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Abstract
Genetic programming is an effective technique for
inductive synthesis of programs from tests, i.e.
training examples of desired input-output behav-
ior. Programs synthesized in this way are not
guaranteed to generalize beyond the training set,
which is unacceptable in many applications. We
present Counterexample-Driven Genetic Program-
ming (CDGP) that employs evolutionary search
to synthesize provably correct programs from for-
mal specifications. CDGP employs a Satisfiabil-
ity Modulo Theories (SMT) solver to formally ver-
ify programs in the evaluation phase. A failed
verification produces counterexamples that are in
turn used to calculate fitness and thereby drive the
search process. When compared with a range of ap-
proaches on a suite of state-of-the-art specification-
based synthesis benchmarks, CDGP systematically
outperforms them, typically synthesizing correct
programs faster and using fewer tests.

1 Introduction
1.1 Program Synthesis
In program synthesis the aim is to generate (synthesize) a pro-
gram in a defined programming language given the specifica-
tion of its expected behavior. Most commonly, a specification
defines an expected program behavior in terms of the return
value of the program for some inputs. There are two types of
such specifications:
Test-based: Each example is an (input, output) pair, con-

sisting of input to be fed into a program and the corre-
sponding expected (correct) output. For example:

x y max(x, y)
1 1 1
4 5 5
2 0 2

. . . . . . . . .
∗This paper is an abridged version of a paper titled

“Counterexample-Driven Genetic Programming” [Krawiec et al.,
2017] that won a best-paper award at the GECCO-2017 conference.

Formal: The result of a program is constrained by a set of
expressions in a certain logic. For example:

max(x, y) ≥ x ∧
max(x, y) ≥ y ∧

(max(x, y) = x ∨ max(x, y) = y)

While checking if the program passes all test cases is rel-
atively easy — it suffices to run a program for each input
and compare outputs — in the case of formal specification a
formal proof must be conducted for the generated program
encoded in the same logic as the constraints.

1.2 Genetic Programming
Genetic Programming (GP) is a subtype of the evolution-
ary algorithm (EA) metaheuristic in which the entities to be
evolved are programs, most often represented as expression
trees. A population of candidate solutions is first initialized
with random programs, and then maintained through the sub-
sequent generations (iterations) of the algorithm. A fitness
function assigns a score to the candidate programs based on
the estimated proximity of their behavior to the expected one.
At the beginning of each new generation, a selection function
selects programs at random from the population, biased in
favour of fitter programs, and recombines them by crossover
(exchanging fragments between two programs) or mutation
(randomly re-generating part of the program). The old popu-
lation is discarded, and the selected and modified individuals
constitute the new population.

1.3 Motivation
Genetic Programming (GP) proves effective for test-based
synthesis of programs. There are numerous settings in which
this approach proves useful, most of them involving GP as
a machine learning tool within the learning-from-examples
paradigm.

The main shortcoming of test-based synthesis is that gener-
alization cannot be guaranteed: a program synthesized from
a finite training sample cannot be expected to return the cor-
rect value for arbitrary admissible input. In GP, this short-
coming can be partially alleviated via ad-hoc techniques such
as parsimony pressure, but (except specific areas like seman-
tic GP) GP lacks a general formal theory of generalization.
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Even if GP had such a theory, then as in the case of any other
inductive learning approach, it would not guarantee perfect
generalization. Assuring correct behavior for all admissible
program inputs can be achieved only when synthesizing from
formal specifications (spec-based synthesis in the following).

Crucially, a program produced by spec-based synthesis is
guaranteed to adhere perfectly to the specification. In many
areas, such guarantees are essential. Examples include secu-
rity, transportation, safety-critical systems, and costly man-
ufacturing. The list of potential application areas for such
methods is growing rapidly, particularly given the increasing
level of cyberthreats and degree of responsibility delegated to
computer systems.

Given the effectiveness of GP on test-based problems and
guarantees offered by programs synthesized from specifica-
tion, it becomes natural to ask: can the evolutionary paradigm
be adapted to solve spec-based synthesis problems? Pre-
liminary attempts on specific classes of executable structures
[Johnson, 2007] and programs [Katz and Peled, 2016], which
we review in Section 4, suggest several possibilities. In this
paper, we propose Counterexample-Driven Genetic Program-
ming (CDGP), a novel variant of GP for solving spec-based
synthesis problems.

2 Spec-based Synthesis and Verification
Spec-based program synthesis typically proceeds from a con-
tract, given by a pair of logical formulas: a precondition Pre
– the constraint imposed on program input, and a postcondi-
tion Post – a logical clause that should hold upon program
completion. Let p denote a program and p(in) the output pro-
duced by p when applied to input in. Solving a synthesis task
(Pre, Post) is equivalent to proving that

∃p∀inPre(in) =⇒ Post(in, p(in)), (1)

where Pre(in) is the precondition valuated for the input in,
and Post(in, p(in)) is the postcondition valuated for the in-
put in and the output produced by p for in. The proof has to
be constructive, i.e. to produce such a p – merely determining
whether or not p exists is not much use for synthesis.

Consider synthesizing a program that calculates the maxi-
mum of two integers x, y. For this synthesis task, the contract
can be defined as follows:

Pre((x, y)) ⇐⇒ (x, y) ∈ Z2

Post((x, y), o) ⇐⇒ o ∈ Z ∧ o ≥ x ∧ o ≥ y ∧
∧ (o = x ∨ o = y)

(2)

In methods of spec-based synthesis, the content (code) of
p is controlled by a set of variables. To determine the values
of variables that cause p to be fulfilled (1) (called a model
in propositional logic), the synthesis formula parameterized
with these variables is passed to a SAT solver. The solver ei-
ther produces a feasible set of variable assignments, and thus
yields a correct-by-construction program that is guaranteed to
meet the contract, or otherwise states that the specified pro-
gram does not exist. In practice, the solver is equipped with
an additional abstraction layer, a theory that enables reason-
ing in terms of, for instance, integer arithmetic. This leads
to the concept of Satisfiability Modulo Theories (SMT) used

Testing
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GP
search
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Program
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Figure 1: The conceptual diagram of CDGP.

in program synthesis [Jha et al., 2010; Gulwani et al., 2010;
Srivastava et al., 2010].

In contrast, GP is a stochastic technique of test-based syn-
thesis. The input to GP is a set of tests (fitness cases), i.e.
pairs (in, out) ∈ T of program input in and the desired out-
put out required to result from applying a correct program to
in. A GP algorithm solving a synthesis task maintains a pop-
ulation of programs P . In every generation, each program
p ∈ P is tested on every test (in, out) ∈ T , in which p is
applied to in and returns an output p(in) that is confronted
with out. If p produces the correct output for t, it is said to
pass t; otherwise, we say that p fails t. The conventional GP
fitness that rewards a program for the number of passed tests
can be then written as

EVAL(p, T ) =
∑

(in,out)∈T

[p(in) = out], (3)

where [ ] is the Iverson bracket (returns 1 if the proposition is
true, 0 otherwise).

In spec-based synthesis, tests are not available, and so nei-
ther is the conventional fitness function. To combine such
synthesis with evolutionary search, one must resort to other
means of program evaluation. The method presented in this
paper relies on program verification which consists in prov-
ing that, for a given program p,

∀inPre(in) =⇒ Post(in, p(in)). (4)

The practical difference with respect to spec-based syn-
thesis (1) is that verification can be typically realized using
conventional SMT solvers at much lower computational cost,
because it is applied to an existing program. The result can
be twofold: success when p meets (4), or failure otherwise.
Crucially, the latter outcome is accompanied by a counterex-
ample, i.e. an input in such that (4) does not hold. This char-
acteristic is essential for our method, because we employ the
collected counterexamples to compute the fitness according
to, amongst others, equation (3).

3 Counterexample-Driven GP
Figure 1 presents the high-level diagram of Counterexample-
Driven GP (CDGP). The top-level loop of CDGP proceeds
in a similar manner to conventional GP, where in each gener-
ation parent programs are selected, modified, and evaluated.
The main difference is that evaluation involves both formal
verification and evaluation on a set of tests Tc, collected from
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1: procedure CDEVAL(P , Tc, (Pre, Post))
2: T ← ∅ . Working set of tests
3: for all p ∈ P do . Evaluation loop
4: p.eval ← EVAL(p, Tc)
5: if p.eval = |Tc| then
6: c← VERIFY(p, (Pre, Post))
7: if c = ∅ then return p . Perfect program
8: else
9: T ← T ∪ {c}

10: end if
11: end if
12: end for
13: return (P, Tc ∪ T )
14: end procedure

Algorithm 1: Evaluation in CDGP, given the current population P ,
current set of tests Tc, and program specification (Pre, Post), re-
turns the evaluated population and an updated set of tests.

verifications conducted in the previous generations. The evo-
lutionary run starts with an empty Tc. Programs in the work-
ing population are evaluated on the tests in Tc in the conven-
tional way, and the resulting fitness drives the search process.

The procedure CDEVAL presented in Algorithm 1 is
launched once per generation. As in conventional GP, each
program p in the current population is first evaluated on the
tests currently available in Tc and assigned the conventional
fitness (3). If it happens to pass all of them, it is subject to
formal verification. A positive outcome of verification termi-
nates search, with p returned as the resulting correct program.
Otherwise, the counterexample resulting from verification ex-
tends the working set of tests T , which is maintained sepa-
rately from Tc so that evaluation of successive programs in P
remains unaffected. Once all programs have been processed,
Tc is extended with the new tests from T . Since both Tc and
T are sets, adding a test that has been already collected ear-
lier in a run has no effect — duplicate tests are automatically
discarded.

In the first generation Tc = ∅, so all programs in P receive
zero fitness and the attendant selection of parent programs is
completely random. Nevertheless, this first generation will
typically discover a few counterexamples, which provide for
some degree of discrimination of programs in the second gen-
eration. In this way, the verification outcomes supply CDGP
with an increasingly finer-grained fitness function and more
precise search gradient.

Algorithm 1 implements the ‘conservative’ variant of
CDGP, where the time-costly verification is applied only to
programs that pass all tests and is thus used sparingly. We
also investigate a non-conservative variant, where line 5 in
Algorithm 1 is skipped, so that each act of evaluating a pro-
gram is followed by its verification and will produce a coun-
terexample that may extend Tc (unless already present there).

4 Related Work
The application of formal methods to program synthesis pre-
cedes heuristically-informed stochastic methods such as GP
by several decades [Cohen, 1994], and the literature for for-

mal approaches to synthesis (and verification) is vast (for
recent overviews, see Boca et al [Boca et al., 2009] and
Almeida et al [Almeida et al., 2011]). However, we are aware
of only few approaches which combine formal techniques
with heuristic search.

In 2007, Johnson [Johnson, 2007] incorporated model-
checking (as specified via Computation Tree Logic) into
the fitness measure of evolved finite state machines, and
used this to learn a controller for a simple vending ma-
chine. From 2008, Katz and Peled authored a series of papers
combining model-checking and GP [Katz and Peled, 2008;
Katz and Peled, 2016] in which they progressively refine their
MCGP tool based on Linear Temporal Logic. They use ‘deep
model checking’ to impose a gradient on the fitness function,
for which they report good fitness-distance correlation. The
most recent development of their tool [Katz and Peled, 2016]
applies a (µ+λ) evolutionary strategy to strongly-typed, tree-
based tree GP and gives example applications of program
synthesis, program improvement and bug-repair.

The possibility of using coevolutionary GP to synthesize
programs from formal specifications was researched by Ar-
curi and Yao [Arcuri and Yao, 2007]. In their approach,
populations of both tests and programs are maintained in the
competitive coevolution framework. Fitness of programs is
calculated using a heuristic that estimates how close a post-
condition is from being satisfied by the program’s output for
specific tests. The population of test cases is initialized ran-
domly and then co-evolves with programs, guided by fitness
function that rewards failing as many programs as possible.

Amongst the dozen or more well-known systems that per-
form synthesis under the heading of Inductive Logic Pro-
gramming [Muggleton, 1994], IGOR II [Hofmann, 2010] is
known to perform well on a range of problems. As extended
by Katayama [Katayama, 2012], it combines an ‘analytic’ ap-
proach based on analysis of fitness cases with the generate-
and-test approach.

An alternative approach to spec-based synthesis is ‘pro-
gram sketching’ [Solar-Lezama et al., 2006], a technique
whereby a program contains ‘holes’ which are automatically
filled in (e.g. using an SMT solver) with values satisfying an
executable specification. More recently, Evolutionary Pro-
gram Sketching (EPS) has been proposed [Błądek and Kraw-
iec, 2017]. EPS is a GP alternative that evolves partial pro-
grams, and then uses an SMT solver to complete them, at-
tempting to maximize the number of passing test cases.

5 Experiment
5.1 Configuration
To assess the effectiveness of CDGP, we apply it to a range of
spec-based synthesis benchmarks of varying difficulty, pre-
sented in Table 1, all of which belong to the theory of Linear
Integer Arithmetic (LIA) [Barrett et al., 2015], where the set
of available instructions comprises linear arithmetic, elemen-
tary Boolean logic and conditional statements. In all selected
benchmarks, the task is to synthesize a certain function with
a signature In →I, where n is function arity. Max, Search
and Sum come from the repository maintained for the annual
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Name Arity Semantics
CountPos 2, 3 The number of positive arguments
IsSeries 3 Do arguments form an arithmetic series?
IsSorted 4 Are arguments in ascending order?
Max 2, 4 The maximum of arguments
Median 3 The median of arguments
Range 3 The range of arguments
Search 2, 4 The index of an argument

among the other arguments
Sum 2, 4 The sum of arguments

Table 1: Program synthesis benchmarks. For all of them, the input
type is In and the output type is I (I=integer). Some functions were
tested in variants with different arities.

‘Syntax Guided Synthesis’ competition [Alur et al., 2015];
the remaining benchmarks are of our own design.

In order to provide a frame of reference, we design a base-
line setup called GP Random (GPR). GPR proceeds as CDGP,
except for line 9 in Algorithm 1, where it adds to T a ran-
domly generated test rather than the counterexample returned
by the solver.

In order to appropriately handle the two available types
(Int and Boolean), we use a typed variant of GP. The ini-
tialization operator (used to populate the initial population)
recursively traverses the derivation tree from the starting sym-
bol of the grammar (I) and randomly picks expressions from
the right-hand sides of productions. The mutation operator
picks a random node in a parent tree, and replaces the sub-
tree rooted in that node with a subtree generated in the same
way as for initialization. Crossover draws a random node in
the first parent program, and swaps it with a type-compatible
subtree selected at random from the second parent program.
A program tree resulting from any of these search operators
is considered feasible unless its height exceeds 12. Should
that happen, the program is discarded and the search operator
is queried again.

In both CDGP and GPR, the working set of tests Tc may
grow slowly. With only a small number of tests, the fitness
function can return just a few values and has little discrim-
inatory power, which may hamper population diversity. To
address this issue, in addition to the conservative and non-
conservative CDGP and GPR, we consider two independent
extensions: Lexicase selection [Helmuth et al., 2015] and
steady-state workflow.

Communication with the solver is realized via the SMT-
LIB standard [Barrett et al., 2015], recognized by most con-
temporary SMT solvers. We employ the Microsoft Z3 SMT
solver [de Moura and Bjørner, 2008], one of the most widely-
used non-commercial solvers.

The source code of CDGP, along with specifications of
problems, is available at https://github.com/kkrawiec/CDGP.

5.2 Results
The detailed results are presented in [Krawiec et al., 2017].
The key observations are: (i) Compared to GPR’s baseline,
CDGP offers on average greater likelihood (success rate) of
synthesizing a correct program. However, the success rates
on individual benchmarks are usually only slightly better for

CDGP than for GPR, and on a few occasions GPR is better
than the corresponding CDGP variant. (ii) Lexicase selec-
tion boosts the performance of all configurations and brings
both CDGPLex and GPRLex close to each other. (iii) The
conservative variants of CDGP are clearly worse than their
non-conservative counterparts, which suggests that ‘harvest-
ing’ new tests from candidate programs that are known to be
incorrect is beneficial. (iv) Steady-state did not bring the an-
ticipated benefits, neither when combined with tournament
selection nor with Lexicase selection.

In the above experiment, we ignored the actual compu-
tational cost of synthesis. Although individual configura-
tions were given the same limit on the number of evalua-
tions (100,000), their runtimes vary heavily and are typi-
cally much higher for CDGP, mainly due to the significant
computational overhead of SMT-based formal program ver-
ification. To address this issue, we conduct another experi-
ment, where each configuration of CDGP and GPR is given
the same time budget equal to the average runtime of suc-
cessful runs of all configurations from the first experiment.
This time, CDGP clearly proves more effective than GPR.
The non-conservative variants of CDGP that use Lexicase se-
lection have the lead again, though this time the generational
variant is noticeably better.

The experimental outcomes corroborate our main hypothe-
sis: the counterexamples collected from verification in CDGP
prove more useful as tests than the inputs constructed at ran-
dom in GPR. On one hand, this was expected – as opposed to
counterexamples, random tests are not derived from the prob-
lem specification and are in this sense knowledge-free. On the
other hand, this result is nontrivial, because counterexamples
constructed by an SMT solver reflect its sophisticated search
tactics, which are reportedly built on years of expert expe-
rience, and as such involve certain search biases. It is thus
not obvious that counterexamples they identify should be ef-
fective when used as ‘search drivers’ [Krawiec, 2015] in a
stochastic synthesis process.

6 Conclusion and Future Work
We have presented CDGP, a method for specification-based
program synthesis, via a hybrid of Genetic Programming and
formal verification, in which the traditional evaluation phase
of Genetic Programming is augmented using new test cases
obtained via counterexamples generated from an SMT solver.
Prospectively, this work may pave the way for effective hy-
bridization of heuristic search methods like GP with spec-
based synthesis. We find this possibility promising, given
the limitations of contemporary exact methods of program
synthesis that struggle to scale well with the length of syn-
thesized programs. SMT solvers support also verification in
other domains, such as Reals, Strings or Lists, so there are no
fundamental obstacles to use CDGP for spec-based synthesis
therein.
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