ∈ V (ϕ) and |V (ϕ)| = 2O(ϕ).

2The observant reader may be concerned by our use of max and
min where sup and inf are in order. As proved in [Almagor et al.,
2016], there are only finitely many satisfaction values for a formula
ϕ, thus the semantics is well defined.

The Rational-Synthesis Game Consider sets C and U of
controllable and uncontrollable agents, respectively. Let A =
C ∪ U . The rational-synthesis game (RS-game, for short) is
played among the agents in A. For i ∈ A, agent i assigns
values to a set Xi of Boolean atomic propositions. For all
i 6= j ∈ A, we have that Xi ∩ Xj = ∅. Let X =

⋃
i∈AXi.

Each agent i ∈ A has an objective – an LTL[F] formula ϕi
over X .

A strategy for agent i is a function πi : (2X)∗ → 2Xi ,
mapping the history of the computation so far to an assign-
ment to the atomic propositions of agent i. Let Πi be the
set of possible strategies for agent i. A profile is a vector of
strategies, one for each agent. Let Π =×i∈A Πi denote the
set of all possible profiles. We assume that all agents move
together. That is, given a profile P ∈ Π, the computation
generated when all the agents follow their strategies in P is
ρP = x1, x2, x3, . . . ∈ (2X)ω , where for all j ≥ 0, we have
xj =

⋃
i∈A πi(x1, x2, . . . , xj−1). We refer to ρP as the out-

come of P . For i ∈ A, the profit of agent i in the profile P ,
denoted profiti(P), is the satisfaction value of ϕi in ρP . For
a subset of the agents B ⊆ A, a partial profile is a vector
of strategies for the agents in B, and we let ΠB =×i∈B Πi.
For a profile P we denote by P |B ∈ ΠB its restriction to the
agents in B. A profile P ∈ Π agrees with a partial profile
P ′ ∈ ΠB if P |B = P ′.

In addition to the profits of the individual agents, we are
interested in the welfare of the controllable agents (typically,
they model the authority) and of the society as a whole. A
utility function is a function utility : [0, 1]|A| → [0, 1], which
maps the profits of the agents to an overall utility of the soci-
ety. For convenience, we sometimes refer to the utility func-
tion as utility : Π → [0, 1], namely as one that operates on
profiles rather than on the vector of profits these profiles in-
duce.
Remark 1. The restriction of the range of utility to [0, 1] is
only to conform with the semantics of LTL[F]. Indeed, by
Lemma 1, the domain of utility is finite, hence any range can
be normalized to [0, 1]. We can thus view utility as an LTL[F]
formula ϕutility, defined as ϕutility = utility(ϕ1, . . . , ϕk)
where A = {1, . . . , k}.
Example 1. The richness of LTL[F] allows us to capture
well-studied utility functions. We demonstrate this on several
wellness objectives [Nisan et al., 2007]. Consider a subset
B ⊆ A = {1, . . . , k}.

• In the B-utilitarian function, the utility is the sum of
the profits of all the agents in B. By normalizing, this
can be captured in LTL[F] by introducing the function
utility(v1, . . . , vk) =

∑
i∈B vi
|B| .

• In the B-egalitarian function, the utility is the minimum
among the profits of the agents in B. We capture this by
utility(v1, . . . , vk) = mini∈B{vi}.

• The anti-B-utilitarian social welfare function con-
cerns minimizing the social welfare of a subset of
the hostile agents, and is captured by the function
utility(v1, . . . , vk) = 1−

∑
i∈B vi
|B| .

• The anti-B-egalitarian social welfare function again

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

37

concerns hostile agents, this time minimizing their low-
est utility. We capture this by utility(v1, . . . , vk) =
1−mini∈B{vi}.

For a profile P , an uncontrollable agent i ∈ U , and a
strategy π′i ∈ Πi, let P [i ← π′i] denote the profile ob-
tained from P by replacing the strategy for agent i by π′i.
A profile P ∈ Π is a controllable Nash equilibrium (CNE)
if no uncontrollable agent can benefit from unilaterally de-
viating from his strategy in P to another strategy; i.e., for
every agent i ∈ U and every strategy π′i ∈ Πi, it holds that
profiti(P [i← π′i]) ≤ profiti(P).
Definition 1 (Rational Synthesis). Consider a game G with
agents A = C ∪ U , objectives ϕi for every agent i ∈ A,
and a utility function utility : Π → [0, 1]. We are given a
utility threshold t ∈ [0, 1], and for every agent i ∈ C we
are also given a profit threshold ti ∈ [0, 1]. The weak (coop-
erative) rational synthesis problem is to synthesize a partial
profile PC ∈ ΠC for the controllable agents, such that there
exists a CNE P that agrees with PC , utility(P) ≥ t ,and
for every i ∈ C, it holds that profiti(P) ≥ ti. The strong
(non-cooperative) rational synthesis problem is to synthesize
PC ∈ ΠC such that for all CNEs P that agree with PC , we
have that utility(P) ≥ t and for every i ∈ C, it holds that
profiti(P) ≥ ti.

Consider a utility function utility : Π → [0, 1], a so-
cial optimum (SO, for short) is a profile that maximizes the
utility. We denote its utility by OPT . Thus, OPT =
maxP∈Π utility(P). It is well known that decentralized
decision-making may lead to sub-optimal solutions from the
point of view of society as a whole. We quantify the ineffi-
ciency incurred due to self-interested behavior according to
the price of stability (PoS) and price of anarchy (PoA) [Nisan
et al., 2007, Chapter 17] measures. The PoS measures the
best-case inefficiency of a Nash equilibrium, while the PoA
is the worst-case inefficiency of a Nash equilibrium. Tradi-
tionally, PoS (resp. PoA) is the ratio between OPT and the
maximal (resp. minimal) NE in the game. In a setting where
some of the agents are controllable, however, things become
more intricate. In the following we consider two definitions
of PoS and PoA for our setting.

Consider a partial profile PC ∈ ΠC . A PC-restricted
social optimum (SO(PC), for short) is a profile that agrees
with PC and maximizes the utility. We denote its utility by
OPT (PC). Thus, OPT (PC) = max{utility(P) : P |C =
PC}. We denote by ΥG(PC) the set of CNEs in G that
agree with PC . Thus, P ∈ ΥG(PC) iff P is a CNE and
P |C = PC . Let ΥG denote the set of all CNEs in G.
Definition 2 (Price of Stability and Price of Anarchy). Let
G be a family of games among controllable and uncontrol-
lable agents, and let G be a game in G with sets C and U of
agents.

• The uncontrollable price of stability of G is the ratio be-
tween the utility of the SO and the maximal utility of a
CNE of G. That is, UPoS(G) = OPT

maxP∈ΥG
utility(P) .

• The uncontrollable price of anarchy of G is the ratio be-
tween the utility of the SO and the minimal utility of a
CNE of G. That is, UPoA(G) = OPT

minP∈ΥG
utility(P) .

• The controllable price of stability of G is the minimal
ratio between the utility of the SO and the maximal utility
of a CNE in a fixed profile for the agents in C. That is,

CPoS(G) = minPC∈ΠC

(
OPT (PC)

maxP∈ΥG(PC) utility(P)

)
.

• The controllable price of anarchy of G is the minimal
ratio between the utility of the SO and the minimal utility
of a CNE in a fixed profile for the agents in C. That is,

CPoA(G) = minPC∈ΠC

(
OPT (PC)

minP∈ΥG(PC) utility(P)

)
.

Intuitively, while in the controlled definitions the con-
trolled agents fix their strategies in the SO and the CNE, in
the uncontrollable ones they may use different strategies in
each of the profiles.

Remark 2. In the definitions above, if the set of CNEs in the
denominator is empty, or the denominator equals 0, we treat
the value as∞.

Lemma 2. For every game G, it holds that CPoS(G) ≤
UPoS(G) and CPoA(G) ≤ UPoA(G).

Proof. Consider a profile PC ∈ ΠC for which
maxP∈ΥG(PC) utility(P) = maxP∈ΥG

utility(P). Then,
clearly OPT (PC) ≤ OPT , implying that

OPT (PC)

maxP∈ΥG(PC) utility(P)
≤ OPT

maxP∈ΥG
utility(P)

,

from which we conclude that CPoS(G) ≤ UPoS(G).
The proof that CPoA(G) ≤ UPoA(G) is analogous.

3 On the Stability of the RS Game
Theorem 1. There is an RS game with no CNE.

Proof. The theorem holds already for Boolean games [Har-
renstein et al., 2001], no controllable agents, and the average
utility function. Let X1 = {p}, X2 = {q}, ϕ1 = p XOR q,
and ϕ2 = ¬(p XOR q). There is no CNE, as both agents 1
and 2 can always deviate to a strategy that results in a compu-
tation that satisfies their objective. Formally, for every profile
P , if πP |= ϕ1, then agent 2 can deviate to a strategy in
which the value of q is flipped, resulting in a profile P ′ for
which πP ′ |= ϕ2, and similarly for the case πP |= ϕ2, where
agent 1 has a beneficial deviation.

We now turn to consider stability inefficiency, and show
that the prices of stability and anarchy are in general un-
bounded. The result holds already for games with no control-
lable agents. Note that there, the UPoS and CPoS measures
coincide, and we denote them by PoS, and similarly for PoA.

Theorem 2. The PoA and PoS in the RS game are un-
bounded: For every k ≥ 2 and ε > 0, there exists a k-agent
RS game GA such that PoA(GA) ≥ 1

ε , and a k-agent RS
game GS such that PoS(GS) ≥ 1−ε

ε .

Proof. In both GA and GS , agent i, for 1 ≤ i ≤ k, controls
an atomic proposition xi. In both, the utility function gives a
profit of ε to agent k for satisfying her objective, a profit of

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

38

1−ε
k−1 to agent i, for 1 ≤ i ≤ k−1, for satisfying her objective,
and sums the profits of all agents.

Consider first GA. There, the objective of agent i, for 1 ≤
i ≤ k − 1, is xi ∧ ¬xk, and the objective of agent k is xk ∨
(
∧k−1
i=1 xi). The profile in which xk = false and xi = true

for all 1 ≤ i ≤ k − 1 is an SO in which all objectives are
satisfied, thus OPT (GA) = 1. The profile in which xk =
true and xi = false for every 1 ≤ i ≤ k − 1 is a CNE in
which only agent k satisfies her objective. Thus, the utility in
this profile is ε. Hence, PoA(GA) ≥ 1

ε .
Consider now GS . There, the objective of agent i, for

1 ≤ i ≤ k − 1, is
∧k
i=1 xi, and the objective of agent

k is
∧k−1
i=1 xi ∧ ¬xk. In the profile in which xi = true

for all 1 ≤ i ≤ k, agents 1, . . . , k − 1 satisfy their objec-
tives and agent k does not. Thus, OPT (GS) ≥ 1 − ε. On
the other hand, the only CNE profile is the one in which all
x1, . . . , xk−1 are true and xk = false. There, only agent k
satisfies her objective, thus the utility of the only CNE is ε.
Thus, PoS(GS) ≥ 1−ε

ε .

Note that while the objectives used in the games in the
proof of Theorem 2 are LTL formulas, the utility function is
not uniform. Alternatively, we could have defined a uniform
utility function and use LTL[F] quality operators in order to
weight the agents differently.

Finally, note that the SO profile in the game GA described
in the proof of Theorem 2 is a CNE Since we can add a con-
trollable agent whose objective is to maximize the number
of satisfied uncontrollable agents, we can conclude with the
following.
Theorem 3. The ratio between the PoS and PoA is un-
bounded, and so is the ratio between the profit of the con-
trollable agents in the weak and strong settings of rational
synthesis.

4 Decision Procedures for RS
In this section we solve several decision problems related to
rational synthesis. Our main tools are decision procedures for
Strategy Logic, and the translation of LTL[F] to automata.

Strategy Logic [Mogavero et al., 2014] (SL, for short) is a
logic that allows to quantify over strategies in games as ex-
plicit first-order objects. Intuitively, such quantification, to-
gether with a syntactic operator called binding, enables the
formula to quantify restricted classes of strategy profiles, in-
ducing a subset of paths in which a temporal specification
needs to be satisfied.

From a syntactic point of view, SL is an extension of LTL
with disjoint sets of strategy variables V0, . . . , Vk, where Vi is
a set of strategy variables for agent i, existential (〈〈xi〉〉) and
universal ([[xi]]) strategy quantifiers, and a binding operator
of the form (i, xi), which couples an agent i with one of its
variables xi ∈ Vi.

We first introduce some technical notation. For a tuple
t = (t0, . . . , tk), we denote by t[i← d] the tuple obtained
from t by replacing the i-th component with d. We use ~x as
an abbreviation for the tuple (x0, . . . , xk) ∈ V0 × . . . × Vk.
By 〈〈~x〉〉 = 〈〈x0〉〉 . . . 〈〈xk〉〉, [[~x]] = [[x0]] . . . [[xk]], and [(~x) =
(0, x0) . . . (k, xk) we denote the existential and universal

quantification, and the binding of all the agents to the strat-
egy profile variable ~x, respectively. Finally, by [(~x−i, yi) =
(0, x0) . . . (i, yi) . . . (k, xk) we denote the changing of bind-
ing for agent i from the strategy variable xi to the strategy
variable yi in the global binding [(~x).

Here we define and use a slight variant of the Boolean-Goal
fragment of SL, namely SL[BG], introduced in [Mogavero et
al., 2014]. Formulas in SL[BG] are defined with respect to the
set AP of atomic proposition, the set A of agents, and sets Vi
of strategy variables for agent i ∈ A. The set of SL[BG]
formulas is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ
〈〈xi〉〉ϕ | [[xi]]ϕ | [(~x)ϕ,

where, p ∈ AP is an atomic proposition and xi ∈ Vi is a
variable for agent i.

The LTL part has the classical meaning. The formula
〈〈xi〉〉ϕ states that there exists a strategy for agent i such that
the formula ϕ holds. The formula [[xi]]ϕ states that, for all
possible strategies for agent i, the formula ϕ holds. Finally,
the formula [(~x)ϕ states that the formula ϕ holds under the
assumption that the agents in A adhere to the strategy evalu-
ation of the variable xi coupled in [(~x).

For a more detailed definition of the semantics, the reader
is referred to [Mogavero et al., 2014]

The alternation depth of an SL formula is the maximum
number of quantifier switches 〈〈xi〉〉[[xj]] or [[xi]]〈〈xj〉〉 in the
formula. As in first-order logic, the alternation depth plays an
important role in the complexity:

Theorem 4. [Mogavero et al., 2014] The model-checking
problem for SL[BG] can be solved in (d+ 1)EXPTIME, with
d being the alternation depth of the specification.

For LTL[F], we use the following:

Theorem 5. [Almagor et al., 2016] Let ϕ be an LTL[F] for-
mula and V ⊆ [0, 1] be a predicate.

1. There exists a nondeterministic generalized-Büchi au-
tomaton Aϕ,V such that for every computation ρ ∈
(2AP)ω , it holds that [[ρ, ϕ]] ∈ V iff Aϕ,V accepts ρ.
Furthermore, Aϕ,V has at most 2(|ϕ|2) states and its in-
dex is at most |ϕ|.

2. There exists an LTL formula Bool(ϕ, V), of length at
most exponential in ϕ, such that for every computa-
tion ρ ∈ (2AP)ω , it holds that [[ρ, ϕ]] ∈ V iff ρ |=
Bool(ϕ, V).

A particularly useful case of Theorems 5 is when V = [t, 1]
(resp. V = [t, t]) for some threshold t. In this case, we denote
Bool(ϕ, V) by ϕ≥t (resp. ϕ=t).

Solving Rational Synthesis We now turn to show how to
solve the RS problem. Our solution relies on a combination
of techniques for LTL[F] and SL. We first reduce the RS
problem into a simpler form.

An RS game is simple if A = {α0} ∪ U , where α0 is a
single controllable agent and its objective is a (Boolean) LTL
formula ϕ0 with threshold t0 = 1. In addition, the game does
not have a utility function; i.e., it is a constant function that

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

39

can be ignored when solving the problem. It is not hard to
transform a given RS game G into a simple one:
Lemma 3. Given an RS game G with LTL[F] objectives, we
can construct a simple game G′ with LTL[F] objectives such
that G has a solution for weak/strong RS iff G′ has a solution
for weak/strong RS. Moreover, a solution G can be extracted
from a solution in G′.

We now solve the RS problems for simple games.
Theorem 6. Solving a simple weak or strong RS game with
LTL[F] objectives can be reduced to model-checking an
SL[BG] formula of alternation depth 1 or 2, respectively.

Proof. For an agent i ∈ U and its LTL[F] objective ϕi, con-
sider the SL[BG] formula with free variables ~y and ~y′ defined
as Φi(~y, ~y′) =

∧
t∈V (ϕi)

([(~y)ϕ=t
i → [(~y′)ϕ≤ti), and stat-

ing that, for every threshold value t, whenever the value of
ϕi on the run generated by the profile ~y is t, then the value
of ϕi on the run generated by the profile ~y′ is less or equal
than t. Observe that, by means of this formula, we can ex-
press the fact that ~y is an NE over the uncontrollable agents
as ϕNE(~y) = [[~x]]

∧
i∈U Φi(~y, (~y−i, xi)).

Now, we can specify solutions to the weak and strong RS
problems by the following formulas: 3

• ΦwRS = 〈〈~yα0〉〉〈〈~yU 〉〉(ϕNE(~y) ∧ [(y)ϕ≥1
0), and

• ΦsRS = 〈〈~yα0
〉〉[[~yU]](¬ϕNE(~y) ∨ [(y)ϕ≥1

0).

Note that that ΦwRS and ΦsRS are SL[BG] formulas of al-
ternation depth at most 1 and 2, respectively. Indeed, the
formula ϕNE(~y) contains only a sequence of universal quan-
tifications that, combined with the existential quantifications
on top of the formula ΦwRS , gives an alternation depth 1.
For the case of strong RS, the formula ¬ϕNE contains a se-
quence of existential quantifications that, combined with the
quantifications on top of ΦsRS , produces an alternation dept
of 2.

Thus, weak and strong RS is reduced to model checking
the SL formulas ΦwRS and ΦsRS , respectively.

We should, however, take care when analyzing the com-
plexity of the procedure, for two reasons: first, the formulas
Φi(~y, ~y′), which occur in ΦwRS , involve a conjunction over
the set of satisfaction values of every ϕi, and second, the for-
mulas ϕ=t

i and ϕ≤ti , as well as ϕ≥1
0 , may themselves be of

exponential length, as per Theorem 5(2).
To overcome these additional exponential blow-ups, we

proceed as follows. First, we notice that the model-checking
algorithm in [Mogavero et al., 2014, Lemma 5.6] translates
LTL into automata. Theorem 5(1) allows us to perform a sim-
ilar translation from LTL[F] with only a single exponential
blowup. To address the exponential conjunction in Φi(~y, ~y′),
we use universal automata, rather than nondeterministic ones.
Thus, we take the intersection of an exponential number of
universal automata of size exponential. The result is expo-
nential, and we can then proceed with the algorithm of [Mo-
gavero et al., 2014].

3For simplicity, we assume that ~yα0 and ~yU are the vectors of the
controllable and uncontrollable agents, respectively.

Hence, the overall complexity is that of exponentially
many iterations of a doubly or triply exponential procedure,
which remains doubly or triply exponential, respectively.

Combining Lemma 3, Theorem 6, Theorem 4, and the
blow-ups and complexities in their proofs, we get a 2EX-
PTIME upper bound to the weak and a 3EXPTIME upper
bound to the strong RS problems with LTL[F] objectives. A
matching lower bound for the weak RS follows from hard-
ness in 2EXPTIME to the problem for LTL [Kupferman et
al., 2016].

Corollary 1. The weak and strong RS problems with LTL[F]
objectives are 2EXPTIME-complete and in 3EXPTIME, re-
spectively.

Computing PoS and PoA In this section we consider the
problem of computing the stability measures UPoS, UPoA,
CPoS and CPoA for an RS game G. Since the range of the
utility function is finite, the possible values of the stability
measures are also finite. We therefore focus on the deci-
sion version of the problem, namely deciding whether e.g.,
UPoS(G) ≤ t for a given threshold t. We show that while
computing UPoS and UPoA can be reduced to the RS prob-
lem, computing CPoS and CPoA is more involved, as we have
to go over all possible profiles of the controllable agents.

We start with the uncontrollable measures (i.e., UPoS
and UPoA), and compute their value by separately com-
puting OPT and maxP∈ΥG

utility(P) (for UPoS) or
minP∈ΥG

utility(P) (for UPoA), as described below.

Theorem 7. Given an RS game G with LTL[F] objec-
tives and a threshold t, deciding whether UPoS(G) ≤ t is
2EXPTIME-complete, while deciding whether UPoA(G) ≤ t
can be solved in 3EXPTIME.

Proof. We consider the case of UPoS(G), handling
UPoA(G) is analogous. Thus, we want to decide whether

OPT
maxP∈ΥG

utility(P) ≤ t. We start by computing OPT , which
amounts to computing the maximal satisfaction value of the
LTL[F] formula utility(ϕ0, . . . , ϕn), where ϕ0, . . . , ϕn are
the objectives for the players. By [Almagor et al., 2016],
this can be done in PSPACE. Once OPT is computed, it re-
mains to decide whether maxP∈ΥG

utility(P) ≥ OPT
t . This

amount to solving the weak RS problem for G with threshold
OPT
t for the utility, and no thresholds (i.e., threshold 0) for

the players.

The controllable setting poses a bigger challenge, as we
have to fix the profile PC with which we computeOPT (PC)
and e.g., maxP∈ΥG(PC) utility(P). We address this by for-
malizing the problem in SL.

Theorem 8. Given an RS game G with LTL[F] objec-
tives and a threshold t, deciding whether CPoS(G) ≤ t is
2EXPTIME-complete, while deciding whether CPoA(G) ≤ t
can be solved in 3EXPTIME.

Proof. We consider here the case of CPoS(G), han-
dling CPoA(G) is similar. Thus, we want to de-
cide whether there is a partial profile PC ∈ ΠC

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

40

such that OPT (PC)
maxP∈ΥG(PC) utility(P) ≤ t. Consider the set

Range(utility) = {u1, . . . , um} of possible values of utility.
By Lemma 1, we have that m is single exponential in the de-
scription of G. Let T = {(t1, t2) : t1, t2 ∈ Range(utility) ∧
t1/t2 ≤ t}. Then, CPoS(G) ≤ t iff there exist (t1, t2) ∈ T
and a partial profile PC ∈ ΠC such that OPT (PC) ≤ t1
and maxP∈ΥG(PC) utility(P) ≥ t2. Equivalently, the latter
condition means that there exists a CNE P ∈ Π that agrees
with PC and for which utility(P) ≥ t2.

Accordingly, given (t1, t2) ∈ T , we can formu-
late the above in SL as follows: ΦCPoS(t1, t2) =
〈〈~xC〉〉([[~yU]][(xC , yU)ϕ<t10 ∧ 〈〈~zU 〉〉[(xC , zU)(ϕNE(zU) ∧
ϕ>t20)). Finally, we can decide whether CPoS(G) ≤ t by
model checking the formula

∨
(t1,t2)∈T ΦCPoS(t1, t2). Note

that this can be done in 2EXPTIME using similar arguments
as those made in Section 4.

Remark 3. Recall the measures of B-utilitarian and B-
egalitarian (and their anti- variants) [Nisan et al., 2007] dis-
cussed in Example 1. As demonstrated there, for every game
with LTL[F] objectives, and every measure ν, we can de-
scribe the utility function that corresponds to ν by an LTL[F]
formula of linear size. Hence, calculation of the measures can
be reduced to solving an RS game and is between 2EXPTIME
and 3EXPTIME, according to which kind of RS is required
to be used.

Acknowledgments
We are grateful to Bastien Maubert for the careful reading and
for detecting an error in the complexity analysis of the strong
rational-synthesis problem in an earlier version of this paper.

References
[Almagor et al., 2015] S. Almagor, G. Avni, and O. Kupferman.

Repairing Multi-Player Games. In CONCUR’15, pages 325–339,
2015.

[Almagor et al., 2016] S. Almagor, U. Boker, and O. Kupferman.
Formalizing and reasoning about quality. J. ACM, 63(3), 2016.

[Anshelevich et al., 2008] E. Anshelevich, A. Dasgupta, J. Klein-
berg, E. Tardos, T. Wexler, and T. Roughgarden. The price of
stability for network design with fair cost allocation. SIAM J.
Comput., 38(4):1602–1623, 2008.

[Condurache et al., 2016] R. Condurache, E. Filiot, R. Gentilini,
and J. Raskin. The complexity of rational synthesis. In Proc.
ICALP’16, pages 121:1–121:15, 2016.

[Faella et al., 2008] M. Faella, A. Legay, and M. Stoelinga. Model
checking quantitative linear time logic. Electr. Notes Theor. Com-
put. Sci., 220(3):61–77, 2008.

[Fisman et al., 2010] D. Fisman, O. Kupferman, and Y. Lustig. Ra-
tional synthesis. In Proc. 16th TACAS, LNCS 6015, pages 190–
204, 2010.

[Gutierrez et al., 2015] J. Gutierrez, P. Harrenstein, and
M. Wooldridge. Iterated Boolean Games. Information and
Computation, 242:53–79, 2015.

[Gutierrez et al., 2016] J. Gutierrez, G. Perelli, and M. Wooldridge.
Imperfect Information in Reactive Modules Games. In Proc.
KR’16, pages 390–400, 2016.

[Gutierrez et al., 2017a] J. Gutierrez, A. Murano, G. Perelli, S. Ru-
bin, and M. Wooldridge. Nash equilibria in concurrent games
with lexicographic preferences. In Proc. IJCAI’17, pages 1067–
1073, 2017.

[Gutierrez et al., 2017b] J. Gutierrez, G. Perelli, and
M. Wooldridge. Iterated games with LDL goals over finite
traces. In Proc. AAMAS’17, pages 696–704, 2017.

[Gutierrez et al., 2018] J. Gutierrez, G. Perelli, and M. Wooldridge.
Imperfect information in reactive modules games. Information
and Computation, 2018. Article in Press.

[Harel and Pnueli, 1985] D. Harel and A. Pnueli. On the develop-
ment of reactive systems. In Logics and Models of Concurrent
Systems, pages 477–498. Springer, 1985.

[Harrenstein et al., 2001] P. Harrenstein, W. van der Hoek,
J. Meyer, and C. Witteveen. Boolean games. In Proc. 8th TARK,
pages 287–298, 2001.

[Koutsoupias and Papadimitriou, 2009] E. Koutsoupias and C. Pa-
padimitriou. Worst-case equilibria. Computer Science Review,
3(2):65–69, 2009.

[Kupferman et al., 2016] O. Kupferman, G. Perelli, and M.Y.
Vardi. Synthesis with rational environments. Ann. Math. Artif.
Intell., 78(1):3–20, 2016.

[Mogavero et al., 2010] F. Mogavero, A. Murano, and M.Y. Vardi.
Reasoning About Strategies. In Proc. 30th FSTTCS, LIPIcs 8,
pages 133–144, 2010.

[Mogavero et al., 2012] F. Mogavero, A. Murano, G. Perelli, and
M.Y. Vardi. What Makes ATL* Decidable? A Decidable Frag-
ment of Strategy Logic. In Proc. 23rd CONCUR, LNCS 7454,
pages 193–208, 2012.

[Mogavero et al., 2014] F. Mogavero, A. Murano, G. Perelli, and
M.Y. Vardi. Reasoning About Strategies: On the Model-
Checking Problem. ACM Transactions on Computational Logic,
15(4):34:1–47, 2014.

[Mogavero et al., 2017] F. Mogavero, A. Murano, G. Perelli, and
M. Y. Vardi. Reasoning about strategies: on the satisfiability
problem. Logical Methods in Computer Science, 13(1), 2017.

[Nash, 1950] J.F. Nash. Equilibrium points in n-person games. In
Proceedings of the National Academy of Sciences of the United
States of America, 1950.

[Nisan and Ronen, 1999] N. Nisan and A. Ronen. Algorithmic
mechanism design. In Proc. 31st STOC, pages 129–140, 1999.

[Nisan et al., 2007] N. Nisan, T. Roughgarden, E. Tardos, and V.V.
Vazirani. Algorithmic Game Theory. Cambridge University
Press, 2007.

[Papadimitriou, 2001] C. H. Papadimitriou. Algorithms, games,
and the internet. In Proc. 33rd STOC, pages 749–753, 2001.

[Pnueli and Rosner, 1989] A. Pnueli and R. Rosner. On the synthe-
sis of a reactive module. In Proc. 16th POPL, pages 179–190,
1989.

[Wooldridge et al., 2016] M. Wooldridge, J. Gutierrez, P. Harren-
stein, E. Marchioni, G. Perelli, and A. Toumi. Rational verifi-
cation: From model checking to equilibrium checking. In Proc.
AAAI’16, pages 4184–4191. AAAI Press, 2016.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

41

