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Abstract
Facial attribute recognition is an important and yet
challenging research topic. Different from most
previous approaches which predict attributes only
based on the whole images, this paper leverages fa-
cial parts locations for better attribute prediction. A
facial abstraction image which contains both local
facial parts and facial texture information is intro-
duced. This abstraction image is generated by a
Generative Adversarial Network (GAN). Then we
build a dual-path facial attribute recognition net-
work to utilize features from the original face im-
ages and facial abstraction images. Empirically, the
features of facial abstraction images are comple-
mentary to features of original face images. With
the facial parts localized by the abstraction images,
our method improves facial attributes recognition,
especially the attributes located on small face re-
gions. Extensive evaluations conducted on CelebA
and LFWA benchmark datasets show that state-of-
the-art performance is achieved.

1 Introduction
Facial attribute recognition has received extensive research
attention over the past decades. Facial attributes are used to
describe the person characteristics of a face image. Learning
to predict facial attributes can not only be used as the inter-
mediate representations for other learning tasks such as face
recognition [Wang et al., 2017b; Hu et al., 2017], but also di-
rectly useful for real-world applications such as face retrieval
[Siddiquie et al., 2011], and intelligent retail. For example,
analyzing facial attributes can automatically detect the age
and gender of customers in the shopping malls and thus helps
these commercial agents to accumulate and understand the
Big Data of customer styles.
∗This work was done when Keke He was an intern at Tencent

Youtu Lab. The first two authors contributed equally to this paper.
†Yu-Gang Jiang is the corresponding author.

Learning a robust model for facial attribute recognition is
very challenging primarily due to the difficulties of parsing
input face images. Specifically, the input face images may
contain very noisy and dynamic background, e.g., the scene
of a shopping mall. This background information may nega-
tively affect the recognition process of facial attributes. Fur-
thermore, most types of facial attributes (e.g., eyeglasses, or
arched eyebrows) can be localized to some particular regions
of faces. For example, the “wearing hat” attribute is mostly
corresponding to the hair part of human faces without needing
the information from other parts of the image, say, the mouth.
Isolating the local regions to learn each type of attribute can
help facial attribute recognition.

To directly parse the local parts of faces, previous works
either use the landmarks to crop face region by bounding box
[Kumar et al., 2009], or directly segment the face images
into facial parts [Kalayeh et al., 2017]. The former methods
may include the undesirable parts. For instance, if using the
bounding box to crop the hair part, it may crop the whole face
region if the person has long hair. The latter one may result in
losing the details of texture information. This detailed infor-
mation is nevertheless very critical for facial attribute recog-
nition. In contrast, this paper “isolates” the important factor
to predict the facial attributes with the facial abstraction task.
We aim at generating abstracted facial regions from original
face images that is possible to remove the useless background
but still contains the facial part locations information.

The facial abstraction task is inspired by the task of fa-
cial segmentation which parses the face images into mean-
ingful facial parts. The key difference is that our facial ab-
straction task will require the parsing algorithm to save as
much texture information from the original images as pos-
sible. Essentially, facial abstraction process can be imple-
mented by the recent Generative Adversarial Network (GAN)
model [Goodfellow et al., 2014]. After obtaining the syn-
thesized facial abstraction image, the original image and ab-
stracted image are fed into a dual-path network which con-
tains original image subnet and abstraction image subnet. To
further leverage the information from the abstraction sub-
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Figure 1: Overview of the proposed architecture. The facial abstraction net is based on pix2pixHD.

net, the feature maps of the abstraction subnet are passed
to original image subnet. Finally, these two features are
concatenated for final attribute recognition. Our attribute
recognition network is trained in an end-to-end manner. We
evaluate our proposed framework on benchmarks including
CelebA [Liu et al., 2015b], LFWA [Huang et al., 2007;
Liu et al., 2015b] face attribute datasets and the experiment
results significantly outperform the state-of-the-art alterna-
tives.

In summary, our main contribution is to propose a system-
atic way of harnessing synthesized abstraction images to help
improve facial attribute recognition. In particular, (1) To the
best of our knowledge, we for the first time utilize the GAN
model to generate the facial abstraction images which con-
tain the part locations and textual information. (2) We are the
first to propose a dual-path network to combine the synthe-
sized abstraction images and original images to help attribute
recognition. (3) We show that attribute recognition can be im-
proved with the help of abstraction images. We evaluate the
framework on two benchmark datasets, and the experimental
results validate the effectiveness of our method.

2 Related Work
Facial Attribute Recognition. In term of distinctive learn-
ing paradigm, the facial attribute recognition can be divided
into two categories: part-based and holistic approaches. For
the part-based method, it contains an attribute-related part de-
tector and then extracts features on the localized facial parts.
[Kumar et al., 2009] employed hand-crafted features to parse
pre-defined facial parts to facilitate training SVM for facial
attribute recognition. [Zhang et al., 2014] employed poselets
[Bourdev et al., 2011] to detect body parts to extract Con-
volutional Neural Network (CNN) features of the localized
parts.

On the other hand, various deep multi-task architectures
[Liu et al., 2015b; Rudd et al., 2016; Lu et al., 2017;
Han et al., 2017] are holistically learned for facial attribute

recognition. Comparing with all these previous methods, the
GAN model is learned in our framework to parse facial parts
to better help attribute prediction. [Ding et al., 2017] de-
signed a weakly-supervised face region aware network to au-
tomatically detect face regions, while ours learns a GAN to
obtain parts locations.

[Kalayeh et al., 2017] employed the semantic segmentation
to improve facial attribute prediction; in contrast, we utilize
synthesized abstraction images. Specifically, (1) Different
frameworks to generate segmentation/abstraction: [Kalayeh
et al., 2017] adopted an encoder-decoder in generating the
segmentation, rather than the synthesized abstraction images
produced by GAN in our framework. (2) Different ways of
using segmentation/abstraction for prediction. The segmen-
tation images are used in [Kalayeh et al., 2017] as masks
to pool/gate the activations (features) for prediction. In con-
trast, our synthesized abstraction images are directly used to
train a network for attribute prediction. Critically, the net-
work trained by synthesized images is able to achieve rela-
tive competitive results compared with the other baselines as
shown in Tab. 1, Tab. 3, Tab. 4 and Tab. 5.
Face Segmentation and Face Inpainting. Face segmenta-
tion is also called as face parsing. It gives a semantic class
label to every pixel in a face image, results in segmenting the
input face image into semantic regions, e.g, hair, eyes and
nose for further analysis. Researchers have developed sev-
eral face segmentation methods based on Conditional Ran-
dom Field (CRF), exemplar [Smith et al., 2013] and deep
neural network [Liu et al., 2015a]. For the exemplar-based
methods, [Smith et al., 2013] proposed a method based on
transferring labeling masks from registered exemplars images
to the test image in a pixel-wise manner. For the deep neu-
ral network based methods, [Luo et al., 2012] developed a
deep parsing framework based on deep hierarchical features
and separately trained models. [Liu et al., 2015a] proposed
a multi-objective deep network that can jointly learn pixel-
wise likelihoods and pairwise label dependencies. Similarly,
face inpainting refers to the technique of modifying a face
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image with partial occlusions due to sunglasses and hand in
a seamless manner. An early attempt to inpainting is by [Mo
et al., ], which reconstructed the occluded region of a face
by a linear combination of several face images. Recently,
[Jampour et al., 2017] introduced a data-driven approach
which made use of inferred high-level facial attributes, such
as gender, ethnicity, and expression. There are some methods
which use generative model to inpainting [Pathak et al., 2016;
Yeh et al., 2017]. [Yeh et al., 2017] proposed a method that
learned to generate the missing content by searching for the
closest encoding of the corrupted image in the latent image
manifold. Different from face segmentation and face inpaint-
ing tasks, our facial abstraction task not only generates the fa-
cial parts but also contains an amount of textual information.
The generated results are basically learned and abstracted
from a large amount of training data. Thus the abstracted im-
age results are not only based on the input image but also get
affected by those images that are mostly similar to the input
image.

3 Methodology
We propose a dual-path deep convolutional neural network
for facial attribute recognition. The framework is illustrated
in Fig. 1. It is composed of a facial abstraction network and
a facial attribute prediction network. The facial attribute pre-
diction network is composed of two subnets. The features of
two subnets are concatenated after batch normalization [Ioffe
and Szegedy, 2015]. The concatenated features are used for
the final attribute recognition by a sigmoid cross entropy loss
layer. Each component will be described next, including the
face attribute recognition problem in Sec. 3.1 and the struc-
ture of base attribute recognition network in Sec. 3.2. Then
we will introduce the way to generate abstraction images in
Sec. 3.3. Finally, the training process will be discussed in
Sec. 3.4.

3.1 Problem Setup
We aim to learn the attribute classifiers that can predict the
existence of attributes of face images. Assume we have the
training dataset Ds = {I,a,L} with N training images and
M attributes. I denotes the training instances, a is the at-
tribute names and L denotes the labels. If the i-th image
Ii, (i = 1, · · · , N) is annotated to have the j−th attribute
aj (j = 1, · · · ,M), we denote Lij = 1; otherwise, Lij = 0.
Given a unseen test image I?, the goal is then to learn a map-
ping function a? = Ψ (I?) using all available training infor-
mation and predict the attribute vector a?. As each image can
be labelled with multiple attributes, the predicting functions
can be written as Ψ = [ψj ]j=1,··· ,M , and ψj (I?) ∈ {+1, 0}.

3.2 Basic Attribute Prediction Network
Our basic attribute prediction network is illustrated in Fig. 2.
It includes the convolutional layers, pooling layers, fully con-
nected layers and residual block layers [He et al., 2015].
Convolutional Layers. This type of layer pre-processes the
input image for the following steps. In particular, the first
convolutional layer is set as 7×7 kernel size in order to guar-
antee a large receptive field. For all the other convolutional

Figure 2: The structure of our basic attribute prediction network. It
is based on ResNet50. Note that: GAP represents the global average
pooling layer.

layers, the kernel size is 3 × 3. Except for the first convo-
lutional layer, all the other convolutional layers are used to
construct two types of residual blocks – Resblock A and Res-
block B.

Residual Block Layers. For all the residual blocks, it has
3 convolutional filters as the main road. (1) In ResBlock A,
there is one convolutional filter on the side road. (2) In Res-
Block B, there is a bypass directly to the output. Finally, these
two roads are connected by an element-wise sum operation.
After the final residual block, Global Average Pooling (GAP)
layer is applied to produce a 2048-D vector representation.

Fully Connected Layers. This layer converts 2048-D fea-
tures to M attribute values, where M is the number of at-
tributes. This basic structure is used to construct two subnets
in our dual-path attribute prediction model. In the previous
methods, the Euclidean loss is used as the loss function [Rudd
et al., 2016]. In contrast, we train the network using sigmoid
cross entropy loss, which is shown better at predicting the
facial attributes in the experiments.

3.3 Facial Abstraction Network

The facial abstraction network aims at synthesizing an ab-
straction of the image from the original image. The recent
GAN-based method is applied for such purpose. Essentially,
GAN has two components: the generator and the discrimi-
nator. The generator aims at learning to synthesize images
that are indistinguishable from the natural images, while the
discriminator is optimized to differentiate the synthesized im-
ages from the real natural images. In particular, we utilize the
pix2pixHD [Wang et al., 2017a] to learn to generate the facial
abstraction image. It has two components: a coarse-to-fine
generator G and a multi-scale discriminator D.

The pix2pixHD tries to produce a realistic natural image by
a given segmentation image. In contrast, as shown in Fig. 1,
our method takes the natural images as the input and gen-
erates the abstracted face images. Our training data is a set
of pairs of images (ri, ai), where ri is the real images and
ai is the corresponding abstraction images. Our GAN aims
to model the conditional distribution of abstraction images
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Figure 3: Comparing the face segmentation and abstraction results
on Helen testing set. The first row is the original images. The second
row is the segmentation result generated by Deeplabv2; images are
colored by the 11 ground truth labels. The third row is our facial
abstraction result.

given the real images by the following objective function,

min
G

max
D
LGAN(G,D) = Er,a∼pdata(r,a) [logD (r, a)] (1)

+Er∼pdata(r) [log (1−D (r,G (r)))] ,

In particular, the pix2pixHD used 3 discriminators (D1,D2

and D3) corresponding to three scales of images. The down-
sampling operators are conducted on the real and synthesized
images by a factor of 2 and 4 respectively, in order to get the
images used forD2 andD3 respectively. Thus we can formu-
late learning GAN as a multi-task learning problem as,

min
G

max
D1,D2,D3

3∑
k=1

LGAN(G,Dk) (2)

Our facial abstraction images are also compared against the
results of face segmentation produced by Deeplabv2 [Chen et
al., 2016]. The visualization results are shown in Fig. 3. The
first, second and third rows are the images of original, face
segmentation and facial abstraction respectively. Apparently,
the facial abstraction images have saved more texture infor-
mation than segmentation images. The details of training pro-
cedure will be described in 4.1.

3.4 Training Process
In this section, we will describe the training process which
leverages information from the facial abstraction images. The
original face images and abstraction images are paired as the
input to the network, these two kinds of images go to the two
subnets: original image subnet and abstraction image subnet
respectively. As these two images have a different visual ap-
pearance, to fully explore the information in the two input im-
ages, the weights of two subnets are unshared. Global average
pooling is applied after the last residual block layer and then
the features from two subnets are obtained. Additional batch
normalization layer is added to normalize two types of fea-
tures. The normalized features are concatenated to generate

the final features to predict attributes. In order to better lever-
age the abstraction image information, the connections from
the abstraction subnet to the original subnet are added. Spe-
cially, after each residual block, the output feature maps of
the abstraction image are passed to the original subnet. These
two outputs are fused by an element-wise max operation.

4 Experiments
4.1 Datasets and Experimental Settings
We conduct experiments on two most widely used datasets.
(1) CelebA contains 202,599 images of approximately 10k
identities [Liu et al., 2015b]. Each image is annotated with
40 binary attributes. For a fair comparison with the other
methods, we follow the standard split here: the first 162, 770
images are used for training, 19, 867 images for validation
and remaining 19, 962 for testing. CelebA provides the pre-
cropped face images and we use cropped images to train and
test attribute models same as the other methods [Rudd et al.,
2016]. (2) LFWA [Liu et al., 2015b] is constructed based on
face recognition dataset LFW [Huang et al., 2007]. LFWA
has a total of 13,232 images of 5,749 identities with pre-
defined train and test splits which divide the entire dataset
into two approximately equal partitions. We follow the parti-
tion of data to train and test our model. In LFWA, each image
has 40 binary facial attributes, the same as CelebA.
Evaluation Metrics. The facial attribution recognition can
be taken as the problem of classification tasks. To evaluate
the performance, (1) mean accuracy (acc) over all attributes
is computed. This metric has also been used in previous work
[Liu et al., 2015b]. (2) Further, we find the positive and neg-
atives instances per attribute are extremely imbalanced in the
CelebA dataset. For example, for the “Bald” attribute, we
can get a high accuracy of 97.88% if predicting all the test
images have no bald. To appropriately evaluate the quality of
different methods, following the evaluation metrics used in
pedestrian attribute recognition problem [Li et al., 2016], we
add four more evaluation metrics, a label-based metric mean
balanced-accuracy, short in bal-acc, and three instance-based
metrics, i.e. precision (prec), recall (rec) and F1-score (F1).
Formally, the acc and bal-acc can be calculated as,

acc =
1

M

M∑
i=1

(Ti/N) (3)

bal − acc =
1

2M

M∑
i=1

(TPi/Pi + TNi/Ni) (4)

whereM is the total number of attributes; N and Ti are the
numbers of examples and correctly predicted examples; Pi

and TPi are the numbers of positive examples and correctly
predicted positive examples; Ni and TNi are the numbers of
negative examples and correctly predicted negative examples.
Parameter Settings. We use the open source deep learning
framework Caffe [Jia et al., 2014] to train our network. For
all the experiments, we only use a single end-to-end model
for testing. We use the stochastic gradient descent algorithm
to train our models. (1) On CelebA dataset, the weights of
convolutional layers are initialized by the ResNet50 [He et
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Methods Accuracy (%)
[Kumar et al., 2008] FaceTracer 81.12
[Zhang et al., 2014] PANDA-w 79.00
[Zhang et al., 2014] PANDA-l 85.00
[Liu et al., 2015b] LNets+ANet 87.30

[Ehrlich et al., 2016] MT-RBM-PCA 87.00
[Zhong et al., 2016] Off-the-Shelf CNN 86.60

[Wang et al., 2016] Walk-and-Learn 88.00
[Rudd et al., 2016] Rudd et al. Separate 90.22

[Rudd et al., 2016] Rudd et al. Moon 90.94
[Lu et al., 2017] SOMP-branch-32 90.74

[Hand and Chellappa, 2017] MCNN-AUX 91.26
[Ding et al., 2017] PaW 91.23

[Kalayeh et al., 2017] Avg. Pooling 90.86
[Kalayeh et al., 2017] SSG 91.62
[Kalayeh et al., 2017] SSP 91.67

[Kalayeh et al., 2017] SSP+SSG 91.80
Original 91.50

Abstraction 90.36
Ours 91.81

Table 1: Comparison of mean accuracy on CelebA with state-of-the-
art methods.

al., 2015] network that is pre-trained on ImageNet dataset.
The base learning rate is set as 0.001 and gradually decreased
by 1/10 at 20k, 45k iterations. The input image is resized to
224× 224. (2) On LFWA dataset, due to the relatively small
number of training samples (6k), we adopt a smaller network
structure ResNet18 [He et al., 2015] to avoid overfitting. The
base learning rate is still set as 0.001 and gradually decreased
by 1/10 at 1k, 2k iterations.
Running Costs. Our model trained on CelebA dataset gets
converged with 46k iterations and it takes 10 hours with one
NVIDIA Tesla M40 GPU. Our model trained on LFWA gets
converged with 2.5k iterations and it takes half an hour. For
training all the model, the batch size is 20, and it takes around
22 GB GPU memory.
Facial Abstraction Networks. This network is trained by
the Helen dataset, which is a widely used dataset for face
parsing. [Le et al., 2012; Smith et al., 2013]. In this dataset,
each image is annotated with 11 segment classes. These la-
bels are as follows: background, face skin (excluding ears and
neck), left eyebrow, right eyebrow, left eye, right eye, nose,
upper lip, inner mouth, lower lip, and hair. It is composed of
total 2, 330 images and divided into 2, 000 training images,
230 validation images, and 100 testing images. We train face
abstraction model on the training images. To generate the
ground truth abstraction images, we use the codes of [Liu et
al., 2015a] which saves the textual information. To train the
facial abstraction model, we use the codes of [Wang et al.,
2017a]. As our GAN learns the distribution of training data
(including textual information), we can generate images with
textual information. Our input image and the label image are
resized to 256× 256. We use Adam with the learning rate of
0.0002 to optimize our abstraction network. The batch size is
1. We train the network with 200 epochs. It takes 37 hours

Attributes Original Images(%) Our Model (%)
ArchedEyebrows 84.28 85.15
BagsUnderEyes 85.27 85.77
BushyEyebrows 92.77 93.07

Eyeglasses 99.68 99.72
NarrowEyes 87.85 87.81

Table 2: Comparison of eye/eyebrow related attributes on CelebA
with baseline model.

Methods Accuracy (%)
[Kumar et al., 2008] FaceTracer 73.93
[Zhang et al., 2014] PANDA-w 79.00
[Zhang et al., 2014] PANDA-l 81.00

[Liu et al., 2015b] LNets+ANet(w/o) 79.00
[Liu et al., 2015b] LNets+ANet 84.00

[Kalayeh et al., 2017] Avg. Pooling 85.27
[Kalayeh et al., 2017] SSG 86.13
[Kalayeh et al., 2017] SSP 86.80

[Kalayeh et al., 2017] SSG+SSP 87.13
ResNet18 + SVM 82.35
ResNet50 + SVM 83.09

Original 84.79
Abstraction 83.64

Ours 85.28

Table 3: Comparison of mean accuracy on LFWA datasets with
state-of-the-art methods.

with one NVIDIA Tesla M40 GPU and needs around 13 GB
GPU memory. We then apply the abstraction network to the
face attribute recognition datasets. Even very few numbers of
Helen training data used in our training process, the abstrac-
tion model is able to color various facial regions successfully
in unseen images. Later, we evaluate our proposed attribute
prediction model where these abstraction cues are utilized to
improve facial attribute recognition.

4.2 Competitors
We compare our results against state-of-the-art methods and
baselines. Particularly, (1) FaceTracer [Kumar et al., 2008]
extracts the HOG and color histograms in manually defined
facial parts and then trains SVM for each attribute recogni-
tion. (2) PANDA [Zhang et al., 2014] uses poselets [Bour-
dev et al., 2011] to detect parts and then extracts CNN fea-
tures from the localized parts. (3) LNets+ANet [Liu et al.,
2015b] employs two deep CNNs to localize face and one deep
CNN network to learn facial feature. (4) Off-the-Shelf CNN
[Zhong et al., 2016] extracts features from the off-the-shelf
face recognition model. (5) Walk and Learn [Wang et al.,
2016] exploits videos and contextual data to learn representa-
tions for facial attributes. (6) Moon [Rudd et al., 2016] learns
a mixed objective optimization network for learning each at-
tribute and utilizes distribution of attribute labels. (7) SOMP
[Lu et al., 2017] learns a deep multi-task learning frame-
work which can dynamically group similar tasks together. (8)
MCNN-AUX [Hand and Chellappa, 2017] takes the attribute
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Methods Acc. Bal-acc. Prec. Rec. F1
Original 91.50 81.57 84.67 76.20 80.21

Abstraction 90.36 78.64 82.11 73.66 77.66
Our Model 91.81 83.13 84.22 78.21 81.10

Table 4: Comparison with the baseline models on CelebA.

Methods Acc. Bal-acc. Prec. Rec. F1
Original 84.79 76.48 80.90 74.19 77.40

Abstraction 83.64 75.05 79.09 72.52 75.67
Our Model 85.28 77.50 82.01 74.22 77.92

Table 5: Comparison with the baseline models on LFWA.

relationships into consideration for improving classification
accuracy. (9) PaW [Ding et al., 2017] combines multiple
part-based networks and a whole-image-based network for fi-
nal attribute classification. (10) [Kalayeh et al., 2017] learns
an encoder-decoder to produce the segmentation images, and
then leverages the segmentations as masks to pool/gate the
activations for attribute prediction. Here we compare three
different variants of [Kalayeh et al., 2017] — Average Pool-
ing, SSG, SSP. These three variants configure three differ-
ent ways of utilizing the segmented images to pool/gate the
feature maps and thus help facial attribute recognition. (11)
Original is one variant of our model. Original images are
used as input to train the model. (12) Abstraction is an-
other variant of our model. It uses the abstraction image as
the input. (13) ResNet18 + SVM is one baseline model. It
extracts the features from a whole face image by a ResNet18
model which pre-trained on ImageNet2012, and then trains
one SVM classifier for each attribute. (14) ResNet50 + SVM
is another baseline model. Features from ResNet50 model
pre-trained on ImageNet2012 are used to train separate SVM
for each attribute.

4.3 Results on CelebA Dataset
We evaluate the facial attribute recognition task with the stan-
dard settings of CelebA dataset. The results are listed in
Tab. 1. We highlight the following observations.
(1) State-of-the-art results. The results of our model beat
all the state-of-the-art methods. Comparing with all the other
methods, we highlight that our method achieves the best per-
formance with the mean accuracy of 91.81% over 40 facial
attributes. The results show 5.21%, 3.81% and 0.89% im-
provement over Off-the-Shelf [Zhong et al., 2016], Walk-
and-Learn [Wang et al., 2016], Moon [Rudd et al., 2016]
respectively. In particular, comparing with the current state-
of-the-art method LNets+ANet [Liu et al., 2015b] which has
a classification error of 12.70%, our method with an error of
8.19%, reducing the classification error by 35.5%. This im-
proved performance validates the effectiveness of our frame-
work. It is important to note that, [Wang et al., 2016] used
5 million auxiliary image pairs to pre-train their model, and
[Lu et al., 2017] employed the face recognition model as the
pre-train model.
(2) Effectiveness of facial abstraction subnet. We compare
the other variants of our model and show the efficacy of ab-

straction subnet. Specifically, we compare several baseline
models: Original and Abstraction, we find that even training
with the abstraction images, our abstraction baseline model
can get a mean accuracy of 90.36%, which can beat the most
of the state-of-the-art methods. This validates our abstrac-
tion images can well represent the original images, preserving
the detailed facial information. Besides, our dual-path model
can obtain a mean accuracy of 91.81%, and it shows 1.45%,
0.31% improvement over the abstraction and original model
baselines individually. This is due to the fact that the features
of original image and abstraction image are complementary
to each other. And more critically, our dual-path network can
efficiently combine them to produce very competitive results.
(3) Finally, we compare our results with [Kalayeh et al.,
2017]. In particular, (1) We highlight that this is the first work
of utilizing synthesized images to help facial attribute predic-
tion. The synthesized images are capable of training a net-
work in attribute prediction. We further harness these synthe-
sized images to improve the performance. (2) Both methods
are very good, and yet we are using different strategies in the
way of generating segmentation/abstraction images and us-
ing segmentation/abstraction for prediction. Compared with
the mean accuracy, our results are very marginally better than
[Kalayeh et al., 2017] on CelebA dataset, and slightly worse
on LFWA dataset. Note that the CelebA dataset which has
of 162k and 20k images for training and testing individually
is much larger than the LFWA dataset of 6k training and 7k
testing images. This shows that our methods are comparable
to the state-of-the-art methods in [Kalayeh et al., 2017].

4.4 Results on LFWA Dataset
To further test the proposed method, we applied it to the
LFWA face attribute dataset. We find that (1) Again the re-
sults of our model are better than or have comparable per-
formance to the state-of-the-art methods. As we can see
from Tab. 3, ours achieve the mean accuracy of 85.28% over
40 facial attributes. In particular, it shows 1.38% improve-
ment over the current state-of-the-art LNets+ANet [Liu et al.,
2015b]. This validates the effectiveness of the proposed at-
tribute classification network. (2) Furthermore, this experi-
ment still validates the efficacy of parsing subnet. We list the
result of the baseline models in Tab. 5. Our model can ob-
tain the mean accuracy of 85.28%, and it shows 1.59% and
0.49% improvement over two baseline models: abstraction
images and original images respectively. This validates the
efficacy of the abstraction image features. It is complemen-
tary to original images features. Meanwhile, the abstraction
image can help to aware the locations of different facial com-
ponents, thus improving the attribute recognition accuracy.
Our method also shows 2.93% and 2.19% improvement over
two SVM baseline models.

4.5 More Evaluation Metrics
We further compare our results with the baselines on more
metrics. In particular, for the significant imbalance classifi-
cation task, especially the facial attribute recognition, mean
classification accuracy is not the best evaluation metric. Thus
extensive study by using different evaluation metrics has been
conducted and compared in Tab. 4 and Tab. 5. These metrics
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Methods Acc. Bal-acc. Prec. Rec. F1
W./O. norm 91.53 81.59 84.44 76.53 80.29

W. norm 91.81 83.13 84.22 78.21 81.10

Table 6: Comparison of with / without feature normalization on
CelebA. W./O. norm and W. norm represent the methods without
and with normalization.

Methods Acc. Bal-acc. Prec. Rec. F1
Euc. Loss 91.51 79.36 86.90 73.45 79.61

S.C.E. Loss 91.50 81.57 84.67 76.20 80.21

Table 7: Comparison of different loss on CelebA. Euc. Loss and
S.C.E. Loss indicate the Euclidean loss and Sigmoid Cross Entropy
Loss respectively.

definitions are the same as those in pedestrian attribute recog-
nition [Deng et al., 2014], including a label-based metric
mean balanced accuracy (bal-acc) and three instance-based
metrics precision (prec), recall (rec) and F1-score (F1). These
metrics can systematically evaluate the performance of our
methods over baselines.

For example, on CelebA dataset, our dual-path model can
achieve the 77.50 bal-acc, which outperforms the abstraction
and original baselines by 2.45 and 1.02 respectively. Further-
more, our dual-path model hits the 81.10 F1, which improves
over the abstraction model and original models by 3.44 and
0.89 individually. On LFWA dataset, we report our F1 results
of 77.92, which beats the two baselines again. Thus overall
our results are still better than the baseline models.

5 Ablation Study
Analysis of attributes on small face regions. To further
evaluate the abstraction subnet, we select the attributes which
related to eye or eyebrows on CelebA dataset. In a face im-
age, these two face components always occupy limited re-
gions. We list the accuracy results on Tab. 2. Comparing
our model with baseline original image model, our model has
improvement on all the attributes except the NarrowEyes at-
tribute. This may reveal that with the help of abstraction im-
ages, our model can aware the small but important parts of
facial images, thus improving the accuracy of these attributes.
The choice of the loss function. We evaluate the loss func-
tion for binary attribute prediction network. [Rudd et al.,
2016] uses the Euclidean loss to regress attribute labels,
[Kalayeh et al., 2017] uses the sigmoid cross entropy loss
to classify attributes. To evaluate which loss is better, we ap-
ply different loss on the CelebA dataset, the results are listed
in Tab. 7. If compared with the mean accuracy metric, these
two losses can achieve comparable results with 91.51% and
91.50% respectively. We further evaluate this two loss func-
tions on mean balanced-accuracy, precision, recall and F1
metrics. Sigmoid cross entropy loss has 2.21 improvement on
mean balanced-accuracy and 0.60 improvement on F1. Eu-
clidean loss can only beat cross entropy loss on the precision
metric. This reveals sigmoid cross entropy loss is better for
binary attribute classification. Thus, we adopt sigmoid cross
entropy loss to train all attribute models.

The importance of feature normalization. This study eval-
uates the importance of feature normalization. In our model,
after the last pooling layer, the features of the face image
and abstraction image are obtained. Before the feature con-
catenation, we compare our framework with feature normal-
ization and without feature normalization. To perform fea-
ture normalization, we add additional batch normalization
layer after the last pooling layer. The results are listed in
Tab. 6. As we can see from the table, with feature normal-
ization method can achieve 0.28% mean accuracy and 1.54%
mean balanced-accuracy improvement over without feature
normalization method. This reveals feature normalization is
important before concatenation.

6 Conclusion
In this paper, we propose a novel dual-path convolutional
neural network to learn facial attributes. Different from most
previous approaches which predict attributes only based on
the whole images, our method utilizes synthesized facial ab-
straction images to help attribute recognition tasks. The pro-
posed framework fuses the features from original images and
facial abstraction images to learn all the attributes tasks. We
demonstrate our approach on the CelebA, LFWA attribute
datasets, showing substantial improvement over the state-of-
the-art methods.
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