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Abstract
In the context of tree-search stochastic planning al-
gorithms where a generative model is available, we
consider on-line planning algorithms building trees
in order to recommend an action. We investigate
the question of avoiding re-planning in subsequent
decision steps by directly using sub-trees as ac-
tion recommender. Firstly, we propose a method
for open loop control via a new algorithm taking
the decision of re-planning or not at each time step
based on an analysis of the statistics of the sub-tree.
Secondly, we show that the probability of selecting
a suboptimal action at any depth of the tree can be
upper bounded and converges towards zero. More-
over, this upper bound decays in a logarithmic way
between subsequent depths. This leads to a dis-
tinction between node-wise optimality and state-
wise optimality. Finally, we empirically demon-
strate that our method achieves a compromise be-
tween loss of performance and computational gain.

1 Introduction
Tree-search based algorithms recently encountered a real suc-
cess at solving sequential, highly combinatorial problems
such as the challenging game of Go [Enzenberger et al., 2010;
Silver et al., 2016]. Such algorithms use a generative model
of the environment to simulate episodes starting from the cur-
rent state of the agent [Sutton, 1991; Sutton and Barto, 1998].
This allows the exploration of reachable states and actions
and results in the construction of an (unbalanced) scenario
tree, that aims at identifying promising branches with a lim-
ited computational budget. When the computational budget
is exhausted, the recommended action at the root node is ap-
plied and a new tree is built in the resulting state. This results
overall in a closed loop control process.

We are interested in stochastic problems with large state
spaces (e.g. continuous) with a short decision time (bud-
get). In this setting, open loop planning algorithms have
proven to be successful [Bubeck and Munos, 2010] and even
to outperform [Weinstein and Littman, 2012] the standard ap-
proaches that consider closed loop policy trees such as UCT
[Kocsis and Szepesvári, 2006]. They seek for optimal se-
quences of actions (plans) rather than optimal policies de-

spite the sub-optimal nature of a plan in stochastic environ-
ments. Indeed, computing the latter prevents feed-back on
the explored states but allows to break the complexity of the
state space exploration. Given a tree computed by an open
loop planning algorithm, we propose to keep the sub-tree
reached by the application of the recommended action and
to directly use it as the main tree for the subsequent time step,
without re-planning. What motivates this approach is spar-
ing the computational cost of tree building for subsequent
time steps, hence reducing the number of calls to the sim-
ulator. The interest of this can be seen in two ways. On
one hand it is a way of reducing energy consumption for sys-
tems with low computational resources [Wilson et al., 2014;
2016]. On the other hand, the saved computational time can
be re-invested into other tasks. Particularly, this approach
is adapted for low level control (i.e. high frequency) where
sub-sequent tree developments is cumbersome. In this frame-
work, Perez et al. [2012a] and Heusner [2011] considered
keeping the tree in deterministic environments but observed
a negative impact as the sub-trees were systematically kept
without analysis. Moreover, they lose the aforementioned
computational gain by refining the sub-trees.

In this paper, we study the impact of using the subsequent
sub-trees as main trees for the next action steps without fur-
ther re-planning. We claim that in lowly-stochastic environ-
ments, the reached performance is comparable to algorithms
systematically discarding the tree. Our contribution is three-
fold. (1) We introduce a new algorithm called OLTA (Sec-
tion 3), performing a systematic analysis of the sub-tree and
taking the decision of re-planning or not at each time step.
(2) We upper bound the probability of selecting a subopti-
mal action within a sub-tree, the sense of optimality being
defined in an open loop fashion (Section 4). Additionally, we
show that this upper bound decays logarithmically with the
sub-tree depth. (3) We show in our experiments the benefit
of applying such a method both in terms of performance and
computational cost saving (Section 5).

2 Background
2.1 Markov Decision Process
We model the planning problem as a Markov Decision Pro-
cess (MDP) where an agent sequentially takes actions with
the general goal of maximizing the cumulative return fed
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back by the environment [Puterman, 2014]. We refer to the
state space as S and the action space as A. We suppose the
number of actions to be finite with K = |A|, thus we write
A = {ai}Ki=1. We also consider that the available actions are
independent of the state the agent lies in. The state transition
function is stochastic and we note P (s′|s, a) the probability
of reaching state s′ after taking action a in state s. The re-
ward model is denoted by r(s, a, s′) and refers to the scalar
reward received while performing the transition (s, a, s′). We
assume that this reward function is deterministic. Finally,
we suppose the horizon of the MDP is infinite and we note
γ ∈ [0, 1) the discount factor which represents the impor-
tance of the subsequent collected rewards.

2.2 Tree Representation

When a generative model of the MDP is available, it becomes
possible to use it within planning algorithms. Tree-search al-
gorithms use this model in order to build a tree of what may
possibly occur in the current situation of the agent [Sutton,
1991; Sutton and Barto, 1998; Silver et al., 2008]. In the
stochastic setting with potentially infinitely many states, we
use a tree structure similar to the one used by Bubeck and
Munos [2010]. The tree built at each time step consists in a
look-ahead search of the possible outcomes while following
some action plan starting from the current state of the agent
s0 ∈ S. Thus, the root node of the tree is labelled by the
unique state s0. The edges correspond to the K available ac-
tions, K being the branching factor of the tree. The tree itself
conforms to an ensemble of action sequences, or plans, orig-
inating from its root node.

We emphasize the fact that this tree structure implies that
we search for a state-independent optimal sequence of ac-
tions (open loop plan) which is in general sub-optimal com-
pared to a state-dependent policy search. The THTS family
of algorithms in particular [Keller and Helmert, 2013] defines
trees with chance and decision nodes while our structure does
not apply an equality operator on the sampled states. Fol-
lowing Bubeck and Munos; Weinstein and Littman [2010;
2012], we argue that closed-loop application of the first ac-
tion in optimal open loop plans, although theoretically sub-
optimal, can be competitive with these methods in practice,
while being more sample-efficient.

Since the transition model is stochastic, the non-root nodes
are not labelled by a unique state. Instead, every such node is
associated to a state distribution resulting from the application
of the action plan leading to the considered node and starting
from s0. During the exploration, we consider saving all sam-
pled states at each non-root node. A comprehensive illustra-
tion of such a tree can be found in Figure 1. This approach ex-
tends straightforwardly to Partially Observable Markov Deci-
sion Processes (POMDP) [Silver and Veness, 2010].

Given a tree-search, open loop planning algorithm, we call
Td the tree at depth d ∈ N, that is the sub-tree resulting from
the application of the d first recommended actions. Hence
T0 denotes the whole tree, T1 the tree starting from the node
reached by the application of the first recommended action
and so on.

Root node

Non-root node

s0

a1 ai

s′1 s′l

aK

d = 0

d = 1
∀i ∈ {1, · · · , l} ,
s′i ∼ P (·|s0, ai)

a1 aK

· · ·

· · · · · ·

· · ·

Figure 1: General representation of a tree, where l ∈ N is the num-
ber of times the sub-tree reached by action ai has been developed.
Two nodes are represented in this tree with their respective depths
on the left.

2.3 Open Loop UCT
For the sake of clarity and in order to clearly separate the tree
building properties from the open loop execution presented in
the next section, we define an open loop planning algorithm
utilizing the presented tree structure that we call Open Loop
UCT (OLUCT). The difference between UCT and OLUCT is
that OLUCT is not provided with an equality operator over
states. Within the THTS terminology, this means that deci-
sion and chance nodes do not correspond to a single state but
to the state distribution reachable by the action plan leading
to the node. Hence decision and chance nodes are associ-
ated to the state distribution which makes OLUCT an open
loop planning algorithm. The fundamental consequence is
that an action value within our tree is computed w.r.t. the
parent node’s state distribution rather than a single state.

Apart from this, OLUCT uses the same exploration proce-
dure as UCT. Within a node, we note Xi,u the estimated ex-
pected return of action i after u samples of this action. Ti(t) is
the number of trials of action i up to time t of the OLUCT pro-
cedure. An Upper Confidence Bound (UCB) strategy [Auer
et al., 2002] is applied at each node where each action is seen
as an arm of a bandit problem. The tree policy selects the
action It with the highest UCB:

It = arg max
i∈{1,··· ,K}

{
Xi,Ti(t−1) + ct−1,Ti(t−1)

}
,

where ct,u = 2Cp

√
ln(t)
u is an exploration term ensuring that

all actions will be sampled infinitely often.The Cp parame-
ter drives the exploration-exploitation trade-off. The OLUCT
tree building procedure is detailed in Algorithm 1.

3 OLTA (Open Loop Tree-search Algorithm)
3.1 Description
In order to control the execution of open loop plans, we pro-
pose a new algorithm called OLTA (Algorithm 2). It relies
on a generic open loop planning algorithm to generate a tree,
rooting from the current state. For the next execution time
step, it decides either to use the sub-tree reached by the rec-
ommended action or to trigger a re-planning by building a
new tree. If no re-planning is triggered, then the recom-
mended action of the sub-tree is applied without using the
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Algorithm 1: OLUCT tree building procedure
Function createTree(state s):
Parameters: budget n; default policy πdefault.
Create root node νroot(s)
for t ∈ {1, · · · , n} do

νleaf = Select(νroot); // Select a leaf node
w.r.t. the UCT strategy and sample a
new state for each encountered node.

Expand(νleaf ); // Expand the node if not
terminal using the generative model.

∆ = Evaluate(νleaf , πdefault); // Simulate a
roll-out using πdefault, starting from
the last sampled state in νleaf.

Backup(νleaf ,∆); // Back-propagate the
sampled return.

return T (νroot)

additional information of the new state observed after the
transition. This results in an open loop control process and
spares the cost of developing a new tree starting at this state.
The intuition behind OLTA is that several consecutive rec-
ommended actions in an optimal branch of the tree can be
reliable, despite the randomness of the environment. A major
example of such a case is low-level control, where consecu-
tive sampled states are close to each other.

In this paper, for its performance and simplicity, we chose
to implement OLUCT as the open loop planning algorithm
utilized by OLTA. However, any other algorithm generat-
ing trees as described in Section 2.2 could be used in the
same way (e.g. OLOP [Bubeck and Munos, 2010], or
HOLOP [Weinstein and Littman, 2012]).

One important feature of OLTA is the so-called “decision-
Criterion”, based on which the agent decides to either use
the first sub-tree following the recommended action, or to re-
build a new tree from the current state. The decision is based
on a comparison with the characteristics of the resulting sub-
tree and the current state of the agent. In the next section,
we discuss different decision criteria, leading to the consider-
ation of a family of different algorithms.

3.2 Decision Criterion
The simplest implementation of the decision criterion is to
keep the sub-tree only if its root node is fully expanded. This
means that each action has been sampled at least once. We
call the resulting algorithm Plain OLTA. It naively trusts the
value estimates of the sub-tree, thus applies the whole plan of
recommended actions at each depth until it reaches a partially
expanded node. Therefore, Plain OLTA is expected to per-
form better in deterministic environments. In stochastic cases
however, those estimates may be biased because of the differ-
ent sources of uncertainty within the MDP (reward function,
state transition function and action selection). For this reason,
we seek more robust criteria to base the decision on.

A natural way to decide whether to keep the sub-tree or
not is to track if the recommended action is optimal w.r.t. the
new state s of the agent. Here we make an important dis-
tinction between a state-wise optimal action and a node-

Algorithm 2: OLTA algorithm
Function OLTA:
Parameters: initial state s0; tree building procedure
createTree; re-planning criterion decisionCriterion.
s = s0;
T = createTree(s);
while s is not terminal do

if decisionCriterion(s, T ) then
a = recommendedAction(T ); // Get the
first recommended action.

else
T = createTree(s); // Create a new tree
from the current state.
a = recommendedAction(T ); // Get the
first recommended action.

T = subTree(T , a); // Move the tree to the
first sub-tree resulting from the
application of a.

s := realWorldTransitionFunction(s, a);

wise optimal action. The first one is the action recom-
mended by the optimal policy in a specific state. We note
it a∗ = arg maxa∈AQ

∗(s, a), with Q∗ : S × A → R the
optimal state-action value function. In order to define the
second one, we introduce Sd, the state random variable at
the root node of Td. Its distribution results from the applica-
tion of the d first recommended actions starting from s0, so
Sd ∼ P (·|s0, a0, · · · , ad−1) ≡ PSd(·). The node-wise opti-
mal action maximizes the expected return given the state dis-
tribution of the node. We note it a∗d = arg maxa∈AQ

∗
d(a)

where Q∗d : A → R is the optimal action value function
w.r.t. the state distribution at the root node of Td, that is
Q∗d(a) = Es∼PSd (Q∗(s, a)). Following Bellemare et al.
[2017], a distributional Bellman equation can be expressed in
terms of three sources of randomness that are: R : S×A→ R
the stochastic reward function; X : S × A → R the random
return; and Pπ the transition operator with PπX(s, a)

D
:=

X(S′, A′), S′ ∼ P (·|s, a) and A′ ∼ π(·|S′). Mathemati-
cally, we have the following distributional Bellman equations:{

Qπ(s, a) = Eπ(X(s, a))

Qπd (a) = EPSd (Qπ(s, a))
,

with X(s, a) ∼ R(s, a) + γPπX(s, a) and Sd ∼ PSd(·).
Unfortunately, at the root node of Td for d > 0, open loop
tree-search algorithms do not estimate Q∗ but Q∗d. The bias
introduced by the state distribution implies that in the general
case we have no guarantee that a∗ = a∗d. The risk is that the
set ΩSd of possible realizations of Sd can include states where
a∗ is sub-optimal, in which case the resulting return evalua-
tions would weight in favour of a different action than a∗. In
other words — introducing the notion of domination domain
for an action a as Da = {s ∈ S|π∗(s) = a} ⊂ S — if ΩSd is
not included in Da∗ , then the risk of the recommended action
to be state-wise sub-optimal is increased. Conversely, if ΩSd
is included in the domination domain of a∗, then the optimal

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2364



action will be selected given that the budget is “big enough”
w.r.t. the chosen tree-search algorithm’s performance. Conse-
quently, one should base the decision criterion on the analysis
of PSd and the action domination domains. To compute these
domains, Rachelson and Lagoudakis [2010] use the proper-
ties of Lipschitz-MDPs. Although the following discussion is
inspired by this work, the consideration of Lipschitz-MDPs is
out of the scope of this paper. We discuss below the construc-
tion of decision criteria that will be illustrated in Section 5.

Current state analysis & POMDP setting. The current
state s of the agent can be compared to the empirical state
distribution PSd at the root node of the sub-tree. If PSd(s) is
large, then the value estimators are related to the locality of
the state space the agent lies in. If not, then the node-wise
optimal action may not be state-wise optimal. This consider-
ation supposes to identify a state-metric for which two close
states have a high chance to be in the same action domina-
tion domain. Alternatively, in the case of a POMDP, a belief
distribution on the current state is available instead of the cur-
rent state itself [Kaelbling et al., 1998]. In such a case, a
direct comparison between this distribution and PSd can be
performed (e.g. with a Wasserstein metric). Note that mak-
ing use of the current state of the agent makes the algorithm
closed-loop, by definition. We use the terminology ”open-
loop” in order to distinguish OLTA from classical closed-
loop Tree Search algorithms that systematically re-plan, root-
ing from the current state (e.g. OLOP [Bubeck and Munos,
2010], performs closed-loop execution).

State distribution analysis. The dispersion and multi-
modality of PSd could motivate not to re-use a sub-tree. A
high dispersion involves the possibility that ΩSd does not be-
long to a single action domination domain and a re-planning
should be triggered. The same consideration applies in terms
of multi-modality. Conversely, a narrow, mono-modal, state
distribution is a good hint for ΩSd to be comprised into a sin-
gle action domination domain.

Return distribution analysis. A widespread or a multi-
modal return distribution for the recommended action in a
node may indicate a strong dependency on the region of the
state space we lie in. If ΩSd covers different action domi-
nation domains, each of these domains may contribute a dif-
ferent return distribution to the node’s return estimates, thus
inducing a high variance on this distribution or even a multi-
modality. In this case, it could be beneficial to trigger the re-
planning. Alternatively, even after re-planning, widespread or
multi-modal return distributions can naturally arise as a result
of the MDP’s reward and transition models.

We do not provide a unique generic method to base the de-
cision criterion on. Indeed, we believe that it is a strongly
problem-dependent issue and that efficient heuristics can be
built accordingly. However, the analysis of the state and re-
turn distributions constitute promising indicators and we ex-
emplify their use in the experiments of the last section.

4 Theoretical Analysis
In this section, we demonstrate that the algorithm asymptoti-
cally provides node-wise optimal actions for any sub-tree Td
of depth d. We first derive an upper bound on the failure

s0

r = 1

s1

r = 0

s2

r = 0

s3

r = 0

s4

r = 1

Figure 2: 1D track environment. On top of each cell representing a
state is the immediate reward of the transition to this state.

probability that converges towards zero when the initial bud-
get n of the algorithm goes to infinity. Then, we character-
ize the loss of performance guarantees between subsequent
depths and show a logarithmic decay of the upper bound.
The demonstration unfolds as follows: first we write a lower
bound for the number of trials of the actions at the root of
Td in Lemma 1; then we write an upper bound on the failure
probability given a known budget at depth d in Lemma 2; fi-
nally we derive a recursive relation between the upper bounds
of subsequent trees that leads to our result in Theorem 1.
Proofs are omitted due to lack of space1.

We note b(d) ∈ N the budget used to develop Td i.e. the
number of times the d first recommended actions have been
selected by the tree policy. We note T di,t the number of times
the ith action at the root node of Td has been selected by
the OLUCT tree policy after t expansions of Td. Similarly,
X
d

i,Tdi,t
≡ X

d

i,t denotes the estimate of the return of the ith

action at depth d after t expansions of the sub-tree Td. We
write Idt the index of the action chosen by the tree policy at
depth d after t expansions of Td. We have:

Idt = arg max
i∈{1,··· ,K}

{
X
d

i,t−1 + ct−1,Tdi,t−1

}
.

The recommended action at depth d given a budget b(d)

is Îd = arg maxi∈{1,··· ,K}X
d

i,b(d). Following Kocsis and
Szepesvári [2006], we assume that the empirical estimates
X
d

i,t converge and write Xd
i,t = E{Xd

i,t} and Xd
i =

limt→∞Xd
i,t. Then, we define for i ∈ {1, · · · ,K} \ i∗d,

∆d
i = Xd

i∗d
− Xd

i where we note i∗d the index of the node-
wise optimal action at the root node of Td. We make the as-
sumption that only one action is optimal in a given node. The
minimum return difference between a suboptimal action and
the optimal one at depth d is δd = mini∈{1,··· ,K}\i∗d(∆d

i ).

Lemma 1. Lower bound for the number of trials. For any
sub-tree Td developed with a budget b(d) > K, there exist a
constant ρ ≥ 0 such that T di,b(d) ≥ dρ ln(b(d))e for all i ∈
{1, · · · ,K}. Furthermore, we have the following sequence
of lower bounds for the budget with d·e the ceiling function:{

b(d = 0) = n

b(d) ≥ dρ ln(b(d− 1))e .

Lemma 2. Upper bound on the failure probability at depth
d given the budget b(d). For any sub-tree Td developed with
a budget b(d) > K we have the following upper bound on the
failure probability, conditioned by the budget b(d):

P (Îd 6= i∗d|b(d)) ≤ b(d)−
ρ
2 (δ

d)2 .
1A longer version of the paper including the proofs can be found

at https://arxiv.org/abs/1805.01367
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Theorem 1. Upper bound on the failure probability at depth
d. For an initial budget of n and for any sub-tree Td devel-
oped with a budget b(d) > K, we have the following recur-
sive relation for the upper bound on the failure probability,
conditioned by the initial budget n:

P (Îd 6= i∗d|n) ≤ dρ ln(b(d− 1))e− ρ2 (δd)2 .
Additionally, for any depth d ≥ 1 given the initial budget n:{

P (Îd 6= i∗d|n) ≤ fd(n)
− ρ2 (δd)2

f : t 7→ dρ ln(t)e
.

Where fd = f ◦ fd−1 with f1 = f and d > 0.

This result shows a logarithmic decay between the upper
bounds on the failure probability of two subsequent trees.
Asymptotically, at any depth, this upper bound converges to-
wards zero. This result highlights the fact that the deeper the
sub-tree is, the less one can rely on the recommended action
at the root node. However, we should note that these upper
bounds are derived without making further hypotheses on the
MDP and express a worst-case value. We show in the next
section that equal performances to OLUCT can be reached
with a smaller computational budget and number of calls to
the generative model.

5 Empirical Analysis
We compared OLUCT with OLTA on a discrete 1D track en-
vironment2 and a continuous Physical Travelling Salesman
Problem3 (PTSP) [Perez et al., 2012b]. We implemented five
decision criteria, leading to five variations of OLTA.

5.1 Heuristic decision criteria
A relevant decision criterion w.r.t. the treated problem allows
OLTA to discard a sub-tree when its first recommended ac-
tion may not be state-wise optimal given the current state of
the agent. We implemented five different tests to base this
decision on, and evaluated them independently, which led to
the following variations of OLTA.

Plain OLTA. The simplest decision criterion that discards
a sub-tree only if its root-node is not fully expanded.

State Distribution Modality (SDM-OLTA). Test whether
the empirical state distribution is multi-modal or not. If yes,
discard the tree if the current state of the agent does not be-
long to a majority mode. We define a majority mode by a
mode comprising more than τSDM% of the sampled states.

State Distribution Variance (SDV-OLTA). Test whether
the empirical state distribution variance is above a certain
threshold τSDV . Discard the tree if it is the case. For multi-
dimensional state spaces such as in the PTSP, the Variance-
Mean-Ratio (VMR) is considered for the different orders of
magnitude to be comparable.

State Distance to State Distribution (SDSD-OLTA).
Compute the Mahalanobis distance [De Maesschalck et al.,

Code available at:
2https://github.com/erwanlecarpentier/1dtrack.git
3https://github.com/erwanlecarpentier/flatland.git
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Figure 3: Comparison between OLUCT and OLTA on the discrete
1D track environment for varying values of q.

2000] of the current state from the empirical state distribution.
Discard the tree if it is above a selected threshold τSDSD.

Return Distribution Variance (RDV-OLTA). Test
whether the empirical return distribution variance is above a
certain threshold τRDV . Discard the tree if it is the case.

A more selective decision criterion can easily be derived
by combining the previously described decision criteria and
discarding the tree if one of them recommends to do so.

5.2 1D Track Environment
The 1D track environment (Figure 2), is a 1D discrete world
where an agent can either go right or left. The initial state is
the “middle” state s0 = s2. The reward is 0 everywhere ex-
cept for the transition to the two terminal states s0 and s4 for
which it is +1. The action space is A = {right, left}. We
introduce a transition misstep probability q ∈ [0, 1] which
is the probability to end up in the opposite state after tak-
ing an action, for i ∈ {1, 2, 3}: P (si−1|si, right) = q and
P (si+1|si, right) = 1 − q. The same applies for the left
action. If q < 0.5, the optimal policy πoptimal is to go left
at s1, to act randomly at s2 and to go right at s3. The sim-
ulation settings are: q ∈ {0.0, 0.05, · · · , 0.5}; n = 20 (bud-
get); πdefault = πoptimal; H = 10 (simulation horizon for
πdefault); Cp = 0.7; γ = 0.9. The decision criteria parame-
ters were tuned to: τSDM = 80; τSDV = 0.4; τSDSD = 1;
τRDV = 0.9. We generated 1000 episodes for each value of q
and recorded 3 performance measures: loss (number of time
steps to termination); computational cost (measured compu-
tation time); and number of calls to the generative model. We
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Trajectory derived by an
OLUCT algorithm in our
PTSP setting. The starting
point is displayed in red, the
waypoints in green and the
walls in grey.

Figure 4: PTSP illustration

display two different graphs of the loss, the second one high-
lights the relative performance between OLTA and OLUCT.

The motivation behind the use of such a benchmark is
to test open loop control in a highly stochastic environment
where feedback of the current state is highly informative
about the optimal action. In case of misstep for the first ac-
tion, OLTA has to guess that a re-planning should be triggered
while OLUCT does it systematically. As seen on Figure 3,
the non-plain OLTA and OLUCT achieved a very comparable
loss. Plain-OLTA had a weaker performance due to its sys-
tematic re-use of the sub-trees. Notice that some variations
of OLTA such as SDV-OLTA achieved a better mean loss
than OLUCT for some values of q. Due to the high variance,
this observation cannot lead to the conclusion that OLTA can
outperform OLUCT. However, this emphasizes the fact that
the performance are very similar. In terms of both computa-
tional cost and number of calls to the generative model, OLTA
widely outperforms OLUCT. As q increases, this computa-
tional gain vanishes and catches up with OLUCT for SDM-
OLTA and SDV-OLTA. This accounts for the discriminative
power of their decision criteria that discard more trees. RDV-
OLTA and SDSD-OLTA kept a lower computational cost
while reasonably matching the performance of OLUCT. Ob-
viously, the computational cost of Plain-OLTA stays low. The
apparent similarity between the number of calls to the genera-
tive model and the computational cost proves that computing
our decision criteria is less expensive than re-planning.

5.3 Physical Travelling Salesman Problem
The PTSP is a continuous navigation problem in which an
agent must reach all the waypoints within a maze (Figure 4).
The state of the agent is s = (x, y, θ, v) ∈ R4 i.e. the
2D position, orientation and velocity. The action space is
A = {+dθ, 0,−dθ} which consists of the increment, decre-
ment or no-change of the orientation. The reward is +1 when
a waypoint is reached for the first time, −1 for a wall crash
and 0 otherwise. The simulation terminates when the agent
reaches all the waypoints or a time limit. The walls cannot
be crossed and the orientation is flipped when a crash occurs.
We introduce a misstep probability q ∈ [0, 1] which is the
probability for another action to be undertaken instead of the
current one. A Gaussian noise of standard deviation σnoise is
added to each component of the resulting state from a tran-
sition. The simulation settings are: s0 = (1.1, 1.1, 0, 0.1);
q ∈ {0.0, 0.05, · · · , 0.5}; σnoise = 0.02; n = 300 (initial
tree budget); πdefault = πgo−straight that applies no orien-
tation variation; H = 50 (simulation horizon for πdefault);
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Figure 5: Comparison between OLUCT and OLTA on the continu-
ous PTSP for varying values of q.

Cp = 0.7; γ = 0.99. The provided map is the one depicted
in Figure 4 with three waypoints. The different decision cri-
teria parameters were tuned to: τSDV = 0.02; τSDSD = 1;
τRDV = 0.1. We reserve the development of SDM-OLTA
in the continuous case for future work. We generated 100
episodes for each transition misstep probability and recorded
the same performance measures as in the 1D track case. The
results are presented in Figure 5. OLUCT, SDSD-OLTA and
RDV-OLTA achieved a comparable loss for every q, which
shows that our method is applicable to larger scale problems
than the 1D track environment. SDV-OLTA reached a lower
level of performance. Plain OLTA still realized the highest
loss since it is highly sensitive to the stochasticity of the en-
vironment. In terms of both computational cost and number
of calls to the generative model, the same trade-off between
performance and computational cost is observed. Plain OLTA
and SDV-OLTA considerably lowered the number of calls at
the cost of the performance while SDSD-OLTA and RDV-
OLTA realized a better compromise. The number of calls
to the generative model and the computational cost are quite
similar, meaning that — even with the higher dimensionality
of the PTSP compared to the 1D track — the cost incurred
by the decision criteria computation is negligible in compari-
son to the one incurred by the re-planning procedure. Notice
that SDV-OLTA achieved a good cost-performance trade-off
in the 1D track environment while not in the PTSP relatively
to the other algorithms. This is explained by the decision
criteria’s sensitivity to parameter tuning and by the problem-
dependent relevance of such a criterion.
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6 Conclusion
We introduced OLTA, a new class of tree-search algorithms
performing open loop control by re-using subsequent sub-
trees of a main tree built with the OLUCT algorithm. A de-
cision criterion based on the analysis of the current sub-tree
allows the agent to efficiently determine if the latter can be ex-
ploited. Practically, OLTA can achieve the same level of per-
formance as OLUCT given that the decision criterion is well
designed. Furthermore, the computational cost is strongly
lowered by decreasing the number of calls to the generative
model. This saving is the main interest of the approach and
can be exploited in two ways: it decreases the energy con-
sumption which is relevant for critical systems with low re-
sources such as Unmanned Vehicles or Satellites; It allows a
system to re-allocate the computational effort to other tasks
rather than controlling the robot. We emphasize the fact that
this method is generic and can be combined with any other
tree-search algorithm than OLUCT. Open questions include
building non problem-dependent decision criteria, e.g. by
making more restrictive hypothesis on the considered class
of MDPs, but also applying the method to other benchmarks
and other open loop planners.
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Munos. Open loop optimistic planning. In COLT, 2010.

[De Maesschalck et al., 2000] Roy De Maesschalck, Del-
phine Jouan-Rimbaud, and Désiré L. Massart. The Maha-
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