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Abstract

Most existing Chinese word segmentation (CWS)
methods are usually supervised. Hence, large-scale
annotated domain-specific datasets are needed for
training. In this paper, we seek to address the prob-
lem of CWS for the resource-poor domains that
lack annotated data. A novel neural network model
is proposed to incorporate unlabeled and partially-
labeled data. To make use of unlabeled data, we
combine a bidirectional LSTM segmentation model
with two character-level language models using a
gate mechanism. These language models can cap-
ture co-occurrence information. To make use of
partially-labeled data, we modify the original cross
entropy loss function of RNN. Experimental re-
sults demonstrate that the method performs well on
CWS tasks in a series of domains.

1 Introduction

In contrast to Western languages, Chinese has no explicit
word delimiters in a sequence of text. Hence, Chinese lan-
guage processing usually require Chinese word segmenta-
tion (CWS) as a pre-processing step. CWS methods usu-
ally treat the task as a sequential labeling problem. For a
given sentence, labels are assigned to all of the characters.
These tags may indicate the position of a character in the
word [Xue, 2003] or represent the intervals between charac-
ters [Huang et al., 2007]. Recently, along with the develop-
ment of deep learning methods, some neural network models
[Chen et al., 2015; Cai and Zhao, 2016; Zhang et al., 2016;
Liu et al., 2016; Cai er al., 2017] have achieved great suc-
cess in CWS tasks. Despite their enormous success, however,
these methods still have limitations: they usually rely heavily
on manually labeled training data. These data mostly comes
from the newswire domain. From previous studies [Liu and
Zhang, 2012], we know that when the evaluation data shift
from the newswire domain to other domain, the performance
of supervised methods usually drops severely.

Although annotated domain-specific datasets cannot be
easily achieved and manual annotation is a time consum-
ing process, we can easily find large-scale unlabeled data
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over the Internet. Many works have investigated the use of
such free data to address the problems for the resource-poor
domains [Jin and Tanaka-Ishii, 2006; Zhao and Kit, 2008;
Li and Sun, 2009; Sun and Xu, 2011; Zhang et al., 2013].
Meanwhile, from web pages such as Wikipedia, a sentence’s
partial segmentation information can be inferred from hy-
perlinks, which produces partially-labeled data. In addition,
with the help of lexicons, we can also obtain partially-labeled
data by matching characters. Previous works have shown that
this can provide valuable information for cross-domain CWS
tasks [Jiang et al., 2013; Liu et al., 2014]. Although these
approaches have demonstrated clear benefits of incorporating
unlabeled and partially-labeled data, how to integrate such
data into neural network models for CWS tasks in an end-to-
end manner is still not well investigated.

In this work, we propose a neural sequence labeling ar-
chitecture to utilize unlabeled and partially-labeled data for
cross-domain CWS tasks. By definition, a word is composed
of characters. Thus, if two characters form a word (or a part
of a word), they will frequently occur together in succes-
sion. This co-occurrence information, which can be obtained
from unlabeled data, can benefit the CWS tasks. To utilize
this co-occurrence information, we combine the segmenta-
tion model, implemented by BiLSTM, with two character-
level language models. Such language models can capture
the character-level co-occurrence information. In addition,
we use a gate mechanism to learn the degree of influence ex-
erted by the co-occurrence information on the segmentation
model. To handle partially-labeled data, we modify the objec-
tive function used in the training of sequence labeling RNN,
which allows the proposed method to be trained with either
full or partial labels. Experimental results show that the pro-
posed method could easily shift between different domains
and performed well on cross-domain CWS tasks.

Our contributions are as follows: 1) We introduce a method
to incorporate unlabeled data, which combines the segmenta-
tion model with language models. A gate mechanism is used
to learn the degree of influence exerted by the language mod-
els. 2) We modify the loss function used in CWS tasks to
handle the partially-labeled data. 3) Based on several experi-
ments, we demonstrate that the proposed method can achieve
better performance than previous state-of-the-art methods.
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2 Neural Model for CWS

The common choice for sequence labeling CWS is the BMES
scheme, which is to label each character in a sentence as one
of {B, M, E, S}, representing the beginning, middle, or end
of a word, or a word with a single character, respectively. We
adopt recurrent neural network with long short-term memory
(LSTM) as our segmentation model because it is capable of
reducing the feature engineering [Chen er al., 2015].

Long Short-term Memory LSTM [Hochreiter and Schmid-
huber, 1997] is a type of RNN designed to cope with gradi-
ent vanishing problems. Basically, the formulas to update an
LSTM unit at time ¢ can be abbreviated as follows:

ht = LSTM(mt,ht_l;O). (1)

Here, x; is the input vector and h; is the hidden state; 6 rep-
resents all the parameters of the LSTM.

In CWS tasks, it is beneficial to access both past and future
contexts. Thus, we use a bidirectional LSTM (BiLSTM). The
update of the BiLSTM unit can be written as follows:

— ) —
h; = [ht; %t} = BILSTM($t, hi_i, %t+1;0bi)7 )

_>
where h ; is the forward hidden state and %t is the backward

hidden state at time ¢; h; is the concatenation of h; and h;
and 0y; represents all the parameters of the BiLSTM.
CWS with BiILSTM Given a sentence S represented by a
sequence of characters [c1, o, . . ., cr|, we first use an embed-
ding layer to obtain the vector representation (embeddings)
x; for each character ¢;. Then, x; is fed to the BILSTM.
At time ¢, h; in equation (2) can be regarded as the repre-
sentation of ¢;, which incorporates the context information.
Through a softmax non-linear layer, the output g; can be ob-
tained by
9 = softmax(Wh; + b), 3)

where y, represents the prediction probabilities, W is the
weight matrix, and b is the bias.

Given the ground-truth labels yi,ys2, ..., yr represented
by one-hot vector, the cross entropy loss function for sentence
S is given by the following:

T
A 1 .
LY, Y)=—=> yl login, “
t=1

where Y = {y1,vs,...,yrtand Y = {g1, 9o, ..., U1}
A CREF layer can be further used to leverage the dependen-
cies of adjacent labels [Huang et al., 2015].

3 Incorporating Unlabeled Data for
Cross-domain CWS

The above BiLSTM segmentation model does not work well
when the training and test datasets come from different do-
main (namely source domain and target domain). It is un-
realistic to annotate a dataset of target domain for training.
However, there is a large of unlabeled data on the Internet.
This leads to the unsupervised domain adaptation problem. In
this setting, for the source domain, we have a labeled dataset
&1, while for the target domain, we only have an unlabeled
dataset 7,,. Using S; and 7T, our goal is to train a model with
good performance in the target domain at the evaluation time.
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3.1 Motivation

Because a word is composed of characters, two characters
will frequently occur together in succession if they form a
word (or a part of a word). This co-occurrence information,
which can be obtained from unlabeled data, can benefit the
CWS tasks. To utilize this information, we propose to com-
bine character-level language model with the BiLSTM seg-
mentation model. The objective of language model is to pre-
dict the next character c;, given the previous ¢ — 1 characters
c1,Ca,...,Ct—1. To see why language model can incorporate
co-occurrence information, here is an example in English.
Given a sequence of characters “American presi”, it is easy to
predict that the next characters are “dent” because we know
“president” is a word and “presi” and “dent” co-occur many
times. However, it is hard to predict that the next characters
are “presi” given “American” because they belong to differ-
ent words. Similarly in Chinese, we find that, in the sequence
“ZE[FH | BS” (32E (American) is a word and /2.4 (president)
is another word), the probability p(“4t”|“3£ [E &) given by
language model is 0.71, but the probability p(*/&.”|“E”) is
0.05'. In short, when language model gives a high probability
p(etler, ca, ..., ce—1), it tells us that ¢; and ¢;—1 should not be
segmented, but when language model gives a low probability,
it tells us that ¢; and c;_1 should be segmented.

3.2 Network Architecture

The architecture of our proposed model is illustrated in Fig-
ure 1. It mainly includes three components: the forward lan-
guage model (pink), backward language model (yellow), and
BiLSTM segmentation model (blue). The forward and back-
ward language models are also implemented by LSTM.

Forward Language Model In the forward language model,
we feed the embeddings {xi,xs,...,x7} of characters
{c1,ca,...,cr} sequentially, one at a time. At each time-step
t, we want to predict the next character ¢, based on the in-
formation incorporated from cy, co, ..., ct, which is denoted

by htf . Concretely, the formulas at time ¢ are as follows:
hi = LSTM/ (2, b/ |;6)), (5)

where 0 denotes all the parameters of LSTM/. Then, a fol-
lowing softmax non-linear layer outputs the probability dis-
tribution over the vocabulary:

4] = softmax(W;h{ + by), (6)

where gg‘ represents the prediction probabilities of next char-
acter c¢11, W7y is the weight matrix, and by is the bias.

Backward Language Model The basic structure of the
backward language model is the same as that of the forward
language model, with the difference that we feed the embed-
dings {x1, x2, ..., xr} in reverse order, i.e., beginning with
xr. Then, we feed x7_1, 27 _o,... and end with x;. At
each time-step, we want to predict the previous character c;_1

based on the information incorporated from cp, cp_1, . . ., ¢4,
which is denoted by h?:
hi = LSTM® (2, h{ 1; 64), (7)

'The results are obtained by training a LSTM-based language
model on People’s Daily dataset.
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Figure 1: Architecture of our proposed model. It mainly includes three components: the forward language model (pink), backward language
model (yellow), and BiLSTM segmentation model (blue). We use a gate mechanism to control the influence of the language models on the
segmentation model. The outputs of language models are not shown for simplicity. In this example, we assume that “cicac3” is a word.

where 6, denotes all the parameters of LSTM®. Then, the
output of softmax is as follows:

§° = softmax(W,h? + by), (8)
where 9? represents the prediction probabilities of previous
character c;_1, W), is the weight matrix, and by, is the bias.

Segmentation Model In the segmentation model, we still
use BiLSTM. The update at time ¢ can be written as follows:

_> . S —>S S

hy = [R5 h;) = BILSTM (2, g 1, h3i0:0.), ()
where 0, denotes all the parameters of BILSTM®.
Gate Mechanism To learn the degree of influence of co-
occurrence information on the segmentation model, we use a
gate mechanism similar to a GRU [Cho et al., 2014]:

z = o(U.hi + V.h" + W.h{ +b.)

r, = o(U.h{ + V,h! + W,h} +b,)

ilt = tanh(U;th + th? + Wh(’l"t ® hf) + bh)

ht = (1—zt)®hf+zt®ht
where z; and r; are the update and reset gate respectively.
The new hidden state h; is connected to a dense layer with
linear transformation and softmax output to predict the seg-
mentation label:

(10)

y; = softmax(Wh, + b), (11)

where y; is the probability distribution over all the segmen-
tation labels { B, M, E, S}.

3.3 Optimization

The training set consists of two parts: the labeled source do-
main dataset S;, of which we know the segmentation label
and unlabeled target domain dataset 7,, of which we only
have the raw text. Hence, for dataset S;, we optimize the two
language models and segmentation model together using the
standard cross-entropy loss, but for dataset 7,,, we simply op-
timize the two language models.
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4 Incorporating Partially-labeled Data for
Cross-domain CWS

4.1 Partially-labeled Data

We assume there is also a partially-labeled dataset 7, besides
the unlabeled dataset T, for the target domain. We consider
a weakly-supervised sequence labeling setting where each
sequence is partially-labeled: only a few members are la-
beled or we are given a candidate set of labels, only one of
which is correct. Liu et al. [2014] proposed two methods
to obtain partially-labeled data: lexicons and natural annota-
tion. We also use these in this work. To use a lexicon, we
match the words in the lexicon with unlabeled data, resulting
in partially-labeled sentences. To use natural annotation, we
culled a large amount of web text (such as from Wikipedia)
from the Internet, and used this web text (usually contain-
ing many hyperlinks and other markup annotations) to obtain
partially-labeled sentences. Figure 2 illustrates an example
of partially-labeled data. In the sentence “3% [E S G H £ H
H (American president lives in the White House)”, we only
know that “/5.4% (president)” is a word (probably inferred
from a lexicon or hyperlink). Hence, the labels of “/&.” and
“4¢” are “B” and “E”, respectively. Because only “E”, “S”
can be followed by “B” and only “B”, “S” can follow “E”,
we infer that the candidate sets of labels for “[E]” and “f£”
are {E, S} and {B, S}, respectively.

4.2 Training RNN with Partially-labeled Data

In the CWS tasks, there are only four segmentation labels:
B, M, E,S. We use a zero-one vector to represent these la-
bels. For example, “B” is represented as y = [1,0,0,0]"
(also known as one-hot vector) and a candidate set of labels
like {E, S} is represented as y¢ = [0,0,1,1]" (we add a
superscript to distinguish it (candidate set) from the one-hot
vector (single label)).
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Figure 2: Examples of partially-labeled data. In the sentence “3&
EESFEEHE (American president lives in the White House)”,
we only know “/25% (president)” is a word. The paths show possible
correct segmentations.

In a vanilla RNN for a sequence labeling problem, given
an input sequence x1, 2, . .., T, we know the correct label
y; for each x;. Let §1,9s,...,yr be the prediction proba-
bilities given by this RNN. To train this network, a common
choice for the loss function is the cross-entropy loss function:

T
N 1 .
LY, Y)=—=> y logi, (12)
t=1
where Y = {ylay27' . -ny} andY = {yA17yA2a .. 'aQT}'

For a sequence x1, 2, ...,z which is partially-labeled,
only a few inputs x; have a corresponding label or a candidate
set of labels, while many others do not. Thus, the loss func-
tion (12) cannot be used for training over partially-labeled
data. Let 7 denote the set of indices: for each 7 € Z, x; is
given a correct label y; and let J denote another set of in-
dices: for each j € J, x; is given a candidate set of labels
y$. We optimize the following loss function £,, for partially-
labeled data:

1 . 1 c N
L,= —m Zy;r log i —m Z(l - '!Jj)T log(1 —g;)

€T JjET
first term second term
(13)
where |Z| denotes the size of Z and we define ||7]|| as
> e 11 = Yjllo- || - [[o is the lp-norm. The first term is

easy to understand: we minimize the cross-entropy loss on
T, which actually maximizes the prediction probability of the
correct label. Here is our motivation for understanding the
second term. Given a candidate set of labels, we do not know
which one is the correct label, so we cannot maximize its
prediction probability of it. We know, however, which la-
bels are the incorrect labels. For example, the candidate set
is {F, S}, so “B” and “M” are the incorrect labels. Instead
of maximizing the prediction probability of the correct label,
we can minimize the prediction probability of the incorrect
labels which leads to the second term of equation (13).

The function £ in equation (12) can be regarded as a spe-
cial case of £, where Z = {1,2,...,T}.

S Experiments

5.1 Datasets

To evaluate the proposed model, we performed cross-domain
experiments on various domain datasets, following the previ-
ous works of Liu et al. [2014] and Zhang et al. [2014]. For
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the source domain, we used the labeled People’s Daily (PD)
dataset. For the target domain, we used four datasets from
the finance, medicine, literature, and computer fields. These
test and development data could be obtained from SIGHAN
Bakeoff 2010. The unlabeled data for the target domain were
culled from the Internet® (about 200K sentences for each do-
main), and the partially-labeled data were collected from Chi-
nese Wikipedia3 (about 100K sentences for each domain).

Another experiment was also conducted, using Chinese
Treebank 5.0 (CTBS) as the source domain and using Zhux-
ian (a Chinese Internet novel, also known as the “Jade dy-
nasty”) dataset* (ZX) as the target domain. The ZX dataset
was annotated by Liu and Zhang [2012] and Zhang et al.
[2014], and the style is very different from CTB5. We col-
lected the remaining part of this novel as our unlabeled data
(about 26K). To obtain partially-labeled data (about 24K), we
used a lexicon containing 51 names of characters, following
Zhang et al. [2014].

All of the datasets were preprocessed using regular expres-
sions, and the continuous English characters and digits were
marked as not segmented.

5.2 Setups
In this work, we trained a total of five different models:

e BiLSTM. Our baseline model. In BiLSTM, we used a
two-layer bi-directional LSTM. In the training stage, we
only used the labeled source domain dataset S;.

e BiLSTM + CRF. Another baseline model which incor-
porates CRF in the output layer.

e BiLLSTM + PL. Besides using dataset S;, we also used
the partially-labeled target domain dataset 7, to train the
BiLSTM segmentation model.

e BiLSTM + LM. In addition to BiLSTM segmentation
model, we added two extra language models to incor-
porate co-occurrence information using unlabeled data.
In both language models, we used a two-layer LSTM.
In the training stage, we used the labeled source domain
dataset S; and the unlabeled target domain dataset 7.

e BiLSTM + LM + PL. On the basis of the previous
model, we also used the partially-labeled target domain
dataset 7, in the training stage.

For all five models, we used Adam [Kingma and Ba, 2014]
to train our networks, and the initial learning rate was set at
0.001. Every five epochs, the learning rate decayed by half.
In order to avoid overfitting, we employed the dropout tech-
nique (20% dropout rate). We performed gradient clipping
(we clipped the norm of the gradients at 5) to cope with the
exploding gradient problem. The character embeddings were
initialized by pre-trained embedding based on word2vec and
then fine-tuned during training. We set the character embed-
ding size to 100 and the LSTM hidden state size to 300. We

http://www.cnki.net/.

3We used wikidump20161201 downloaded from https://
dumps.wikimedia.org/zhwiki/20161201/.

“These data are available in http://zhangmeishan.
github.io/eacll4mszhang.zip.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Source PD PD

PD PD CTB5

Model Target | Finance Medicine | Literature | Computer 7X Ave.
[Chen et al., 2015] 95.20 92.16 92.89 93.71 87.56 92.30
[Cai and Zhao, 2016] 95.53 91.13 92.87 94.12 87.40 92.21
[Cai et al., 2017] 95.38 92.10 92.90 94.04 87.96 92.48
[Zhang er al., 2014] - - - - 88.34 88.34
[Liu ef al, 2014] 95.54 92.63 92.49 94.07 90.63 93.07
Uiang et al., 2013] 93.16 93.34 93.53 91.19 - 92.81
[Zhou et al., 2017] - - - - 90.10 90.10
[Huang et al., 2017] 95.81 92.26 94.33 93.99 - 94.10
BiLSTM 95.19 91.72 92.60 94.35 89.05 92.58
BiLSTM + CRF 95.59 92.36 93.32 94.56 89.44 93.05
BiLSTM + PL 95.25 93.20 92.31 94.78 91.64 93.43
BiLSTM + LM 95.71 93.01 93.58 95.09 90.60 93.60
BiLSTM + LM + PL 95.84 93.73 93.23 95.32 92.86 94.20

Table 1: Comparison with previous models using F1 scores. The first three rows are supervised methods and the middle five rows show the
results of other domain adaptation methods. The last five rows shows the two baseline models and our three models.

also used bigram character embedding for the two baseline
models, but we did not use it in our three models since the
number of bigram character is very large (we use many un-
labeled and partial labeled data) and it is very easy to over-
fitting. We used early stopping based on the performance on
the development set. Our code will be made publicly avail-
able for reproducibility.

5.3 Results and Discussion

We first compare our methods with three supervised neural
network methods, which are generally applied to domain-
specific datasets. The method of Chen et al. [2015] is a
character-based method and that of Cai and Zhao [2016] is
a word-based method. The method of Cai et al. [2017] is a
new improved version of that by Cai and Zhao [2016]. The
three methods do not use any unlabeled or partially-labeled
data except source domain labeled data S;. The results (F1
scores) are shown in the first three rows of Table 1.

We also compared our methods with five other domain
adaptation methods. The method of Zhang et al. [2014] is
a domain adaptation method for joint Chinese segmentation
and POS-tagging, which uses an external dictionary to im-
prove its performance. They only presented the result on ZX
test data, and we took it directly from their paper. Liu et
al. [2014] adopted a CRF-based method, which exploits two
sources of partially annotated data: lexicons and natural an-
notation. Jiang et al. [2013] also used massive natural anno-
tations. Zhou et al. [2017] proposeed word-context character
embeddings for semi-supervised CWS. Huang et al. [2017]
incorporated a global recurrent structure to model boundary
features dynamically. The results of these methods are listed
in the middle five rows of Table 1.

The last five rows of Table 1 list the results of two base-
line models and our three models. The results demon-
strated that compared with the baseline model “BiLSTM”, the
model “BiLSTM + LM” incorporating unlabeled data and the
model “BiLSTM + PL” incorporating partially-labeled data
achieved better performances. Literature, however, was an
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Model Fin Med Lit Com 7X

BiLSTM 70.67 66.06 60.62 70.30 74.00
+PL 75.00 7639 6346 79.96 84.03
+LM 7525 7143 6442 75.07 77.82
+LM+PL 7642 7811 66.25 81.39 86.27

Table 2: Comparison using OOV recall when we add LM or PL.

Gate Fin Med Lit Com ZX
No 9548 9240 9321 9444 9042
Yes 9571 93.01 93.58 95.09 90.60

Table 3: Results (F1 score) with and without gate mechanism in
“BiLSTM + LM”.

exception. The F1 of model “BiLSTM + PL” fell to 92.31,
compared with 92.60 for “BiLSTM”. We suppose that there
were two reasons for this. First, the words (e.g., idioms)
used in Literature are not partially-labeled in Wikipedia. Sec-
ond, the noise in Wikipedia has a bad effect on the perfor-
mance. For example, the sentence “ftft| T~ & 15 || fi 5>
(he stretched out his hand subconsciously) is mis-segmented
by “BiLSTM+PL” as “ft| | iR |H|{# T and a Chinese
idiom “/% 1% KB (which means “tall buildings”) is mis-
segmented as “75j 1%| KJE” because “E 17" (consciousness)
and “XJE” (skyscraper) are partially-labeled in Wikipedia.
The BiLSTM model can give the correct segmentation for
these two examples. In the end, when we used unlabeled and
partially-labeled data together, our method (BiLSTM + LM +
PL) obtained a state-of-the-art performance for almost all of
the test sets except Literature.

5.4 Analysis

Improvement in OOV recall. Out of vocabulary (OOV)
words are the main challenge in cross-domain CWS tasks.
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Model MSR PKU CTB6
BILSTM 96.50 95.05 95.16
+PL 96.56 95.17 95.54
+LM 96.84 9539 95.57
+LM+PL 96.89 9555 9594

Table 4: Results (F1 score) on the three standard benchmarks.

In this experiment, we studied the improvement in the OOV
recall brought by incorporating unlabeled or partially-labeled
data. Table 2 shows the results of our models compared with
BiLSTM model for five datasets: Finance (Fin), Medicine
(Med), Literature (Lit), Computer (Com), and ZX. We can
observed that the OOV recall can be significantly improved.
Importance of gate mechanism. To understand the impor-
tance of the gate mechanism introduced in the “BiLSTM +
LM” model, we ran an experiment that removed the gate. We
used a concatenation of h{ ,h? and h to obtain the the new
hidden state h, that replaced the gate mechanism in equation
(10). Results in Table 3 showed that without gate mechanism,
the performance declined in all of five datasets.
Performance with in-domain data. Although the goal of
this study was to tackle the cross-domain CWS, we also
wanted to know whether these methods worked for in-domain
data (i.e., where the test data come from the same domain as
the training data). For this reason, we performed experiments
on standard benchmarks (MSR, PKU, CTB6). We used 10%
data of the train set as the development set for all datasets.
Since all of the three datasets were from the newswire do-
main, when we performed experiment on one of the datasets,
we used another two datasets as unlabeled data. The partially-
labeled data was also collected from Wikipedia. The results
are shown in Table 4. We can find that compared with BiL-
STM, incorporating unlabeled and partially-labeled data also
can improve the performance of in-domain data.

Impact of unlabeled and partially-labeled data. In our
methods, we used a large amount of unlabeled and partially-
labeled data to improve the performance on the target domain.
To investigate the impact of these data, we performed experi-
ments on various sizes (3%, 16%, 33%, 66%, 100%) of unla-
beled and partially-labeled data. The results with the “BiL-
STM + LM” model when using various sizes of unlabeled
data are shown in Table 5, and the results with the “BiLSTM
+ PL” model when using various sizes of partially-labeled
data are shown in Table 6. From these tables, we can draw
two conclusions: (1) With an increase in the amount of unla-
beled data, the F1 score gradually grows as well, demonstrat-
ing that valuable information can indeed be extracted from
the unlabeled data. (2) The situation is somewhat different
for the partially-labeled data. the F1 score first rises up and
then moves down, showing that the harmful noise contained
in partially-labeled data has a negative effects on the model
when the amount of data is large enough.

6 Related Work

Use of Unlabeled Data. Jin and Tanakalshii [2006] used
branching entropy to detect boundary between characters; Li
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Percent Fin Med Lit Com 7X
3% 9546 92.63 92.84 9455 89.60
16% 95.57 9292 9315 94.63 90.07
33% 95.66 9296 9329 94.68 90.42
66% 95.68 93.00 9343 95.03 90.59

100% 95.71 93.01 93.58 95.09 90.60

Table 5: F1 score of model “BiLSTM + LM” when using various
sizes of unlabeled data.

Percent Fin Med Lit Com 7X
3% 95.30 92.53 92.66 94.64 91.67
16% 9537 9287 9259 9477 91.92
33% 95.43 93.11 92.38 94.89 92.07
66% 95.30 93.22 9232 9495 92.09

100% 95.25 9320 9231 9478 91.64

Table 6: F1 score of model “BiLSTM + PL” when using various
sizes of partially-labeled data.

and Sun [2009] and Zhang et al. [2013] incorporated punc-
tuation information; Sun and Xu [2011] exploited statistics-
based features distilled from unlabeled data; Shen et al.
[2013] extracted maximized substrings from unlabeled data
and Yang et al. [2017] used unlabeled data to pre-train sub-
module. Different from these models, our method utilize un-
supervised co-occurrence information provided by language
models. Recently, Rei [2017] and Peters et al. [2017] also
proposed using language models in semi-supervised frame-
works. Different from us, the method of Rei [2017] is a
multitask learning method, in which the language models and
the sequence labeling model share a bidirectional LSTM. The
method of Peters et al. [2017] was inspired by the pre-trained
word embeddings. They proposed using pre-trained bidirec-
tional LM to add context embeddings in sequence labeling.
Use of Partially-labeled Data. Jiang et al. [2013] pro-
posed a novel discriminative learning algorithm to utilize the
knowledge in the massive natural annotations on the Inter-
net for Chinese word segmentation. Tsuboi et al. [2008] and
Triggs and Verbeek [2008] independently proposed the pa-
rameter estimation method for CRFs using partially-labeled
data by marginalizing out the unknown labels. Thereafter,
Yang and Vozila [2014] and Liu et al. [2014] applied this
method to Chinese word segmentation. They also make use
of Wikipedia data as partially-labeled data. In contrast, we
proposed a method to train RNN with partially-labeled data.

7 Conclusion

In this work, we proposed a novel neural network method
to incorporate unlabeled and partially-labeled data for cross-
domain Chinese word segmentation. To make use of un-
labeled data, two character-level language models are inte-
grated with the segmentation model through a gate mecha-
nism. By modifying the loss function, the model could be
trained using partially-labeled data. Experiments showed that
incorporating these data led to significant improvements.
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