Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

The Intricacies of Three-Valued Extensional Semantics for Higher-Order Logic
Programs®

Panos Rondogiannis, loanna Symeonidou
National and Kapodistrian University of Athens
prondo@di.uoa.gr, i.symeonidou@di.uoa.gr

Abstract

In this paper we examine the problem of provid-
ing a purely extensional three-valued semantics for
higher-order logic programs with negation. We
demonstrate that a technique that was proposed by
M. Bezem for providing extensional semantics to
positive higher-order logic programs, fails when
applied to higher-order logic programs with nega-
tion. On the positive side, we demonstrate that for
stratified higher-order logic programs, extensional-
ity is indeed achieved by the technique. We ana-
lyze the reasons of the failure of extensionality in
the general case, arguing that a three-valued setting
can not distinguish between certain predicates that
appear to have a different behaviour inside a pro-
gram context, but which happen to be identical as
three-valued relations.

1 Introduction

Recent research [Wadge, 1991; Bezem, 1999; 2001; Char-
alambidis et al., 2013; 2017; 2018; Rondogiannis and Syme-
onidou, 2018] has investigated the possibility of provid-
ing extensional semantics to higher-order logic programming
(HOLP). Extensionality facilitates the use of standard set the-
ory in order to reason about programs, at the price of a rela-
tively restricted syntax.

There exist two research directions for providing exten-
sional semantics to higher-order logic programs. The first
one [Wadge, 1991; Charalambidis et al., 2013; 2014; 2018]
has been developed using domain-theoretic tools. The sec-
ond approach [Bezem, 1999; 2001; Rondogiannis and Syme-
onidou, 2018] is based on processing the ground instantiation
of the program. The two research directions are not unre-
lated: it has been shown by Charalambidis et al. [2017] that
for a broad class of positive programs, the two approaches
coincide.

In this paper we focus on the second approach, initially
proposed by Bezem [1999; 2001] for positive higher-order
logic programs. Recently, it was demonstrated by Rondo-
giannis and Symeonidou [2018] that by combining the tech-

*This paper is an abridged version of a paper with the same tile,
that won a best-paper award at the ICLP-2017 conference.

5344

nique of Bezem with the infinite-valued semantics of Rondo-
giannis and Wadge [2005], we obtain an extensional seman-
tics for higher-order logic programs with negation. At the
same time, a negative result was also established: by com-
bining the technique of Bezem with the stable model seman-
tics [Gelfond and Lifschitz, 1988], we get a semantics that is
not necessarily extensional! It remained as an open problem
of Rondogiannis and Symeonidou [2018] whether the combi-
nation of the technique of Bezem with the well-founded ap-
proach [Gelder et al., 1991] leads to an extensional seman-
tics. It is exactly this problem that we undertake to solve
in the present paper, the main contributions of which can be
summarized as follows:

e We demonstrate that the well-founded adaptation of
Bezem’s technique, does not in general lead to an exten-
sional model. This indicates that the addition of negation
to higher-order logic programming is not such a straight-
forward task as it was possibly initially anticipated.

e Despite the above negative result, we prove that the well-
founded adaptation of Bezem’s technique gives an ex-
tensional two-valued model in the case of stratified pro-
grams. This result affirms the importance and the well-
behaved nature of stratified programs, which was, until
now, only known for the first-order case.

e We study the more general question of the possible exis-
tence of an alternative extensional three-valued seman-
tics for higher-order logic programs with negation. We
indicate that in order to achieve such a semantics, one
has to make some strong assumptions regarding the be-
haviour of negation in higher-order logic programs.

The next two sections motivate in an intuitive way the pro-
posed approach. The remaining sections develop the material
in a formal way. The proofs of all results can be found in the
original paper [Rondogiannis and Symeonidou, 2017].

2 Extensional HOLP

W. W. Wadge [1991] suggested that if we appropriately
restrict the syntax of HOLP, then we can obtain a deno-
tational semantics in which predicates denote sets, much
like the traditional semantics of higher-order functional pro-
gramming. The most crucial syntactic restriction imposed
by Wadge (and later independently by M. Bezem [1999;
20011]), is the following:

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

The extensionality syntactic restriction: In the head of ev-
ery rule in a program, each argument of predicate type must
be a variable, and all such variables must be distinct.

Example 1 The following is a legitimate program that de-
fines the union of two relations P, Q (for the moment we use
ad-hoc Prolog-like syntax):

union (P, Q) (X) : =P (X) .
union (P, Q) (X) :=Q(X) .

However, each of these clauses violates Wadge’s restriction:

r(q):-g(a).
p(Q,Q):-Q(a) .

Under the extensional approach, predicates can be understood
declaratively in terms of extensional notions. For example,
the program:

map (R, [1,[1) .

map (R, [H1|T1], [H2|T2]):— R(H1,H2),

map (R, T1,T2) .

can be understood in a similar way as the well-known map
function of Haskell. Moreover, since under the extensional
approach predicates denote sets, two predicates that are
true of the same arguments, are considered indistinguish-
able. So, for example, if we define two sorting predicates
merge_sort and quick_sort it is guaranteed that any
higher-order predicate will have the same behaviour whether
it is given merge_sort or quick_sort as an argument.
As mentioned by Wadge [1991] “extensionality means ex-
actly that predicates are used as black boxes - and the “black
box” concept is central to all kinds of engineering”.

Another important advantage of this declarative approach
to higher-order logic programming is that many techniques
and ideas that have been successfully developed in the func-
tional programming world (such as program transformations,
optimizations, techniques for proving program correctness,
and so on), could be transferred to the higher-order logic pro-
gramming domain, opening in this way promising new re-
search directions for logic programming as a whole.

3 An Intuitive Introduction

In this section we give an intuitive description of the semantic
technique for positive higher-order logic programs proposed
by Bezem [1999; 2001] and we outline how we use it when
negation is added to programs. Given a positive program, the
starting idea behind Bezem’s approach is to take its “ground
instantiation”, in which we replace variables with well-typed
terms constructed from syntactic entities that appear in the
program. For example, consider the higher-order program:

qa(a) .

g (b) .

(Q) () .
(R :—R(X) .

In order to obtain the ground instantiation of this program, we

consider each clause and replace each variable of the clause

5345

with a ground term that has the same type as the variable un-
der consideration (the formal definition of this procedure will
be given in Definition 9):

g(a) .

g (b) .

p(q) :—qa(a).

id(qg) (a) :—g(a) .
id(q) (b) :—q(b) .
p(id(q)) :—-id(qg) (a)

One can now treat the new program as an infinite proposi-
tional one (i.e., each ground atom can be seen as a proposi-
tional variable). This implies that we can use the standard
least fixed-point construction of classical logic programming
in order to compute the set of atoms that should be taken as
“true”.

Bezem demonstrated that the least fixed-point semantics of
the ground instantiation of every positive higher-order logic
program of the language considered in [Bezem, 1999; 20011,
is extensional in a sense that can be explained as follows. In
our example, g and id (q) are equal since they are both true
of exactly the constants a and b. Therefore, we expect that
if p (q) is true then p (id (qg)) is also true, because g and
id (qg) should be considered as indistinguishable.

We use the same idea with programs that include nega-
tion: the ground instantiation of such a program can be seen
as a (possibly infinite) propositional program with negation.
Therefore, we can compute its semantics in any standard way
that exists for obtaining the meaning of such programs and
then proceed to examine whether the chosen model is exten-
sional in the sense of Bezem [1999; 2001]. As we are going
to see in the subsequent sections, when the ground instan-
tiation of the program is interpreted under the well-founded
semantics, the semantics we obtain is not always extensional.

4 The Syntax of H

In this section we define the syntax of our language H. H
uses a simple type system with two base types: o, the boolean
domain, and ¢, the domain of data objects. The composite
types are partitioned into three classes: functional (assigned
to function symbols), predicate (assigned to predicate sym-
bols) and argument (assigned to parameters of predicates).

Definition 1 A type can either be functional, predicate, or
argument, denoted by o, m and p respectively and defined as:

c=t]|(t—o0)
m:=o0|(p—
pi=t|m

We will use 7 to denote an arbitrary type. The binary op-
erator — is right-associative. It can be easily seen that every
predicate type m can be written in the form p; — --- —
pn — 0,n > 0 (for n = 0 we assume that m = o).

Definition 2 The alphabet of H consists of the following:
predicate variables of every predicate type 7 (denoted by cap-
ital letters such as Q,R, S, ...),; individual variables of type
L (denoted by capital letters such as X,Y,Z,...); predicate

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

constants of every predicate type w (denoted by lowercase
letters such as p,q,r, ...); individual constants of type ¢ (de-
noted by lowercase letters such as a, b, c, .. .); function sym-
bols of every functional type o # 1 (denoted by lowercase
letters such as f,g,h,...); the inverse implication constant
<, the negation constant ~; the comma; and the left and
right parentheses.

Arbitrary variables will usually be denoted by V and its sub-
scripted versions.

Definition 3 The set of terms of H is defined as follows: ev-
ery predicate variable (resp., predicate constant) of type w is
a term of type 7; every individual variable (resp., individual
constant) of type v is a term of type v, if f is an n-ary function
symbol and B+, . .. E,, are terms of type v then (f Ey -- - E,)
is a term of type v; if Eq is a term of type p — w and E5 a
term of type p then (E1 Es) is a term of type .

Definition 4 The set of expressions of H is defined as fol-
lows: a term of type p is an expression of type p; if Eis a
term of type o then (~E) is an expression of type o.

We will omit parentheses when no confusion arises. To de-
note that an expression E has type p we will often write E : p.
We will write vars(E) to denote the set of all the variables
in E. Expressions (respectively, terms) that have no vari-
ables will be referred to as ground expressions (respectively,
ground terms). Terms of type o will be referred to as atoms
and expressions of type o will be referred to as literals.

Definition 5 A clause of H is a formula p E;---E, <+
Li,..., L, where p is a predicate constant of type p1 —
coo = pn — 0, Eq, ... E, are terms of types p1, ..., pn re-
spectively, so that all E; with p; # . are distinct variables,
and Ly, ..., Ly, are literals. The term p Ey ---E,, is called
the head of the clause and the conjunction Ly, ..., L, is its
body. A program P of H is a finite set of clauses.

Example 2 The program below defines the subset relation
over unary predicates:

subset S1 S2 < ~ (nonsubset S1 S2)
nonsubset S1 S2 <« (S1 X), ~(S2 X)

The ground instantiation of a program is described by the
following definitions:

Definition 6 A substitution 6 is a finite set of the form
{V1/E1,...,Vn/E,} where the V;’s are different variables
and each E; is a term having the same type as V;. The do-
main {V1, ...,V } of 0 is denoted by dom(0). If all the terms
Ei,...,E, are ground, 0 is called a ground substitution.

Definition 7 Let 6 be a substitution and E be an expression.
Then, EO is an expression obtained from E as follows: Ef =
E if E is a predicate constant or individual constant; VO =
(V) if V € dom(0), otherwise VO = V; (f E;---E,)0 =
0 is a ground substitution with vars(E) C dom(0), then the
ground expression E is called a ground instance of E.

Definition 8 For a program P, we define the Herbrand uni-
verse for every argument type p, denoted by Up , to be the set
of all ground terms of type p that can be formed out of the in-
dividual constants, function symbols, and predicate constants
in the program.

Definition 9 Let P be a program. A ground instance of
a clause p E;---E, < Li,...,L,, of P is a formula
(p E1---Epn)8 < Li0,...,L,,0, where 0 is a ground sub-
stitution whose domain is the set of all variables that appear
in the clause, such that for every V € dom(0) with V : p,
6(V) € Up ,. The ground instantiation of a program P, de-
noted by Gr(P), is the (possibly infinite) set that contains all
the ground instances of the clauses of P.

5 The Semantics of H

In [Bezem, 1999; 2001] M. Bezem developed a semantics
for higher-order logic programs that is a generalization of the
familiar Herbrand-model semantics of classical (first-order)
logic programs. As such, the approach proposes that the
meaning of predicates and data objects is fixed across all
(Herbrand) interpretations. Because of this, the following
simplified definition of a higher-order interpretation is pos-
sible:

Definition 10 A (higher-order) Herbrand interpretation I of
a program P is a function which assigns to each ground atom
of Up o, an element in a specified domain of truth values.

The truth domain used in [Bezem, 1999; 2001] is the tradi-
tional two-valued one, as only positive programs are stud-
ied. In our attempt to extend the well-founded semantics, in
this paper we consider Herbrand interpretations with a three-
valued truth domain, i.e. {false, 0, true}.

The concept of “Herbrand model” of a higher-order pro-
gram can be defined as in classical logic programming.

Definition 11 Let P be a program and I be a Herbrand in-
terpretation of P. We say I is a model of P if I(A) >
min{I(Ly),...,I(L,)} holds for every ground instance
A<+ Ly,...,L, ofaclause of P.

Bezem’s semantics is based on the observation that, given
a positive higher-order program, the minimum model of its
ground instantiation serves as a Herbrand interpretation for
the program itself. We follow the same idea for programs
with negation: we can use as an interpretation of a given
higher-order program P, the model defined by any semantic
approach that applies to its ground instantiation. It is trivial
to see that any such model is also a Herbrand model of P.

In the following sections we investigate if the well-founded
model [Gelder er al., 1991] enjoys the extensionality prop-
erty, formally defined by Bezem [1999; 2001] through rela-
tions =7 , over the set of ground expressions of a given type p
and under a given interpretation /. These relations intuitively
express extensional equality of type p, in the sense discussed
in Section 3. The formal definition is as follows:

Definition 12 Let I be a Herbrand interpretation for a given
program P. For every argument type p we define the relations
=1, onUp , as follows. Let E,E' € Up ,; then E =1 , E' if
and only if: p=1and E = E'; or p = oand I(E) = I(E');
orp=p — mand ED =7 E'D’ for all D,D’ € Up ,,
such that D =g, D'

Generally, such relations are symmetric and transi-

tive [Bezem, 1999; 2001] (i.e., partial equivalences). Whether
they are moreover reflexive (i.e., full equivalences), depends

5346

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

on the specific interpretation, which leads to the notion of ex-
tensional interpretation:

Definition 13 Let P be a program and let I be a Herbrand
interpretation of P. We say I is extensional if for all argument
types p, =1 , is reflexive, i.e. forall E € Up ,, E =y , E.

For a more thorough and formal presentation of the no-
tions discussed in this section, the reader may refer to the full

version of the present paper [Rondogiannis and Symeonidou,
20171

6 Non-Extensionality of the Well-Founded
Model

In this section we demonstrate that the adaptation of Bezem’s
technique under the well-founded semantics does not in gen-
eral preserve extensionality. In particular, we exhibit below a
program that has a non-extensional well-founded model.

Example 3 Consider the higher-order program P:

s Q < Q (s Q)
p R+ R

g R < ~(w R)
w R < ~R

where the predicate variable Q is of type o — o and the pred-
icate variable R is of type o. It is not hard to see that the
predicates p : 0 — o and q : 0 — o represent the same
relation, namely {(v,v) | v € {false,0, true}}.

Consider the predicate s : (0 — 0) — o. By taking the
ground instances of the clauses involved, it is easy to see that
the atom (s p), under the well-founded semantics, will be
assigned the value false. On the other hand, (s q) is as-
signed the value 0, under the well-founded semantics, since
the ground instances of the relevant clauses form a circular
definition involving negation. In other words, p and q are ex-
tensionally equal, but (s p) and (s q) have different truth
values.

The above discussion is based on intuitive arguments, but it
is not hard to formalize it and obtain the following lemma:

Lemma 1 The well-founded model Mp of the program of
Example 3, is not extensional.

A question that arises is whether there exists a broad class
of programs that are extensional under the well-founded se-
mantics. The next section answers exactly this question.

7 Extensionality of Stratified Programs

In this section we argue that the well-founded model of
a stratified higher-order program [Rondogiannis and Syme-
onidou, 2018] enjoys the extensionality property. In the fol-
lowing definition, a predicate type m is understood to be
greater than a second predicate type 7', if 7 is of the form
p1 =+ — pp — 7, where n > 1.

Definition 14 A program P is called stratified if and only
if it is possible to decompose the set of all predicate con-
stants that appear in P into a finite number r of disjoint
sets (called strata) S1, 5o, ..., Sy, such that for every clause
H<+ Ay,...,An,~B1,...,~B, in P, where the predicate
constant of H is p, we have:

5347

1. for every i < m, if A; is a term that starts with a predi-
cate constant q, then stratum(q) < stratum(p);

2. for every i < m, if A; is a term that starts with a pred-
icate variable Q, then for all predicate constants q that
appear in P, such that the type of q is greater than or
equal to the type of Q, it holds stratum(q) < stratum(p);

3. forevery i < n, if B; starts with a predicate constant q,
then stratum(q) < stratum(p);

4. forevery i < n, if B; starts with a predicate variable Q,
then for all predicate constants q that appear in P, such
that the type of q is greater than or equal to the type of
Q, it holds stratum(q) < stratum(p);

where stratum(r) = i if r belongs to S;.

Evidently, the stratification for classical logic programs [Apt
et al., 1988] is a special case of the above definition.

Example 4 [t is straightforward to see that the program:

p Q< ~(Q a)
g a «

is stratified. However, it is easy to check that the program:

P Q¢+ ~(Q a)
g aa+< p (qga)

is not stratified because if the term (q a) is substituted for
Q we get a circularity through negation. The type of q is
Lt — t — o and it is greater than the type of Q which is L — o.

As it turns out, stratified higher-order logic programs have
an extensional two-valued well-founded model.

Theorem 1 The well-founded model Mp of a stratified pro-
gram P is extensional and does not assign the value 0.

Despite the above result, we have not yet been able to
clarify whether the class of locally stratified higher-order
logic programs (see Rondogiannis and Symeonidou [2018])
is well-behaved with respect to extensionality, or not.

8 The Restrictions of 3-Valued Approaches

In this section we indicate that in order to achieve an exten-
sional three-valued semantics for higher-order logic programs
with negation, one has to make some strong assumptions re-
garding the behaviour of negation in such programs.
Consider again the program of Section 6. Under the
infinite-valued adaptation of Bezem’s approach by Ron-
dogiannis and Symeonidou [2018] and also under the
domain-theoretic infinite-valued approach by Charalambidis
et al. [2014], the semantics of that program is extensional.
Both approaches differentiate the meaning of p from the
meaning of g, which correspond to different infinite-valued
relations. Therefore, it is not a surprise that in both cases, the
atoms (s p) and (s q) have different truth values.
Assume now that we want to devise an (alternative to the
one presented in this paper) extensional three-valued seman-
tics for H programs. Under such a semantics, it seems rea-
sonable to assume that p and g would correspond to the same
three-valued relation, namely {(v,v) | v € {false, 0, true}}.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Notice however that p and g are expected to have a different
operational behaviour. In particular, given the program:

s Q < Q (s Q)
p R < R

we expect the atom (s p) to have the value false (due to
the circularity that occurs when we try to evaluate it), while
given the program:

S Q < Q (s Q)
g R ¢ ~(w R)
w R < ~R

we expect the atom (s) to have the value 0 due to the cir-
cularity through negation. At first sight, the above discussion
seems to suggest that a three-valued extensional semantics for
all higher-order logic programs with negation is not possible.

However, the above discussion is based mainly on our ex-
perience regarding the behaviour of first-order logic programs
with negation. One could advocate a semantics under which
(s q) will also return the value false, arguing that the defi-
nition of g uses two negations which cancel each other. This
cancellation of double negations is not an entirely new idea;
for example, for certain extended propositional programs, the
semantics based on approximation fixpoint theory has the
same effect (see for example Denecker et al. [2012][page 185,
Example 1]). We have recently developed such an extensional
three-valued semantics for higher-order logic programs with
negation, using an approach based on approximation fixpoint
theory in Charalambidis et al. [2018]. It is an interesting
project for future research to evaluate the merits of each ap-
proach and the relationships between them.

References

[Apt et al., 1988] Krzysztof R. Apt, Howard A. Blair, and
Adrian Walker. Towards a theory of declarative knowl-
edge. In Jack Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 89—148. Mor-
gan Kaufmann, 1988.

[Bezem, 1999] Marc Bezem. Extensionality of simply typed
logic programs. In Danny De Schreye, editor, Logic
Programming: The 1999 International Conference, Las
Cruces, New Mexico, USA, November 29 - December 4,
1999, pages 395-410. MIT Press, 1999.

[Bezem, 2001] Marc Bezem. An improved extensionality
criterion for higher-order logic programs. In Laurent
Fribourg, editor, Computer Science Logic, 15th Interna-
tional Workshop, CSL 2001. 10th Annual Conference of
the EACSL, Paris, France, September 10-13, 2001, Pro-
ceedings, volume 2142 of Lecture Notes in Computer Sci-
ence, pages 203-216. Springer, 2001.

[Charalambidis et al., 2013] Angelos Charalambidis, Kon-
stantinos Handjopoulos, Panos Rondogiannis, and
William W. Wadge. Extensional higher-order logic
programming. ACM Trans. Comput. Log., 14(3):21, 2013.

[Charalambidis et al., 2014] Angelos Charalambidis, Zoltdn
Esik, and Panos Rondogiannis. Minimum model seman-

tics for extensional higher-order logic programming with
negation. TPLP, 14(4-5):725-737, 2014.

5348

[Charalambidis et al., 2017] Angelos Charalambidis, Panos
Rondogiannis, and Ioanna Symeonidou. Equivalence of
two fixed-point semantics for definitional higher-order
logic programs. Theor. Comput. Sci., 668:27-42, 2017.

[Charalambidis et al., 2018] Angelos Charalambidis, Panos
Rondogiannis, and Ioanna Symeonidou. Approximation
fixpoint theory and the well-founded semantics of higher-
order logic programs (in press). 2018.

[Denecker et al., 2012] Marc Denecker, Maurice
Bruynooghe, and Joost Vennekens. Approximation
fixpoint theory and the semantics of logic and answers set
programs. In Esra Erdem, Joohyung Lee, Yuliya Lierler,
and David Pearce, editors, Correct Reasoning - Essays
on Logic-Based Al in Honour of Vladimir Lifschitz,
volume 7265 of Lecture Notes in Computer Science,
pages 178-194. Springer, 2012.

[Gelder et al., 1991] Allen Van Gelder, Kenneth A. Ross,
and John S. Schlipf. The well-founded semantics for gen-
eral logic programs. J. ACM, 38(3):620-650, 1991.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert A. Kowalski and Ken-
neth A. Bowen, editors, Logic Programming, Proceedings
of the Fifth International Conference and Symposium,
Seattle, Washington, August 15-19, 1988 (2 Volumes),
pages 1070-1080. MIT Press, 1988.

[Rondogiannis and Symeonidou, 2017] Panos Rondogiannis
and Ioanna Symeonidou. The intricacies of three-valued
extensional semantics for higher-order logic programs.
TPLP, 17(5-6):974-991, 2017.

[Rondogiannis and Symeonidou, 2018] Panos Rondogiannis
and Ioanna Symeonidou. Extensional semantics for
higher-order logic programs with negation (in press). Log-
ical Methods in Computer Science, abs/1701.08622, 2018.

[Rondogiannis and Wadge, 2005] Panos Rondogiannis and
William W. Wadge. Minimum model semantics for logic
programs with negation-as-failure. ACM Trans. Comput.
Log., 6(2):441-467, 2005.

[Wadge, 1991] William W. Wadge. Higher-order horn logic
programming. In Vijay A. Saraswat and Kazunori Ueda,
editors, Logic Programming, Proceedings of the 1991 In-
ternational Symposium, San Diego, California, USA, Oct.
28 - Nov 1, 1991, pages 289-303. MIT Press, 1991.

