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Abstract
Deep neural networks are powerful learning models
that achieve state-of-the-art performance on many
computer vision, speech, and language processing
tasks. In this paper, we study a fundamental question
that arises when designing deep network architec-
tures: Given a target network architecture can we
design a “smaller” network architecture that “ap-
proximates” the operation of the target network?
The question is, in part, motivated by the challenge
of parameter reduction (compression) in modern
deep neural networks, as the ever increasing storage
and memory requirements of these networks pose a
problem in resource constrained environments.
In this work, we focus on deep convolutional neu-
ral network architectures, and propose a novel ran-
domized tensor sketching technique that we utilize
to develop a unified framework for approximating
the operation of both the convolutional and fully
connected layers. By applying the sketching tech-
nique along different tensor dimensions, we design
changes to the convolutional and fully connected
layers that substantially reduce the number of ef-
fective parameters in a network. We show that the
resulting smaller network can be trained directly and
has a classification accuracy that is comparable to
the original network.

1 Introduction
Deep neural networks have become ubiquitous in machine
learning with applications, ranging from computer vision, to
speech recognition, and natural language processing. The re-
cent successes of convolutional neural networks (CNNs) for
computer vision applications have, in part, been enabled by
recent advances in scaling up these networks, leading to net-
works with millions of parameters. As these networks keep
growing in their number of parameters, reducing their storage
and computational costs has become critical for meeting the
requirements of practical applications. Because while it is
∗Work done while the author was at Samsung Research America.

possible to train and deploy these deep convolutional neural
networks on modern clusters, their storage, memory band-
width, and computational requirements make them prohibitive
for embedded mobile applications. On the other hand, com-
puter vision applications are growing in importance for mobile
platforms. This dilemma gives rise to the following natural
question: Given a target network architecture, is it possible
to design a new smaller network architecture (i.e., with fewer
parameters), which approximates the original (target) network
architecture in its operations on all inputs? In this paper, we
present an approach for answering this network approximation
question using the idea of tensor sketching.

Network approximation is a powerful construct because it
allows one to replace the original network with the smaller
one for both training and subsequent deployment [Denil et al.,
2013; Chen et al., 2015; Cheng et al., 2015; Yang et al., 2015;
Sindhwani et al., 2015; Chen et al., 2016; Tai et al., 2016;
Garipov et al., 2016]1. That is, it completely eliminates the
need for ever realizing the original network, even during the
initial training phase, which is a highly desirable property
when working in a storage and computation constrained envi-
ronments. While approximating any network (circuit) using
a smaller network (circuit) is computationally a hard prob-
lem [Umans, 1998], we study the problem of network ap-
proximation on convolutional neural networks. To approx-
imate a convolutional neural network NN, we focus on its
parametrized layers (the convolutional and fully connected
layers). Consider any such layer L in the network NN. Let
φ : Γ×Θ→ Ω denote the function (transformation) applied
by this layer, where Θ represents the parameter space of the
function (generally, a tensor space of some order), Γ and Ω
represent the input and output space respectively. Our general
idea is to replace φ by a randomized function φ̂ : Γ× Θ̂→ Ω,
such that ∀θ ∈ Θ, ∃θ̂ ∈ Θ̂, such that for every inputγ ∈
Γ, E[φ̂(γ; θ̂)] = φ(γ; θ), where the expectation is over ran-
domness of the function φ̂. In other words, φ̂(γ; θ̂) is an

1For clarity, we distinguish between the terms network and model:
network refers to network architecture that describes the transforma-
tion applied on the input, whereas model refers to a trained network
with fixed parameters obtained by training a network with some
training set.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2319



unbiased estimator of φ(γ; θ). Additionally, we establish the-
oretical bounds on the variance of this estimator. Ideally, we
want the representation length of θ̂ to be much smaller than
that of θ. For the construction of φ̂, we introduce a novel
randomized tensor sketching idea. The rough idea here is to
create multiple sketches of the tensor space Θ by perform-
ing random linear projections along different dimensions of
Θ, and then perform a simple combination of these sketches.
This new operation φ̂ defines a new layer that approximates
the functionality φ of the layer L. Since φ̂ and φ have the same
input and output dimensionality, we can replace the layer L
in the network NN with this new (sketch counterpart) layer.
Doing so for all the convolutional and fully connected layers
in NN, while maintaining the rest of the architecture, leads to
a smaller network N̂N, which approximates the network NN.
To the best of our knowledge, ours is the first work that uses
the idea of sketching of the parameter space for the task of
network approximation.

The next issue is: Can we efficiently train the smaller net-
work N̂N? We show that, with some changes to the stan-
dard training procedure, the parameters (which now represent
sketches) of the constructed smaller network can be learnt
space efficiently on any training set. Also compared to the
original network, there is also a slight improvement in the
running time needed for various operations in this smaller
network. This allows us to train N̂N directly on D to get
a reduced model N̂ND.2 Our experimental evaluations, on
different datasets and architectures, corroborate the excellent
performance of our approach by showing that it increases the
limits of achievable parameter number reduction while almost
preserving the original model accuracy, compared to several
existing approximation techniques.

2 Preliminaries
We denote [n] = {1, . . . , n}. Vectors are in column-wise fash-
ion, denoted by boldface letters. For a vector v, v> denotes
its transpose and ‖v‖ its Euclidean norm. For a matrix M ,
‖M‖F denotes its Froebnius norm. We use random matrices
to create sketches of the matrices/tensors involved in the fully
connected/convolutional layers. In this paper, for simplicity,
we use random scaled sign (Rademacher) matrices. We note
that other families of distributions such as subsampled ran-
domized Hadamard transforms can probably lead to additional
computational efficiency gains when used for sketching.

Definition 1. Let Z ∈ Rk×d be a random sign matrix with
independent entries that are +1 or −1 with probability 1/2.
We define a random scaled sign matrix U = Z/

√
k.

Here, k is a parameter that is adjustable in our algorithm.
We generally assume k � d. Note that E[U>U ] = Id where

2There memory footprint of the reduced model N̂ND can be
further reduced using various careful operations such as pruning,
binarization, quantization, low-rank decomposition, etc., [Gong et
al., 2014; Han et al., 2015; Han et al., 2016; Soulié et al., 2015;
Wu et al., 2015; Guo et al., 2016; Kim et al., 2016; Wang et al., 2016;
Hubara et al., 2016a; Hubara et al., 2016b; Li et al., 2016; Zhu et al.,
2016], which is beyond the scope of this work.

Id is the d×d identity matrix. Also, by linearity of expectation,
for any matrix M with d columns, we have E[MU>U ] =
ME[U>U ] = M .
Notations. We denote matrices by uppercase letters and higher
dimensional tensors by Euler script letters. A real pth order
tensor T ∈ ⊗p

i=1Rdi is a member of the tensor product of
Euclidean spaces Rdi for i ∈ [p]. The different dimensions of
the tensor are referred to as modes. The (i1, . . . , ip)th entry
of a tensor T is denoted by Ti1i2...ip . The mode-n matrix
product (for n ∈ [p]) of a tensor T ∈ Rd1×···×dp with a
matrix M ∈ Rk×dn is denoted by T ×nM . Elementwise, we
have: (T ×n M)i1...in−1jin+1...ip =

∑dn

in=1 Ti1i2...ipMjin .
A fiber of T is obtained by fixing all but one of the indices of

the tensor. A flattening of tensor T along a mode (dimension)
n (denoted by matn) is a matrix whose columns correspond
to mode-n fibers of T .
Tensor Sketching. Our network approximation is based on
the idea of tensor sketching. Data sketching ideas have been
successfully used in designing many machine-learning al-
gorithms, especially in the setting of streaming data, see
e.g., [Woodruff, 2014]. Generally, sketching is used to con-
struct a compact representation of the data so that certain
properties in the data are (approximately) preserved. Our
usage of sketching is however slightly different, instead of
sketching the input data, we apply sketching on the parameters
of the function. Also, we want to design sketching techniques
that work uniformly for both matrices and higher order tensors.
For this, we define a new tensor sketch operation.
Definition 2 (Mode-n Sketch). Given a tensor, T ∈ ⊗p

i=1Rdi ,
the mode-n sketch of T with respect to a random scaled sign
matrix Un ∈ Rk×dn for n ∈ [p], is defined as the tensor
Sn = T ×nUn, where×n denotes the mode-n matrix product.

Since, we generally pick k � dn, the space needed for
storing the sketch Sn is a factor dn/k smaller than that for
storing T . In the case of matrices, the sketches are created
by pre- or post-multiplying the matrix with random scaled
sign matrices of appropriate dimensions. For example, given
a matrix W ∈ Rd1×d2 , we can construct mode-1 sketch (resp.
mode-2 sketch) ofW asW ×1U1 = U1W (resp.W ×2 U2 =
WU>2 ). Given a sketch S1 = W ×1U1 (resp. S2 = W ×2U2)
of a matrix W and another matrix M ∈ Rd2×d3 , it is natural
to use U>1 S1M (resp. S2U2M ) as an estimator for the matrix
product WM . It is easy to see that both these estimators
are unbiased. The second part of the following proposition
analyzes the variance of these estimators. The result will
motivate our construction of sketch-based layers in the next
section. We omit the proof due to space limitations.
Proposition 2.1. Let W ∈ Rd1×d2 . Let U1 ∈ Rk×d1 and
U2 ∈ Rk×d2 be two independent random scaled sign matrices.
Let S1 = U1W (= W ×1 U1) and S2 = WU>2 (= W ×2 U2).
Then for any matrix M ∈ Rd2×d3 :

1. E[U>1 S1M ] = WM, and E[S2U2M ] = WM.

2. E
[∥∥U>1 S1M −WM

∥∥2
F

]
≤ 2d1‖WM‖2F

k , and

E
[
‖S2U2M −WM‖2F

]
≤ 2‖W‖2F ‖M‖

2
F

k .

Notice that the variance terms decrease as 1/k. The variance
bound can also be plugged into Chebyshev’s inequality to get a
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probability bound. Also, the variance bounds are quantitatively
different based on whether the sketch S1 or S2 is used. In
particular, depending onW andM , one of the variance bounds
could be substantially smaller than the other one, e.g., if the
columns in M are in the null space of W then WM is a zero
matrix, so while one bound gives a tight zero variance the
other one does not.

3 Sketch-based Network Architecture
We now describe our idea of approximating a network using
tensor sketching.

3.1 Sketching Convolutional Layers
A typical convolutional layer in a CNN transforms a 3-
dimensional input tensor Iin ∈ Rh1×w1×d2 into a output
tensor Iout ∈ Rh2×w2×d1 by convolving Iin with the ker-
nel tensor K ∈ Rd2×h×w×d1 , where h2 and w2 depends on
h,w, h1, w1 and possibly other parameters such as stride, spa-
tial extent, zero padding [Goodfellow et al., 2016]. We use
∗ to denote the convolution operation, Iout = Iin ∗ K. The
exact definition of the convolution operator (∗) that depends
on these above mentioned additional parameters is not very im-
portant for us, and we only rely on the fact that the convolution
operation can be realized using a matrix multiplication as we
explain below.3 Also, a convolutional layer could be optionally
followed by application of some non-linear activation function
(such as ReLU or tanh), which are generally parameter free,
and do not affect our construction.

We use the tensor sketch operation (Definition 2) to reduce
either the dimensionality of the input feature map (d2) or the
output feature map (d1) in the kernel tensor K. In practice,
the dimensions of the individual filters (h and w) are small
integers, which we therefore do not further reduce. The motiva-
tion for sketching along different dimensions comes from our
mathematical analysis of the variance bounds (Theorem 3.1),
where as in Proposition 2.1 based on the relationship between
Iin and K the variance could be substantially smaller in one
case or the other. Another trick that works as a simple boost-
ing technique is to utilize multiple sketches each associated
with an independent random matrix. Formally, we define a
SK-CONV layer as follows (see also Figure 1).

Definition 3. A SK-CONV layer is parametrized by a
sequence of tensor-matrix pairs (S11 , U11), . . . , (S1` , U1`),
(S21 , U21), . . . , (S2` , U2`) where for i ∈ [`] S1i ∈
Rd2×h×w×k, S2i ∈ Rk×h×w×d1 and U1i ∈ Rk×d1 , U2i ∈
Rkhw×d2hw are independent random scaled sign matrices,4

which on input Iin ∈ Rh1×w1×d2 constructs Îout as follows:

Îout =
1

2`

∑̀
i=1

Iin ∗ (S1i ×4 U
>
1i ) + Iin ∗ (S2i � U>2i ), (1)

3In a commonly used setting, with stride of 1 and zero-
padding of 0, h2 = h1 − h + 1 and w2 = w1 − w + 1,
and Iout ∈ R(h1−h+1)×(w1−w+1)×d1 is defined as: Ioutxys =∑h

i=1

∑w
j=1

∑d2
c=1Kcijs Iin(x+i−1)(y+j−1)c

.
4We define U2i ∈ Rkhw×d2hw (instead of U2i ∈ Rk×d2 ) for

simplifying the construction.

Figure 1: A SK-CONV layer with parameters
(S11 , U11), . . . , (S1` , U1`), (S21 , U21), . . . , (S2` , U2`).

where S2i � U>2i ∈ Rd2×h×w×d1 is defined as5

(S2i � U>2i )xyzs =
k∑

c=1

h∑
i=1

w∑
j=1

S2icijsU2i(cij)(xyz)
.

Here (S2i � U>2i )xyzs is the (x, y, z, s)th entry, S2icijs is the
(c, i, j, s)th entry, and U2i(cij)(xyz)

is the (cij, xyz)th entry in
(S2i � U>2i ), S2i , and U2i , respectively.

By running multiple sketches in parallel on the same input
and taking the average, also results in a more stable perfor-
mance across different choices of the random matrices The
number of free parameters overall in all the S1i and S2i tensors
put together equals `hwk(d1 + d2).6 Therefore, with a SK-
CONV layer, we get a reduction in the number of parameters
compared to a traditional convolutional layer (with hwd1d2
parameters) if k` ≤ d1d2/(d1 + d2). With this reduction, the
time for computing Îout, ignoring dependence on h and w,
reduces from O(h2w2d1d2) (in a traditional CONV layer) to
O(h2w2`k(d1 + d2)) (in a SK-CONV layer).
Implementing a SK-CONV Layer with Matrix Multiplica-
tions. We next discuss how to implement a SK-CONV layer
using just matrix multiplications. The convolution operation
can be reduced into a matrix multiplication, an idea that is
exploited by many deep learning frameworks [Chetlur et al.,
2014]. The idea is to reformulate the kernel tensor K by flat-
tening it along the dimension representing the output feature
map, which in our setting is represented along the fourth di-
mension of K. The input tensor Iin is used to form a matrix
Iin ∈ Rh2w2×d2hw. This construction is quite standard and we
refer the reader to [Chetlur et al., 2014] for more details. Then
it follows that Îout defined as Iinmat4(K) ∈ Rh2w2×d1 is a
reshaping of the output tensor Îout (i.e., Îout = mat3(Îout)).

Using this equivalence and simple algebraic observations
(mat4(S1i×4U

>
1i ) = mat4(S1i)U1i and mat4(S2i�U>2i ) =

5Let Oi = S2i � U>2i . The � operation can be equivalently
defined: mat4(Oi) = U>2imat4(S2i).

6The random matrices, once picked are not changed during the
training or deployment.
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U>2imat4(S2i)), we can re-express the operation in (1) as:

Îout =
1

2`

∑̀
i=1

Iinmat4(S1i)U1i + IinU
>
2imat4(S2i). (2)

Or in other words, Îout equals to

1

2`

∑̀
i=1

Iin(mat4(S1i)×2 U
>
1i ) + Iin(mat4(S2i)×1 U

>
2i ).

We use this matrix representation (Îout) of Îout in our imple-
mentation of a SK-CONV layer both in the forward pass and
when deriving the gradients during back-propagation.

Theoretical Guarantees of a SK-CONV Layer. Given a
traditional convolutional layer with kernel tensor K and
independent random scaled sign matrices U11 , . . . , U1` ,
U21 , . . . , U2` , we can form a corresponding SK-CONV layer
by constructing tensors S11 , . . . ,S1` ,S21 , . . . ,S2` such that
mat4(S1i) = mat4(K)U>1i and mat4(S2i) = U2imat4(K)
for i ∈ [`]. The next theorem based on Proposition 2.1, ana-
lyzes the expectation and the variance of using these sketches
as an estimator for Iout = Iin ∗ K (≡ Iinmat4(K)).
Theorem 3.1 (Theoretical Guarantees of a SK-CONV
Layer). Let K ∈ Rd2×h×w×d1 be a kernel tensor. Let
U11 , . . . , U1` ∈ Rk×d1 and U21 , . . . , U2` ∈ Rkhw×d2hw

be a set of independent random scaled sign matrices. Let
S11 , . . . ,S1` ,S21 , . . . ,S2` be tensors defined as above. Then
for any input tensor Iin ∈ Rh1×w1×d2 with Iout = Iin ∗ K:

1. Unbiased Estimation: E[Îout] = Iout.
2. Variance Bound:

E
[∥∥∥Îout − Iout∥∥∥2

F

]
≤ d1‖Iin ∗ K‖2F

`k
+
‖Iin‖2F ‖K‖2F

`khw
.

Training a SK-CONV Layer
In this section, we discuss a procedure for training a SK-CONV
layer. Let Loss() denote some loss function for the network.
For computational and space efficiency, our goal will be to
perform the training without ever needing to construct the
complete kernel tensor (K). We focus on deriving the gradient
of the loss with respect to the parameters in a SK-CONV layer,
which can then be used for back-propagating gradients.

We can again exploit the equivalence between the convolu-
tion operation and matrix multiplication. Consider the opera-
tion performed in the SK-CONV layer as defined in (2). Let
G = ∂Loss

∂Îout
∈ Rh2w2×d1 . For i ∈ [`],7

∂Loss
∂ mat4(S1i )

=
I>inGU>1i

2` , ∂Loss
∂ mat4(S2i )

=
U2i

I>inG

2` , and

∂Loss
∂Iin

=
∑`

i=1

GU>1i
mat4(S1i )

>

2` +
∑`

i=1
G mat4(S2i )

>U2i

2` .

Notice that all the required operations can be carried out with-
out ever explicitly forming the complete d2×h×w×d1 sized
kernel tensor.

7The gradients computed with respect to mat4(S1i) and
mat4(S2i) can also be converted into a tensor by reversing the
mat4() operator.

3.2 Sketching Fully Connected Layers
Neurons in a fully connected (FC) layer have full connections
to all activations in the previous layer. These layers apply a
linear transformation of the input. Let W ∈ Rd1×d2 represent
a weight matrix and b ∈ Rd1 represent a bias vector. The
operation of the FC layer on input hin can be described as:

a = Whin + b. (3)

Typically, the FC layer is followed by application of some non-
linear activation function. As in the case of CONV layers, our
construction is independent of the applied activation function
and we omit further discussion of these functions. Our idea
is to use the tensor sketch operation (Definition 2) to sketch
either the columns or rows of the weight matrix.
Definition 4. A SK-FC layer is parametrized by a bias vec-
tor b ∈ Rd1 and a sequence of matrix pairs (S11 , U11), . . . ,
(S1` , U1`), (S21 , U21), . . . , (S2` , U2`) where for i ∈ [`], S1i ∈
Rk×d2 , S2i ∈ Rd1×k and U1i ∈ Rk×d1 , U2i ∈ Rk×d2 are
independent random scaled sign matrices, which on input
hin ∈ Rd2 constructs â as follows:

â =
1

2`

∑̀
i=1

U>1iS1ihin +
1

2`

∑̀
i=1

S2iU2ihin + b. (4)

Note that â in the above definition could be equivalently rep-
resented as â = 1

2`

∑`
i=1(S1i ×1 U

>
1i )hin + 1

2`

∑`
i=1(S2i ×2

U>2i )hin + b. The number of free parameters overall in
all the S1i and S2i matrices put together is `k(d1 + d2).
Hence, compared to a traditional weight matrix W ∈ Rd1×d2 ,
we get a reduction in the number of parameters if k` ≤
d1d2/(d1 + d2). Another advantage is that the time needed
for computing the pre-activation value (â in (4)) in a SK-FC
layer is O(`k(d1 + d2)) which is smaller than the O(d1d2)
time needed in the traditional FC setting if the values of k and
` satisfy the above condition.
Theoretical Guarantees of SK-FC Layer. Given a tradi-
tional FC layer with weight matrix W (as in (3)), and indepen-
dent random scaled sign matrices U11 , . . . , U1` , U21 , . . . , U2` ,
we can form a corresponding SK-FC layer by setting S1i =
U1iW and S2i = WU>2i . We now analyze properties of this
construction. The next theorem, based on Proposition 2.1, ana-
lyzes the expectation and the variance of using these sketches
as an estimator for a = Whin + b for a vector hin ∈ Rd2 .
Theorem 3.2. Let W ∈ Rd1×d2 . Let U11 , . . . , U1` ∈ Rk×d1

and U21 , . . . , U2` ∈ Rk×d2 be a set of independent random
scaled sign matrices. Let S1i = U1iW (= W ×1 U1i) and
S2i = WU>2i (= W ×2 U2i) for i ∈ [`]. Then for any hin ∈
Rd2 and b ∈ Rd1 with a = Whin + b:

1. Unbiased Estimation: E[â] = a

2. Variance Bound:

E
[
‖â− a‖2

]
≤ d1‖Whin‖2

`k
+
‖W‖2F ‖hin‖2

`k
.

Training a SK-FC Layer
We discuss a procedure for training a network containing
SK-FC layers. Let Loss() denote some loss function for the
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network. Let c = S2U2hin + b. Let g = ∂Loss
∂c . In this case,

using chain-rule of calculus

∂Loss

∂S2
= gh>inU

>
2 = (gh>in)×2 U2. (5)

Similarly, the gradient with respect to hin is:

∂Loss

∂hin
= (S2U2)>g = (S2 ×2 U

>
2 )>g. (6)

Now let c = U>1 S1hin + b = (S>1 U1)>hin + b.
Again let g = ∂Loss

∂c . Applying chain-rule gives ∂Loss
∂S1

=∑d1

i=1
∂Loss
∂ci

∂ci
∂S1

, where ci denotes the ith entry of c. We can

compute ∂ci
∂S1

as ∂ci
∂S1

=
∂ u>1i

S1hin

∂S1
= u1ih

>
in, where u1i is

the ith column in U1. Therefore, we get

∂Loss

∂S1
=

d1∑
i=1

giu1ih
>
in = U1gh

>
in = (gh>in)×1 U1, (7)

where gi denotes the ith entry of g. Finally, the gradient with
respect to hin in this case equals:

∂Loss

∂hin
= (S>1 U1)g = (S1 ×1 U

>
1 )>g. (8)

Putting together (5), (6), (7), and (8) gives the necessary
gradients for the SK-FC layer (where â is defined using (4)).
Let g = ∂Loss

∂â . For i ∈ [`],

∂Loss
∂S1i

=
U1i

gh>in
2` , ∂Loss∂S2i

=
gh>inU

>
2i

2` , and

∂Loss
∂hin

=
∑`

i=1

S>1i
U1i

g

2` +
∑`

i=1

U>2i
S2i

g

2` .

Note that all the above computations can be performed without
ever explicitly forming the complete d1 × d2 weight matrix.

3.3 Final Construction of N̂N
Given a convolutional neural network NN, construct N̂N, an
approximation of NN, by replacing the convolutional layers
(resp. fully connected layers) with SK-CONV layers (resp. SK-
FC layers). A nice feature about this construction is that, based
on need, we can also choose to replace only some of the layers
of the NN with their sketch counterpart layers.

4 Comparison to Previous Work
Deep neural networks are typically over-parameterized, and
there is significant redundancy in deep learning networks [De-
nil et al., 2013]. There have been several previous attempts to
reduce the complexity of deep NN under a variety of contexts.

Most relevant to our paper is a line of work on approximat-
ing both the fully connected and convolutional layers. Denil et
al. [Denil et al., 2013], suggested an approach based on learn-
ing a low-rank factorization of the matrices involved within
each layer of a CNN. Instead of learning both the factors of a
factorization during training, the authors suggest techniques
for carefully constructing one of the factors (called the dictio-
nary), while only learning the other one. Our sketching-based
approach is related to low-rank factorization, however using

sketching we eliminate the overhead of carefully constructing
the dictionary. Tai et al. [Tai et al., 2016] achieve parameter
reduction using a tensor decomposition technique that is based
on replacing the convolutional kernel with two consecutive
kernels with a lower rank. The issue with this approach is
that with the increased depth of the resulting network, training
becomes more challenging, and the authors rely on batch nor-
malization [Ioffe and Szegedy, 2015] to overcome this issue.
In our approach, the depth of the reduced network remains
equal to that of the original network, and the reduced network
can be trained with or without batch normalization. Chen et al.
[Chen et al., 2016] combine the hashing idea from [Chen et al.,
2015] along with the discrete cosine transform (DCT) to com-
press filters in a convolutional layer. Their architecture, called
FreshNets, first converts filter weights into frequency domain
using discrete cosine transform and then uses the hashing idea
to randomly group the resulting frequency parameters into
buckets. Our sketches are created by using random projections
which is related to the hashing trick used in these results, how-
ever, our techniques are naturally attractive for convolutional
neural networks as they are known to be preserve spatial local-
ity [Johnson and Lindenstrauss, 1984], a property that is not
preserved by simple hashing. Also, in contrast to FreshNets,
our architectures require just simple linear transformations
for both fully connected and convolutional layers, and do not
require special routines for DCT, Inverse DCT, etc.

There is a long line of work on reducing model memory size
based on post-processing a trained network (with sometimes
further fine-tuning of the compressed model) [Gong et al.,
2014; Han et al., 2015; Soulié et al., 2015; Wu et al., 2015;
Guo et al., 2016; Kim et al., 2016; Wang et al., 2016;
Hubara et al., 2016b; Zhu et al., 2016; Li et al., 2016]. Tech-
niques such as pruning, binarization, quantization, low-rank
decomposition, etc., are intermingled with training of a net-
work on a dataset to construct a reduced model. These results
do not achieve a direct network approximation as the training
happens on the original network. In practice, one can com-
bine our approach with some of the above proposed model
post-processing techniques to further reduce the storage re-
quirements of the trained model (which is beyond the scope
of this paper).

5 Experimental Evaluation
In this section, we experimentally demonstrate the effective-
ness of our proposed network approximation approach.
Metrics. We define compression rate as the ratio between the
number of parameters in the reduced (compressed) network
architecture and the number of parameters in the original
(uncompressed) network architecture. The top-1 error of a
trained model is denoted by ERRTOP-1.
Datasets. We use 5 popular image datasets: CIFAR10, SVHN,
STL10, ImageNet10 (a subset of ImageNet1000 dataset), and
Places2. Note that, Places2 is a challenging dataset that was
used in the ILSVRC 2016 “Scene Classification” challenge.
Network Architectures. We present our experiments on two
different network architectures: Network-in-Network [Lin
et al., 2014] (NinN) and GoogLeNet [Szegedy et al., 2015]
(which we use for the Places2 dataset). The choice of ar-
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Figure 2: Top-1 error for NinN as we decrease the compression rate by compressing one convolutional layer at a time each by a factor of 10.

Figure 3: Top-1 error for NinN+FC as we decrease the compression rate by compressing one convolutional layer at a time each by a factor of 4
and the fully connected layer by a factor of 4. The size of FC layer is about half of the total size of convolutional layers CONV2 to CONV8.

chitectures was done keeping in mind limited computational
resources at our disposal and a recent trend of moving away
from fully connected layers in CNNs. A common observation
is that reducing the number of parameters in convolutional lay-
ers seems to be a much more challenging problem than that for
fully connected layers. NinN achieves a baseline top-1 error
of 17.7, 43.2, 6.0, and 27.1 on the CIFAR10, STL10, SVHN,
and ImageNet10 datasets respectively. Similarly, GoogLeNet
achieves a baseline top-1 error of 32.3% on the Places2 dataset.
Baseline Techniques. We compare our approach with four
state-of-the-art techniques that approximate both the convolu-
tional and the fully connected layers: FreshNets technique that
uses hashing in the frequency domain to approximate the con-
volutional layer [Chen et al., 2016], low-rank decomposition
technique of [Denil et al., 2013] (LOWRANK1), and tensor
decomposition technique of [Tai et al., 2016] (LOWRANK2).
While using the FreshNets, we also use the HashedNets tech-
nique of feature hashing [Chen et al., 2015] for compressing
the fully connected layers as suggested by [Chen et al., 2016].
Results. Figure 2 shows the results of our first set of experi-
ments. In this case, we use the NinN architecture. If a point
is missing in the plots then the corresponding network train-
ing failed. We expect the error to go up as we decrease the
compression rate, i.e., increase the parameter reduction. We
observe this general trend in almost all our plots, with minor
fluctuations on the SVHN dataset. We make two main obser-
vations from these plots. First, our method was always able to
get to a better compression rate compared to other techniques,
in that these comparative techniques started failing sooner as
we kept decreasing the compression rate. For example, our
approach consistently achieves a compression rate of 0.15 that
none of the other techniques even get close to achieving. Sec-
ond, our approach also almost always achieves better accuracy
when compared to other techniques. As explained in Sec-
tion 4, our approach has some advantages over the compared
techniques, especially in terms of its ability to approximate

(compress) the convolutional layers.
Next we consider results on both the convolutional and fully

connected layers. We now add fully connected layers into the
mix. To do so, we used a modified NinN architecture (denoted
as NinN+FC) in our experiments where we replaced the last
convolution layer (CONV9) with a fully connected layer of
size 768× 768 followed by a classifier layer of size 768× 10.
In Figure 3, we present the results of these experiments. Our
approach again outperforms other techniques in terms of both
accuracy and the maximum achievable compression rate. The
results demonstrate the effectiveness of proposed approach on
both the convolutional and fully connected layers.

An interesting observation from our experiments is that we
can gain up to 4% or lose up to 2% of accuracy compared
to original network accuracy. The fact that sometimes our
reduced network was able to gain a bit of accuracy over the
original network suggests that our randomized technique also
acts as an implicit regularizer during training.

To evaluate our approach on a large dataset, we ran addi-
tional experiments on the Places2 dataset (using a centered
crop). Here we used the GoogLeNet architecture with batch
normalization. Due to limited computational resources, we
ran a single experiment where we compressed all but the first
layer to achieve a compression rate of about 0.2. At this com-
pression level, training for none of the competitor methods
succeeded, whereas, our approach gave a top-1 error of 36.4%.
Note that the top-1 error of the original GoogLeNet on this
dataset is 32.3%. This demonstrates that our approach man-
ages to generate smaller networks that perform well even on
large datasets.
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