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Abstract
The impacts of climate change are felt by most
critical systems, such as infrastructure, ecological
systems, and power-plants. However, contempo-
rary Earth System Models (ESM) are run at spa-
tial resolutions too coarse for assessing effects this
localized. Local scale projections can be obtained
using statistical downscaling, a technique which
uses historical climate observations to learn a low-
resolution to high-resolution mapping. The spatio-
temporal nature of the climate system motivates
the adaptation of super-resolution image processing
techniques to statistical downscaling. In our work,
we present DeepSD, a generalized stacked super
resolution convolutional neural network (SRCNN)
framework with multi-scale input channels for sta-
tistical downscaling of climate variables. A com-
parison of DeepSD to four state-of-the-art meth-
ods downscaling daily precipitation from 1 degree
( 100km) to 1/8 degrees ( 12.5km) over the Conti-
nental United States. Furthermore, a framework us-
ing the NASA Earth Exchange (NEX) platform is
discussed for downscaling more than 20 ESM mod-
els with multiple emission scenarios.

1 Introduction
Climate change is causing detrimental effects to society’s
well being as temperatures increase, extreme events be-
come more intense[Pachauri et al., 2014], and sea levels
rise[Nicholls and Cazenave, 2010]. Natural resources that so-
ciety depends on, such as agriculture, freshwater, and coastal
systems, are vulnerable to increasing temperatures and more
extreme weather events. Similarly transportation systems,
energy systems, and urban infrastructure allowing society to
function efficiently continue to degrade due to the changing
climate. Furthermore, the health and security of human be-
ings, particularly those living in poverty, are vulnerable to

extreme weather events with increasing intensity, duration,
and frequency [Trenberth, 2012]. Scientists and stakehold-
ers across areas such as ecology, water, and infrastructures,
require access to credible and relevant climate data for risk
assessment and adaptation planning.

Earth System Models (ESMs) are physics-based numeri-
cal models which run on massive supercomputers to project
the Earth’s response to changes in atmospheric greenhouse
gas (GHG) emissions scenarios. Archived ESM outputs are
some of the principal data products used across many disci-
plines to characterize the likely impacts and uncertainties of
climate change [Taylor et al., 2012]. These models encode
physics into dynamical systems coupling atmospheric, land,
and ocean effects. ESMs provide a large number of climate
variables, such as temperature, precipitation, wind, humid-
ity, and pressure, for scientists to study and evaluate impacts.
The computationally demanding nature of ESMs limits spa-
tial resolution between 1 and 3 degrees. These resolutions
are too course to resolve critical physical processes, such as
convection which generates heavy rainfall, or to assess the
stakeholder-relevant local impacts of significant changes in
the attributes of these processes [Schiermeier, 2010].

Downscaling techniques are used to mitigate the low spa-
tial resolution of ESMs through dynamical and statistical
modeling. Dynamical downscaling, also referred to as re-
gional climate models (RCMs), account for local physical
processes, such as convective and vegetation schemes, with
sub-grid parameters within ESM boundary conditions for
high-resolution projections. Like ESMs, RCMs are compu-
tationally demanding and are not transferable across regions.
In contrast, the statistical downscaling (SD) technique learns
a functional form to map ESMs to high resolution projections
by incorporating observational data. A variety of statistical
and machine learning models, including linear models [Hes-
sami et al., 2008], neural networks [Cannon, 2011], and sup-
port vector machines [Ghosh, 2010], have been applied to SD.
Despite the availability of many techniques, we are not aware
of any SD method which explicitly captures spatial dependen-
cies in both low-resolution and high-resolution climate data.
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Figure 1: (Best viewed in color) DeepSD Framework: This end-to-end framework of DeepSD includes a set of stacked SRCNNs where the
inputs (dashed boxes) include a low-resolution input and high-resolution auxiliary variables.

Furthermore, traditional methods require observational data
at the high-resolution target, meaning that regions with little
observation data, often the poorest regions which are most
effected by climate change, are unable to receive downscaled
climate data needed for adaptation.

The lack of explicit spatial models in SD of ESMs mo-
tivated us to study the applicability of computer vision ap-
proaches, most often applied to images, to this problem.
Advances in single image super-resolution (SR) correspond
well to SD, which learns a mapping between low- and high-
resolution images. Through experimentation, we found that
super-resolution convolutional neural networks were able to
capture spatial information in climate data to improve beyond
existing methods.

1.1 Key Contributions
The key contributions are as follows:
• We present DeepSD, an augmented stacked super-

resolution convolutional neural network for statistical
downscaling of climate and earth system model simu-
lations based on observational and topographical data.

• DeepSD outperforms a state-of-the-art statistical down-
scaling method used by the climate and earth science
communities as well as a suite of off-the-shelf data min-
ing and machine learning methods, in terms of both pre-
dictive performance and scalability.

• The ability of DeepSD to outperform and generalize
beyond grid-by-grid predictions suggests the ability to
leverage cross-grid information content in terms of sim-
ilarity of learning patterns in space, while the ability
to model extremes points to the possibility of improved
ability beyond matching of quantiles.

• For the first time, DeepSD presents an ability to gen-
erate, in a scalable manner, downscaled products from
model ensembles, specifically, simulations from differ-
ent climate modeling groups across the world run with
different emissions trajectories and initial conditions.

• DeepSD provides NASA Earth Exchange (NEX) a
method of choice to process massive climate and earth
system model ensembles to generate downscaled prod-
ucts at high resolutions which can then be disseminated
to researchers and stakeholders.

2 Statistical Downscaling

SD is the problem of mapping a low-resolution climate vari-
able to a high-resolution projection. This mapping, which
must transform a single grid point to multiple points is an
ill-posed problem, one with many possible solutions. How-
ever, we can mitigate the ill-posed problem by including static
high-resolution topography data in conjunction with other
low-resolution climate variables. We learn the SD model
using observed climate datasets and then infer downscaled
ESM projections. Spatial and temporal non-stationarity of
the changing climate system challenges traditional statisti-
cal techniques. Downscaling precipitation further challenges
these methods with sparse occurrences and skewed distribu-
tions. The combination of an ill-posed problem, uncertainty
in the climate system, and data sparsity propagates uncer-
tainty in downscaled climate projections further.

3 Methods

3.1 Super-resolution CNN

SR methods, given a low-resolution (LR) image, aim to ac-
curately estimate a high-resolution image (HR). As presented
by Dong et al. [Dong et al., 2014], a CNN architecture can
be designed to learn a functional mapping between LR and
HR using three operations, patch extraction, non-linear map-
pings, and reconstruction. The LR input is denoted as X
while the HR label is denoted as Y. A three layer CNN, F ,
with rectified linear unit actiations can be defined such that
F (X) attempts to reconstruct Y. A Euclidean loss function
is used to the parameters (weights and biases) of F to define
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an optimization objective as:

argmin
Θ

n∑
i=1

‖F (Xi; Θ)−Yi‖22 (1)

such that n is the number of training samples (batch size).

3.2 Stacked SRCNN
Traditional SR methods are built for resolution enhancements
of factors from 2 to 4 while statistical downscaling conserva-
tively requires resolution increases of factors from 8 to 12.
Rather than enhancing resolution directly to 8-12x, as SR
applications typically do, we take an alternative approach.
To achieve such a large resolution improvement, we present
stacked SRCNNs such that each SRCNN increases the res-
olution by a factor of s. This approach allows the model to
learn spatial patterns at multiple scales, requiring less com-
plexity in the spatial representations. The approach of stack-
ing networks has been widely used in deep learning architec-
tures, including stacked denoising autoencoders [Vincent et
al., 2010] and stacked RBMs for deep belief networks [Hin-
ton and Salakhutdinov, 2006]. However, contrary to the
above networks where stacking is applied in an unsupervised
manner, each SRCNN is trained independently using their re-
spective input/output resolutions and stacked at test time.

3.3 DeepSD
We now present DeepSD, an augmented and specific archi-
tecture of stacked SRCNNs, as a novel SD technique. When
applying SR to images we generally only have a LR image to
estimate a HR image. However, during SD, we may have un-
derlying high-resolution data coinciding with this LR image
to estimate the HR images. For instance, when downscal-
ing precipitation we have two types on inputs including LR
precipitation and static topographical features such as HR el-
evation and land/water masks to estimate HR precipitation.
As topographical features are known beforehand at very high
resolutions and generally do not change over the period of in-
terest they can be leveraged at each scaling factor. As done
when training stacked SRCNNs, each SRCNN is trained in-
dependently with it’s associated input/output pairs. As pre-
sented in figure 1, inference is executed by starting with the
lowest resolution image with it’s associated HR elevation to
predict the first resolution enhancement. The next resolution
enhancement is estimated from the previous layer’s estimate
and it’s associated HR elevation. This process is repeated for
each trained SRCNN. Figure 1 illustrates this process with a
precipitation event and it’s various resolution improvements.
We see that this stacked process allows the model to capture
both regional and local patterns.

4 Experiments
4.1 Data
As ESM outputs do not provide information at the high res-
olution scales, we must use observational datasets to learn
our SD model. Hence, in this context, a gridded observa-
tion dataset acts as a proxy which can then be applied to

ESMs after training. In our experiments, we obtain precip-
itation through the PRISM dataset at a 4km daily spatial res-
olution which aggregates station observations to a grid with
physical and topographical information [Daly et al., 2008].
We then upscale the precipitation data to 1/8◦ ( 12.5 km) as
our high-resolution observations. Following, we upscale fur-
ther to 1◦ corresponding to a low-resolution precipitation, as
applied in [Pierce et al., 2014]. For topography we use the
the GTOPO30 elevation (30 arcsec spatial resolution) dataset
distributed by the Land Processes Distributed Active Archive
Center (LP DAAC). The goal is then to learn a mapping be-
tween our low-resolution and high-resolution datasets.

Data for a single day at the highest resolution, 1/8◦, cover-
ing CONUS is an “image” of size 208x464. Precipitation and
elevation are used as input channels while precipitation is the
sole output. Images are obtained at each resolution through
up-sampling using a bicubic interpolation. For instance up-
sampling to 1.0◦ decreases the image size from 208x464 to
26x58. Precipitation features for the first SRCNN, downscal-
ing from 1.0◦ to 1/2◦, are first up-sampled to 1.0◦ and then
interpolated for a second time to 1/2◦ in order to correspond
to the output size of 52x116. This process is subsequently
applied to each SRCNN depending on it’s corresponding res-
olution. During the training phase, 51x51 sub-images are ex-
tracted at a stride of 20 to provide heterogeneity in the train-
ing set. The number of sub-images per year (1095, 9125,
and 45,625) increase with resolution. Features and labels are
normalized to zero mean and unit variance. Precipitation val-
ues are only available over land so we set each null value
to a sufficiently low value of −5 which is then masked after
downscaling accordingly.

4.2 Training Parameters
All SRCNNs are trained with the same set of parameters, se-
lected using those found to work well by Dong et al. [Dong
et al., 2014]. Layer 1 consists of 64 filters of 9x9 kernels,
layer 2 consists of 32 filters of 1x1 filters, and the output
layer uses a 5x5 kernel. Higher resolution models which have
a greater number of sub-images may gain from larger ker-
nel sizes and an increased number of filters. Each network
is trained using Adam optimization [Kingma and Ba, 2014]
with a learning rate of 10−4 for the first two layers and 10−5

for the last layers. Each model was trained for 107 iterations
with a batch size of 200. Tensorflow [Abadi et al., 2016] was
utilized to build and train DeepSD. Training harnessed three
Titan X GPUs on an NVIDIA DIGITS DevBox by indepen-
dently training each SRCNN. Inference was then executed
sequentially on a single Titan X GPU on the same machine.

4.3 Results
DeepSD’s ability to provide credible projections is crucial to
all stakeholders. While there are many facets to statistical
downscaling, we use a few key metrics to show DeepSD’s
applicability. Root mean square error (RMSE) and Pearson’s
correlation are used to capture the predictive capabilities of
the methods. Figure 2 maps this RMSE (mm/day) for each lo-
cation. Bias, the average error, presents the ability to estimate
the mean while a skill score metric, as presented in [Perkins et
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Figure 2: (Best viewed in color) Daily Root Mean Square Error (RMSE) computed at each location for years 2006 to 2014 (test set) in
CONUS for Left) DeepSD and Right) BCSD. Red corresponds to high RMSE while blue corresponds to low RMSE.

Bias Corr RMSE Skill Runtime
Model (mm/day) (mm/day) (secs)

Lasso 0.053 0.892 2.653 0.925 1297
ANN 0.049 0.862 3.002 0.907 2015
SVM -1.489 0.886 3.205 0.342 27800
BCSD -0.037 0.849 4.414 0.955 –
SRCNN -0.699 0.894 2.949 0.833 24
DeepSD 0.022 0.914 2.529 0.947 71

Table 1: Comparison of predictive ability between all six methods
for 1000 randomly selected locations in CONUS. Runtime is com-
puted as the amount of time to downscale 1 year of CONUS.

al., 2007], is used to measure distribution similarity between
0 and 1 where 1 corresponds to identical distributions.

Our first experiment compares six approaches, DeepSD,
SRCNN (DeepSD w/o stacking), BCSD, Lasso, SVM, and
ANN, on their ability to capture daily predictability, pre-
sented in Table 1. The four metrics discussed above are com-
puted and averaged over the 1000 randomly selected loca-
tions in CONUS where ASD methods were trained. We find
that DeepSD outperforms the other approaches in terms of
bias, correlation, and RMSE and closely behind BCSD in
terms of skill. We also find that the stacking performed by
DeepSD provides a large performance improvement beyond
a single SRCNN network with an 8x resolution increase. Fur-
thermore, we find that SVM performs poorly in testing while
having the longest runtime. Similarly, the least complex ASD
method, Lasso, outperforms the more complex ANN. As ex-
pected, BCSD, a method built around estimating the underly-
ing distribution, does well in minimizing bias and estimating
the underlying distribution. For these reasons, in conjunction
with our previous findings [Vandal et al., 2017a], the remain-
ing experiments will limit the methods to DeepSD and BCSD.

In the next experiment compare DeepSD and BCSD, the
two scalable and top performing methods from the previous
experiment, with each metric over CONUS. Each metric is
computed per location and season using the daily observa-
tions and downscaled estimates then averaged over CONUS.
We find that DeepSD has high predictive capabilities for all
seasons, higher correlation and lower RMSE, when com-
pared to BCSD. Similar results are shown in Figure 2 where

DeepSD has a lower RMSE than BCSD for 79% of CONUS.
Furthermore, we find each method’s ability to estimate the
underlying distribution well with low bias, < 0.5 mm/day,
and a high skill score of ∼ 0.98. As BCSD is built specifi-
cally to minimize bias and match the underlying distribution,
DeepSD’s performance is strong. Overall, DeepSD outper-
forms BCSD for the chosen set metrics. We encourage the
reader to refer to [Vandal et al., 2017b] for more thorough re-
sults and DeepSD’s application on the NASA Earth Exchange
(NEX) platform.

5 Conclusion
Though DeepSD shows promise for SD, there are still some
limitations in our experimentation regarding spatial and tem-
poral generalization. An advantage of DeepSD is that a sin-
gle trained model is able to downscale spatial heterogeneous
regions. However, we do not test predictability in regions
where the model was not trained. Future work will exam-
ine this hypothesis to understand DeepSD’s credibility in re-
gions with few observations. Second, we do not test temporal
non-stationarity, a longstanding problem in statistical down-
scaling. Evaluation under non-stationarity can be tested us-
ing approaches presented by Salvi et al. [Salvi et al., 2015],
such that training and testing data is split between cold/warm
years. As there is a single model for all locations, includ-
ing cold and warm climates, we hypothesize that DeepSD is
capable of capturing non-stationarity.

Furthermore, future work can improve multiple facets of
DeepSD. For instance, the inclusion of more variables such
as temperature, wind, and humidity at different pressure lev-
els of the atmosphere may capture more climate patterns.
Also, downscaling multiple climate variables simultaneously
could be explored to find similar spatial patterns in the high-
resolution datasets, such as high temperatures and increased
precipitation. Most importantly, DeepSD fails to capture un-
certainty around its downscaled projections, a key factor in
adapting to climate change. Recent advances in Bayesian
Deep Learning concepts [Gal, 2016; Vandal et al., 2018] may
aid in quantifying uncertainty. Though these limitations ex-
ist, DeepSD is a scalable architecture with high predictive
capabilities which provides a novel framework for statistical
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downscaling.
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