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Abstract
Over the last decades Boolean satisfiability (SAT)
solvers based on conflict-driven clause learning
(CDCL) have developed to the point where they can
handle formulas with millions of variables. Yet a
deeper understanding of how these solvers can be
so successful has remained elusive. In this work
we shed light on CDCL performance by using the-
oretical benchmarks, which have the attractive fea-
tures of being a) scalable, b) extremal with respect
to different proof search parameters, and c) theoret-
ically easy in the sense of having short proofs in the
resolution proof system underlying CDCL. This al-
lows for a systematic study of solver heuristics and
how efficiently they search for proofs. We report
results from extensive experiments on a wide range
of benchmarks. Our findings include several exam-
ples where theory predicts and explains CDCL be-
haviour, but also raise a number of intriguing ques-
tions for further study.

1 Introduction
The emergence of conflict-driven clause learning (CDCL)
SAT solvers is one of the most impressive success stories of
computer science, but also one of its most intriguing mys-
teries. Though modern CDCL solvers are routinely used
to solve real-world instances with hundreds of thousands
or even millions of variables, it is still largely unclear how
they can achieve this feat. The basic difference between
CDCL and classic DPLL backtrack search [Davis et al.,
1962] is in how conflicts guide the search for a satisfying
assignment. State-of-the-art CDCL solvers employ conflict-
directed learning, first introduced in GRASP [Marques-Silva
and Sakallah, 1999],1 and conflict-directed branching, pio-
neered by Chaff [Moskewicz et al., 2001], and as reported
in [Katebi et al., 2011] these two mechanisms account for
most of the performance gain of CDCL over DPLL. Fur-
ther improvements have been obtained through highly opti-
mized implementations of the basic CDCL algorithm as well
as through the use of dozens of sophisticated heuristics.

1A similar idea in the context of constraint satisfaction problems
(CSPs) was developed in [Bayardo Jr. and Schrag, 1997].

Unfortunately, many CDCL heuristics interact in subtle
and unexpected ways, which makes it challenging to assess
their relative importance. A natural approach to gain a bet-
ter understanding would be to collect real-world benchmarks
and run experiments with different parameter settings to study
how they contribute to overall performance. It seems hard to
implement this idea in a satisfactory way, however. The set of
available instances is quite limited, and is also a very diverse
collection with starkly different properties. Because of this
it is hard to obtain statistically significant data which would
admit drawing general conclusions.

We propose that a deeper understanding of CDCL solvers
can be obtained by subjecting them to carefully chosen the-
oretical benchmarks with well-studied properties. By instru-
menting a solver with “knobs” to tune the settings of various
parameters, we want to shed light on what impact each heuris-
tic has on performance and how this correlates with the theo-
retical properties of the formulas. At first blush it might not
be clear why such a study of crafted benchmarks would have
any practical relevance, but we consider this to be a worth-
while endeavour for, among others, the following reasons:
• The benchmarks are scalable, meaning that one can gen-

erate “the same” formula for different sizes and study
how performance scales as the instance size increases,
rather than just obtaining isolated data points.
• The benchmarks are designed to be extremal with re-

spect to different complexity-theoretic properties, mean-
ing that they can be viewed as challenging benchmarks
for different heuristics such as, e.g., branching, clause
database management, and restart policy.
• Finally, in contrast to most combinatorial benchmarks

used in the SAT competitions, which are chosen to be as
hard as possible, our benchmarks are constructed so as
to be easy in the sense of having very short resolution
proofs of unsatisfiability that CDCL solvers can poten-
tially find. This means that actual CDCL performance
measures the quality of the proof search.

Brief Discussion of Results Let us list some of our conclu-
sions, which we reach by juxtaposing empirical results with
theoretical properties of the benchmarks:

1. While the mathematical question of whether restarts are
just a helpful heuristic or are fundamentally needed for
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CDCL solvers to harness the full power of resolution re-
mains wide open, our results provide empirical evidence
that the latter might be the case. Also, adaptive restarts
as in [Audemard and Simon, 2012] often work markedly
better than the fixed-interval Luby restarts in [Eén and
Sörensson, 2004]. However, for some benchmarks it can
happen that adaptive restarts are completely switched
off, causing terrible performance. This suggests it might
be worth considering a combination of dynamic and
fixed restarts.

2. Learned clauses are absolutely critical for performance.
While the information gathered during conflict analysis
is important for guiding other heuristics, the solvers cru-
cially need the exponential increase in reasoning power
afforded by also storing the learned clauses to go from
tree-like (DPLL-style) to general resolution proofs.

3. For formulas inspired by theoretical time-space trade-
off results, too aggressive clause erasure can incur a
stiff penalty in running time also in practice. And when
memory is tight, the LBD (literal block distance) heuris-
tic [Audemard and Simon, 2009] often does a particu-
larly good job at identifying useful clauses.

4. For VSIDS variable decisions [Moskewicz et al., 2001]
the choice of decay factor can sometimes be vitally im-
portant. While we are not sure why, we hypothesize
that this might be connected to whether the proof search
needs to find DAG-like proofs or whether tree-like
proofs are good enough. We can also see that VSIDS
decisions can go badly wrong for easy but tricky for-
mulas, which suggests that there is room for further im-
provements in variable selection heuristics. Somewhat
disappointingly, though, we cannot see any support for
the hypothesis that the new learning-rate based heuris-
tic [Liang et al., 2016] would be better than VSIDS.

Related Work and Comparison We believe our paper is
the very first to implement a comprehensive program as out-
lined above, but many related ideas can be found in previous
works as discussed next. We emphasize that our treatment is
very condensed due to space constraints.

Instrumenting CDCL solvers to study the effect of different
options has been done in [Lynce and Marques-Silva, 2002;
Katebi et al., 2011], and there are also in-depth studies fo-
cusing specifically on, e.g., decision heuristics [Biere and
Fröhlich, 2015b] and restart schemes [Huang, 2007; Biere
and Fröhlich, 2015a]. It seems fair to say, however, that we
support a more extensive combination of settings, and that
our total computation time is larger by orders of magnitude.
Also, these papers all focus mainly on applied benchmarks as
found in the SAT competitions.

Using crafted benchmarks instead is, of course, not a new
idea, but seems to have been done mainly due to the paucity
of real-world instances, not because of connections between
theoretical properties and practical performance. An impor-
tant exception is [Petke and Jeavons, 2009], but here the in-
stances have concrete structural restrictions that make them
amenable to explicit algorithms. In contrast, the only guaran-
tee for our instances is that it should in principle be possible to

solve them efficiently because of the existence of short reso-
lution proofs. The formulas have been chosen to be extremal,
and thus challenging, in different ways given this restriction
of small proof size. To achieve this, it is not sufficient to
consult general summaries of the proof complexity literature
as in [Lauria et al., 2017]—one also needs to think carefully
about how to set specific parameters in order to obtain con-
crete benchmarks with the desired properties. It should be
noted in this context, though, that the price of these tight con-
nections to proof complexity is that we can only consider un-
satisfiable instances, which is a limitation of our approach.

The concept of scaling the size of instances is well-known
from research on random k-SAT (see, e.g., [Crawford and
Auton, 1996; Selman et al., 1992]), but is mainly used to
check when algorithms hit the exponential brick wall and
die (or to study phase transitions). This is conceptually quite
distinct from investigating how algorithms scale on problems
that are efficiently solvable in principle. Examples of papers
that do the latter, in addition to [Petke and Jeavons, 2009], are
[Järvisalo et al., 2012; Mikša and Nordström, 2014], but they
all use off-the-shelf solvers and not instrumented versions de-
signed to compare different settings as we do.

Outline of This Paper We start with a brief overview of
proof complexity in Section 2, giving context for the bench-
marks introduced in Section 3. We describe the instrumented
CDCL solver in Section 4. Sections 5 and 6 discuss our
methodology and present our findings, and we conclude in
Section 7 by outlining some possible directions for future
research. Our experimental data can be examined at www.
csc.kth.se/˜jakobn/CDCL-insights, where we
have also collected benchmarks and solver source code.

2 Proof Complexity
Proof complexity studies how hard it is to prove that for-
mulas in conjunctive normal form (CNF) are unsatisfiable.
While the original motivation for this line of research, initi-
ated in [Cook and Reckhow, 1979], was as an approach to
prove P 6= NP, it seems fair to say that most current research
in proof complexity is driven by other concerns.

One such concern is the connection to SAT solving. Any
SAT algorithm defines a proof system in the sense that the
execution trace for an unsatisfiable formula constitutes a
polynomial-time verifiable proof of unsatisfiability (also re-
ferred to as a refutation). Hence, upper and lower bounds for
these proof systems provide information about the potential
and limitations of the corresponding SAT solvers.

When run on unsatisfiable CNF formulas, CDCL solvers
search for proofs in the resolution proof system (see,
e.g., [Beame et al., 2004]). The most studied complexity
measure for resolution is size, which gives lower bounds on
the running time of CDCL proof search without preprocess-
ing and for which (optimal) exponential lower bounds are
known [Urquhart, 1987; Chvátal and Szemerédi, 1988]. An-
other more recently studied measure is space, which cor-
responds to the number of learned clauses in memory, and
for which (again optimal) linear lower bounds have been
proven [Alekhnovich et al., 2002; Esteban and Torán, 2001].
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For all of these results, the concept of width, measured
as the size of a largest clause in the proof, has turned out
to play a key role. If a formula over n variables has a
proof in width w, then this proof has size at most nO(w)

by a simple counting argument. Less obviously, strong
enough width lower bounds also imply strong lower bounds
on proof size [Ben-Sasson and Wigderson, 2001] as well as
on space [Atserias and Dalmau, 2008]. The relationships and
trade-offs between width and space in resolution are by now
fairly well-understood [Ben-Sasson and Nordström, 2008;
Ben-Sasson, 2009], as are those between size and space [Ben-
Sasson and Nordström, 2008; 2011; Beame et al., 2016;
Beck et al., 2013] and size and width [Thapen, 2016].

The natural question how efficiently the CDCL algorithm
can search for resolution proofs turns out to be very challeng-
ing to answer. [Pipatsrisawat and Darwiche, 2011] showed
that CDCL viewed as a proof system is always within a poly-
nomial factor of the best resolution proof. This is not a con-
structive result, however—it crucially assumes that the solver
magically can make the right variable decisions. Also, the
solver must never forget even a single learned clause, which
is very different from the aggressive erasure used in practice.
These restrictions are probably inherent, however, since an
actual algorithm would violate widely believed complexity-
theoretic assumptions [Alekhnovich and Razborov, 2008].

Intriguingly, the result in [Pipatsrisawat and Darwiche,
2011] crucially relies on the solver making frequent restarts,
which is a poorly understood aspect of CDCL. Empirically,
it is clear that restarts are very important for performance,
but it remains open whether they actually affect the reasoning
power of the CDCL method or not. In this context it is natural
to consider regular resolution, where the proofs—when rep-
resented as directed acyclic graphs (DAGs)—satisfy that any
variable is resolved at most once along any path in the proof
DAG. Regular resolution is strong enough to capture the DP
variable elimination algorithm [Davis and Putnam, 1960], but
is exponentially weaker than general resolution [Alekhnovich
et al., 2007]. Although CDCL without restarts is not the same
as regular resolution [Beame et al., 2004], the two systems
seem “morally close” in that CDCL conflict analysis is reg-
ular with respect to the clauses currently in the database. It
is therefore natural to ask whether the formulas that separate
general resolution from regular resolution can also be used
to show that CDCL without restarts cannot simulate the full
power of resolution, but attempts to do so have failed [Bonet
et al., 2014; Buss and Kołodziejczyk, 2014].

By necessity, our treatment above is very brief and
selective—for more details, see, e.g., [Nordström, 2015].

3 Overview of Benchmarks
We consider 9 families of benchmarks constructed from the
formulas with asymptotically proven extremal properties dis-
cussed in Section 2. Sometimes these formulas have then
to be scaled down to obtain reasonably-sized instances for
practical experiments, at the price of losing their asymptoti-
cally guaranteed theoretical properties, but it seems they keep
enough of their character to remain challenging and interest-
ing benchmarks. We stress that all instances have short reso-

lution proofs that can in principle be found by CDCL without
any preprocessing, and for most of the formulas even with-
out any restarts given an appropriate (fixed) variable order.
It can therefore be argued that CDCL performance on these
benchmarks really measures the quality of the proof search.

Tseitin formulas encode systems of linear equations
mod 2 (i.e., XOR constraints) generated from graphs. For
long, narrow grids these formulas exhibit asymptotically very
strong size-space trade-offs for resolution [Beame et al.,
2016; Beck et al., 2013], and we study if scaled-down ver-
sions (without these guarantees) exhibit time-space trade-
offs in practice and differentiate between different clause
database management heuristics. A second family of formu-
las of seemingly similar flavour are even colouring formu-
las [Markström, 2006] over the same kind of grid graphs.

Pebbling formulas on DAGs always have short proofs, but
for appropriately chosen DAGs they have high space com-
plexity [Ben-Sasson and Nordström, 2008] and are also expo-
nentially hard for DPLL [Ben-Sasson et al., 2004]. A closely
related family are so-called stone formulas, which are easy
for general resolution but exponentially hard for regular res-
olution [Alekhnovich et al., 2007]. Since stone formulas are
candidates for showing that CDCL without restarts is weaker
than full resolution we are interested in studying how perfor-
mance on these formulas correlates with restart frequency.

Ordering principle formulas, which claim the existence
of finite ordered sets without minimal elements, were shown
to have linear-size proofs by [Stålmarck, 1996] (contrary to
belief at the time). When converted to 3-CNF these formu-
las are extremal in that they require proofs with maximally
large clauses among all formulas with short proofs [Bonet
and Galesi, 2001], and they are exponentially hard for DPLL.

Subset cardinality formulas encode collections of cardi-
nality constraints claiming that both true and false variables
are in a strict majority. Randomly structured constraints yield
exponentially hard formulas [Mikša and Nordström, 2014],
but we focus on “fixed bandwidth” patterns for which the for-
mulas are easy in theory [Van Gelder and Spence, 2010], and
even have polynomial-size DPLL proofs.

Clique formulas encode the claim that a graph G on n ver-
tices has a k-clique. In the worst case such formulas are
believed to require proofs of size nk, but we consider com-
plete (k−1)-partite graphs, for which the formulas are easily
proven unsatisfiable even in regular resolution, although the
smallest DPLL proofs scale like nk [Beyersdorff et al., 2013].

Relativized pigeonhole principle (RPHP) formulas
claim that k pigeons (for k a small constant) can fly into k−1
holes via n “resting places,” where n is the parameter used
to scale the formulas. These formulas require proofs of size
roughly nk, and such proofs can be found even by DPLL [At-
serias et al., 2016]. For suitably chosen constant k this is thus
an example of a family of formulas that have proofs of poly-
nomial but superlinear size. We also study dominating set
formulas with very similar properties.

4 CDCL Solver and Experimental Set-up
To run our experiments we have built an instrumented CDCL
solver on top of Glucose [Audemard and Simon, 2009],
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where we have added a rich selection of extra options to anal-
yse the interactions between (1) restart policy, (2) branching,
(3) clause database management, and (4) clause learning.

Implementing key features of distinct state-of-the-art
solvers in such a manner that different options can be com-
bined in a sensible way poses nontrivial challenges and some-
times forces hard choices. We have striven to implement dis-
tinctive solver features in a faithful way, and have spent sig-
nificant effort on verifying the instrumented solver by com-
paring the “MiniSat-like settings” to original MiniSat, et
cetera, checking that performance was as expected.

For restart policy we consider adaptive restarts (as in Glu-
cose), Luby-sequence-based restarts (as in MiniSat) with dif-
ferent frequencies, and also restarts turned completely off to
study the reasoning power of CDCL without restarts.

For variable decisions we explore VSIDS branching with
different settings of the decay factor, where a larger decay fac-
tor corresponds to remembering more of the conflict history,
as well as learning rate-based branching (LRB) as described
in [Liang et al., 2016]. We have also run experiments with
fixed-order branching (chosen to be good for the benchmark
in question when a good fixed order exists) in order to ob-
tain a baseline against which to compare other settings, and
have done some limited experiments with random decisions
to study when using more sophisticated heuristics is crucial.

For the phase we investigate fixed phases (set to 0 or cho-
sen randomly) , standard phase saving as introduced in [Pipat-
srisawat and Darwiche, 2007], branching against the phase,
and choosing the phase independently at random every time.

To study clause database management we consider differ-
ent policies for clause erasure (how many learned clauses to
erase) and assessment (which learned clauses to erase). We
also explore the effect of turning clause learning off, switch-
ing between DPLL-style and CDCL-style search, but imple-
menting DPLL in such a way that other heuristics such as
VSIDS still make sense. For clause erasure we consider
MiniSat-style (most aggressive) and Glucose-style (less ag-
gressive),2 as well as a significantly more generous version of
Glucose. As extremal cases we study no erasures and DPLL-
style search (essentially erasing all clauses). For clause as-
sessment we consider the standard settings in MiniSat and
Glucose as well as a totally random heuristic to check how
well the state-of-the-art heuristics identify important clauses.

Regarding learning scheme it seems that 1UIP clause
learning is what is used by all state-of-the-art solvers, but we
also investigate last (decision) UIP learning in order to have
something with which to compare.

Our focus in this work is strictly on understanding basic
CDCL proof search. However, since preprocessing is an
integral part of successful CDCL implementations we have
run experiments both without preprocessing and with stan-
dard preprocessing as in MiniSat/Glucose turned on.

We have run our experiments on a cluster with 6 AMD
Opteron 6238 (2.6 GHz) cores with 16 GB of memory, us-
ing a timeout of 5000 seconds. Ideally, we would have liked

2For MiniSat the initial clause database size depends on the in-
put. Glucose starts with a fixed, potentially smaller, size, but in-
creases it faster so that for large timeouts it will become much larger.

to investigate the full Cartesian product of combinations of
settings described above. This is simply not feasible, how-
ever, due to the combinatorial explosion of cases. Instead, we
have selected a generous subset of more than 650 different
solver configurations, which still makes it possible to study
how most settings interact. Already this more limited set of
experiments required hundreds of years of computation time
in total, and generated massive amounts of data to analyse.

5 Methodology and Critical Discussion
Before presenting our results, let us discuss how we analyse
our experimental data. We start by highlighting some caveats.

First and foremost, it is crucial to remember that correla-
tion is not causation. However, an important aspect of our
work is that the interpretation of the correlations we see is in-
formed by our theoretical understanding of the benchmarks,
and this gives us added confidence when empirical observa-
tions match what theory predicts. Still, some caution is in
order. As already discussed, to run the experiments the for-
mulas sometimes have to be scaled down to parameter ranges
where theorems about asymptotic mathematical properties no
longer apply. Also, even when these properties do hold, we
have no guarantee that they explain what we see—solver per-
formance might depend on other characteristics of the bench-
marks which we fail to consider. However, while these in-
herent problems are essential to keep in mind, they do not
preclude a meaningful, informative analysis. And even for re-
sults where no theoretical explanation readily presents itself,
our use of extremal formulas has arguably helped to uncover
previously unknown phenomena that can stimulate follow-up
studies with more fine-grained tools.

A clear advantage of theory benchmarks is that we can
solve “the same problem” in different sizes and study how
performance scales. This tacitly assumes, however, that it is
meaningful also from a solver point of view to consider differ-
ent formulas generated by varying a parameter as closely re-
lated. Most often we can make the notion of sameness formal,
in that partial assignments to variables in a larger instance can
be applied to yield a residual formula that is a smaller instance
in the same family, but this is not always the case.

As already pointed out, a limitation of our set-up is the
exclusive focus on unsatisfiable instances. This restriction
is dictated by proof complexity, where the relevant concepts
are defined only for unsatisfiable formulas, It is also an inter-
esting setting since in many real-world applications proving
unsatisfiability is the objective, and conventional wisdom is
that such instances are often the hardest ones. Nevertheless,
in practice solvers need to perform well also when there exist
solutions, and some heuristics are designed to balance perfor-
mance on both satisfiable and unsatisfiable instances.

Let us now describe the formal setting for our analysis. We
can view the instrumented CDCL solver as a black box with
knobs Ki, i ∈ [L] = {1, . . . , L}, that can each be turned to
one of a fixed number of settings Ki (where different knobs
decide, e.g., restart policy or decision heuristic). A solver
configuration C = (k1, . . . , kL) is a tuple in the product
space C = K1×· · ·×KL of possible settings. Given a family
of 30–50 instances of the same problem in different sizes, we
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want to understand which configurations are best (which we
expect will depend on the particular properties of this family).

To measure the performance of a solver configuration C
on a benchmark family, we run the solver with timeout T
and compute PAR (penalized average runtime) scores with
penalty P , i.e., averaging all running times but charging a
penalty of P · T for timeouts (where we use P = 2, though
the exact choice of P does not seem to matter much). We also
study other measures such as number of conflicts, but will
mostly ignore this in what follows due to space constraints.

Determining which configuration is best is easy—just take
the lowest PAR score. But we are interested in the more re-
fined question whether there are certain knobs that are par-
ticularly important. This might seem like a standard problem
in statistics, but the issue here is that state-of-the-art-solvers
are essentially deterministic algorithms. This means that, in
principle, there is no uncertainty or noise, but we have full
information about all data points.3 We approach this concep-
tual problem in the following way: Consider a set S ⊆ [L]
of |S| = ` � L knobs (we use ` ≤ 3) adjusted to settings
k′i ∈ Ki, i ∈ S. The value of this subconfiguration is the ex-
pected PAR score when the rest of the knobs Ki, i ∈ [L] \ S,
are set at random, i.e., the average score of all configurations
C′ =

{
(k1, . . . , kL)

∣∣ki = k′i, i ∈ S
}

. Then a subconfigura-
tion would seem to be good if the average PAR score for C′ is
lower than the total average for all configurations C.

But this begs the question—by definition, we should ex-
pect the PAR score average for C′ to be better than the global
average for C roughly 50% of the time. How can we decide
when the difference is significant? To answer this question
we use the standard deviation measure. Suppose that the total
number of configurations is |C| = N , so that we have a global
average of N PAR scores, and that the number of configura-
tions with k′i, i ∈ S, fixed is |C′| = M � N . What we can
do is to sample M out of the N PAR scores completely at
random and compute the standard deviation of such an exper-
iment. If the PAR score average of C′ is clearly farther away
from the global average than this standard deviation, then this
indicates that these particular knobs and settings k′i, i ∈ S, in-
deed seem to have a significant influence on performance. A
potential source of concern here is that we will measure this
for all subconfigurations with ` knobs, but this is only a van-
ishingly small number of values compared to the total number
of random samples

(
N
M

)
. Also, we are not using this test in

isolation to try to compute a formal significance value, but
as a way to crunch the data and find subconfigurations that
should be subjected to an in-depth analysis by other means.

While this test provides a very good overview it has two
disadvantages. Firstly, if one knob is very important, then
it can drown out the signals from other knobs. To counter
this effect we can restrict the parameter space to the good
setting(s) for this first knob and then repeat the test. Secondly,
the test is designed to detect when a small number of knobs
have significant impact regardless of other knobs, but it will

3To create a random distribution one could randomize heuris-
tics [Lynce and Marques-Silva, 2002] or shuffle benchmarks [Katebi
et al., 2011], but we want to avoid such drastic modifications since
they could potentially distort the measurements we want to make.

not show if there is a large number of knobs that critically
depend on being set to the right values simultaneously.

In order to be able to discover solver configurations with
dependencies between a large number of knobs,4 and also
to get a more qualitative analysis, we use heatmaps, where
we visualize the results for a benchmark family in a coloured
matrix with a row for every solver configuration and a col-
umn for each benchmark instance. The colour of a cell (C, i)
indicates the running time for configuration C when run on
instance i. We then sort the rows by colour to get an indica-
tion of which combinations of settings perform well or badly
for a family. This kind of visual analysis is often a very help-
ful complement to the more quantitative analysis described
above, and can also reveal patterns that would not be possible
to observe using just PAR scores. For a further in-depth anal-
ysis of some of our findings we also use other tools that we
cannot describe here due to space constraints.

To present our results in Section 6 we use plots of run-
ning times for different solver configurations as instance size
grows, and also boxplots (quartiles with 1.5 IQR whiskers) to
visualize the difference when switching between two particu-
lar settings for one knob (in these boxplots we count timeouts,
corresponding to penalty P → ∞). We want to emphasize,
though, that while these plots are useful to illustrate our final
findings, this is not how we sift through the vast amounts of
data from our experiments to actually discover these findings.

6 Experimental Results and Analysis
In this section we summarize the results of our experiments.

Restarts The role of restarts is one of the most intrigu-
ing, and theoretically challenging, problems regarding CDCL
solvers. Is restarting just a useful heuristic, or could it be that
the addition of frequent restarts actually changes the underly-
ing method of reasoning, making it theoretically stronger?

Although we have only empirical conclusions, our data
supports the hypothesis that frequent restarts are important to
harness the full power of resolution. Specifically, we can see
that frequent restarts are crucial for stone formulas, which are
hard for the restricted subsystem regular resolution (although,
as discussed previously, in our experiments we cannot quite
push parameters to the range where we have theoretical hard-
ness guarantees). Frequent restarts also seem to be important
when a good resolution proof works by learning XORs or
equivalences of variables—or more complicated functions—
in a bottom-up fashion (as also proposed by participants in the
Dagstuhl workshop 15171 Theory and Practice of SAT Solv-
ing). This benefit of restarts can be seen clearly for pebbling
formulas (Figure 1).

Adaptive restarts as in Glucose often perform better than
static Luby restarts. We can also see, however, that for some
benchmarks the adaptive restarts go badly wrong—restarts
are completely blocked since the solver thinks it is closing
in on a satifying assignment, which it is not, whereas a static
Luby restart sequence works much better. This suggests that
a further improvement of CDCL restarts could be to trigger

4Jumping a bit ahead, we found no such dependencies, though.
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restarts by a combination of adaptive and Luby heuristics, to
make sure that the solver does not have too long sequences
of no restarts. (However, for one particular benchmark fam-
ily, namely clique formulas, it is essential that restarts are
switched off completely, but this intriguing finding we are
currently unable to explain.)

Variable Decisions One of the decision heuristics we eval-
uate is LRB [Liang et al., 2016], proposed as an improve-
ment of VSIDS. Our data does not support the hypothesis
that LRB would be better. Sometimes it is better; sometimes
it is worse; most of the time there is no significant difference
from VSIDS with decay factor 0.99 (see the rightmost box-
plot in Figure 2, showing that the number of timeouts for each
benchmark family for VSIDS with decay factor 0.99 minus
the timeouts for LRB is close to 0, though there is a slightly
larger amount of outliers in favour of LRB).

Another interesting observation is that there is no single
best value for the decay factor for the standard VSIDS heuris-
tic: for some benchmarks it is better to use a low decay factor;
for others a high value is better (see the leftmost boxplot in
Figure 2). For some families the choice is crucial. For in-
stance, for a high VSIDS decay factor the partial ordering
principle formulas become impossible to solve, whereas for
a lower factor (corresponding to a higher rate of forgetting
the history of conflicts) they are very easy (see Figure 3). In
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Figure 3: Different VSIDS decay factors for partial ordering princi-
ple formulas (using Glucose defaults for other settings).

contrast, for dominating set and RPHP formulas a high decay
factor seems better. Intriguingly, for these formulas tree-like
resolution proofs are (asymptotically) optimal. These results
raise the question whether perhaps having a larger VSIDS de-
cay factor somehow makes the solver proof search closer to
tree-like resolution. More experiments on new benchmarks
would be needed for a more in-depth investigation of this.

We can also observe that making variable decisions ran-
domly is consistently a terrible option (in contrast to, e.g.,
random phase or random clause assessment as discussed be-
low, which is usually not good but also not catastrophic).

Phase Saving The influence of phase saving might well be
the least well understood aspect of CDCL from a mathemat-
ical point of view, with no theoretical studies made as far as
we are aware. We observe that standard phase saving as im-
plemented in modern CDCL solvers is often essential, and for
some of our benchmarks it is the decisive parameter for good
performance. (The one clear exception in our data set are the
clique formulas—which also behave strangely with respect to
restarts—for which phase saving is bad).

Also, dynamic phases often seem better than fixed phases,
mostly because choosing a bad fixed phase can be fatal. In
particular, the fixed-0 phase originally used in MiniSat is very
bad for several benchmark families, and for some even hav-
ing no phase (just doing random coin flips every time) can be
better than having the wrong phase (see Figure 4 for an exam-
ple). Note that this is in clear contrast to variable decisions,
where making random choices is always a horrible idea.

For benchmarks where frequent restarts are essential,
phase saving is also important in that it gives a additional
boost. Additional investigations would be needed to clarify
the dependencies here, though, since phase saving is already
a very influential factor on its own.

Clause Erasure A question that was debated at the above-
mentioned Dagstuhl workshop is whether clause learning re-
ally helps to go beyond tree-like resolution to find DAG-
like proofs, or whether its main importance is to let variable
branching and other heuristics be guided by the conflict anal-
ysis. We can see beyond doubt that for formulas that are hard
for tree-like resolution (but easy for general resolution) clause
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learning has a dramatic impact, allowing the solver to go from
tree-like to DAG-like proof search. For such formulas the
DPLL option in our instrumented solver is disastrous, while
it can sometimes perform reasonably well (though still worse
than CDCL) for formulas which have short tree-like proofs.

For challenging benchmark families, where solver running
times are clearly superlinear in the input size, aggressive
clause erasure becomes important. The reason for this seems
to be that unit propagation just takes too much time other-
wise. However, in terms of the quality of the proof search,
measured as the number of conflicts, having more clauses in
memory is always more helpful for all of our benchmarks,
and if the clause erasure get too aggressive, like in the Mini-
Sat default, then performance can suffer badly. It is not a pri-
ori clear that this would always have to be so—one could en-
vision that there would be benchmarks where pruning of the
clause database would be useful to get rid of “junk clauses”
that give unhelpful unit propagations at the current stage of
the proof search, but we have not found such examples.

As an extreme case of the phenomena discussed above, for
our benchmarks derived from theoretical time-space trade-off
results we can indeed witness such trade-offs also in practice
(which to the best of our knowledge is the first time this has
been observed). For these formulas having a larger clause
database size helps both in terms of running time and num-
ber of conflicts, until the database size just gets too large so
that running time suffers (but the number of conflicts stays
smaller). We illustrate this behaviour for Tseitin formulas
in Figure 5. The small database size for MiniSat makes it
time out immediately. Glucose (smaller) and linear (larger)
database sizes yield similar performance in terms of running
time, but the latter seems to achieve much more efficient
proof search judging by the number of conflicts.

Clause Assessment Given that too aggressive clause re-
moval can hurt a SAT solver badly, it is an important question
whether there are clause assessment heuristics that compen-
sate for this by helping the solver identify important clauses
that should be kept. Perhaps such heuristics could be one rea-
son why SAT solvers do so well in practice?

In particular, it is a natural question whether the widely
used literal block distance (LBD) measure can be shown to
be good at “keeping the right clauses” for formulas where
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our experiments show that too aggressive an erasure strategy
can be detrimental. Our results are consistent with this hy-
pothesis, showing a clear improvement in running time when
using LBD for clause assessment. We also see that LBD-
based clause assessment can sometimes compensate for other
less good parameter choices.

It is important for the LBD-based heuristic, though, that
the clause database size is not too small. Glucose adds an ex-
tra bump to the size whenever it learns many so-called glue
clauses with a low LBD score. This extra bump appears
to be crucial, since otherwise the clause database can get
clogged up by glue clauses (which are never erased by Glu-
cose). Small-database solver configurations without Glucose
bumps explain the large negative outliers in the left boxplot
for random vs. LBD clause assessment in Figure 6. While
this principally raises the question whether there would be
potential for further improvements in Glucose by sometimes
erasing glue clauses, we can conclude that the fairly aggres-
sive erasure strategy in Glucose combined with LBD-based
clause assessment most often work very well in that the clause
database gets an extra size increase when needed.

Interestingly, we can see no really significant difference be-
tween activity-based clause assessment as in MiniSAT and
completely random choices of which clauses to keep or throw
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away (so it indeed seems that past performance is no guaran-
tee of future results. . . ). While the left boxplot in Figure 6
illustrates that LBD is noticeably better than random (and the
difference would be more dramatic if solver configurations
with too small database size were removed), the right box-
plot shows that random and activity-based assessments are
very close (though there is a very small tendency in favour of
activity-based as the first quartile is zero).

Learning Scheme As already mentioned, 1UIP learning is
what is used in practice, and there is some theoretical justifi-
cation for this in that the 1UIP clause will provably maximize
the length of the backjump after conflict (see, e.g., [Biere
et al., 2009, Chapter 4]). For our benchmarks there is of-
ten not too much of a difference between 1UIP and last UIP
learning—which could be explained by the fact that these are
crafted instances—but to the extent that there are differences
it is fair to say that 1UIP is clearly better than last UIP.

Preprocessing For almost all of our formulas preprocess-
ing has no discernable impact on performance. For us this is
as expected. Preprocessing is especially effective for recov-
ering higher-order structure that was lost when translating the
input to CNF, but this scenario does not apply to our crafted
instances. Nevertheless, we have run experiments both with
and without preprocessing just as a sanity check, because we
wanted to make sure that our results were not heavily depen-
dent on such an integral part of modern CDCL solvers.

7 Concluding Remarks
In this work, we run extensive experiments on crafted bench-
marks using an instrumented CDCL solver supporting differ-
ent combinations of options, and use theoretical properties of
the benchmarks to shed light on CDCL performance. We see
rich opportunities for continued research in this direction, and
quickly list some interesting questions below.

Restarts seem crucial to realize the full power of resolu-
tion, but is this just about the restart frequency or can the
precise timing sometimes be crucial? And would a combi-
nation of adaptive and fixed-interval restarts be even better?
Sometimes the exact decay factor in VSIDS is critical—can
solvers be made to figure this out adaptively? The impor-
tance of phase saving is empirically clear but theoretically
very poorly understood, and merits further study. Finally, is it
always the case that keeping more clauses is good in terms of
quality of the proof search, or could one find examples where
it is better to remove “junk clauses” that hinder the search?
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